1
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
González Mesa JE, Alem Glison D, Chaves-Campos FA, Ortíz Morales F, Valle Bourrouet L, Abarca Ramírez M, Verdejo V, Di Giorgio M, Radl A, Taja MR, Deminge M, Rada-Tarifa A, Lafuente-Alvarez E, Lima FFD, Hwang S, Esposito Mendes M, Mandina-Cardoso T, Muñoz-Velastegui G, Guerrero-Carbajal YC, Arceo Maldonado C, Monjagata N, Aguilar-Coronel S, Espinoza-Zevallos M, Falcon de Vargas A, Vittoria Di Tomaso M, Holladay B, Lima OG, Martínez-López W. LBDNet interlaboratory comparison for the dicentric chromosome assay by digitized image analysis applying weighted robust statistical methods. Int J Radiat Biol 2024; 100:1019-1028. [PMID: 38810111 DOI: 10.1080/09553002.2024.2356556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE This interlaboratory comparison was conducted to evaluate the performance of the Latin-American Biodosimetry Network (LBDNet) in analyzing digitized images for scoring dicentric chromosomes from in vitro irradiated blood samples. The exercise also assessed the use of weighted robust algorithms to compensate the uneven expertise among the participating laboratories. METHODS Three sets of coded images obtained through the dicentric chromosome assay from blood samples irradiated at 1.5 Gy (sample A) and 4 Gy (sample B), as well as a non-irradiated whole blood sample (sample C), were shared among LBDNet laboratories. The images were captured using the Metafer4 platform coupled with the AutoCapt module. The laboratories were requested to perform triage scoring, conventional scoring, and dose estimation. The dose estimation was carried out using either their laboratory calibration curve or a common calibration curve. A comparative statistical analysis was conducted using a weighted robust Hampel algorithm and z score to compensate for uneven expertise in dicentric analysis and dose assessment among all laboratories. RESULTS Out of twelve laboratories, one had unsatisfactory estimated doses at 0 Gy, and two had unsatisfactory estimated doses at 1.5 Gy when using their own calibration curve and triage scoring mode. However, all doses were satisfactory at 4 Gy. Six laboratories had estimated doses within 95% uncertainty limits at 0 Gy, seven at 1.5 Gy, and four at 4 Gy. While the mean dose for sample C was significantly biased using robust algorithms, applying weights to compensate for the laboratory's analysis expertise reduced the bias by half. The bias from delivered doses was only notable for sample C. Using the common calibration curve for dose estimation reduced the standard deviation (s*) estimated by robust methods for all three samples. CONCLUSIONS The results underscore the significance of performing interlaboratory comparison exercises that involve digitized and electronically transmitted images, even when analyzing non-irradiated samples. In situations where the participating laboratories possess different levels of proficiency, it may prove essential to employ weighted robust algorithms to achieve precise outcomes.
Collapse
Affiliation(s)
| | - Diego Alem Glison
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | - Valentina Verdejo
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Marina Di Giorgio
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Analía Radl
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - María Rosa Taja
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Mayra Deminge
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Ana Rada-Tarifa
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Erika Lafuente-Alvarez
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Fabiana Farias de Lima
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Suy Hwang
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Mariana Esposito Mendes
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Tania Mandina-Cardoso
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | | | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | | | - Marco Espinoza-Zevallos
- Cytogenetics and Radiobiology Laboratory, Directorate of Services, Peruvian Institute of Nuclear Energy, San Borja, Peru
| | - Aida Falcon de Vargas
- Vargas Hospital of Caracas. Hospital de Clínicas Caracas. Central University of Venezuela, Caracas, Venezuela
| | - Maria Vittoria Di Tomaso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Bret Holladay
- Statistics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Omar García Lima
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
3
|
Wilkins RC, Beaton-Green LA. Development of high-throughput systems for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1477-1484. [PMID: 37721060 PMCID: PMC10720693 DOI: 10.1093/rpd/ncad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 09/19/2023]
Abstract
Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
4
|
Bolcaen J, Combrink N, Spoormans K, More S, Vandevoorde C, Fisher R, Kleynhans J. Biodosimetry, can it find its way to the nuclear medicine clinic? FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1209823. [PMID: 39355046 PMCID: PMC11440959 DOI: 10.3389/fnume.2023.1209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2024]
Abstract
Personalised dosimetry based on molecular imaging is a field that has grown exponentially in the last decade due to the increasing success of Radioligand Therapy (RLT). Despite advances in imaging-based 3D dose estimation, the administered dose of a therapeutic radiopharmaceutical for RLT is often non-personalised, with standardised dose regimens administered every 4-6 weeks. Biodosimetry markers, such as chromosomal aberrations, could be used alongside image-based dosimetry as a tool for individualised dose estimation to further understand normal tissue toxicity and refine the administered dose. In this review we give an overview of biodosimetry markers that are used for blood dose estimation, followed by an overview of their current results when applied in RLT patients. Finally, an in-depth discussion will provide a perspective on the potential for the use of biodosimetry in the nuclear medicine clinic.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Nastassja Combrink
- Nuclear Medicine Division, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kaat Spoormans
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlot Vandevoorde
- Biophysics Departement, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Randall Fisher
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Port M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, et alPort M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, Zafiropoulos D, Abend M. RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays. Radiat Res 2023; 199:535-555. [PMID: 37310880 PMCID: PMC10508307 DOI: 10.1667/rade-22-00207.1] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/15/2023]
Abstract
Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Collapse
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | - J. Moquet
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | | | - G. Terzoudi
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - F. Trompier
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Vral
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - Y. Abe
- Department of Radiation Biology and Protection, Nagasaki University, Japan
| | - L. Ainsbury
- UK Health Security Agency and Office for Health Improvement and Disparities, Cytogenetics and Pathology Group, Oxfordshire, England
| | - L Alkebsi
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - S.A. Amundson
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - A. Baeyens
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - A.S. Balajee
- Cytogenetic Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - K. Balázs
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - S. Barnard
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - C. Bassinet
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | | | - C. Beinke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - L. Bobyk
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny Sur Orge, France
| | | | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - M. Bucher
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - B. Ciesielski
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - C. Cuceu
- Genevolution, Porcheville, France
| | - M. Discher
- Paris-Lodron-University of Salzburg, Department of Environment and Biodiversity, 5020 Salzburg, Austria
| | - M.C. D,Oca
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - I. Domínguez
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | | | - A. Dumitrescu
- National Institute of Public Health, Radiation Hygiene Laboratory, Bucharest, Romania
| | - P.N. Duy
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - F. Finot
- Genevolution, Porcheville, France
| | - G. Garty
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - S.A. Ghandhi
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - E. Gregoire
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - V.S.T. Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore
| | - I. Güçlü
- TENMAK, Nuclear Energy Research Institute, Technology Development and Nuclear Research Department, Türkey
| | - L. Hadjiiska
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - R. Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - K. Ishii
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Juniewicz
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - R. Kriehuber
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - Y. Lee
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - T.T. Mai
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - N. Maltar-Strmečki
- Ruðer Boškovic Institute, Division of Physical Chemistry, Zagreb, Croatia
| | - M. Marrale
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - J.S. Martinez
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Marciniak
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - N. Maznyk
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - S.W.S. McKeever
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | | | - M. Milanova
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - T. Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - O. Monteiro Gil
