1
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Paz MFCJ, Sobral ALP, Picada JN, Grivicich I, Júnior ALG, da Mata AMOF, de Alencar MVOB, de Carvalho RM, da Conceição Machado K, Islam MT, de Carvalho Melo Cavalcante AA, da Silva J. Persistent Increased Frequency of Genomic Instability in Women Diagnosed with Breast Cancer: Before, during, and after Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2846819. [PMID: 30013718 PMCID: PMC6022262 DOI: 10.1155/2018/2846819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate DNA damage in patients with breast cancer before treatment (background) and after chemotherapy (QT) and radiotherapy (RT) treatment using the Comet assay in peripheral blood and the micronucleus test in buccal cells. We also evaluated repair of DNA damage after the end of RT, as well as the response of patient's cells before treatment with an oxidizing agent (H2O2; challenge assay). Fifty women with a mammographic diagnosis negative for cancer (control group) and 100 women with a diagnosis of breast cancer (followed up during the treatment) were involved in this study. The significant DNA damage was observed by increasing in the index and frequency of damage along with the increasing of the frequency of micronuclei in peripheral blood and cells of the buccal mucosa, respectively. Despite the variability of the responses of breast cancer patients, the individuals presented lesions on the DNA, detected by the Comet assay and micronucleus Test, from the diagnosis until the end of the oncological treatment and were more susceptible to oxidative stress. We can conclude that the damages were due to clastogenic and/or aneugenic effects related to the neoplasia itself and that they increased, especially after RT.
Collapse
Affiliation(s)
- Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - André Luiz Pinho Sobral
- University Hospital of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Biomedicine Department, UNINOVAFAPI University, Teresina, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Rodrigo Mendes de Carvalho
- Central Laboratory of Public Health of Piauí, Rua Dezenove de Novembro 1945, Bairro Primavera, 64002-570 Teresina, PI, Brazil
| | - Kátia da Conceição Machado
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Genetic Toxicology, PPGCF, Federal University of Piauí, Av. Universitária S/N, Ininga, 64049-550 Teresina, PI, Brazil
- Post-Graduation Program in Biotechnology, RENORBIO, Federal University of Piauí, Av. Universitária, S/N, Ininga, 64049-550 Teresina, PI, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° Andar), 92425-900 Canoas, RS, Brazil
| |
Collapse
|
3
|
Velegzhaninov IO, Shadrin DM, Pylina YI, Ermakova AV, Shostal OA, Belykh ES, Kaneva AV, Ermakova OV, Klokov DY. Differential Molecular Stress Responses to Low Compared to High Doses of Ionizing Radiation in Normal Human Fibroblasts. Dose Response 2015; 13:10.2203_dose-response.14-058.Velegzhaninov. [PMID: 26675169 PMCID: PMC4674169 DOI: 10.2203/dose-response.14-058.velegzhaninov] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding the mechanisms producing low dose ionizing radiation specific biological effects represents one of the major challenges of radiation biology. Although experimental evidence does suggest that various molecular stress response pathways may be involved in the production of low dose effects, much of the detail of those mechanisms remains elusive. We hypothesized that the regulation of various stress response pathways upon irradiation may differ from one another in complex dose-response manners, causing the specific and subtle low dose radiation effects. In the present study, the transcription level of 22 genes involved in stress responses were analyzed using RT-qPCR in normal human fibroblasts exposed to a range of gamma-doses from 1 to 200 cGy. Using the alkali comet assay, we also measured the level of DNA damages in dose-response and time-course experiments. We found non-linear dose responses for the repair of DNA damage after exposure to gamma-radiation. Alterations in gene expression were also not linear with dose for several of the genes examined and did not follow a single pattern. Rather, several patterns could be seen. Our results suggest a complex interplay of various stress response pathways triggered by low radiation doses, with various low dose thresholds for different genes.
Collapse
Affiliation(s)
- Ilya O Velegzhaninov
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | - Dmitry M Shadrin
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | - Yana I Pylina
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | | | - Olga A Shostal
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | - Elena S Belykh
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | - Anna V Kaneva
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982 ; Syktyvkar State University, Syktyvkar, Russia. 55 Octyabrskiy ave., 167001
| | - Olga V Ermakova
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia. 28 Kommunisticheskaya st., 167982
| | - Dmitry Y Klokov
- Canadian Nuclear Laboratories, 1 Plant Rd, Chalk River, K0J1P0, Ontario, Canada
| |
Collapse
|
4
|
Yoshiyama KO. SOG1: a master regulator of the DNA damage response in plants. Genes Genet Syst 2015; 90:209-16. [DOI: 10.1266/ggs.15-00011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Schüler E, Rudqvist N, Parris TZ, Langen B, Spetz J, Helou K, Forssell-Aronsson E. Time- and dose rate-related effects of internal (177)Lu exposure on gene expression in mouse kidney tissue. Nucl Med Biol 2014; 41:825-32. [PMID: 25156037 DOI: 10.1016/j.nucmedbio.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The kidneys are the dose-limiting organs in some radionuclide therapy regimens. However, the biological impact of internal exposure from radionuclides is still not fully understood. The aim of this study was to examine the effects of dose rate and time after i.v. injection of (177)LuCl3 on changes in transcriptional patterns in mouse kidney tissue. METHODS To investigate the effect of dose rate, female Balb/c nude mice were i.v. injected with 11, 5.6, 1.6, 0.8, 0.30, and 0 MBq of (177)LuCl3, and killed at 3, 6, 24, 48, 168, and 24 hours after injection, respectively. Furthermore, the effect of time after onset of exposure was analysed using mice injected with 0.26, 2.4, and 8.2 MBq of (177)LuCl3, and killed at 45, 90, and 140 days after injection. Global transcription patterns of irradiated kidney cortex and medulla were assessed and enriched biological processes were determined from the regulated gene sets using Gene Ontology terms. RESULTS The average dose rates investigated were 1.6, 0.84, 0.23, 0.11 and 0.028 mGy/min, with an absorbed dose of 0.3 Gy. At 45, 90 and 140 days, the absorbed doses were estimated to 0.3, 3, and 10 Gy. In general, the number of differentially regulated transcripts increased with time after injection, and decreased with absorbed dose for both kidney cortex and medulla. Differentially regulated transcripts were predominantly involved in metabolic and stress response-related processes dependent on dose rate, as well as transcripts associated with metabolic and cellular integrity at later time points. CONCLUSION The observed transcriptional response in kidney tissue was diverse due to difference in absorbed dose, dose rate and time after exposure. Nevertheless, several transcripts were significantly regulated in all groups despite differences in exposure parameters, which may indicate potential biomarkers for exposure of kidney tissue.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Schüler E, Rudqvist N, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Transcriptional response of kidney tissue after 177Lu-octreotate administration in mice. Nucl Med Biol 2013; 41:238-47. [PMID: 24434014 DOI: 10.1016/j.nucmedbio.