1
|
Ryu S, Ye X, Olson JJ, Mikkelsen T, Bangiyev L, Lesser GJ, Batchelor T, Nabors B, Desideri S, Walbert T, Grossman SA. Phase I and pharmacodynamic study of arsenic trioxide plus radiotherapy in patients with newly diagnosed glioblastoma. Neurooncol Adv 2024; 6:vdae089. [PMID: 38978961 PMCID: PMC11229030 DOI: 10.1093/noajnl/vdae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Background When arsenic trioxide (ATO) was combined with radiation for treatment of transplanted murine gliomas in the brain, tumor response improved with disrupted tumor blood flow and survival was significantly prolonged. Methods Total of 31 patients with newly diagnosed glioblastoma were accrued to a multi-institutional, NCI-funded, phase I study to determine the maximum tolerated dose (MTD) of ATO administered with radiation. Secondary objectives were survival and pharmacodynamic changes in perfusion on magnetic resonance imaging (MRI). Patients (unknown MGMT and IDH status) received ATO either once or twice weekly during radiation without concurrent or adjuvant temozolomide. Results Median age: 54.9 years, male: 68%, KPS ≥ 90: 77%, debulking surgery: 77%. Treatments were well-tolerated: 81% of patients received all the planned ATO doses. Dose-limiting toxicities included elevated liver function tests, hypokalemia, and edema. The MTD on the weekly schedule was 0.4 mg/kg and on the biweekly was 0.3 mg/kg. The median survival (mOS) for all patients was 17.7 months. Survival on the biweekly schedule (22.8 months) was longer than on the weekly schedule (12.1 months) (P = .039) as was progression-free survival (P = .004). Similarly, cerebral blood flow was significantly reduced in patients treated on the biweekly schedule (P = .007). Conclusions ATO with standard radiation is well tolerated in patients with newly diagnosed glioblastoma. Even without temozolomide or adjuvant therapy, the overall survival of all patients (17.7 months) and especially patients who received biweekly ATO (22.8 months) is surprising and accompanied by pharmacodynamic changes on MRI. Further studies of this regimen are warranted.
Collapse
Affiliation(s)
- Samuel Ryu
- Department of Radiation Oncology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tom Mikkelsen
- Jeffries Center for Precision Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Lev Bangiyev
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Glenn J Lesser
- Department of Internal Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Serena Desideri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tobias Walbert
- Department of Neurology, Henry Ford Health, Wayne State School of Medicine, Detroit, Michigan, USA
- Department of Surgery, Michigan State University, Detroit, Michigan, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Han D, Teng L, Wang X, Zhen Y, Chen X, Yang M, Gao M, Yang G, Han M, Wang L, Xu J, Li Y, Shumadalova A, Zhao S. Phase I/II trial of local interstitial chemotherapy with arsenic trioxide in patients with newly diagnosed glioma. Front Neurol 2022; 13:1001829. [PMID: 36212657 PMCID: PMC9535358 DOI: 10.3389/fneur.2022.1001829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioma is the most common primary brain tumor in adults with poor prognosis. The glioma patients benefit from STUPP strategy, including maximum and safe resection and adjuvant radiotherapy and chemotherapy. Arsenic trioxide could inhibit various tumors. However, it is a challenge to evaluate the efficiency and safety of srsenic trioxide in glioma patients. Objective The arsenic trioxide has the potent therapeutic effect on glioma. However, the safety and efficacy of local interstitial chemotherapy with arsenic trioxide in newly diagnosed glioma patients is unclear. Methods All patients received partial or complete tumor resection and intraoperative implantation of Ommaya reservoirs followed by standard radiotherapy. Arsenic trioxide with the starting dose 0.3 mg was administered via an Ommaya reservoir catheter inserted into the tumor cavity for 5 consecutive days every 3 months for a total of eight cycles unless tumor progression or excessive toxicity was observed. Results No hematological or grade 4 non-hematological toxicity was observed in any patient during arsenic trioxide treatment. The maximum tolerated dose of 1.5 mg of arsenic trioxide was safe and well tolerated. The median overall survival for WHO grade 3 glioma was 33.6 months, and for glioblastoma was 13.9 months. The median progression-free survival for WHO grade 2 glioma was 40.3 months, for grade 3 glioma was 21.5 months, and for glioblastoma was 9.5 months. Conclusion These results suggest that arsenic trioxide is safe and well tolerated with local delivery into the tumor cavity of the brain, and the dose recommended for a phase II trial is 1.5 mg.
Collapse
Affiliation(s)
- Dayong Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Yunbo Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xiaofeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Mingchun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Mingyang Han
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Ligang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Jiajun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- *Correspondence: Shiguang Zhao
| |
Collapse
|
3
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
4
|
Noh JJ, Kim MS, Cho YJ, Jeong SY, Lee YY, Ryu JY, Choi JJ, Bae I, Wu Z, Kim BG, Hwang JR, Lee JW. Anti-Cancer Activity of As 4O 6 and its Efficacy in a Series of Patient-Derived Xenografts for Human Cervical Cancer. Pharmaceutics 2020; 12:pharmaceutics12100987. [PMID: 33086573 PMCID: PMC7590205 DOI: 10.3390/pharmaceutics12100987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the anti-cancer effects of tetraarsenic hexoxide (TAO, As4O6) in cervical cancer cell lines and in a series of patient-derived xenograft (PDX) mouse models. Methods: Human cervical cancer cell lines, including HeLa, SiHa and CaSki, and human umbilical vein endothelial cells (HUVECs), were used to evaluate the anti-cancer activity of TAO. Cellular proliferation, apoptosis, and enzyme-linked immunosorbent assay (ELISA) for matrix metallopeptidase 2 (MMP-2) and 9 (MMP-9) were assessed. The tumor weights of the PDXs that were given TAO were measured. The PDXs included primary squamous cell carcinoma, primary adenocarcinoma, recurrent squamous cell carcinoma, and recurrent adenocarcinoma. Results: TAO significantly decreased cellular proliferation and increased apoptosis in cervical cancer cell lines and HUVEC. The functional studies on the cytotoxicity of TAO revealed that it inhibited the activation of Akt and vascular endothelial growth factor receptor 2 (VEGFR2). It also decreased the concentrations of MMP-2 in both cervical cancer cell lines and HUVECs. Active caspase-3 and p62 were both increased by the treatment of TAO, indicating increased rates of apoptosis and decreased rates of autophagy, respectively. In vivo studies with PDXs revealed that TAO significantly decreased tumor weight for both primary squamous cell carcinoma and adenocarcinoma of the cervix. However, this anti-cancer effect was not seen in PDXs with recurrent cancers. Nevertheless, the combination of TAO with cisplatin significantly decreased tumor weight in PDX models for both primary and recurrent cancers. Conclusions: TAO exerted inhibitory effects on angiogenesis, cellular migration, and autophagy, and it showed stimulatory effects on apoptosis. Overall, it demonstrated anti-cancer effects in animal models for human cervical cancer.