- Instituto Superior Técnico/ Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - A. Montoro
- Servicio de Protección Radiológica. Laboratorio de Dosimetría Biológica, Valencia, Spain
| | - M. Moreno Domene
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - A. Mrozik
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - R. Nakayama
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - G. O’Brien
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - D. Oskamp
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Pajic
- Serbian Institute of Occupational Health, Belgrade, Serbia
| | - N. Pastor
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | - C. Patrono
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - M.J. Prieto Rodriguez
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - M. Repin
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | | | - U. Rößler
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | | | - A. Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - H. Scherthan
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - K.M. Seong
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - S. Sholom
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - S. Sommer
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Y. Suto
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - T. Sypko
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - T. Szatmári
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Takahashi-Sugai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K. Takebayashi
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - A. Testa
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - I. Testard
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - A. Tichy
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - S. Triantopoulou
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - N. Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M. Unverricht-Yeboah
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - M. Valente
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - O. Van Hoey
- Belgian Nuclear Research Center SCK CEN, Mol, Belgium
| | | | - A. Wojcik
- Stockholm University, Stockholm, Sweden
| | - M. Wojewodzka
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lee Younghyun
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - D. Zafiropoulos
- Laboratori Nazionali di Legnaro - Istituto Nazionale di Fisica Nucleare, Legnaro, Italy
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
6
|
Lee Y, Kim SH, Lee YH, Yang SS, Yoon HJ, Wilkins RC, Jang S. Application of a semi-automated dicentric scoring system in triage and monitoring occupational radiation exposure. Front Public Health 2022; 10:1002501. [PMID: 36339161 PMCID: PMC9631783 DOI: 10.3389/fpubh.2022.1002501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 01/27/2023] Open
Abstract
The dicentric chromosome assay (DCA) is considered the gold standard for radiation biodosimetry, but it is limited by its long dicentric scoring time and need for skilled scorers. The automation of scoring dicentrics has been considered a strategy to overcome the constraints of DCA. However, the studies on automated scoring methods are limited compared to those on conventional manual DCA. Our study aims to assess the performance of a semi-automated scoring method for DCA using ex vivo and in vivo irradiated samples. Dose estimations of 39 blind samples irradiated ex vivo and 35 industrial radiographers occupationally exposed in vivo were estimated using the manual and semi-automated scoring methods and subsequently compared. The semi-automated scoring method, which removed the false positives of automated scoring using the dicentric chromosome (DC) scoring algorithm, had an accuracy of 94.9% in the ex vivo irradiated samples. It also had more than 90% accuracy, sensitivity, and specificity to distinguish binary dose categories reflecting clinical, diagnostic, and epidemiological significance. These data were comparable to those of manual DCA. Moreover, Cohen's kappa statistic and McNemar's test showed a substantial agreement between the two methods for categorizing in vivo samples into never and ever radiation exposure. There was also a significant correlation between the two methods. Despite of comparable results with two methods, lower sensitivity of semi-automated scoring method could be limited to assess various radiation exposures. Taken together, our findings show the semi-automated scoring method can provide accurate dose estimation rapidly, and can be useful as an alternative to manual DCA for biodosimetry in large-scale accidents or cases to monitor radiation exposure of radiation workers.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Seung Hyun Kim
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea,*Correspondence: Seongjae Jang
| |
Collapse
|
7
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
8
|
Lamkowski A, Combs SE, Abend M, Port M. Training of clinical triage of acute radiation casualties: a performance comparison of on-siteversus onlinetraining due to the covid-19 pandemic. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S540-S560. [PMID: 34256358 DOI: 10.1088/1361-6498/ac13c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A collection of powerful diagnostic tools have been developed under the umbrellas of NATO for ionising radiation dose assessment (BAT, WinFRAT) and estimate of acute health effects in humans (WinFRAT, H-Module). We assembled a database of 191 ARS cases using the medical treatment protocols for radiation accident victims (n= 167) and the system for evaluation and archiving of radiation accidents based on case histories (n= 24) for training purposes of medical personnel. From 2016 to 2019, we trained 39 participants comprising MSc level radiobiology students in an on-site teaching class. Enforced by the covid-19 pandemic in 2020 for the first time, an online teaching of nine MSc radiobiology students replaced the on-site teaching. We found that: (a) limitations of correct diagnostic decision-making based on clinical signs and symptoms were experienced unrelated to the teaching format. (b) A significant performance decrease concerning online (first number in parenthesis) versus on-site teaching (reference and second number in parenthesis) was seen regarding the estimate time (31 vs 61 cases per hour, two-fold decrease,p= 0.005). Also, the accurate assessment of response categories (89.9% vs 96.9%,p= 0.001), ARS (92.4% vs 96.7%,p= 0.002) and hospitalisation (93.5% vs 97.0%,p= 0.002) decreased by around 3%-7%. The performances of the online attendees were mainly distributed within the lower quartile performance of on-site participants and the 25%-75% interquartile range increased 3-7-fold. (c) Comparison of dose estimates performed by training participants with hematologic acute radiation syndrome (HARS) severity mirrored the known limitations of dose alone as a surrogate parameter for HARS severity at doses less than 1.5 Gy, but demonstrated correct determination of HARS 2-4 and support for clinical decision making at dose estimates >1.5 Gy, regardless of teaching format. (d) Overall, one-third of the online participants showed substantial misapprehension and insecurities of elementary course content that did not occur after the on-site teaching.
Collapse
Affiliation(s)
- Andreas Lamkowski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Ingolstaedter Landstr. 1 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
9
|
Gnanasekaran TS. Cytogenetic biological dosimetry assays: recent developments and updates. Radiat Oncol J 2021; 39:159-166. [PMID: 34610654 PMCID: PMC8497872 DOI: 10.3857/roj.2021.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
Biological dosimetry is the measurement of radiation-induced changes in the human to measure short and long-term health risks. Biodosimetry offers an independent means of obtaining dose information and also provides diagnostic information on the potential for "partial-body" exposure information using biological indicators and otherwise based on computer modeling, dose reconstruction, and physical dosimetry. A variety of biodosimetry tools are available and some features make some more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are discussing the recent developments and adaptability of currently available cytogenetic biological dosimetry assays.
Collapse
|
10
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
11
|
Lee YH, Lee Y, Yoon HJ, Yang SS, Joo HM, Kim JY, Cho SJ, Jo WS, Jeong SK, Oh SJ, Kang YR, Seong KM. An intercomparison exercise to compare scoring criteria and develop image databank for biodosimetry in South Korea. Int J Radiat Biol 2021; 97:1199-1205. [PMID: 34133255 DOI: 10.1080/09553002.2021.1941384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Mutual cooperation of biodosimetry laboratories is required for dose assessments of large numbers of people with potential radiation exposure, as in mass casualty accidents. We launched an intercomparison exercise to validate the performance of biodosimetry laboratories in South Korea. MATERIALS AND METHODS Participating laboratories shared metaphase images from dicentric chromosome assays (DCAs) and fluorescence in situ hybridization (FISH)-based translocation assays, which were evaluated based on their own scoring protocols. RESULTS Overall, the coefficient of variation among three laboratories was less than 10% for counting scorable metaphases and chromosomal aberrations. However, there was variation in the interpretation of the International Atomic Energy Agency guidelines for selecting scorable metaphases and identifying chromosomal aberrations. In a technical workshop, scoring discrepancies were extensively discussed in order to harmonize biodosimetry protocols in Korea. In addition, metaphase images with agreement among all participating laboratories were compiled into an image databank, which can be used for education and training of scorers. CONCLUSIONS These findings and exercises may improve the accuracy of dose assessment, as well as increase the capacity for biodosimetry in South Korea.