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The kidneys are one of the main dose limiting organs in (177)Lu-octreotate therapy of neuroendocrine tumors. Therefore, biomarkers for radiation damage would be of great importance in this type of therapy. The purpose of this study was to investigate the absorbed dose dependency on early transcriptional changes in the kidneys from (177)Lu-octreotate exposure. METHODS Female Balb/c nude mice were i.v. injected with 1.3, 3.6, 14, 45 or 140 MBq (177)Lu-octreotate. The animals were killed 24 h after injection followed by excision of the kidneys. The absorbed dose to the kidneys ranged between 0.13 and 13 Gy. Total RNA was extracted from separated renal tissue samples, and applied to Illumina MouseRef-8 Whole-Genome Expression Beadchips to identify regulated transcripts after irradiation. Nexus Expression 2.0 and Gene Ontology terms were used for data processing and to determine affected biological processes. RESULTS Distinct transcriptional responses were observed following (177)Lu-octreotate administration. A higher number of differentially expressed transcripts were observed in the kidney medulla (480) compared to cortex (281). In addition, 39 transcripts were regulated at all absorbed dose levels in the medulla, compared to 32 in the cortex. Three biological processes in the cortex and five in the medulla were also shared by all absorbed dose levels. Strong association to metabolism was found among the affected processes in both tissues. Furthermore, an association with cellular and developmental processes was prominent in kidney medulla, while transport and immune response were prominent in kidney cortex. CONCLUSION Specific biological and dose-dependent responses were observed in both tissues. The number of affected transcripts and biological processes revealed distinct response differences between the absorbed doses delivered to the tissues.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
DNA damage response in plants: conserved and variable response compared to animals. BIOLOGY 2013; 2:1338-56. [PMID: 24833228 PMCID: PMC4009792 DOI: 10.3390/biology2041338] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
The genome of an organism is under constant attack from endogenous and exogenous DNA damaging factors, such as reactive radicals, radiation, and genotoxins. Therefore, DNA damage response systems to sense DNA damage, arrest cell cycle, repair DNA lesions, and/or induce programmed cell death are crucial for maintenance of genomic integrity and survival of the organism. Genome sequences revealed that, although plants possess many of the DNA damage response factors that are present in the animal systems, they are missing some of the important regulators, such as the p53 tumor suppressor. These observations suggest differences in the DNA damage response mechanisms between plants and animals. In this review the DNA damage responses in plants and animals are compared and contrasted. In addition, the function of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a plant-specific transcription factor that governs the robust response to DNA damage, is discussed.
Collapse
|
8
|
Zhang L, Simpson DA, Innes CL, Chou J, Bushel PR, Paules RS, Kaufmann WK, Zhou T. Gene expression signatures but not cell cycle checkpoint functions distinguish AT carriers from normal individuals. Physiol Genomics 2013; 45:907-16. [PMID: 23943852 PMCID: PMC3798780 DOI: 10.1152/physiolgenomics.00064.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
Ataxia telangiectasia (AT) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia-mutated gene (ATM). AT carriers with one mutant ATM allele are usually not severely affected although they carry an increased risk of developing cancer. There has not been an easy and reliable diagnostic method to identify AT carriers. Cell cycle checkpoint functions upon ionizing radiation (IR)-induced DNA damage and gene expression signatures were analyzed in the current study to test for differential responses in human lymphoblastoid cell lines with different ATM genotypes. While both dose- and time-dependent G1 and G2 checkpoint functions were highly attenuated in ATM-/- cell lines, these functions were preserved in ATM+/- cell lines equivalent to ATM+/+ cell lines. However, gene expression signatures at both baseline (consisting of 203 probes) and post-IR treatment (consisting of 126 probes) were able to distinguish ATM+/- cell lines from ATM+/+ and ATM-/- cell lines. Gene ontology (GO) and pathway analysis of the genes in the baseline signature indicate that ATM function-related categories, DNA metabolism, cell cycle, cell death control, and the p53 signaling pathway, were overrepresented. The same analyses of the genes in the IR-responsive signature revealed that biological categories including response to DNA damage stimulus, p53 signaling, and cell cycle pathways were overrepresented, which again confirmed involvement of ATM functions. The results indicate that AT carriers who have unaffected G1 and G2 checkpoint functions can be distinguished from normal individuals and AT patients by expression signatures of genes related to ATM functions.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Obstetrics & Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Baumgartner A. Comparative genomic hybridization (CGH) in genotoxicology. Methods Mol Biol 2013; 1044:245-268. [PMID: 23896881 DOI: 10.1007/978-1-62703-529-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
Collapse
|
10
|
Zhang Y, Rohde LH, Wu H. Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 2011; 10:250-8. [PMID: 19949546 PMCID: PMC2709936 DOI: 10.2174/138920209788488544] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022] Open
Abstract
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.
Collapse
Affiliation(s)
- Ye Zhang
- NASA Johnson Space Center, Houston, Texas 77058
| | | | | |
Collapse
|
11
|
Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5:336-48. [PMID: 21795128 DOI: 10.1016/j.molonc.2011.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 01/30/2023] Open
Abstract
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Room 1022, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McDonald CJ, Ostini L, Wallace DF, John AN, Watters DJ, Subramaniam VN. Iron loading and oxidative stress in the Atm-/- mouse liver. Am J Physiol Gastrointest Liver Physiol 2011; 300:G554-60. [PMID: 21292994 DOI: 10.1152/ajpgi.00486.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ataxia-Telangiectasia (A-T) is an autosomal recessive disorder resulting in a myriad of abnormalities, including progressive neurodegeneration and cancer predisposition. At the cellular level, A-T is a disease of chronic oxidative stress (OS) causing damage to proteins, lipids, and DNA. OS is contributed to by pro-oxidative transition metals such as iron that catalyze the conversion of weakly reactive oxygen species to highly reactive hydroxyl radicals. Iron-associated OS has been linked to neurodegeneration in Alzheimer's and Parkinson's diseases and development of lymphoid tumors (which afflict ∼30% of A-T patients). To investigate iron regulation in A-T, iron indexes, regulatory genes, and OS markers were studied in livers of wild-type and Ataxia telangiectasia mutated (Atm) null mice on control or high-iron diets. Atm(-/-) mice had increased serum iron, hepatic iron, and ferritin and significantly higher Hepcidin compared with wild-type mice. When challenged with the high-iron diet, Bmp6 and Hfe expression was significantly increased. Atm(-/-) mice had increased protein tyrosine nitration and significantly higher Heme Oxygenase (decycling) 1 levels that were substantially increased by a high-iron diet. Ferroportin gene expression was significantly increased; however, protein levels were unchanged. We demonstrate that Atm(-/-) mice have a propensity to accumulate iron that is associated with a significant increase in hepatic OS. The iron-induced increase in hepcidin peptide in turn suppresses ferroportin protein levels, thus nullifying the upregulation of mRNA expression in response to increased OS. Our results suggest that increased iron status may contribute to the chronic OS seen in A-T patients and development of disease pathology.