Collapse
Affiliation(s)
- Joseph J. Noh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.J.N.); (S.-Y.J.); (Y.-Y.L.)
| | - Myeong-Seon Kim
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, Catholic University of Korea, Seoul 16247, Korea;
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (Y.-J.C.); (J.-Y.R.); (J.-J.C.)
| | - Soo-Young Jeong
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.J.N.); (S.-Y.J.); (Y.-Y.L.)
| | - Yoo-Young Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.J.N.); (S.-Y.J.); (Y.-Y.L.)
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (Y.-J.C.); (J.-Y.R.); (J.-J.C.)
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (Y.-J.C.); (J.-Y.R.); (J.-J.C.)
| | - Illju Bae
- Chemas Co., Ltd., Seoul 06163, Korea; (I.B.); (Z.W.)
| | - Zhaoyan Wu
- Chemas Co., Ltd., Seoul 06163, Korea; (I.B.); (Z.W.)
| | - Byoung-Gie Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.J.N.); (S.-Y.J.); (Y.-Y.L.)
- Correspondence: (B.-G.K.); (J.R.H.); (J.-W.L.); Tel.: +82-2-3410-1382 (J.-W.L.); Fax: +82-2-3410-0630 (J.-W.L.)
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (Y.-J.C.); (J.-Y.R.); (J.-J.C.)
- Correspondence: (B.-G.K.); (J.R.H.); (J.-W.L.); Tel.: +82-2-3410-1382 (J.-W.L.); Fax: +82-2-3410-0630 (J.-W.L.)
| | - Jeong-Won Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.J.N.); (S.-Y.J.); (Y.-Y.L.)
- Correspondence: (B.-G.K.); (J.R.H.); (J.-W.L.); Tel.: +82-2-3410-1382 (J.-W.L.); Fax: +82-2-3410-0630 (J.-W.L.)
| |
Collapse
|
5
|
Brown SL, Kolozsvary A, Isrow DM, Al Feghali K, Lapanowski K, Jenrow KA, Kim JH. A Novel Mechanism of High Dose Radiation Sensitization by Metformin. Front Oncol 2019; 9:247. [PMID: 31024849 PMCID: PMC6465931 DOI: 10.3389/fonc.2019.00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Metformin, the most widely used treatment for diabetes, is lethal to cancer cells and increases in toxicity when used in combination with radiation. In addition to various molecular and metabolic mechanisms that have been previously proposed, the studies presented provide evidence of an additional, novel mechanism of sensitization following high dose radiotherapy; the magnitude of sensitization depends on the microenvironmental levels of glucose and oxygen which are in turn affected by high dose radiation. Methods: Cancer cells (A549 and MCF7) were studied in vitro under various controlled conditions. Endpoints included clonogenic cell survival and ROS expression measured by DHE and DCFDA. CD1 nu/nu athymic mice implanted with A549 cells received metformin alone (200 mg/kg, i.p.), radiation alone (15 Gy) or a combination of metformin and radiation; the effect of treatment sequence on efficacy was assessed by tumor growth delay and histology. In a separate set of experiments, tumor blood flow was measured using a tracer clearance technique using SPECT after the administration of metformin alone, radiation alone and the combined treatment. Results:In vivo, metformin provided equally effective tumor growth delay when given 24 h after radiation as when given 1 h or 4 h before radiation, an observation not previously reported and, in fact, unexpected based on published scientific literature. When drug followed radiation, the tumors were histologically characterized by massive cellular necrosis. In vitro, cancer cells when glucose depleted and/or hypoxic were preferentially killed by metformin, in a drug dose dependent manner. A549 cells exposed to 5.0 mM of metformin was reduced seven fold in survival when in a glucose deprived as compared to a low-glucose medium (0 vs. 1.0 g/L). Finally, using a SPECT detector to follow the washout of a radioactive tracer, it was shown that a high single dose of radiosurgery (15 Gy) could dramatically inhibit blood flow and presumably diminish glucose and oxygen. Discussion: Insight into the best timing of drug and radiation administration is gained through an understanding of the mechanisms of interaction. A new mechanism of metformin sensitization by high dose radiation is proposed based on the blood flow, glucose and oxygen.
Collapse
Affiliation(s)
- Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Andrew Kolozsvary
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Derek M Isrow
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Karine Al Feghali
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Karen Lapanowski
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Kenneth A Jenrow
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
6
|
Kim JH, Jenrow KA, Brown SL. Novel biological strategies to enhance the radiation therapeutic ratio. Radiat Oncol J 2018; 36:172-181. [PMID: 30309208 PMCID: PMC6226138 DOI: 10.3857/roj.2018.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - Kenneth A Jenrow
- Department of Psychology/Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
7
|
Zheng Y, Liu H, Liang Y. Genistein exerts potent antitumour effects alongside anaesthetic, propofol, by suppressing cell proliferation and nuclear factor-κB-mediated signalling and through upregulating microRNA-218 expression in an intracranial rat brain tumour model. J Pharm Pharmacol 2017; 69:1565-1577. [PMID: 28776680 DOI: 10.1111/jphp.12781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022]
Abstract
Abstract
Objective
This study was implemented to evaluate the effect of genistein and propofol on intracranial tumour model.
Methods
Male Fischer 344 rats were subjected to intracranial implantation of 9L gliosarcoma cells. Genistein (100 or 200 mg/kg b.wt) was administered orally regularly from 3rd day after implantation to 25th day. Propofol (20 mg/kg; i.p.) was administered once every 5 days till 25th day and was administered 2 h after genistein.