Collapse
Affiliation(s)
- Yang Hee Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Younghyun Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Su San Yang
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hae Mi Joo
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Ji Young Kim
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Seong-Jun Cho
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Soo Kyung Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ki Moon Seong
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
12
|
Lin WC, Chang KW, Liao TZ, Ou Yang FY, Chang TJ, Yuan MC, Wilkins RC, Chang CH. Intercomparison of conventional and QuickScan dicentric scoring for the validation of individual biodosimetry analysis in Taiwan. Int J Radiat Biol 2021; 97:916-925. [PMID: 34003708 DOI: 10.1080/09553002.2021.1928789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The dicentric chromosome assay (DCA), the gold standard for radiation biodosimetry, evaluates an individual absorbed radiation dose by the analysis of DNA damage in human lymphocytes. The conventional (C-DCA) and QuickScan (QS-DCA) scoring methods are sensitive for estimating radiation dose. The Biodosimetry Laboratory at Institute of Nuclear Energy Research (INER), Taiwan, participated in intercomparison exercises conducted by Health Canada (HC) in 2014, 2015 and 2018 to validate the laboratory's accuracy and performance. MATERIAL AND METHODS Blood samples for the conventional dose response curve for Taiwan were irradiated with 0, 0.25, 0.5, 1, 2, 3, 4 and 5 Gy. Ten blind blood samples were provided by HC. Either or both of two methods of conventional (C) or QuickScan (QS) scoring could be chosen for the HC's intercomparison. For C-DCA triage scoring, only cells with 46 centromeres were counted and each scorer recorded the number of dicentrics in the first 50 metaphases or stopped scoring when 30 dicentrics were reached. Scorers also recorded how much time it took to analyze 10, 20, and 50 cells. Subsequently, the data were entered into the Dose Estimate software (DoseEstimate_v5.1) and dose estimates were calculated. With QS-DCA scoring, a minimum of 50 metaphase cells (or 30 dicentrics) were scored in apparently complete metaphases without verification of exactly 46 centromeres. RESULTS For the blinded blood samples irradiated at HC and shipped to INER, the mean absolute deviation (MAD) derived after scoring 50 cells for C-DCA and QS-DCA was <0.5 Gy for all three intercomparisons, meeting the criteria for acceptance. CONCLUSION The results indicated that the Biodosimetry Laboratory at INER can provide reliable dose estimates in the case of a large-scale radiation accident.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Kang-Wei Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Tse-Zung Liao
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Fang-Yu Ou Yang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Tsui-Jung Chang
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Chen Yuan
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
14
|
Port M, Haupt J, Ostheim P, Majewski M, Combs SE, Atkinson M, Abend M. Software Tools for the Evaluation of Clinical Signs and Symptoms in the Medical Management of Acute Radiation Syndrome-A Five-year Experience. HEALTH PHYSICS 2021; 120:400-409. [PMID: 33315652 DOI: 10.1097/hp.0000000000001353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A suite of software tools has been developed for dose estimation (BAT, WinFRAT) and prediction of acute health effects (WinFRAT, H-Module) using clinical symptoms and/or changes in blood cell counts. We constructed a database of 191 ARS cases using the METREPOL (n = 167) and the SEARCH-database (n = 24). The cases ranged from unexposed (RC0), to mild (RC1), moderate (RC2), severe (RC3), and lethal ARS (RC4). From 2015-2019, radiobiology students and participants of two NATO meetings predicted clinical outcomes (RC, H-ARS, and hospitalization) based on clinical symptoms. We evaluated the prediction outcomes using the same input datasets with a total of 32 teams and 94 participants. We found that: (1) unexposed (RC0) and mildly exposed individuals (RC1) could not be discriminated; (2) the severity of RC2 and RC3 were systematically overestimated, but almost all lethal cases (RC4) were correctly predicted; (3) introducing a prior education component for non-physicians significantly increased the correct predictions of RC, ARS, and hospitalization by around 10% (p<0.005) with a threefold reduction in variance and a halving of the evaluation time per case; (4) correct outcome prediction was independent of the software tools used; and (5) comparing the dose estimates generated by the teams with H-ARS severity reflected known limitations of dose alone as a surrogate for H-ARS severity. We found inexperienced personnel can use software tools to make accurate diagnostic and treatment recommendations with up to 98% accuracy. Educational training improved the quality of decision making and enabled participants lacking a medical background to perform comparably to experts.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstraße 11, 80937, Munich, Germany
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstraße 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstraße 11, 80937, Munich, Germany
| | | | | | - Mike Atkinson
- Department of Radiation Sciences (DRS), Institute of Radiation Biology, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstraße 11, 80937, Munich, Germany
| |
Collapse
|
15
|
Abstract
The dicentric chromosome (DC) assay accurately quantifies exposure to radiation; however, manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates unattended DC detection and determines radiation exposures, fulfilling IAEA criteria for triage biodosimetry. This study evaluates the throughput of high-performance ADCI (ADCI-HT) to stratify exposures of populations in 15 simulated population scale radiation exposures. ADCI-HT streamlines dose estimation using a supercomputer by optimal hierarchical scheduling of DC detection for varying numbers of samples and metaphase cell images in parallel on multiple processors. We evaluated processing times and accuracy of estimated exposures across census-defined populations. Image processing of 1744 samples on 16,384 CPUs required 1 h 11 min 23 s and radiation dose estimation based on DC frequencies required 32 sec. Processing of 40,000 samples at 10 exposures from five laboratories required 25 h and met IAEA criteria (dose estimates were within 0.5 Gy; median = 0.07). Geostatistically interpolated radiation exposure contours of simulated nuclear incidents were defined by samples exposed to clinically relevant exposure levels (1 and 2 Gy). Analysis of all exposed individuals with ADCI-HT required 0.6–7.4 days, depending on the population density of the simulation.
Collapse
|
16
|
Pajic J, Rovcanin B. Ionizing radiation-induced genotoxic and oxidative damage in peripheral lymphocytes and plasma of healthy donors. Mutat Res 2021; 863-864:503313. [PMID: 33678245 DOI: 10.1016/j.mrgentox.2021.503313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Biological dosimetry of ionizing radiation (IR) exposure relies on validated cytogenetic tests measuring the frequencies of micronuclei (MN) and dicentric chromosomes (DC). IR also causes oxidative damage of biomolecules, including DNA. We evaluated IR-induced genotoxic and oxidative damage in a carefully defined cohort of healthy donors, reducing confounding factors as much as possible. Frequencies of MN and DC (peripheral blood lymphocyte cultures) and oxidative stress parameters (plasma) were quantified. We observed dose dependence of both cytogenetic and biochemical endpoints, independent of age, sex, and smoking habits. Oxidative stress parameters, especially oxidative stress index, malondialdehyde, advanced oxidation protein products, and catalase, may be used confidently to assess IR-induced damage, if cytogenetic results are unavailable.