Collapse
Affiliation(s)
- Cameron J McDonald
- Membrane Transport Laboratory, Division of Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Mello SS, Fachin AL, Junta CM, Sandrin-Garcia P, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Delayed effects of exposure to a moderate radiation dose on transcription profiles in human primary fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:117-129. [PMID: 20839223 DOI: 10.1002/em.20591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ionizing radiation (IR) is used in a wide variety of medical and nonmedical applications and poses a potential threat to human health. Knowledge of changes in gene expression in irradiated cells may be helpful for the establishment of effective paradigms for radiation protection. IR-induced DNA damage triggers a complex cascade of signal transduction. Recently, genome-wide approaches have allowed the detection of alterations in gene expression across a wide range of radiation doses. However, the delayed or long-term biological effects of mild-doses of IR remain largely unknown. The main objective of the present study was to investigate the effects of a moderate dose of gamma-rays (50 cGy) on gene expression 6 days post-irradiation. Gene expression using cDNA microarrays revealed statistically significant changes in the expression of 59 genes (FDR < 0.07), whose functions are related to cell-cycle control, protein trafficking, ubiquitin cycle, Rho-GTPAse pathway, protein phosphatase signalization, oxidoreductase control, and stress response. A set of 464 genes was also selected by a less stringent approach, and we demonstrate that this broader set of genes can efficiently distinguish the irradiated samples from the unirradiated, defining a long-term IR signature in human primary fibroblasts. Our findings support the existence of persistent responses to mild doses of IR detectable by changes in gene expression profiles. These results provide insight into delayed effects observed in human primary cells as well as the role of long-term response in neoplastic transformation. Environ.
Collapse
Affiliation(s)
- Stephano S Mello
- Departamento de Genética-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Mazan-Mamczarz K, Hagner PR, Zhang Y, Dai B, Lehrmann E, Becker KG, Keene JD, Gorospe M, Liu Z, Gartenhaus RB. ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood 2011; 117:2441-50. [PMID: 21209379 PMCID: PMC3062410 DOI: 10.1182/blood-2010-09-310987] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/30/2010] [Indexed: 01/12/2023] Open
Abstract
Maintenance of genomic stability depends on the DNA damage response, a biologic barrier in early stages of cancer development. Failure of this response results in genomic instability and high predisposition toward lymphoma, as seen in patients with ataxia-telangiectasia mutated (ATM) dysfunction. ATM activates multiple cell-cycle checkpoints and DNA repair after DNA damage, but its influence on posttranscriptional gene expression has not been examined on a global level. We show that ionizing radiation modulates the dynamic association of the RNA-binding protein HuR with target mRNAs in an ATM-dependent manner, potentially coordinating the genotoxic response as an RNA operon. Pharmacologic ATM inhibition and use of ATM-null cells revealed a critical role for ATM in this process. Numerous mRNAs encoding cancer-related proteins were differentially associated with HuR depending on the functional state of ATM, in turn affecting expression of encoded proteins. The findings presented here reveal a previously unidentified role of ATM in controlling gene expression posttranscriptionally. Dysregulation of this DNA damage response RNA operon is probably relevant to lymphoma development in ataxia-telangiectasia persons. These novel RNA regulatory modules and genetic networks provide critical insight into the function of ATM in oncogenesis.
Collapse
|
15
|
Marionnet C, Pierrard C, Lejeune F, Sok J, Thomas M, Bernerd F. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One 2010; 5:e12059. [PMID: 20706594 PMCID: PMC2919404 DOI: 10.1371/journal.pone.0012059] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/14/2010] [Indexed: 01/03/2023] Open
Abstract
Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as "daily UV radiation" (DUVR) with a higher UVA (320-400 nm) to UVB (280-320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure.
Collapse
|
16
|
Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 2009; 111:202-25. [PMID: 19567883 DOI: 10.1093/toxsci/kfp140] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High costs, long test times, and societal concerns related to animal use have required the development of in vitro assays for the rapid and cost-effective toxicological evaluation and characterization of compounds in both the pharmaceutical and environmental arenas. Although the pharmaceutical industry has developed very effective, high-throughput in vitro assays for determining the therapeutic potential of compounds, the application of this approach to toxicological screening has been limited. A primary reason for this is that while drug candidate screens are directed to a specific target/mechanism, xenobiotics can cause toxicity through any of a myriad of undefined interactions with cellular components and processes. Given that it is not practical to design assays that can interrogate each potential toxicological target, an integrative approach is required if there is to be a rapid and low-cost toxicological evaluation of chemicals. Cellular stress response pathways offer a viable solution to the creation of a set of integrative assays as there is a limited and hence manageable set (a small ensemble of 10 or less) of major cellular stress response pathways through which cells mount a homoeostatic response to toxicants and which also participate in cell fate/death decisions. Further, over the past decades, these pathways have been well characterized at a molecular level thereby enabling the development of high-throughput cell-based assays using the components of the pathways. Utilization of the set of cellular stress response pathway-based assays as indicators of toxic interactions of chemicals with basic cellular machinery will potentially permit the clustering of chemicals based on biological response profiles of common mode of action (MOA) and also the inference of the specific MOA of a toxicant. This article reviews the biochemical characteristics of the stress response pathways, their common architecture that enables rapid activation during stress, their participation in cell fate decisions, the essential nature of these pathways to the organism, and the biochemical basis of their cross-talk that permits an assay ensemble screening approach. Subsequent sections describe how the stress pathway ensemble assay approach could be applied to screening potentially toxic compounds and discuss how this approach may be used to derive toxicant MOA from the biological activity profiles that the ensemble strategy provides. The article concludes with a review of the application of the stress assay concept to noninvasive in vivo assessments of chemical toxicants.
Collapse
Affiliation(s)
- Steven O Simmons
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina 27711, USA
| | | | | |
Collapse
|
17
|
Shao L, Fujii H, Colmegna I, Oishi H, Goronzy JJ, Weyand CM. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 206:1435-49. [PMID: 19451263 PMCID: PMC2715066 DOI: 10.1084/jem.20082251] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In rheumatoid arthritis (RA), dysfunctional T cells sustain chronic inflammatory immune responses in the synovium. Even unprimed T cells are under excessive replication pressure, suggesting an intrinsic defect in T cell regeneration. In naive CD4 CD45RA+ T cells from RA patients, DNA damage load and apoptosis rates were markedly higher than in controls; repair of radiation-induced DNA breaks was blunted and delayed. DNA damage was highest in newly diagnosed untreated patients. RA T cells failed to produce sufficient transcripts and protein of the DNA repair kinase ataxia telangiectasia (AT) mutated (ATM). NBS1, RAD50, MRE11, and p53 were also repressed. ATM knockdown mimicked the biological effects characteristic for RA T cells. Conversely, ATM overexpression reconstituted DNA repair capabilities, response patterns to genotoxic stress, and production of MRE11 complex components and rescued RA T cells from apoptotic death. In conclusion, ATM deficiency in RA disrupts DNA repair and renders T cells sensitive to apoptosis. Apoptotic attrition of naive T cells imposes lymphopenia-induced proliferation, leading to premature immunosenescence and an autoimmune-biased T cell repertoire. Restoration of DNA repair mechanisms emerges as an important therapeutic target in RA.