Key findings
Human gliosarcoma cells (U251) exposed to genistein (12.5–200 μg) for 24 h exhibited reduced cell viability as assessed by MTT assay and Hoechst staining. In intracranial tumour model, genistein treatment either with or without administration of propofol significantly reduced tumour volume and extended survival time of tumour-bearing rats. Genistein, either alone or with propofol upregulated pro-apoptotic proteins (Bad and Bax) and miRNA-218 expression and also had induced activation of cleaved caspase-3. Activated NF-κB signalling and overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) were reduced.
Conclusions
Genistein and propofol effectively inhibited growth of gliosarcoma cells and induced apoptosis. Genistein administration with propofol was found to be more effective than propofol or genistein alone suggesting the positive effects of genistein on propofol-mediated antitumour effects and vice versa.
Collapse
Affiliation(s)
- Yuzhen Zheng
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Cerebral Vascular and Neural Degenerative Diseases Key Laboratory, TianjinHuanhu Hospital, Tianjin, China
| | - Haigen Liu
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yu Liang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
8
|
Brown SL, Nagaraja TN, Aryal MP, Panda S, Cabral G, Keenan KA, Elmghirbi R, Mikkelsen T, Hearshen D, Knight RA, Wen N, Kim JH, Ewing JR. MRI-Tracked Tumor Vascular Changes in the Hours after Single-Fraction Irradiation. Radiat Res 2015; 183:713-21. [PMID: 26010711 DOI: 10.1667/rr13458.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to characterize changes in tumor vascular parameters hours after a single radiation exposure in an orthotopic brain tumor model. U-251 human brain tumors were established intracerebrally in rat brains, and tumor blood flow, forward volume transfer constant (K(trans)) and interstitial volume fraction (v(e)) were measured using magnetic resonance imaging (MRI). Tumors were exposure to a single stereotactic radiation treatment of 20 Gy. Vascular parameters were assessed one additional time between 2 and 24 h after irradiation. After the second MRI session, brain tissue histology was examined for gross changes and apoptosis. In separate studies, cerebral blood flow was measured in nonimplanted controls before radiation exposure and 2 and 24 h after 20 Gy irradiation, and in implanted rats before radiation exposure and at 2 and 24 h after 6 Gy irradiation. Significant changes were observed in tumor-bearing rat brains in the hours after 20 Gy irradiation. Two hours after 20 Gy irradiation, tumor blood flow decreased nearly 80% and ve decreased by 30%. At 4 h, the K(trans) increased by 30% over preirradiation values. Extensive vacuolization and an increase in apoptosis were evident histologically in rats imaged 2 h after irradiation. Between 8 and 12 h after irradiation, all vascular parameters including blood flow returned to near preirradiation values. One day after irradiation, tumor blood flow was elevated 40% over preirradiation values, and other vascular parameters, including K(trans) and ve, were 20-40% below preirradiation values. In contrast, changes in vascular parameters observed in the normal brain 2 or 24 h after 20 Gy irradiation were not significantly different from preirradiation values. Also, tumor blood flow appeared to be unchanged at 2 h after 6 Gy irradiation, with a small increase observed at 24 h, unlike the tumor blood flow changes after 20 Gy irradiation. Large and significant changes in vascular parameters were observed hours after 20 Gy irradiation using noninvasive MRI techniques. It is hypothesized that cellular swelling hours after a high dose of radiation, coinciding with vacuolization, led to a decrease in tumor blood flow and v(e). Four hours after radiation exposure, K(trans) increased in concert with an increase in tumor blood flow. Vascular permeability normalized, 24 h after 20 Gy irradiation, as characterized by a decrease in K(trans). Vascular parameters did not change significantly in the normal brain after 20 Gy irradiation or in the tumor-bearing brain after 6 Gy irradiation.
Collapse
Affiliation(s)
| | | | - Madhava P Aryal
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | | | | | | | - Rasha Elmghirbi
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | | | | | - Robert A Knight
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | - Ning Wen
- Departments of a Radiation Oncology
| | | | - James R Ewing
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and.,g Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
9
|
Gwak HS, Park MJ, Park IC, Woo SH, Jin HO, Rhee CH, Jung HW. Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J Neurosurg 2014; 121:1483-91. [PMID: 25303017 DOI: 10.3171/2014.8.jns131991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. METHODS The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. RESULTS Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3-12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. CONCLUSIONS These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.
Collapse
Affiliation(s)
- Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang C, Chen X, Zou H, Chen X, Liu Y, Zhao S. The roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas. Eur J Med Res 2014; 19:49. [PMID: 25256833 PMCID: PMC4200193 DOI: 10.1186/s40001-014-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
Background Among glioma treatment strategies, arsenic trioxide (As2O3) has shown efficacy as a therapeutic agent against human gliomas. However, the exact antitumor mechanism of action of As2O3 is still unclear. Mitochondria are considered to be the major source of intracellular reactive oxygen species (ROS), which are known to be associated with As2O3-induced cell damage. Therefore, we investigated whether mitoferrin-2, a mitochondrial iron uptake transporter, participates in As2O3-induced cell killing in human gliomas. Methods Human glioma cell lines were used to explore the mechanism of As2O3’s antitumor effects. First, expression of mitoferrin-2 was analyzed in glioma cells that were pretreated with As2O3. Changes in ROS production and apoptosis were assessed. Furthermore, cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Results In the present study we found that As2O3 induced ROS production and apoptosis in glioma cells. In addition, gene expression of mitoferrin-2, a mitochondrial iron uptake transporter, was increased 4 to 5 fold after exposure to As2O3 (5 μM) for 48 hours. Furthermore, apoptosis and cytotoxicity induced by As2O3 in glioma cells were decreased after silencing the mitoferrin-2 gene. Conclusions Our findings indicated that mitoferrin-2 participates in mitochondrial ROS-dependent mechanisms underlying As2O3-mediated damage in glioma cells.