Collapse
Affiliation(s)
- J Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Deligradska 29, Belgrade, Serbia.
| | - B Rovcanin
- Branislav Rovcanin, Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, Belgrade, Serbia
| |
Collapse
|
17
|
Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA. Establishing a Reference Dose-Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Front Public Health 2021; 8:599194. [PMID: 33425838 PMCID: PMC7793750 DOI: 10.3389/fpubh.2020.599194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
In cases of nuclear and radiological accidents, public health and emergency response need to assess the magnitude of radiation exposure regardless of whether they arise from disaster, negligence, or deliberate act. Here we report the establishment of a national reference dose–response calibration curve (DRCC) for dicentric chromosome (DC), prerequisite to assess radiation doses received in accidental exposures. Peripheral blood samples were collected from 10 volunteers (aged 20–40 years, median = 29 years) of both sexes (three females and seven males). Blood samples, cytogenetic preparation, and analysis followed the International Atomic Energy Agency EPR-Biodosimetry 2011 report. Irradiations were performed using 320 kVp X-rays. Metafer system was used for automated and assisted (elimination of false-positives and inclusion of true-positives) metaphases findings and DC scoring. DC yields were fit to a linear–quadratic model. Results of the assisted DRCC showed some variations among individuals that were not statistically significant (homogeneity test, P = 0.66). There was no effect of age or sex (P > 0.05). To obtain representative national DRCC, data of all volunteers were pooled together and analyzed. The fitted parameters of the radiation-induced DC curve were as follows: Y = 0.0020 (±0.0002) + 0.0369 (±0.0019) *D + 0.0689 (±0.0009) *D2. The high significance of the fitted coefficients (z-test, P < 0.0001), along with the close to 1.0 p-value of the Poisson-based goodness of fit (χ2 = 3.51, degrees of freedom = 7, P = 0.83), indicated excellent fitting with no trend toward lack of fit. The curve was in the middle range of DRCCs published in other populations. The automated DRCC over and under estimated DCs at low (<1 Gy) and high (>2 Gy) doses, respectively, with a significant lack of goodness of fit (P < 0.0001). In conclusion, we have established the reference DRCC for DCs induced by 320 kVp X-rays. There was no effect of age or sex in this cohort of 10 young adults. Although the calibration curve obtained by the automated (unsupervised) scoring misrepresented dicentric yields at low and high doses, it can potentially be useful for triage mode to segregate between false-positive and near 2-Gy exposures from seriously irradiated individuals who require hospitalization.
Collapse
Affiliation(s)
- Ghazi A Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Najla M Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara S Bin Judia
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Belal A Moftah
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Attia AMM, Aboulthana WM, Hassan GM, Aboelezz E. Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:131-144. [PMID: 31734721 DOI: 10.1007/s00411-019-00821-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min-1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this "MetHb + SHb + HbCO"-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.
Collapse
Affiliation(s)
- A M M Attia
- Genetic Engineering and Biotechnology Division, Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - W M Aboulthana
- Genetic Engineering and Biotechnology Division, Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - G M Hassan
- Division of Thermometry and Ionizing Radiation Metrology, Department of Ionizing Radiation Metrology, National Institute of Standards, Giza, Egypt.
| | - E Aboelezz
- Division of Thermometry and Ionizing Radiation Metrology, Department of Ionizing Radiation Metrology, National Institute of Standards, Giza, Egypt
| |
Collapse
|
19
|
Mendes ME, Mendonça JCGD, Hwang S, Giorgio MD, Lima FFD, Santos N. Calibration curves by 60Co with low dose rate are different in terms of dose estimation - a comparative study. Genet Mol Biol 2020; 43:e20180370. [PMID: 32105287 PMCID: PMC7231543 DOI: 10.1590/1678-4685-gmb-2018-0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Biological dosimetry aims to estimate individual absorbed doses due ionizing
radiation exposure. The dicentric chromosomes are considered the most specific
biomarker for dose estimation. This study aimed to compare calibration curves
for linear low energy transfer (LET) radiation built from low dose rates and
whether they vary in terms of dose estimation. For that we did a search in the
literature of all calibration curves produced with low dose rates and we
simulated the dose estimation from pre-established dicentric’s frequencies. The
information on methodologies and cytogenetic results of each study were
analyzed. As expected dose rate influence β coefficients, especially at higher
doses. However, we have seen that some doses were not statistically different
but they should be, because there is a significant association between the
productions of dicentrics and dose rate. This comparative study reinforced the
robustness of the dicentric assay and its importance in biological dosimetry. We
also emphasized that the dose rate was an important factor in dose estimations.
Thus, intercomparison exercises should take into account the dose rates of the
participating laboratories, because the dose rates might explain why some
results of estimated doses fall outside the recommendations.
Collapse
Affiliation(s)
- Mariana Esposito Mendes
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil.,Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | - Suy Hwang
- Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | | | - Neide Santos
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil
| |
Collapse
|
20
|
Abend M, Port M. CONTRIBUTION OF BIODOSIMETRY TO DIFFERENT MEDICAL ISSUES. RADIATION PROTECTION DOSIMETRY 2019; 186:123-125. [PMID: 30576526 DOI: 10.1093/rpd/ncy278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Biodosimetry is a well-established field in science as well as diagnostics and is essential in various areas of application such as dose reconstruction after an accidental radiation exposure. However, depending on the medical issue the purpose of biodosimetry might differ. In this presentation, we will discuss about the contribution of biodosimetry regarding three medical subjects such as (i) diagnosis of acute effects after ionising radiation (Acute Radiation Syndrome), (ii) impact in the field of conventional and molecular epidemiology and (iii) occupational medicine.
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
21
|
Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, Abend M. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat Res 2019; 192:208-218. [PMID: 31211643 DOI: 10.1667/rr15360.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g., >2 Gy and depending on host characteristics, may develop severe hematological acute radiation syndrome (HARS), requiring hospitalization and treatment. Previously, we identified a set of genes that discriminated these clinically relevant groups. In the current work, we examined the utility of gene expression changes to classify 1,000 split blood samples into HARS severity scores of H0, H1 and H2-4, with the latter indicating likely hospitalization. In several previous radiation dose experiments, we determined that these HARS categories corresponded, respectively, to doses of 0 Gy (unexposed), 0.5 Gy and 5 Gy. The main purpose of this work was to assess the rapidity of blood sample processing using targeted next-generation sequencing (NGS). Peripheral blood samples from two healthy donors were X-ray irradiated in vitro and incubated at 37°C for 24 h. A total of 1,000 samples were evaluated by laboratory personnel blinded to the radiation dose. Changes in gene expression of FDXR, DDB2, POU2AF1 and WNT3 were examined with qRT-PCR as positive controls. Targeted NGS (TREX) was used on all samples for the same four genes. Agreement using both methods was almost 78%. Using NGS, all 1,000 samples were processed within 30 h. Classification of the HARS severity categories corresponding to radiation dose had an overall agreement ranging between 90-97%. Depending on the end point, either a combination of all genes or FDXR alone (H0 HARS or unexposed) provided the best classification. Using this optimized automated methodology, we assessed 100× more samples approximately three times faster compared to standard cytogenetic studies. We showed that a small set of genes, rather than a complex constellation of genes, provided robust positive (97%) and negative (97%) predictive values for HARS categories and radiation doses of 0, 0.5 and 5 Gy. The findings of this study support the potential utility of early radiation-induced gene expression changes for high-throughput biodosimetry and rapid identification of irradiated persons in need of hospitalization.