Collapse
Affiliation(s)
- Lan Shao
- The Kathleen B. and Mason I. Lowance Center for Human Immunology and Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
18
|
Clyde RG, Craig AL, de Breed L, Bown JL, Forrester L, Vojtesek B, Smith G, Hupp T, Crawford J. A novel ataxia-telangiectasia mutated autoregulatory feedback mechanism in murine embryonic stem cells. J R Soc Interface 2009; 6:1167-77. [PMID: 19324671 DOI: 10.1098/rsif.2008.0538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is known to play a central role in effecting the DNA damage response that protects somatic cells from potentially harmful mutations, and in this role it is a key anti-cancer agent. However, it also promotes repair of therapeutic damage (e.g. radiotherapy) and so frustrates the efficacy of some treatments. A better understanding of the mechanisms of ATM regulation is therefore important both in prevention and treatment of disease. While progress has been made in elucidating the key signal transduction pathways that mediate damage response in somatic cells, relatively little is known about whether these function similarly in pluripotent embryonic stem (ES) cells where ATM is also implicated in our understanding of adult stem cell ageing and in improvements in regenerative medicine. There is some evidence that different mechanisms may operate in ES cells and that our understanding of the mechanisms of ATM regulation is therefore incomplete. We investigated the behaviour of the damage response signalling pathway in mouse ES cells. We subjected the cells to the DNA-damaging agent doxorubicin, a drug that induces double-strand breaks, and measured ATM expression levels. We found that basal ATM gene expression was unaffected by doxorubicin treatment. However, following ATM kinase inhibition using a specific ATM inhibitor, we observed a significant increase in ATM and ataxia-telangiectasia and Rad3 related transcription. We demonstrate the use of a dynamical modelling approach to show that these results cannot be explained in terms of known mechanisms. Furthermore, we show that the modelling approach can be used to identify a novel feedback process that may underlie the anomalies in the data. The predictions of the model are consistent both with our in vitro experiments and with in vivo studies of ATM expression in somatic cells in mice, and we hypothesize that this feedback operates in both somatic and ES cells in vivo. The results point to a possible new target for ATM inhibition that overcomes the restorative potential of the proposed feedback.
Collapse
Affiliation(s)
- Robert G Clyde
- SIMBIOS, University of Abertay, Dundee, Kydd Building, Bell Street, Dundee DD1 1HG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Rohde LH, Emami K, Hammond D, Casey R, Mehta SK, Jeevarajan AS, Pierson DL, Wu H. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest. DNA Repair (Amst) 2008; 7:1835-45. [DOI: 10.1016/j.dnarep.2008.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
|
20
|
Abstract
Recent studies have implicated bone-lining osteoblasts as important regulators of hematopoietic stem cell (HSC) self-renewal and differentiation; however, because much of the evidence supporting this notion derives from indirect in vivo experiments, which are unavoidably complicated by the presence of other cell types within the complex bone marrow milieu, the sufficiency of osteoblasts in modulating HSC activity has remained controversial. To address this, we prospectively isolated mouse osteoblasts, using a novel flow cytometry-based approach, and directly tested their activity as HSC niche cells and their role in cyclophosphamide/granulocyte colony-stimulating factor (G-CSF)-induced HSC proliferation and mobilization. We found that osteoblasts expand rapidly after cyclophosphamide/G-CSF treatment and exhibit phenotypic and functional changes that directly influence HSC proliferation and maintenance of reconstituting potential. Effects of mobilization on osteoblast number and function depend on the function of ataxia telangiectasia mutated (ATM), the product of the Atm gene, demonstrating a new role for ATM in stem cell niche activity. These studies demonstrate that signals from osteoblasts can directly initiate and modulate HSC proliferation in the context of mobilization. This work also establishes that direct interaction with osteolineage niche cells, in the absence of additional environmental inputs, is sufficient to modulate stem cell activity.
Collapse
|
21
|
Olofsson BA, Kelly CM, Kim J, Hornsby SM, Azizkhan-Clifford J. Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res 2008; 5:1319-30. [PMID: 18171990 DOI: 10.1158/1541-7786.mcr-07-0374] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sp1, a transcription factor that regulates expression of a wide array of essential genes, contains two SQ/TQ cluster domains, which are characteristic of ATM kinase substrates. ATM substrates are transducers and effectors of the DNA damage response, which involves sensing damage, checkpoint activation, DNA repair, and/or apoptosis. A role for Sp1 in the DNA damage response is supported by our findings: Activation of ATM induces Sp1 phosphorylation with kinetics similar to H2AX; inhibition of ATM activity blocks Sp1 phosphorylation; depletion of Sp1 sensitizes cells to DNA damage and increases the frequency of double strand breaks. We have identified serine 101 as a critical site phosphorylated by ATM; Sp1 with serine 101 mutated to alanine (S101A) is not significantly phosphorylated in response to damage and cannot restore increased sensitivity to DNA damage of cells depleted of Sp1. Together, these data show that Sp1 is a novel ATM substrate that plays a role in the cellular response to DNA damage.
Collapse
Affiliation(s)
- Beatrix A Olofsson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
22
|
Short SC, Buffa FM, Bourne S, Koritzinsky M, Wouters BG, Bentzen SM. Dose- and time-dependent changes in gene expression in human glioma cells after low radiation doses. Radiat Res 2007; 168:199-208. [PMID: 17638411 DOI: 10.1667/rr0940.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 03/15/2007] [Indexed: 11/03/2022]
Abstract
We have used DNA microarrays to identify changes in gene expression in cells of the radioresistant human glioma cell lines T98G and U373 after low radiation doses (0.2-2 Gy). Using Bayesian linear models, we have identified a set of genes that respond to low doses of radiation; furthermore, a hypothesis-driven approach to data analysis has allowed us to identify groups of genes with defined non-linear dose responses. Specifically, one of the cell lines we have examined (T98G) shows increased radiosensitivity at low doses (low-dose hyper-radiosensitivity, HRS); thus we have also assessed sets of genes whose dose response mirrors this survival pattern. We have also investigated a time course for induction of genes over the period when the DNA damage response is expected to occur. We have validated these data using quantitative PCR and also compared genes up-regulated in array data to genes present in the polysomal RNA fraction after irradiation. Several of the radioresponsive genes that we describe code for proteins that may have an impact on the outcome of irradiation in these cells, including RAS homologues and kinases involved in checkpoint signaling, so understanding their differential regulation may suggest new ways of altering radioresistance. From a clinical perspective these data may also suggest novel targets that are specifically up-regulated in gliomas during radiotherapy treatments.