Collapse
|
11
|
Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun 2014; 2:31. [PMID: 24685274 PMCID: PMC3977902 DOI: 10.1186/2051-5960-2-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023] Open
Abstract
Background Notch and Hedgehog signaling have been implicated in the pathogenesis and stem-like characteristics of glioblastomas, and inhibitors of the pathways have been suggested as new therapies for these aggressive tumors. It has also been reported that targeting both pathways simultaneously can be advantageous in treating glioblastoma neurospheres, but this is difficult to achieve in vivo using multiple agents. Since arsenic trioxide has been shown to inhibit both Notch and Hedgehog in some solid tumors, we examined its effects on these pathways and on stem cell phenotype in glioblastoma. Results We found that arsenic trioxide suppresses proliferation and promotes apoptosis in three stem-like glioblastoma neurospheres lines, while inhibiting Notch and Hedgehog target genes. Importantly, arsenic trioxide markedly reduced clonogenic capacity of the tumor neurospheres, and the stem-like CD133-positive fraction was also diminished along with expression of the stem cell markers SOX2 and CD133. Conclusions Our results suggest that arsenic trioxide may be effective in targeting stem-like glioblastoma cells in patients by inhibiting Notch and Hedgehog activity.
Collapse
|
12
|
Cohen KJ, Gibbs IC, Fisher PG, Hayashi RJ, Macy ME, Gore L. A phase I trial of arsenic trioxide chemoradiotherapy for infiltrating astrocytomas of childhood. Neuro Oncol 2013; 15:783-7. [PMID: 23460318 DOI: 10.1093/neuonc/not021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) has demonstrated preclinical evidence of activity in the treatment of infiltrating astrocytomas. METHODS We conducted a phase I trial of ATO given concomitantly with radiation therapy in children with newly diagnosed anaplastic astrocytoma, glioblastoma, or diffuse intrinsic pontine glioma. Eligible patients received a fixed daily dose of 0.15 mg/kg of ATO once a week, with each subsequent cohort of patients receiving an additional dose per week up to a planned frequency of ATO administration 5 days per week as tolerated. Twenty-four children were enrolled and 21 children were evaluable. RESULTS ATO was well tolerated throughout the entire dose escalation, resulting in confirmation of safety when administered 5 days per week during irradiation. CONCLUSIONS The recommended dose of ATO during conventional irradiation is 0.15 mg/kg given on a daily basis with each fraction of radiation therapy administered.
Collapse
Affiliation(s)
- Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bloomberg 11379, 1800 Orleans St, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Arsenic Trioxide as a Vascular Disrupting Agent: Synergistic Effect with Irinotecan on Tumor Growth Delay in a CT26 Allograft Model. Transl Oncol 2013; 6:83-91. [PMID: 23418620 DOI: 10.1593/tlo.12322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 11/25/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanism of action of arsenic trioxide (ATO) has been shown to be complex, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects. Among these mechanisms of action, ATO has been shown to cause acute vascular shutdown and massive tumor necrosis in a murine solid tumor model like vascular disrupting agent (VDA). However, relatively little is understood about this VDA-like property and its potential utility in developing clinical regimens. We focused on this VDA-like action of ATO. On the basis of the endothelial cell cytotoxicity assay and tubulin polymerization assay, we observed that higher concentrations and longer treatment with ATO reduced the level of α- and β-tubulin and inhibited the polymerization of tubulin. The antitumor action and quantitative tumor perfusion studies were carried out with locally advanced murine CT26 colon carcinoma grown in female BALB/c mice. A single injection of ATO intraperitoneally displayed central necrosis of the tumor tissue by 24 hours. T1-weighted dynamic contrast-enhanced magnetic resonance image revealed a significant decrease in tumor enhancement in the ATO-treated group. Similar to other VDAs, ATO treatment alone did not delay the progression of tumor growth; however, ATO treatment after injection of other cytotoxic agent (irinotecan) showed significant additive antitumor effect compared to control and irinotecan alone therapy. In summary, our data demonstrated that ATO acts as a VDA by means of microtubule depolymerization. It exhibits significant vascular shutdown activity in CT26 allograft model and enhances antitumor activity when used in combination with another cytotoxic chemotherapeutic agent.
Collapse
|
14
|
Alhasan MK, Liu L, Lewis MA, Magnusson J, Mason RP. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors. PLoS One 2012; 7:e46106. [PMID: 23029403 PMCID: PMC3460997 DOI: 10.1371/journal.pone.0046106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023] Open
Abstract
Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO). During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs. The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.
Collapse
Affiliation(s)
| | | | | | - Jennifer Magnusson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Phase I study of arsenic trioxide and temozolomide in combination with radiation therapy in patients with malignant gliomas. J Neurooncol 2012; 110:237-43. [PMID: 22875709 DOI: 10.1007/s11060-012-0957-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
To evaluate the toxicity and maximum tolerated dose (MTD) of arsenic trioxide (ATO) in combination with temozolomide (TMZ) and radiation therapy (RT) in malignant gliomas. A 3 + 3 dose escalation study was performed in patients with newly diagnosed glioblastoma, anaplastic astrocytoma (AA), and anaplastic oligoastrocytoma (AOA). All patients received RT 59-61 Gy in 28-33 fractions, TMZ for 42 days, and ATO 1-2 h prior to RT for 5 days during the first week, then twice weekly until completing RT. Dose levels (DL) were: (1) TMZ 60 mg/m(2)/ATO 0.2 mg/kg; (2) TMZ 75 mg/m(2)/ATO 0.2 mg/kg; (3) TMZ 75 mg/m(2)/ATO 0.25 mg/kg. Dose-limiting toxicity (DLT) was defined as grade 3 non-hematologic toxicity or grade 4 toxicity of any type from enrollment until 3 weeks after finishing RT. 17 patients (13 glioblastoma, 4 AA/AOA) were accrued. Median age was 52 (range 25-80). Median KPS was 90 %. DLT's occurred at DL 2 (grade 4 transaminase elevation) and DL 3 (grade 4 neutropenia and grade 3 QTc prolongation). The MTD of TMZ 75 mg/m(2)/ATO 0.2 mg/kg was safe and well tolerated. A phase II study evaluating the efficacy of this combination is underway.