Collapse
Affiliation(s)
- Matthias Port
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | | | - Julian Haupt
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Andreas Lamkowski
- a Bundeswehr Institute of Radiobiology, Munich, Germany.,c Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, AllergieZENTRUM, Klinikum der Universität München, Munich, Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
22
|
Pan Y, Ruan J, Gao G, Wu L, Piao C, Liu J. Laboratory Intercomparison of Cytogenetic Dosimetry Among 38 Laboratories in China. Dose Response 2019; 17:1559325819833473. [PMID: 30890901 PMCID: PMC6416682 DOI: 10.1177/1559325819833473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A nationwide intercomparison exercise for estimating the irradiated dose was
organized by the National Institute for Radiological Protection, Center for
Disease Control and Prevention of China. Thirty-eight laboratories participated
in this program. The main objective of this intercomparison exercise was to
compare the participants’ ability of operation and dose assessment basing on the
frequencies of dicentrics and centric rings. Whole blood samples were irradiated
with different dosages of 60Co γ-rays. Each laboratory collected 2
blind samples and prepared the slides independently. All participants presented
the estimated dose reports within 30 days. The doses assessed by the
participants were acceptable within the reference dose of ±20%. The mean
absolute difference of estimated dose relative to the reference dose was
calculated, which reflected the overall accuracy of dose estimates for each
laboratory. The overall estimation results of blind blood samples for
intercomparison showed a good agreement with the reference dose for each sample,
with nearly 75% of the participants producing acceptable results.
Collapse
Affiliation(s)
- Yan Pan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlei Ruan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Wu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunnan Piao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
23
|
Repin M, Pampou S, Garty G, Brenner DJ. RABiT-II: A Fully-Automated Micronucleus Assay System with Shortened Time to Result. Radiat Res 2019; 191:232-236. [PMID: 30657421 DOI: 10.1667/rr15215.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this work, we describe a fully automated cytokinesis-block micronucleus (CBMN) assay with a significantly shortened time to result, motivated by the need for rapid high-throughput biodosimetric estimation of radiation doses from small-volume human blood samples. The Rapid Automated Biodosimetry Tool (RABiT-II) currently consists of two commercial automated systems: a PerkinElmer cell::explorer Workstation and a GE Healthcare IN Cell Analyzer 2000 Imager. Blood samples (30 μl) from eight healthy volunteers were gamma-ray irradiated ex vivo with 0 (control), 0.5, 1.5, 2.5, 3.5 or 4.5 Gy and processed with full automation in 96-well plates on the RABiT-II system. The total cell culture time was 54 h and total assay time was 3 days. DAPI-stained fixed samples were imaged on an IN Cell Analyzer 2000 with fully-automated image analysis using the GE Healthcare IN Cell Developer Toolbox version 1.9. A CBMN dose-response calibration curve was established, after which the capability of the system to predict known doses was assessed. Various radiation doses for irradiated samples from two donors were estimated within 20% of the true dose (±0.5 Gy below 2 Gy) in 97% of the samples, with the doses in some 5 Gy irradiated samples being underestimated by up to 25%. In summary, the findings from this work demonstrate that the accelerated CBMN assay can be automated in a high-throughput format, using commercial biotech robotic systems, in 96-well plates, providing a rapid and reliable bioassay for radiation exposure.
Collapse
Affiliation(s)
- Mikhail Repin
- a Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- a Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - David J Brenner
- a Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
24
|
Jacobs AR, Guyon T, Headley V, Nair M, Ricketts W, Gray G, Wong JYC, Chao N, Terbrueggen R. Role of a high throughput biodosimetry test in treatment prioritization after a nuclear incident. Int J Radiat Biol 2018; 96:57-66. [PMID: 30507310 DOI: 10.1080/09553002.2018.1532615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE We introduce and evaluate a high throughput biodosimetry test system (REDI-Dx) suitable for testing of thousands of potential radiation victims following a mass scale nuclear event caused by detonation of a nuclear device or a nuclear accident, as part of an overall strategy for effective medical management of the crisis. MATERIALS AND METHODS The performance of a high throughput biodosimetry test was evaluated by collecting samples of both non-irradiated presumed healthy donors as well as irradiated subjects collected as part of either cancer treatment regimens or banked from previous studies. The test measures the gene expression of a set of radiation responsive genes based on the DxDirect® genomic platform. The potential diagnostic accuracy of REDI-Dx was evaluated as a predictor of actual dose of radiation. While the REDI-Dx test has been calibrated to provide a quantitative measure of actual absorbed dose, we compared the performance of the REDI-Dx test (sensitivity and specificity) as a qualitative result at the most commonly applied thresholds 2.0 Gy and 6.0 Gy. RESULTS The test demonstrated high specificity and lack of effect of medical conditions. Using receiver operating characteristic (ROC) curve analysis, REDI-Dx was shown to be a good predictor of actual dose for determining treatment category based on either 2.0 or 6.0 Gy, with a 98.5% sensitivity and 90% specificity for 2.0 Gy, and 92% sensitivity and 84% specificity for 6.0 Gy. Results were reproducible between clinical laboratories with an SD of 0.2 Gy for samples ≤2.0 Gy and a CV of 10.3% for samples from 2.0 to 10.0 Gy. CONCLUSIONS Use of a biodosimetry test, like REDI-Dx test system would provide valuable information that would improve the ability to assign patients to the correct treatment category when combined with currently available biodosimetry tools, as compared to the use of existing tools alone. The REDI-Dx biodosimetry test system is for investigational use only in the U.S.A. The performance characteristics of this product have not been established.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerry Gray
- ClinReg Consulting Services, Inc, Laguna Beach, CA, USA
| | - Jeffery Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Nelson Chao
- Department of Hematologic Malignancies & Cell Therapy, Duke University, Durham, NC, USA
| | | |
Collapse
|
25
|
Balajee AS, Smith T, Ryan T, Escalona M, Dainiak N. DEVELOPMENT OF A MINIATURIZED VERSION OF DICENTRIC CHROMOSOME ASSAY TOOL FOR RADIOLOGICAL TRIAGE. RADIATION PROTECTION DOSIMETRY 2018; 182:139-145. [PMID: 30247729 DOI: 10.1093/rpd/ncy127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Use of ionizing radiation (IR) in various industrial, medical and other applications can potentially increase the risk of medical, occupational or accidental human exposure. Additionally, in the event of a radiological or nuclear (R/N) incident, several tens of hundreds and thousands of people are likely to be exposed to IR. IR causes serious health effects including mortality from acute radiation syndrome and therefore it is imperative to determine the absorbed radiation dose, which will enable physicians in making an appropriate clinical 'life-saving' decision. The 'Dicentric Chromosome Assay (DCA)' is the gold standard for estimating the absorbed radiation dose but its performance is time consuming and laborious. Further, timely evaluation of dicentric chromosomes (DCs) for dose estimation in a large number of samples provides a bottleneck because of a limited number of trained personnel and a prolonged time for manual analysis. To circumvent some of these technical issues, we developed and optimized a miniaturized high throughput version of DCA (mini-DCA) in a 96-microtube matrix with bar-coded 1.4 ml tubes to enable the processing of a large number of samples. To increase the speed of DC analysis for radiation dose estimation, a semi-automated scoring was optimized using the Metafer DCScore algorithm. The accuracy of mini-DCA in dose estimation was verified and validated though comparison with conventional DCA performed in 15 ml conical tubes. The mini-DCA considerably reduced the sample processing time by a factor of 4 when compared to the conventional DCA. Further, the radiation doses estimated by mini-DCA using the triage mode of scoring (50 cells or 30 DCs) were similar to that of conventional DCA using 300-500 cells. The mini-DCA coupled with semi-automated DC scoring not only reduced the sample processing and analysis times by a factor of 4 but also enabled the processing of a large number of samples at once. Our mini-DCA method, once automated for high throughput robotic platforms, will be an effective radiological triage tool for mass casualty incidents.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Tammy Smith
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Terri Ryan
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Maria Escalona
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| | - Nicholas Dainiak
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN, USA
| |
Collapse
|
26
|
Oestreicher U, Endesfelder D, Gomolka M, Kesminiene A, Lang P, Lindholm C, Rößler U, Samaga D, Kulka U. Automated scoring of dicentric chromosomes differentiates increased radiation sensitivity of young children after low dose CT exposure in vitro. Int J Radiat Biol 2018; 94:1017-1026. [PMID: 30028637 DOI: 10.1080/09553002.2018.1503429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Automated detection of dicentric chromosomes from a large number of cells was applied to study age-dependent radiosensitivity after in vitro CT exposure of blood from healthy donors. MATERIALS AND METHODS Blood samples from newborns, children (2-5 years) and adults (20-50 years) were exposed in vitro to 0 mGy, 41 mGy and 978 mGy using a CT equipment. In this study, automated scoring based on 13,000-31,000 cells/dose point/age group was performed. Results for control and low dose points were validated by manually counting about 26,000 cells/dose point/age group. RESULTS For all age groups, the high number of analyzed cells enabled the detection of a significant increase in the frequency of radiation induced dicentric chromosomes in cells exposed to 41 mGy as compared to control cells. Moreover, differences between the age groups could be resolved for the low dose: young donors showed significantly increased risk for induced dicentrics at 41 mGy compared to adults. CONCLUSIONS The results very clearly demonstrate that the automated dicentric scoring method is capable of discerning radiation induced biomarkers in the low dose range (<100 mGy) and thus may open possibilities for large-scale molecular epidemiology studies in radiation protection.