Collapse
|
23
|
Cekaite L, Peng Q, Reiner A, Shahzidi S, Tveito S, Furre IE, Hovig E. Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate. BMC Genomics 2007; 8:273. [PMID: 17692132 PMCID: PMC2045114 DOI: 10.1186/1471-2164-8-273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 08/13/2007] [Indexed: 11/21/2022] Open
Abstract
Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
- State Key Lab for Advanced Photonic Materials and Devices, Fudan University, Shanghai, P.R. China
| | - Andrew Reiner
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Susan Shahzidi
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Siri Tveito
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Ingegerd E Furre
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| |
Collapse
|
24
|
Zhou T, Chou J, Zhou Y, Simpson DA, Cao F, Bushel PR, Paules RS, Kaufmann WK. Ataxia telangiectasia-mutated dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts. Mol Cancer Res 2007; 5:813-22. [PMID: 17699107 PMCID: PMC3607384 DOI: 10.1158/1541-7786.mcr-07-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6, and 24 h after treatment with 1.5-Gy IR or sham treatment and were compared with those previously recognized in normal human fibroblasts. Under basal conditions, 160 genes or expressed sequence tags were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. On DNA damage, 1,091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1,811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth, and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison with normal cells. The reduced change in DNA damage response genes and the attenuated repression of cell cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Jeff Chou
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Feng Cao
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Pierre R. Bushel
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Richard S. Paules
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| |
Collapse
|
25
|
Kruse JJCM, Stewart FA. Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World J Gastroenterol 2007; 13:2669-74. [PMID: 17569134 PMCID: PMC4147114 DOI: 10.3748/wjg.v13.i19.2669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past 5 years there has been a rapid increase in the use of microarray technology in the field of cancer research. The majority of studies use microarray analysis of tumor biopsies for profiling of molecular characteristics in an attempt to produce robust classifiers for prognosis. There are now several published gene sets that have been shown to predict for aggressive forms of breast cancer, where patients are most likely to benefit from adjuvant chemotherapy and tumors most likely to develop distant metastases, or be resistant to treatment. The number of publications relating to the use of microarrays for analysis of normal tissue damage, after cancer treatment or genotoxic exposure, is much more limited. A PubMed literature search was conducted using the following keywords and combination of terms: radiation, normal tissue, microarray, gene expression profiling, prediction. With respect to normal tissue radiation injury, microarrays have been used in three ways: (1) to generate gene signatures to identify sensitive and resistant populations (prognosis); (2) to identify sets of biomarker genes for estimating radiation exposure, either accidental or as a result of terrorist attack (diagnosis); (3) to identify genes and pathways involved in tissue response to injury (mechanistic). In this article we will review all (relevant) papers that covered our literature search criteria on microarray technology as it has been applied to normal tissue radiation biology and discuss how successful this has been in defining predisposition markers for radiation sensitivity or how it has helped us to unravel molecular mechanisms leading to acute and late tissue toxicity. We also discuss some of the problems and limitations in application and interpretation of such data.
Collapse
Affiliation(s)
- Jacqueline J C M Kruse
- The Netherlands Cancer Institute, Department of Experimental Therapy (H6), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Katula KS, Heinloth AN, Paules RS. Folate deficiency in normal human fibroblasts leads to altered expression of genes primarily linked to cell signaling, the cytoskeleton and extracellular matrix. J Nutr Biochem 2007; 18:541-52. [PMID: 17320366 DOI: 10.1016/j.jnutbio.2006.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 11/06/2006] [Accepted: 11/22/2006] [Indexed: 11/22/2022]
Abstract
The molecular basis linking folate deficiency to certain health conditions and developmental defects is not fully understood. We examined the consequences of folate deficiency on global gene expression by microarray and compared transcript levels in normal human fibroblast cells (GM03349) grown in folate-deficient and -sufficient medium. The largest represented groups from the selected genes functioned in cell signaling, the cytoskeleton and the extracellular matrix and included the Wnt pathway genes DKK1, WISP1 and WNT5A. Twelve selected genes were further validated by qRT-PCR. Analysis of six genes at 4, 7, 10 and 14 days indicated that the relative differences in transcript levels between folate-sufficient and -deficient cells increases with time. Transcripts for 7 of the 12 selected genes were detected in the human lymphoblast cell line GM02257, and of these, changes in 4 genes corresponded to the results with fibroblast cells. Fibroblast cells were treated with the compounds homocysteine, methotrexate and the MEK1/2 inhibitor U0126, and relative transcript levels of six genes were determined. U0126 caused changes that more closely mimicked those detected in folate-deficient cells. The response of the DKK1 and TAGLN gene promoters to folate deficiency and compounds was examined in NIH3T3 cells using luciferase reporter plasmids. Promoter activity for both genes was decreased by folate deficiency and methotrexate and unaffected by homocysteine. U0126 caused a decrease in DKK1 promoter activity at 50 microM and had no effect on TAGLN promoter activity. These findings suggest an alternative mechanism for how folate deficiency leads to changes in gene expression and altered cell function.
Collapse
Affiliation(s)
- Karen S Katula
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | | | | |
Collapse
|
27
|
King AA, Shaughnessy DT, Mure K, Leszczynska J, Ward WO, Umbach DM, Xu Z, Ducharme D, Taylor JA, DeMarini DM, Klein CB. Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat Res 2006; 616:60-9. [PMID: 17178418 PMCID: PMC1955325 DOI: 10.1016/j.mrfmmm.2006.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary flavorings that exhibit antimutagenic activity against mutagen-induced and spontaneous mutations in bacteria. Although these compounds were antimutagenic against chromosomal mutations in mammalian cells, they have not been studied for antimutagenesis against spontaneous gene mutations in mammalian cells. Thus, we initiated studies with VAN and CIN in human mismatch repair-deficient (hMLH1(-)) HCT116 colon cancer cells, which exhibit high spontaneous mutation rates (mutations/cell/generation) at the HPRT locus, permitting analysis of antimutagenic effects of agents against spontaneous mutation. Long-term (1-3 weeks) treatment of HCT116 cells with VAN at minimally toxic concentrations (0.5-2.5mM) reduced the spontaneous HPRT mutant fraction (MF, mutants/10(6) survivors) in a concentration-related manner by 19-73%. A similar treatment with CIN at 2.5-7.5microM yielded a 13-56% reduction of the spontaneous MF. Short-term (4-h) treatments also reduced the spontaneous MF by 64% (VAN) and 31% (CIN). To investigate the mechanisms of antimutagenesis, we evaluated the ability of VAN and CIN to induce DNA damage (comet assay) and to alter global gene expression (Affymetrix GeneChip) after 4-h treatments. Both VAN and CIN induced DNA damage in both mismatch repair-proficient (HCT116+chr3) and deficient (HCT116) cells at concentrations that were antimutagenic in HCT116 cells. There were 64 genes whose expression was changed similarly by both VAN and CIN; these included genes related to DNA damage, stress responses, oxidative damage, apoptosis, and cell growth. RT-PCR results paralleled the Affymetrix results for four selected genes (HMOX1, DDIT4, GCLM, and CLK4). Our results show for the first time that VAN and CIN are antimutagenic against spontaneous mutations in mammalian (human) cells. These and other data lead us to propose that VAN and CIN may induce DNA damage that elicits recombinational DNA repair, which reduces spontaneous mutations.