Collapse
|
16
|
Vascular disrupting agent arsenic trioxide enhances thermoradiotherapy of solid tumors. JOURNAL OF ONCOLOGY 2012; 2012:934918. [PMID: 22272199 PMCID: PMC3261488 DOI: 10.1155/2012/934918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 11/17/2022]
Abstract
Our previous studies demonstrated arsenic trioxide- (ATO-) induced selective tumor vascular disruption and augmentation of thermal or radiotherapy effect against solid tumors. These results suggested that a trimodality approach of radiation, ATO, and local hyperthermia may have potent therapeutic efficacy against solid tumors. Here, we report the antitumor effect of hypofractionated radiation followed by ATO administration and local 42.5 °C hyperthermia and the effects of cisplatin and thermoradiotherapy. We found that the therapeutic efficacy of ATO-based thermoradiotherapy was equal or greater than that of cisplatin-based thermoradiotherapy, and marked evidence of in vivo apoptosis and tumor necrosis were observed in ATO-treated tumors. We conclude that ATO-based thermoradiotherapy is a powerful means to control tumor growth by using vascular disruption to augment the effects of thermal and radiation therapy.
Collapse
|
17
|
Diepart C, Karroum O, Magat J, Feron O, Verrax J, Calderon PB, Grégoire V, Leveque P, Stockis J, Dauguet N, Jordan BF, Gallez B. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res 2011; 72:482-90. [PMID: 22139377 DOI: 10.1158/0008-5472.can-11-1755] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is an effective therapeutic against acute promyelocytic leukemia and certain solid tumors. Because As(2)O(3) inhibits mitochondrial respiration in leukemia cells, we hypothesized that As(2)O(3) might enhance the radiosensitivity of solid tumors by increasing tumor oxygenation [partial pressure of oxygen (pO(2))] via a decrease in oxygen consumption. Two murine models of radioresistant hypoxic cancer were used to study the effects of As(2)O(3). We measured pO(2) and the oxygen consumption rate in vivo by electron paramagnetic resonance oximetry and (19)fluorine-MRI relaxometry. Tumor perfusion was assessed by Patent blue staining. In both models, As(2)O(3) inhibited mitochondrial respiration, leading to a rapid increase in pO(2). The decrease in oxygen consumption could be explained by an observed decrease in glutathione in As(2)O(3)-treated cells, as this could increase intracellular reactive oxygen species that can disrupt mitochondrial membrane potential. When tumors were irradiated during periods of As(2)O(3)-induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with control mice. Notably, this effect was abolished when temporarily clamped tumors were irradiated. Together, our findings show that As(2)O(3) acutely increases oxygen consumption and radiosensitizes tumors, providing a new rationale for clinical investigations of As(2)O(3) in irradiation protocols to treat solid tumors.
Collapse
Affiliation(s)
- Caroline Diepart
- Biomedical Magnetic Resonance Group, Louvain Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang X, Duan X, Yang G, Zhang X, Deng L, Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y, Chen L. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One 2011; 6:e18490. [PMID: 21559510 PMCID: PMC3084695 DOI: 10.1371/journal.pone.0018490] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/09/2011] [Indexed: 02/05/2023] Open
Abstract
Background Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. Methodologies We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. Principal Findings We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC50 of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm3) compared with vehicle group (238.63±19.69 mm3, P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm3) compared with vehicle group (2914.17±780.52 mm3, P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). Conclusions/Significance This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma.
Collapse
Affiliation(s)
- Xianhuo Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xingmei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guangli Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Linyu Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hao Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Chongyang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jiaolin Wen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Nielsen T, Murata R, Maxwell RJ, Stødkilde-Jørgensen H, Ostergaard L, Ley CD, Kristjansen PEG, Horsman MR. Non-invasive imaging of combretastatin activity in two tumor models: Association with invasive estimates. Acta Oncol 2010; 49:906-13. [PMID: 20831477 DOI: 10.3109/0284186x.2010.499135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The efficacy of the vascular disrupting agent combretastatin A-4 phosphate (CA4P) depends on several factors including tumor size, nitric oxide level, interstitial fluid pressure, and vascular permeability. These factors vary among tumor types. The aim of this study was to investigate all these factors in two tumor models that respond differently to CA4P. MATERIAL AND METHODS Mice bearing C3H mammary carcinomas or KHT sarcomas (200 to 800 mm(3)) were intraperitoneally injected with CA4P (100 mg/kg). Tumor size and the effect of a nitric oxide inhibitor nitro-L-arginine (NLA) administered intravenously were evaluated by necrotic fraction histologically assessed at 24 hours. Interstitial fluid pressure (IFP) was measured using the wick-in-needle technique, and vascular characteristics were assessed with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). RESULTS Initial necrotic fraction was about 10% in both tumor models at 200 mm(3), but only increased significantly with tumor size in the C3H mammary carcinoma. In this tumor, CA4P significantly induced further necrosis by about 15% at all sizes, but in the KHT tumor, the induced necrotic fraction depended on tumor size. For both tumor types, NLA with CA4P significantly increased necrotic fraction above that for each drug alone. CA4P significantly decreased IFP in all tumors except in the 800 mm(3) C3H tumor, which had an initially non-significant lower value. Interstitial volume estimated by DCE-MRI increased in all groups, except the 800 mm(3) C3H tumors. DCE-MRI vascular parameters showed different initial characteristics and general significant reductions following CA4P treatment. CONCLUSIONS Both tumor models showed differences in all factors before treatment, and in their response to CA4P. Perfusion and permeability as estimated by DCE-MRI play a central role in the CA4P response, and interstitial volume and IFP seemed related. These factors may be of clinical value in the planning of CA4P treatments.
Collapse
Affiliation(s)
- Thomas Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Park SG, Jung JJ, Won HJ, Kang MS, Seo SK, Choi IW, Eun CK, Ahn KJ, Park CW, Lee SW, Lew YS, Bae IJ, Choi IH. Tetra-arsenic oxide (Tetras) enhances radiation sensitivity of solid tumors by anti-vascular effect. Cancer Lett 2009; 277:212-7. [DOI: 10.1016/j.canlet.2008.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 11/28/2022]
|
21
|
Zhao S, Zhang J, Zhang X, Dong X, Sun X. Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol Biol Rep 2008; 35:421-429. [PMID: 17530438 DOI: 10.1007/s11033-007-9102-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/07/2007] [Indexed: 01/21/2023]
Abstract
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.