Collapse
Affiliation(s)
- Ursula Oestreicher
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
| | - David Endesfelder
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
| | - Maria Gomolka
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
| | | | - Peter Lang
- c Department of Radiation Oncology , University Hospital, LMU , Munich , Germany
| | - Carita Lindholm
- d Radiation and Nuclear Safety Authority, STUK , Helsinki , Finland
| | - Ute Rößler
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
| | - Daniel Samaga
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
- e Research Unit Radiation Cytogenetics , Helmholtz Zentrum Muenchen , Oberschleissheim , Germany
| | - Ulrike Kulka
- a Federal Office for Radiation Protection (BfS) , Oberschleissheim , Germany
| |
Collapse
|
27
|
Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol 2018; 95:64-75. [PMID: 30247087 DOI: 10.1080/09553002.2018.1511926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation. MATERIALS AND METHODS We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total). RESULTS Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment. CONCLUSIONS Our results represent an important advancement in the application of gene expression for biodosimetry purposes.
Collapse
Affiliation(s)
- Ellina Macaeva
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Mohamed Mysara
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| | - Winnok H De Vos
- b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium.,c Department of Veterinary Sciences , University of Antwerp , Belgium
| | - Sarah Baatout
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Roel Quintens
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| |
Collapse
|
28
|
Port M, Pieper B, Dörr HD, Hübsch A, Majewski M, Abend M. Correlation of Radiation Dose Estimates by DIC with the METREPOL Hematological Classes of Disease Severity. Radiat Res 2018; 189:449-455. [DOI: 10.1667/rr14936.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - B. Pieper
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - H. D. Dörr
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - A. Hübsch
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - M. Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
29
|
Beinke C, Port M, Ullmann R, Gilbertz K, Majewski M, Abend M. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis. Radiat Res 2018; 189:579-596. [PMID: 29613823 DOI: 10.1667/rr14974.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G2 as well as into the second G1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - R Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - K Gilbertz
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
30
|
Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. Proximity effects in chromosome aberration induction by low-LET ionizing radiation. DNA Repair (Amst) 2017; 58:38-46. [PMID: 28863396 DOI: 10.1016/j.dnarep.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Although chromosome aberrations are known to derive from distance-dependent mis-rejoining of chromosome fragments, evaluating whether a certain model describes such "proximity effects" better than another one is complicated by the fact that different approaches have often been tested under different conditions. Herein, a biophysical model ("BIANCA", i.e. BIophysical ANalysis of Cell death and chromosome Aberrations) was upgraded, implementing explicit chromosome-arm domains and two new models for the dependence of the rejoining probability on the fragment initial distance, r. Such probability was described either by an exponential function like exp(-r/r0), or by a Gaussian function like exp(-r2/2σ2), where r0 and σ were adjustable parameters. The second, and last, parameters was the yield of "Cluster Lesions" (CL), where "Cluster Lesion" defines a critical DNA damage producing two independent chromosome fragments. The model was applied to low-LET-irradiated lymphocytes (doses: 1-4Gy) and fibroblasts (1-6.1Gy). Good agreement with experimental yields of dicentrics and centric rings, and thus their ratio ("F-ratio"), was found by both the exponential model (with r0=0.8μm for lymphocytes and 0.7μm for fibroblasts) and the Gaussian model (with σ=1.1μm for lymphocytes and 1.3μm for fibroblasts). While the former also allowed reproducing dose-responses for excess acentric fragments, the latter substantially underestimated the experimental curves. Both models provided G-ratios (ratio of acentric to centric rings) higher than those expected from randomness, although the values calculated by the Gaussian model were lower than those calculated by the exponential one. For lymphocytes the calculated G-ratios were in good agreement with the experimental ones, whereas for fibroblasts both models substantially underestimated the experimental results, which deserves further investigation. This work suggested that, although both models performed better than a step model (which previously allowed reproducing the F-ratio but underestimated the G-ratio), an exponential function describes proximity effects better than a Gaussian one.
Collapse
Affiliation(s)
- John James Tello Cajiao
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy; Universidade Estadual de Campinas. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Mario Pietro Carante
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.
| | | | - Francesca Ballarini
- University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy; INFN-Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.
| |
Collapse
|
31
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
32
|
Liu JX, Pan Y, Ruan JL, Piao C, Su X. Intercomparison in Cytogenetic Dosimetry among 22 Laboratories in China. Genome Integr 2016; 7:6. [PMID: 28217282 PMCID: PMC5292918 DOI: 10.4103/2041-9414.197164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As part of a regional International Atomic Energy Agency-coordinated research project with the support from the National Health and Family Planning Commission of China, 22 laboratories participated in the intercomparison in cytogenetic dosimetry in China. Slides for chromosomal aberrations were prepared by the Department of Radiation Epidemiology, National Institute for Radiological Protection, which organized the exercise. Slides were sent to the other participating laboratories through Express Mail Service. For estimates of dose, each laboratory scored the frequency of dicentrics plus centric rings chromosomes. The whole blood samples were irradiated with 60Co γ-rays (1.3 Gy, 2.4 Gy and 1.5 Gy, 2.6 Gy). Each laboratory got one group of the slides. Ten of the 44 estimates of dose fell within ±5% of the true physical dose, 12 fell within ±5-10%, 9 fell within ±10-15%, 12 fell within ±15-20%, while only one sample fell ± >20%. The evaluation of the respective dose was achieved by 21 laboratories.