Collapse
Affiliation(s)
- Audrey A. King
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - Daniel T. Shaughnessy
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Kanae Mure
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
- Department of Public Health, Wakayama Medical University, School of Medicine, Wakayama City, Wakayama, Japan
| | - Joanna Leszczynska
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
| | - William O. Ward
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711
| | - David M. Umbach
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Zongli Xu
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Danica Ducharme
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - Jack A. Taylor
- National Institute of Environmental Health Sciences, NIH, DHHS, PO Box 12233, Research Triangle Park, NC 27709
| | - David M. DeMarini
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Catherine B. Klein
- The Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987
- **Corresponding author: Tel: +1 845 731 3510; fax: +1 845 351 2058. e-mail:
| |
Collapse
|
28
|
Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB. ATR and ATM play both distinct and additive roles in response to ionizing radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:947-61. [PMID: 17227549 DOI: 10.1111/j.1365-313x.2006.02931.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ATR and ATM protein kinases are known to be involved in a wide variety of responses to DNA damage. The Arabidopsis thaliana genome includes both ATR and ATM orthologs, and plants with null alleles of these genes are viable. Arabidopsis atr and atm mutants display hypersensitivity to gamma-irradiation. To further characterize the roles of ATM and ATR in response to ionizing radiation, we performed a short-term global transcription analysis in wild-type and mutant lines. We found that hundreds of genes are upregulated in response to gamma-irradiation, and that the induction of virtually all of these genes is dependent on ATM, but not ATR. The transcript of CYCB1;1 is unique among the cyclin transcripts in being rapidly and powerfully upregulated in response to ionizing radiation, while other G(2)-associated transcripts are suppressed. We found that both ATM and ATR contribute to the induction of a CYCB1;1:GUS fusion by IR, but only ATR is required for the persistence of this response. We propose that this upregulation of CYCB1;1 does not reflect the accumulation of cells in G(2), but instead reflects a still unknown role for this cyclin in DNA damage response.
Collapse
Affiliation(s)
- Kevin M Culligan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | |
Collapse
|
29
|
Klising-Sireul E, Rigaud O, Ory K, Ugolin N, Lebeau J, Levalois C, Lectard B, Chevillard S. Transcriptional response of wild-type and ataxia telangiectasia lymphoblasts following exposure to equitoxic doses of ionizing radiation. JOURNAL OF RADIATION RESEARCH 2006; 47:259-72. [PMID: 16974071 DOI: 10.1269/jrr.0594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experiments were designed to compare the transcriptional response to ionizing radiation (IR) of wild-type (WT) and ataxia telangiectasia (AT) cells. mRNA levels were assessed 2, 4 and 24 h after exposure to equitoxic doses using cDNA microarrays. Data reveal distinct patterns of gene expression between AT and WT cells since IR-responsive genes were mostly cell-type specific, this group representing 87 and 94% of the responding genes in WT and AT cells, respectively. In both cell lines, transcriptional alterations of genes associated with proliferation correlated with the observed cell cycle and growth data. Deregulated genes involved in apoptosis suggest that wild-type cells were more prone to cell death by apoptosis than AT cells. Furthermore, genes associated with the response to oxidative stress were particularly deregulated in wild-type cells whereas alterations of genes related to unexpected pathways including RNA processing, protein synthesis and lipid metabolism were specifically found in irradiated AT cells. These data suggest that under radiation conditions leading to a similar survival of WT and AT cells, the mechanisms triggered after radiation were mainly dependent on ATM status and thus on the intrinsic radiosensitivity.
Collapse
Affiliation(s)
- Eve Klising-Sireul
- CEA, DSV, DRR, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shackelford RE, Fu Y, Manuszak RP, Brooks TC, Sequeira AP, Wang S, Lowery-Nordberg M, Chen A. Iron chelators reduce chromosomal breaks in ataxia-telangiectasia cells. DNA Repair (Amst) 2006; 5:1327-36. [PMID: 16959548 DOI: 10.1016/j.dnarep.2006.05.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 05/17/2006] [Accepted: 05/28/2006] [Indexed: 01/25/2023]
Abstract
Ataxia-telangiectasia (A-T) is characterized by ataxia, genomic instability, and increased cancer incidence. Previously, iron chelator concentrations which suppressed normal cell colony formation increased A-T cell colony formation. Similarly, iron chelators preferentially increased A-T cell colony formation following peroxide exposure compared to normal cells. Last, A-T cells exhibited increased short-term sensitivity to labile iron exposure compared to normal cells, an event corrected by recombinant ATM (rATM) expression. Since chromosomal damage is important in A-T pathology and iron chelators exert beneficial effects on A-T cells, we hypothesized that iron chelators would reduce A-T cell chromosomal breaks. We treated A-T, normal, and A-T cells expressing rATM with labile iron, iron chelators, antioxidants, and t-butyl hydroperoxide, and examined chromosomal breaks and ATM activation. Additionally, the effect of ATM-deficiency on transferrin receptor (TfR) expression and TfR activity blockage in A-T and syngeneic A-T cells expressing rATM was examined. We report that (1) iron chelators and iron-free media reduce spontaneous and t-butyl hydroperoxide-induced chromosomal breaks in A-T, but not normal, or A-T cells expressing rATM; (2) labile iron exposure induces A-T cell chromosomal breaks, an event lessened with rATM expression; (3) desferal, labile iron, and copper activate ATM; (4) A-T cell TfR expression is lowered with rATM expression and (5) blocking TfR activity with anti-TfR antibodies increases A-T cell colony formation, while lowering chromosomal breaks. ATM therefore functions in iron responses and the maintenance of genomic stability following labile iron exposure.
Collapse
Affiliation(s)
- Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Hwy Shreveport, LA 71130, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zschenker O, Borgmann K, Streichert T, Meier I, Wrona A, Dikomey E. Lymphoblastoid cell lines differing in p53 status show clear differences in basal gene expression with minor changes after irradiation. Radiother Oncol 2006; 80:236-49. [PMID: 16905214 DOI: 10.1016/j.radonc.2006.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE The genetic profile as determined by microarray is considered to be an ideal marker of the individual radiosensitivity. However, it is still an open question, whether this profile has to be determined prior to or only after irradiation, since the expression of some genes is affected by irradiation. These changes are induced mainly due to a p53-dependent transactivation. MATERIALS AND METHODS In this study gene expression profiles were measured for 3 lymphoblastoid cell lines differing in p53 status (p53 wt: TK6; p53null: TK6E6, p53mut: WTK1) measured either prior to or 3h after exposure to 2Gy. The gene expression profile was determined using the Affymetrix Human HG U133A GeneChip and for selective genes, variation in gene expression was validated by qRT-PCR. In addition, different assays were used to characterize the radioresponse of these three strains. RESULTS The three strains were found to be different in all aspects of radiosensitivity studied. Cells with p53wt showed more apoptosis, slightly stronger arrest in G1, but less lethal aberrations and a lower viability when compared to cells with mutated p53, whereas cells absent in p53 are characterized by an intermediate response. The gene expression profile measured prior to irradiation already revealed huge differences. Significance analysis of microarrays (SAM) identified 141 genes that changed expression twofold or more with a false discovery rate (FDR) of 5.4%. When compared to p53null cell line with p53wt showed a twofold difference in up- or down-regulation in 28 genes. A much higher variation was even found when p53mut cells were compared with p53null cells with a twofold difference in even 123 genes. The respective genes were found to be involved mainly in apoptosis, cell cycle regulation, metabolisms and signalling but with only one gene relevant for DNA repair. Radiation was found to affect this profile solely for cells with p53wt with a twofold significant up-regulation in only five genes. For selective genes (BCL2, CASP1, CCND2, DDB2, XPC, RAD51C, SESN1, FUCA1, CDKN1A, MDM2, XPC) array data were confirmed by qRT-PCR. CONCLUSION The result, that the gene expression profile of lymphoblastoid cells differing in p53 status already displayed clear differences when measured prior to irradiation with only few changes after irradiation, which are solely seen for p53wt cells, suggests, that the differences in radiosensitivity observed for these cells are primarily determined by the variation in expression profile present already prior to irradiation.