Collapse
Affiliation(s)
- Shiguang Zhao
- Department of Neurosurgery, The First Clinical Medical School of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
22
|
Zhao S, Zhang X, Zhang J, Zhang J, Zou H, Liu Y, Dong X, Sun X. Intravenous administration of arsenic trioxide encapsulated in liposomes inhibits the growth of C6 gliomas in rat brains. J Chemother 2008; 20:253-262. [PMID: 18467254 DOI: 10.1179/joc.2008.20.2.253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Arsenic trioxide (ATO) is a potent anti-tumor agent used to treat acute promyelocytic leukemia (APL), and more recently solid tumors including gliomas. However, the dose of ATO required to suppress gliomas is markedly higher than that used to treat APL, which leads to toxicity and undesirable side-effects, even though the local concentration of ATO in brains is relatively low after systemic administration. In an attempt to minimize the toxicity, enhance the penetrating activity across the blood-brain barrier, and reduce enzyme degradation, we prepared ATO encapsulated in liposomes, and investigated its therapeutic effect on C6 gliomas established in rat brains. The prepared ATO liposomes were stable at room temperature for 3 days and the latency rate was over 90% within 72 h. Intravenous injection of ATO liposomes led to a much higher concentration of ATO (5- fold, compared with ATO solution) in rat brains, resulting in inhibition of C6 gliomas in brains and prolonging the survival of rats bearing brain gliomas. ATO-liposome therapy resulted in fewer side effects, compared with free ATO solution. ATO-liposome therapy inhibited tumor angiogenesis by downregulating the expression of vascular endothelial growth factor (VEGF), and inducing cell apoptosis. The results warrant future investigation of the use of ATO encapsulated in liposomes to treat gliomas.
Collapse
Affiliation(s)
- Shiguang Zhao
- Department of Neurosurgery, First Clinical Medical School of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hokland SL, Horsman MR. The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumour response to mild hyperthermia and thermoradiosensitization. Int J Hyperthermia 2008; 23:599-606. [PMID: 18038290 DOI: 10.1080/02656730701739554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the anti-cancer effect of the novel vascular disrupting agent (VDA), combretastatin-A1-disodium-phosphate (OXi4503), when combined with mild hyperthermia and/or radiation. MATERIALS AND METHODS A C3H mammary carcinoma was grown subcutaneously in the rear right foot of female CDF1 mice, and treated when a volume of 200 mm(3) was reached. OXi4503 was administered intra-peritoneally at variable doses. Hyperthermia was administered locally to the tumour-bearing foot using a thermostat-controlled water bath. Radiation treatment was performed locally using a conventional X-ray machine. Tumour response was assessed with either a tumour growth time or a tumour control assay. RESULTS The optimal delay between administration of 50 mg/kg of OXi4503 and hyperthermia was found to be 3 hours. The linear relationship between tumour growth time (TGT) and heating time at a specific temperature resulted in slope values between -0.003 days/min and 0.09 days/min at temperatures between 40 degrees C and 42.5 degrees C. When combined with OXi4503 this was significantly increased to 0.008 days/min and 0.03 days/min at temperatures between 39.5 degrees C and 41 degrees C, respectively. Above 41 degrees C, combined treatment did not result in significantly greater slope values. The radiation dose required to control 50% of the tumours (TCD50) was 52 Gy. Combining radiation with either heat treatment at 41.5 degrees C for 1 hour or OXi4503 reduced the TCD50 to 47 Gy and 41 Gy, respectively. Combining radiation with heat and OXi4503 further reduced the TCD50 to 37 Gy. CONCLUSIONS OXi4503 is a highly potent VDA, which is capable of significantly enhancing the anti-cancer effect of mild hyperthermia. Mild temperature thermoradiosensitization was also enhanced.
Collapse
Affiliation(s)
- S L Hokland
- Department of Experimental Clinical Oncology, Aarhus University Hospital NBG, Aarhus, Denmark.
| | | |
Collapse
|
24
|
Horsman MR, Siemann DW. Pathophysiologic Effects of Vascular-Targeting Agents and the Implications for Combination with Conventional Therapies. Cancer Res 2006; 66:11520-39. [PMID: 17178843 DOI: 10.1158/0008-5472.can-06-2848] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A functional vascular supply is critical for the continued growth and development of solid tumors. It also plays a major role in metastatic spread of tumor cells. This importance has led to the concept of targeting the vasculature of the tumor as a form of cancer therapy. Two major types of vascular-targeting agent (VTA) have now emerged: those that prevent the angiogenic development of the neovasculature of the tumor and those that specifically damage the already established tumor vascular supply. When used alone neither approach readily leads to tumor control, and so, for VTAs to be most successful in the clinic they will need to be combined with more conventional therapies. However, by affecting the tumor vascular supply, these VTAs should induce pathophysiologic changes in variables, such as blood flow, pH, and oxygenation. Such changes could have negative or positive influences on the tumor response to more conventional therapies. This review aims to discuss the pathophysiologic changes induced by VTAs and the implications of these effects on the potential use of VTAs in combined modality therapy.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
25
|
Huilgol NG. A phase I study to study arsenic trioxide with radiation and hyperthermia in advanced head and neck cancer. Int J Hyperthermia 2006; 22:391-7. [PMID: 16891241 DOI: 10.1080/02656730600722685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Arsenic trioxide [ATO] is a pluripotent drug with potentials to have pro-oxidant, angiogenesis inhibitor, flow inhibitor and radiation sensitizer properties. METHODS The present study is a Phase I trial to assess the safety of ATO in advanced or recurrent head and neck cancer treated with radiation and hyperthermia. Patients received ATO at 10, 20 and 30 mg per week a day prior to hyperthermia. RESULTS It was assumed that vascular collapse would be complete by 24 h. Administration of ATO at 20 mg was safe with no toxicity due to ATO. No amplification of toxicities due to radiation or hyperthermia was evident. Patients without prior treatment showed better response. A total of 11 patients were included in this Phase I study. CONCLUSIONS Patients who received 30 mg of ATO weekly showed non-serious acute toxicities. No further escalation of dose was attempted.