Collapse
Affiliation(s)
- Jian Xiang Liu
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Yan Pan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Jian Lei Ruan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Chunnan Piao
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Xu Su
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| |
Collapse
|
33
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Williams BB, Flood AB, Demidenko E, Swartz HM. ROC Analysis for Evaluation of Radiation Biodosimetry Technologies. RADIATION PROTECTION DOSIMETRY 2016; 172:145-151. [PMID: 27412513 PMCID: PMC5225982 DOI: 10.1093/rpd/ncw168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Receiver operating characteristic (ROC) analysis is a fundamental tool used for the evaluation and comparison of diagnostic systems that provides estimates of the combinations of sensitivity and specificity that can be achieved with a given technique. Along with critical considerations of practical limitations, such as throughput and time to availability of results, ROC analyses can be applied to provide meaningful assessments and comparisons of available biodosimetry methods. Accordingly, guidance from the Food and Drug Administration to evaluate biodosimetry devices recommends using ROC analysis. However, the existing literature for the numerous biodosimetry methods that have been developed to address the needs for triage either do not contain ROC analyses or present ROC analyses where the dose distributions of the study samples are not representative of the populations to be screened. The use of non-representative sample populations can result in a significant spectrum bias, where estimated performance metrics do not accurately characterize the true performance under real-world conditions. Particularly, in scenarios where a large group of people is screened because they were potentially exposed in a large-scale radiation event, directly measured population data do not exist. However, a number of complex simulations have been performed and reported in the literature that provide estimates of the required dose distributions. Based on these simulations and reported data about the output and uncertainties of biodosimetry assays, we illustrate how ROC curves can be generated that incorporate a realistic representative sample. A technique to generate ROC curves for biodosimetry data is presented along with representative ROC curves, summary statistics and discussion based on published data for triage-ready electron paramagnetic resonance in vivo tooth dosimetry, the dicentric chromosome assay and quantitative polymerase chain reaction assay. We argue that this methodology should be adopted generally to evaluate the performance of radiation biodosimetry screening assays so that they can be compared in the context of their intended use.
Collapse
Affiliation(s)
- Benjamin B Williams
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Harold M Swartz
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
35
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
36
|
Port M, Herodin F, Valente M, Drouet M, Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M, Abend M. MicroRNA Expression for Early Prediction of Late Occurring Hematologic Acute Radiation Syndrome in Baboons. PLoS One 2016; 11:e0165307. [PMID: 27846229 PMCID: PMC5113049 DOI: 10.1371/journal.pone.0165307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/03/2016] [Indexed: 12/03/2022] Open
Abstract
For effective medical management of radiation-exposed persons after a radiological/nuclear event, blood-based screening measures in the first few days that could predict hematologic acute radiation syndrome (HARS) are needed. For HARS severity prediction, we used microRNA (miRNA) expression changes measured on days one and two after irradiation in a baboon model. Eighteen baboons underwent different patterns of partial or total body irradiation, corresponding to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts (BCC) the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. In a two Stage study design we screened 667 miRNAs using a quantitative real-time polymerase chain reaction (qRT-PCR) platform. In Stage II we validated candidates where miRNAs had to show a similar regulation (up- or down-regulated) and a significant 2-fold miRNA expression difference over H0. Seventy-two candidate miRNAs (42 for H1-2 and 30 for H2-3) were forwarded for validation. Forty-two of the H1-2 miRNA candidates from the screening phase entered the validation step and 20 of them showed a statistically significant 2–4 fold up-regulation relative to the unexposed reference (H0). Fifteen of the 30 H2-3 miRNAs were validated in Stage II. All miRNAs appeared 2–3 fold down-regulated over H0 and allowed an almost complete separation of HARS categories; the strongest candidate, miR-342-3p, showed a sustained and 10-fold down-regulation on both days 1 and 2. In summary, our data support the medical decision making of the HARS even within the first two days after exposure where diagnostic tools for early medical decision are required but so far missing. The miRNA species identified and in particular miR-342-3p add to the previously identified mRNAs and complete the portfolio of identified mRNA and miRNA transcripts for HARS prediction and medical management.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Francis Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - Marco Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - Michel Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | | | | | | | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
- * E-mail:
| |
Collapse
|
37
|
Oestreicher U, Samaga D, Ainsbury E, Antunes AC, Baeyens A, Barrios L, Beinke C, Beukes P, Blakely WF, Cucu A, De Amicis A, Depuydt J, De Sanctis S, Di Giorgio M, Dobos K, Dominguez I, Duy PN, Espinoza ME, Flegal FN, Figel M, Garcia O, Monteiro Gil O, Gregoire E, Guerrero-Carbajal C, Güçlü İ, Hadjidekova V, Hande P, Kulka U, Lemon J, Lindholm C, Lista F, Lumniczky K, Martinez-Lopez W, Maznyk N, Meschini R, M’kacher R, Montoro A, Moquet J, Moreno M, Noditi M, Pajic J, Radl A, Ricoul M, Romm H, Roy L, Sabatier L, Sebastià N, Slabbert J, Sommer S, Stuck Oliveira M, Subramanian U, Suto Y, Que T, Testa A, Terzoudi G, Vral A, Wilkins R, Yanti L, Zafiropoulos D, Wojcik A. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int J Radiat Biol 2016; 93:20-29. [DOI: 10.1080/09553002.2016.1233370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Daniel Samaga
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | | | | | - Julie Depuydt
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | | | - Katalin Dobos
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | | | - Farrah N. Flegal
- Canadian Nuclear Laboratories, Radiobiology & Health, Chalk River, Ontario, Canada
| | - Markus Figel
- Helmholtz Zentrum München, Auswertungsstelle für Strahlendosimeter
| | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones (CPHR), La Havana. Cuba
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - İnci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Traning Center Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine: National University of Singapore, Singapore
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Nataliya Maznyk
- Institute for Medical Radiology of National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| | | | - Radia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Alegria Montoro
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Spain
| | | | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Analía Radl
- Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Horst Romm
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Natividad Sebastià
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Uma Subramanian
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | - Yumiko Suto
- National Institute of Radiological Sciences, Chiba, Japan
| | - Tran Que
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research “Demokritos”, NCSR”D”, Greece
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | - LusiYanti Yanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Batan, Indonesia
| | | | - Andrzej Wojcik
- Stockholm University, Institute Molecular Biosciences, Stockholm, Sweden
| |
Collapse
|
38
|
Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, De Amicis A, Domínguez I, Fattibene P, Frøvig, AM, Gregoire E, Guogyte K, Hadjidekova V, Jaworska A, Kriehuber R, Lindholm C, Lloyd D, Lumniczky K, Lyng F, Meschini R, Mörtl S, Della Monaca S, Monteiro Gil O, Montoro A, Moquet J, Moreno M, Oestreicher U, Palitti F, Pantelias G, Patrono C, Piqueret-Stephan L, Port M, Prieto MJ, Quintens R, Ricoul M, Romm H, Roy L, Sáfrány G, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Turai I, Trompier F, Valente M, Vaz P, Voisin P, Vral A, Woda C, Zafiropoulos D, Wojcik A. RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol 2016; 93:2-14. [DOI: 10.1080/09553002.2016.1230239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | - David Lloyd
- affiliated to Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Fiona Lyng
- Dublin Institute of Technology, Dublin, Ireland
| | | | - Simone Mörtl
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montoro
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Laure Piqueret-Stephan
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - María Jesus Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Géza Sáfrány
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Natividad Sebastià
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | - Georgia Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Istvan Turai
- affiliated to National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Philippe Voisin
- affiliated to Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Anne Vral
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Clemens Woda
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Andrzej Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| |
Collapse
|
39
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
40
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
41
|
Gregoire E, Ainsbury L, Barrios L, Bassinet C, Fattibene P, Kulka U, Oestreicher U, Pantelias G, Terzoudi G, Trompier F, Voisin P, Vral A, Wojcik A, Roy L. The harmonization process to set up and maintain an operational biological and physical retrospective dosimetry network: QA QM applied to the RENEB network. Int J Radiat Biol 2016; 93:81-86. [DOI: 10.1080/09553002.2016.1206232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Liz Ainsbury
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | | | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | | | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Francois Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Philippe Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
42
|
Port M, Herodin F, Valente M, Drouet M, Lamkowski A, Majewski M, Abend M. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons. Radiat Res 2016; 186:39-54. [PMID: 27333084 DOI: 10.1667/rr14318.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were constantly three to fivefold down-regulated relative to H0 over both days, but some genes appeared 10.3-fold (VSIG4) or even 30.7-fold up-regulated (CD177) over H0. For H2-3, some genes appeared four to sevenfold up-regulated relative to H0 (RNASE3, DAGLA, ARG2), but other genes showed a strong 14- to 33-fold down-regulation relative to H0 (WNT3, POU2AF1, CCR7). All of these genes allowed an almost completely identifiable separation among each of the HARS categories. In summary, clinically relevant HARS can be independently predicted with all 29 irradiated genes examined in the peripheral blood of baboons within the first two days postirradiation. While further studies are needed to confirm these findings, this model shows potential relevance in the prediction of clinical outcomes in exposed humans and as an aid in the prioritizing of medical treatment.