Collapse
Affiliation(s)
- Oliver Zschenker
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Innes CL, Heinloth AN, Flores KG, Sieber SO, Deming PB, Bushel PR, Kaufmann WK, Paules RS. ATM requirement in gene expression responses to ionizing radiation in human lymphoblasts and fibroblasts. Mol Cancer Res 2006; 4:197-207. [PMID: 16547157 DOI: 10.1158/1541-7786.mcr-05-0154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.
Collapse
Affiliation(s)
- Cynthia L Innes
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, PO Box 12233, MD D2-03, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou T, Chou JW, Simpson DA, Zhou Y, Mullen TE, Medeiros M, Bushel PR, Paules RS, Yang X, Hurban P, Lobenhofer EK, Kaufmann WK. Profiles of global gene expression in ionizing-radiation-damaged human diploid fibroblasts reveal synchronization behind the G1 checkpoint in a G0-like state of quiescence. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:553-9. [PMID: 16581545 PMCID: PMC1440780 DOI: 10.1289/ehp.8026] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell cycle arrest and stereotypic transcriptional responses to DNA damage induced by ionizing radiation (IR) were quantified in telomerase-expressing human diploid fibroblasts. Analysis of cytotoxicity demonstrated that 1.5 Gy IR inactivated colony formation by 40-45% in three fibroblast lines; this dose was used in all subsequent analyses. Fibroblasts exhibited > 90% arrest of progression from G2 to M at 2 hr post-IR and a similarly severe arrest of progression from G1 to S at 6 and 12 hr post-IR. Normal rates of DNA synthesis and mitosis 6 and 12 hr post-IR caused the S and M compartments to empty by > 70% at 24 hr. Global gene expression was analyzed in IR-treated cells. A microarray analysis algorithm, EPIG, identified nine IR-responsive patterns of gene expression that were common to the three fibroblast lines, including a dominant p53-dependent G1 checkpoint response. Many p53 target genes, such as CDKN1A, GADD45, BTG2, and PLK3, were significantly up-regulated at 2 hr post-IR. Many genes whose expression is regulated by E2F family transcription factors, including CDK2, CCNE1, CDC6, CDC2, MCM2, were significantly down-regulated at 24 hr post-IR. Numerous genes that participate in DNA metabolism were also markedly repressed in arrested fibroblasts apparently as a result of cell synchronization behind the G1 checkpoint. However, cluster and principal component analyses of gene expression revealed a profile 24 hr post-IR with similarity to that of G0 growth quiescence. The results reveal a highly stereotypic pattern of response to IR in human diploid fibroblasts that reflects primarily synchronization behind the G1 checkpoint but with prominent induction of additional markers of G0 quiescence such as GAS1.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo Y, Breeden LL, Fan W, Zhao LP, Eaton DL, Zarbl H. Analysis of cellular responses to aflatoxin B(1) in yeast expressing human cytochrome P450 1A2 using cDNA microarrays. Mutat Res 2006; 593:121-42. [PMID: 16122766 DOI: 10.1016/j.mrfmmm.2005.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/22/2005] [Accepted: 07/01/2005] [Indexed: 05/04/2023]
Abstract
Aflatoxin B1 (AFB(1)) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB(1) is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N(7)-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB(1), a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB(1) that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB(1) treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB(1)-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by cell cycle arrest, and suggested that there are additional signaling pathways that directly repress these genes in cells under genotoxic stress.
Collapse
Affiliation(s)
- Yingying Guo
- Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rødningen OK, Overgaard J, Alsner J, Hastie T, Børresen-Dale AL. Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother Oncol 2005; 77:231-40. [PMID: 16297999 DOI: 10.1016/j.radonc.2005.09.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Transcriptional profiling of fibroblasts derived from breast cancer patients might improve our understanding of subcutaneous radiation-induced fibrosis. The aim of this study was to get a comprehensive overview of the changes in gene expression in subcutaneous fibroblast cell lines after various ionizing radiation (IR) schemes in order to provide information on potential targets for prevention and to suggest candidate genes for SNP association studies aimed at predicting individual risk of radiation-induced morbidity. PATIENTS AND METHODS Thirty different human fibroblast cell lines were included in the study, and two different radiation schemes; single dose experiments with 3.5 Gy or fractionated with 3 x 3.5 Gy. Expression analyses were performed on unexposed and exposed cells after different time points. The IR response was analyzed using the statistical method Significance Analysis of Microarrays (SAM). RESULTS While many of the identified genes were involved in known IR response pathways like cell cycle arrest, proliferation and detoxification, a substantial fraction of the genes were involved in processes not previously associated with IR response. Of particular interest is genes involved in ECM remodelling, Wnt signalling and IGF signalling. Many of the genes were identified after a single dose, but transcriptional changes in genes related to ROS scavenging and ECM remodelling were most profound after a fractionated scheme. CONCLUSIONS We have identified a number of IR response pathways in fibroblasts derived from breast cancer patients. Besides previously identified pathways, we have identified new pathways and genes that could be relevant for prevention and intervention studies of subcutaneous radiation-induced fibrosis as well as being candidates for SNP association studies.
Collapse
Affiliation(s)
- Olaug Kristin Rødningen
- Department of Genetics, Institute of Cancer Research, Faculty Division, The Norwegian Radium Hospital, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
36
|
Coleman MA, Yin E, Peterson LE, Nelson D, Sorensen K, Tucker JD, Wyrobek AJ. Low-dose irradiation alters the transcript profiles of human lymphoblastoid cells including genes associated with cytogenetic radioadaptive response. Radiat Res 2005; 164:369-82. [PMID: 16187739 DOI: 10.1667/rr3356.1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low-dose ionizing radiation alters the gene expression profiles of mammalian cells, yet there is little understanding of the underlying cellular mechanisms responsible for these changes or of their consequences for genomic stability. We investigated the cytogenetic adaptive response of human lymphoblastoid cell lines exposed to 5 cGy (priming dose) followed by 2 Gy (challenge dose) compared to cells that received a single 2-Gy dose to (a) determine how the priming dose influences subsequent gene transcript expression in reproducibly adapting and non-adapting cell lines, and (b) identify gene transcripts that are associated with reductions in the magnitude of chromosomal damage after the challenge dose. The transcript profiles were evaluated using oligonucleotide arrays and RNA obtained 4 h after the challenge dose. A set of 145 genes (false discovery rate = 5%) with transcripts that were affected by the 5-cGy priming dose fell into two categories: (a) a set of common genes that were similarly modulated by the 5-cGy priming dose irrespective of whether the cells subsequently adapted or not and (b) genes with differential transcription in accordance with the cell lines that showed either adaptive or non-adaptive outcomes. The common priming-dose response genes showed up-regulation for protein synthesis genes and down-regulation of metabolic and signal transduction genes (>10-fold differences). The genes associated with subsequent adaptive and non-adaptive outcomes involved DNA repair, stress response, cell cycle control and apoptosis. Our findings support the importance of TP53-related functions in the control of the low-dose cytogenetic radioadaptive response and suggest that certain low-dose-induced alterations in cellular functions are predictive for the risk of subsequent genomic damage.