Collapse
Affiliation(s)
- Nagraj G Huilgol
- Division of Radiation Oncology and Division of Hyperthermic Oncology & Medicine, Dr Balalbhai Nanavati Hospital & MRC, Mumbai, India. /
| |
Collapse
|
26
|
Ning S, Knox SJ. Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int J Radiat Oncol Biol Phys 2006; 65:493-8. [PMID: 16563655 DOI: 10.1016/j.ijrobp.2005.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/17/2022]
Abstract
PURPOSE The primary objective was to optimize the combined treatment regimen using arsenic trioxide (ATO) and fractionated radiotherapy for the treatment of malignant glioma. METHODS AND MATERIALS Nude mice with human glioma xenograft tumors were treated with fractionated local tumor radiation of 250 cGy/fraction/day and 5 mg/kg ATO for 5-10 days. RESULTS Time course experiments demonstrated that maximal tumor growth delay occurred when ATO was administered between 0 and 4 h after radiation. The combination treatment of ATO and radiation synergistically inhibited tumor growth and produced a tumor growth delay time of 13.2 days, compared with 1.4 days and 6.5 days for ATO and radiation alone (p < 0.01), respectively. The use of concurrent therapy of radiation and ATO initially, followed by ATO as maintenance therapy, was superior to the use of preloading with ATO before combined therapy and produced a tumor growth delay time of 22.7 days as compared with 11.7 days for the ATO preloading regimen (p < 0.01). The maintenance dose of ATO after concurrent therapy was effective and important for continued inhibition of tumor growth. CONCLUSIONS The combined use of fractionated radiation and ATO is effective for the treatment of glioma xenograft tumors. ATO was most effective when administered 0-4 h after radiation without pretreatment with ATO. These results have important implications for the optimization of treatment regimen using ATO and fractionated radiotherapy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shoucheng Ning
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-1245, USA
| | | |
Collapse
|
27
|
Guo M, Roman RJ, Fenstermacher JD, Brown SL, Falck JR, Arbab AS, Edwards PA, Scicli AG. 9L gliosarcoma cell proliferation and tumor growth in rats are suppressed by N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016), a selective inhibitor of CYP4A. J Pharmacol Exp Ther 2006; 317:97-108. [PMID: 16352703 DOI: 10.1124/jpet.105.097782] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the effects of N-hydroxy-N'-(4-butyl-2 methylphenyl) formamidine (HET0016), a selective inhibitor of the formation of 20-hydroxyeicosatrienoic acid (20-HETE) on the growth of 9L rat gliosarcoma cells in vitro and in vivo. After 48 h of incubation, HET0016 reduced the proliferation of 9L in vitro by 55%, and this was associated with a fall in p42/p44 mitogen-activated protein kinase and stress-activated protein kinase/c-Jun NH(2)-terminal kinase phosphorylation and increased apoptosis. HET0016 inhibited epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-induced proliferation and diminished phosphorylation of PDGF receptors. A stable 20-HETE analog increased 9L cell proliferation. In vivo, chronic administration of HET0016 (10 mg/kg/day i.p.) for 2 weeks reduced the volume of 9L tumors by 80%. This was accompanied by a 4-fold reduction in the mitotic index, a 3- to 4-fold increase in the apoptotic index, and a approximately 50% decrease in vascularization in the tumor. HET0016 treatment increased mean survival time of the animals from 17 to 22 days. Liquid chromatography/mass spectrometry experiments indicated that neither 9L cells grown in vitro nor 9L tumors removed produce 20-HETE when incubated with arachidonic acid. The normal surrounding brain tissue, however, avidly makes 20-HETE, and this activity is selectively inhibited by HET0016. These results suggest that HET0016 may be the prototype of a class of antigrowth compounds that may be efficacious for treating malignant brain tumors. In vivo, it may act in part by inhibiting the formation of 20-HETE by the surrounding tissue. However, the antiproliferative effects of HET0016 on 9L cells in vitro seem unrelated to its ability to inhibit the formation of 20-HETE.
Collapse
Affiliation(s)
- Meng Guo
- Eye Care Services, Henry Ford Hospital, Detroit, MI 48202-3450, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin YL, Ho IC, Su PF, Lee TC. Arsenite pretreatment enhances the cytotoxicity of mitomycin C in human cancer cell lines via increased NAD(P)H quinone oxidoreductase 1 expression. Toxicol Appl Pharmacol 2006; 214:309-17. [PMID: 16494910 DOI: 10.1016/j.taap.2006.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/22/2022]
Abstract
Arsenic is an effective therapeutic agent for the treatment of patients with refractory or relapsed acute promyelocytic leukemia. The use of arsenic for treating solid tumors, particularly in combination with other chemotherapeutic agents, has been extensively studied. Here, we report that arsenite-resistant human lung cancer CL3R15 cells constitutively overexpress NAD(P)H quinone oxidoreductase 1 (NQO1), an enzyme responsible for activation of mitomycin C (MMC), and are more susceptible to MMC cytotoxicity than parental CL3 cells. The effects of arsenite pretreatment on NQO1 induction were examined in CL3, H1299, H460, and MC-T2 cells. Arsenite pretreatment significantly enhanced the expression of NQO1 and susceptibility to MMC in CL3, H1299, and MC-T2 cells, but not in H460 cells that express high endogenous levels of NQO1. Alternatively, arsenic pretreatment reduced adriamycin sensitivity of CL3 cells. Arsenite-mediated MMC susceptibility was abrogated by dicumarol (DIC), an NQO1 inhibitor, indicating that NQO1 is one of the key regulators of arsenite-mediated MMC susceptibility. Various cancer cell lines showed different basal levels of NQO1 activity and a different capacity for NQO1 induction in response to arsenite treatment. However, overall, there was a positive correlation between induced NQO1 activity and MMC susceptibility in cells pretreated with various doses of arsenite. These results suggest that arsenite may increase NQO1 activity and thus enhance the antineoplastic activity of MMC. In addition, our results also showed that inhibition of NQO1 activity by DIC reversed the arsenite resistance of CL3R15 cells.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
29
|
Gagner J, Law M, Fischer I, Newcomb EW, Zagzag D. Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 2005; 15:342-63. [PMID: 16389946 PMCID: PMC8095871 DOI: 10.1111/j.1750-3639.2005.tb00119.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Much of the interest in angiogenesis and hypoxia has led to investigating diagnostic imaging methodologies and developing efficacious agents against angiogenesis in gliomas. In many ways, because of the cytostatic effects of these agents on tumor growth and tumor-associated endothelial cells, the effects of therapy are not immediately evident. Hence finding clinically applicable imaging tools and pathologic surrogate markers is an important step in translating glioma biology to therapeutics. There are a variety of strategies in the approach to experimental therapeutics that target the hypoxia-inducible factor pathway, the endogenous antiangiogenic and proangiogenic factors and their receptors, adhesion molecules, matrix proteases and cytokines, and the existing vasculature. We discuss the rationale for antiangiogenesis as a treatment strategy, the preclinical and clinical assessment of antiangiogenic interventions and finally focus on the various treatment strategies, including combining antiangiogenic drugs with radiation and chemotherapy.
Collapse
Affiliation(s)
- Jean‐Pierre Gagner
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Meng Law
- Department of Radiology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - Ingeborg Fischer
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
| | - Elizabeth W. Newcomb
- Department of Pathology, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| | - David Zagzag
- Microvascular and Molecular Neuro‐oncology Laboratory, New York University School of Medicine
- Department of Pathology, New York University School of Medicine
- Division of Neuropathology, New York University School of Medicine
- Department of Neurosurgery, New York University School of Medicine
- New York University Cancer Institute, New York University School of Medicine
| |
Collapse
|
30
|
Brown SL, Kolozsvary A, Kim JH. Vascular targeting therapies for treatment of malignant disease. Cancer 2005; 104:216-7; author reply 217. [PMID: 15895372 DOI: 10.1002/cncr.21120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Griffin RJ, Williams BW, Park HJ, Song CW. Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy. Int J Radiat Oncol Biol Phys 2005; 61:1516-22. [PMID: 15817358 DOI: 10.1016/j.ijrobp.2004.12.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 12/07/2004] [Accepted: 12/16/2004] [Indexed: 12/09/2022]
Abstract
PURPOSE To investigate the effect of arsenic trioxide, Trisenox (TNX), on primary cultures of endothelial cells and tumor tissue under varying pH and pO(2) environments and the effects of combined TNX and radiation therapy on experimental tumors. METHODS AND MATERIALS Human dermal microvascular endothelial cells were cultured in vitro and exposed to TNX under various combinations of aerobic, hypoxic, neutral, or acidic conditions, and levels of activated JNK MAP kinase were assessed by Western blotting. FSaII fibrosarcoma cells grown in the hind limb of female C3H mice were used to study the effect of TNX on tumor blood perfusion and oxygenation. The tumor-growth delay after a single or fractionated irradiation with or without TNX treatment was assessed. RESULTS A single intraperitoneal injection of 8 mg/kg TNX reduced the blood perfusion in FSaII tumors by 53% at 2 hours after injection. To increase the oxygenation of the tumor vasculature during TNX treatment, some animals were allowed to breathe carbogen (95% O(2)/5% CO(2)). Carbogen breathing alone for 2 hours reduced tumor perfusion by 33%. When carbogen breathing was begun immediately after TNX injection, no further reduction occurred in tumor blood perfusion at 2 hours after injection. In vitro, TNX exposure increased activity JNK MAP kinase preferentially in endothelial cells cultured in an acidic or hypoxic environment. In vivo, the median oxygenation in FSaII tumors measured at 3 or 5 days after TNX injection was found to be significantly elevated compared with control tumors. Subsequently, radiation-induced tumor-growth delay was synergistically increased when radiation and TNX injection were fractionated at 3-day or 5-day intervals. CONCLUSIONS Trisenox has novel vascular-damaging properties, preferentially against endothelium in regions of low pH or pO(2), which leads to tumor cell death and enhancement of the response of tumors to radiotherapy.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, USA.
| | | | | | | |
Collapse
|
32
|
Ning S, Knox SJ. Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Int J Radiat Oncol Biol Phys 2004; 60:197-203. [PMID: 15337556 DOI: 10.1016/j.ijrobp.2004.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/03/2004] [Accepted: 02/09/2004] [Indexed: 01/29/2023]
Abstract
PURPOSE Patients with glioblastoma multiforme (GBM) do extremely poorly despite aggressive therapy with surgery, radiotherapy (RT), and chemotherapy. In an effort to increase the efficacy of therapy for GBM, we studied the efficacy of arsenic trioxide (ATO) combined with high-dose RT in GBM cells in vitro and GBM xenograft tumors in nude mice. METHODS AND MATERIALS Human glioblastoma cell line SNB75 cells were irradiated in vitro with doses of 0-15 Gy with or without ATO. Clonogenic assays were used to generate radiation survival curves. Intracellular reactive oxygen species and apoptosis induced by ATO and RT were measured. The therapeutic efficacy of ATO alone, local tumor RT alone, and the combined therapy was tested in nude mice bearing established s.c. SNB75 tumors. A single RT dose of 20 Gy was administered locally to tumors. ATO at 10 mg/kg was injected i.p. 10 min after RT for the in vivo experiments. RESULTS Radiation survival curves of GBM SNB75 cells demonstrated that a dose of 0.2 microM ATO increased radiation-induced cell killing by 2 logs at 10 Gy. ATO at 1 microM decreased survival from 4 x 10(-2) after 7 Gy of RT alone to 4 x 10(-5). A time-course experiment demonstrated that the greatest level of cell killing occurred when ATO was administered immediately before or within 2 hours after RT. To test the therapeutic efficacy of this combined treatment regimen in vivo, nude mice with established SNB75 GBM tumors were treated with a single local tumor dose of 20 Gy of RT with or without ATO (10 mg/kg x two doses) administered weekly. Appropriate control groups were included as well. ATO alone did not inhibit tumor growth. RT at 20 Gy alone inhibited tumor growth by 45 days, with regrowth of tumors thereafter. The combination of RT and ATO resulted in complete regression of the tumors in 4 of 5 mice without tumor regrowth for up to 4 months. The fifth mouse in the combined treatment group had a 90% reduction in tumor size without progression during the 4-month follow-up period. Furthermore, ATO alone and in combination with RT did not produce any obvious signs of toxicity. CONCLUSION These results have demonstrated that ATO increases intracellular levels of reactive oxygen species, induces apoptosis, and enhances the radiation cell killing of GBM cells. RT combined with ATO was an effective treatment for GBM tumors in this preclinical model. These preclinical results are encouraging and provide a rationale for further study of ATO combined with RT for the treatment of GBM and other histologic types of brain cancer using a variety of RT schemes.
Collapse
Affiliation(s)
- Shoucheng Ning
- Department of Radiation Oncology, Stanford University Medical Center, 269 Campus Drive W., Stanford, CA 94305-5152, USA
| | | |
Collapse
|