Collapse
Affiliation(s)
- Matthew A Coleman
- Biology and Biotechnology Research Program, Lawrence Livermore, National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 2005; 3:889-900. [PMID: 15279774 DOI: 10.1016/j.dnarep.2004.03.029] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) plays a key role in regulating the cellular response to ionizing radiation. Activation of ATM results in phosphorylation of many downstream targets that modulate numerous damage response pathways, most notably cell cycle checkpoints. In this review, we describe recent developments in our understanding of the mechanism of activation of ATM and its downstream signaling pathways, and explore whether DNA double-strand breaks are the sole activators of ATM and ATM-dependent signaling pathways.
Collapse
Affiliation(s)
- Ebba U Kurz
- Cancer Biology Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada
| | | |
Collapse
|
38
|
Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, Carosella ED. Genetic and epigenetic features in radiation sensitivity. Eur J Nucl Med Mol Imaging 2005; 32:229-46. [PMID: 15657757 DOI: 10.1007/s00259-004-1730-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed.
Collapse
Affiliation(s)
- Michel H Bourguignon
- Direction Générale de la Sûreté Nucléaire et de la Radioprotection (DGSNR), 6 Place du Colonel Bourgoin, 75572, Paris Cedex 12, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shackelford RE. Pharmacologic manipulation of the ataxia–telangiectasia mutated gene product as an intervention in age-related disease. Med Hypotheses 2005; 65:363-9. [PMID: 15922113 DOI: 10.1016/j.mehy.2005.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 02/11/2005] [Indexed: 11/24/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by progressive ataxia, elevated cancer incidence, and premature aging. A-T cells, Atm-deficient mice, and individuals with A-T show increased oxidant sensitivity, genomic instability, altered IGF-1 and p53 signaling, and rapid telomere shortening compared to normal controls. The gene mutated in A-T, ATM, regulates DNA repair, IGF-1 and p53 signaling, age pigment removal, antioxidant capacity, and telomere maintenance - pathways involved in and often attenuated with aging. Interestingly, flavonoids with chemopreventative effects, such as quercetin, genistein, and epigallocatechin gallate activate ATM. Since ATM activates pathways which increase genomic stability, oxidant resistance, and/or telomere stability, and since many diseases of old age (i.e., cancer, cardiovascular and neurodegenerative disease), result from attenuation of these pathways, pharmacologic manipulation of ATM activity via flavonoid intake may prove useful in slowing the appearance of age-associated disease.
Collapse
Affiliation(s)
- Rodney E Shackelford
- Lousiana State University at Shreveport, Department of Pathology, 1501 Kings Hwy, PO Box 33932, Shreveport, LA 711030-3932, USA.
| |
Collapse
|
40
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|
41
|
Silverman J, Takai H, Buonomo SBC, Eisenhaber F, de Lange T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 2004; 18:2108-19. [PMID: 15342490 PMCID: PMC515289 DOI: 10.1101/gad.1216004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 06/21/2004] [Indexed: 01/06/2023]
Abstract
We report on the function of the human ortholog of Saccharomyces cerevisiae Rif1 (Rap1-interacting factor 1). Yeast Rif1 associates with telomeres and regulates their length. In contrast, human Rif1 did not accumulate at functional telomeres, but localized to dysfunctional telomeres and to telomeric DNA clusters in ALT cells, a pattern of telomere association typical of DNA-damage-response factors. After induction of double-strand breaks (DSBs), Rif1 formed foci that colocalized with other DNA-damage-response factors. This response was strictly dependent on ATM (ataxia telangiectasia mutated) and 53BP1, but not affected by diminished function of ATR (ATM- and Rad3-related kinase), BRCA1, Chk2, Nbs1, and Mre11. Rif1 inhibition resulted in radiosensitivity and a defect in the intra-S-phase checkpoint. The S-phase checkpoint phenotype was independent of Nbs1 status, arguing that Rif1 and Nbs1 act in different pathways to inhibit DNA replication after DNA damage. These data reveal that human Rif1 contributes to the ATM-mediated protection against DNA damage and point to a remarkable difference in the primary function of this protein in yeast and mammals.
Collapse
Affiliation(s)
- Joshua Silverman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The Sp family of transcription factors is united by a particular combination of three conserved Cys2His2 zinc fingers that form the sequence-specific DNA-binding domain. Within the Sp family of transcription factors, Sp1 and Sp3 are ubiquitously expressed in mammalian cells. They can bind and act through GC boxes to regulate gene expression of multiple target genes. Although Sp1 and Sp3 have similar structures and high homology in their DNA binding domains, in vitro and in vivo studies reveal that these transcription factors have strikingly different functions. Sp1 and Sp3 are able to enhance or repress promoter activity. Regulation of the transcriptional activity of Sp1 and Sp3 occurs largely at the post-translational level. In this review, we focus on the roles of Sp1 and Sp3 in the regulation of gene expression.Key words: Sp1, Sp3, gene regulation, sub-cellular localization.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
43
|
Shackelford RE, Manuszak RP, Johnson CD, Hellrung DJ, Steele TA, Link CJ, Wang S. Desferrioxamine treatment increases the genomic stability of Ataxia-telangiectasia cells. DNA Repair (Amst) 2003; 2:971-81. [PMID: 12967654 DOI: 10.1016/s1568-7864(03)00090-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by genomic instability, chronic oxidative damage, and increased cancer incidence. Compared to normal cells, AT cells exhibit unusual sensitivity to exogenous oxidants, including t-butyl hydroperoxide (t-BOOH). Since ferritin releases labile iron under oxidative stress (which is chronic in AT) and labile iron mediates the toxic effects of t-butyl hydroperoxide, we hypothesized that chelation of intracellular labile iron would increase the genomic stability of AT cells, with and without exogenous oxidative stress. Here we report that desferrioxamine treatment increases the plating efficiency of AT, but not normal cells, in the colony forming-efficiency assay (a method often used to measure genomic stability). Additionally, desferrioxamine increases AT, but not normal cell resistance, to t-butyl hydroperoxide in this assay. Last, AT cells exhibit increased sensitivity to the toxic effects of FeCl(2) in the colony forming-efficiency assay and fail to demonstrate a FeCl(2)-induced G(2) checkpoint response when compared to normal cells. Our data indicates that: (1) chelation of labile iron increases genomic stability in AT cells, but not normal cells; and (2) AT cells exhibit deficits in their responses to iron toxicity. While preliminary, our findings suggest that AT might be, in part, a disorder of iron metabolism and treatment of individuals with AT with desferrioxamine might have clinical efficacy.
Collapse
|