Collapse
Affiliation(s)
- M Port
- a Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - F Herodin
- a Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - M Valente
- b Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M Drouet
- b Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - A Lamkowski
- a Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - M Majewski
- a Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - M Abend
- a Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
43
|
Beinke C, Port M, Lamkowski A, Abend M. Comparing seven mitogens with PHA-M for improved lymphocyte stimulation in dicentric chromosome analysis for biodosimetry. RADIATION PROTECTION DOSIMETRY 2016; 168:235-41. [PMID: 25958413 PMCID: PMC4884885 DOI: 10.1093/rpd/ncv286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/13/2015] [Indexed: 05/06/2023]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose estimation. Two limiting factors of DCA are the time-consuming lymphocyte stimulation and proliferation using the lectin PHA-M and the upper dose limit of individual dose assessment of ∼4 Gy. By measuring the mitotic index (MI), the authors investigated systematically whether the stimulation of lymphocytes can be improved after administration of alternative (and combined) mitogens. The authors compared the lymphocyte stimulation effectiveness of the traditionally used PHA-M (from Phaseolus vulgaris) with seven cited mitogens by determination of MIs: five lectins namely CNA (concanavalin A), PW (pokeweed), LMA (Maackia amurensis), LTV (T. vulgaris), PHA-L (P. vulgaris) as well as LPS (lipopolysaccharide, Escherichia coli) and SLO (streptolysine O, Streptococcus pyogenes) were applied. The conventional protocol using PHA-M for lymphocyte stimulation proved to be superior over lower/higher PHA-M concentrations as well as seven other mitogens administered either alone or combined with SLO or LPS.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| |
Collapse
|
44
|
Construction of a cytogenetic dose–response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:32-8. [DOI: 10.1016/j.mrgentox.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022]
|
45
|
Wilkins RC, Beaton-Green LA, Lachapelle S, Kutzner BC, Ferrarotto C, Chauhan V, Marro L, Livingston GK, Boulay Greene H, Flegal FN. Evaluation of the annual Canadian biodosimetry network intercomparisons. Int J Radiat Biol 2015; 91:443-51. [PMID: 25670072 PMCID: PMC4487546 DOI: 10.3109/09553002.2015.1012305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. MATERIALS AND METHODS Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10-12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. RESULTS Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. CONCLUSIONS Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Health Canada, Environmental Radiation and Health Sciences Directorate , Ottawa, ON , Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bakkiam D, Bhavani M, Anantha Kumar AA, Sonwani S, Venkatachalam P, Sivasubramanian K, Venkatraman B. Dicentric assay: inter-laboratory comparison in Indian laboratories for routine and triage applications. Appl Radiat Isot 2015; 99:77-85. [PMID: 25728004 DOI: 10.1016/j.apradiso.2015.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
An Inter-Laboratory Comparison (ILC) study on Dicentric Chromosome Assay (DCA) was carried out between two Indian biodosimetry labs. Human peripheral blood samples exposed to 10 different doses of X-rays up to 5Gy were shared between the labs to generate calibration data. Validation of calibration curves was done by dose estimation of coded samples exposed to X- or gamma radiation. Reliability of the DCA data for triage application was evaluated by scoring 20, 50 and 100 metaphases in the dose range of 0.5-3.0Gy. No significant difference was observed between labs regarding the established calibration data as well as the DCA triage dose assessments. Scoring of 20 metaphases (MP) was adequate to detect radiation exposure of >2Gy whereas 50 MP were sufficient to determine exposures of 0.5Gy. Both labs performed the DCA in a reliable manner and made the first step in setting up a biodosimetry network in India.
Collapse
Affiliation(s)
- D Bakkiam
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - M Bhavani
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - A Arul Anantha Kumar
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India.
| | - Swetha Sonwani
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - P Venkatachalam
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - K Sivasubramanian
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - B Venkatraman
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
47
|
Establishing cytogenetic biodosimetry laboratory in Saudi Arabia and producing preliminary calibration curve of dicentric chromosomes as biomarker for medical dose estimation in response to radiation emergencies. 3 Biotech 2014; 4:635-645. [PMID: 28324310 PMCID: PMC4235882 DOI: 10.1007/s13205-014-0217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022] Open
Abstract
In cases of public or occupational radiation overexposure and eventual radiological accidents, it is important to provide dose assessment, medical triage, diagnoses and treatment to victims. Cytogenetic bio-dosimetry based on scoring of dicentric chromosomal aberrations assay (DCA) is the “gold standard” biotechnology technique for estimating medically relevant radiation doses. Under the auspices of the National Science, Technology and Innovation Plan in Saudi Arabia, we have set up a biodosimetry laboratory and produced a national standard dose–response calibration curve for DCA, pre-required to estimate the doses received. For this, the basic cytogenetic DCA technique needed to be established. Peripheral blood lymphocytes were collected from four healthy volunteers and irradiated with radiation doses between 0 and 5 Gy of 320 keV X-rays. Then, lymphocytes were PHA stimulated, Colcemid division arrested and stained cytogenetic slides were prepared. The Metafer4 system (MetaSystem) was used for automatic and manually assisted metaphase finding and scoring of dicentric chromosomes. Results were fit to the linear-quadratic dose–effect model according to the IAEA EPR-Biodosimetry-2011 report. The resulting manually assisted dose–response calibration curve (Y = 0.0017 + 0.026 × D + 0.081 × D2) was in the range of those described in other populations. Although the automated scoring over-and-under estimates DCA at low (<1 Gy) and high (>2 Gy) doses, respectively, it showed potential for use in triage mode to segregate between victims with potential risk to develop acute radiotoxicity syndromes. In conclusion, we have successfully established the first biodosimetry laboratory in the region and have produced a preliminary national dose–response calibration curve. The laboratory can now contribute to the national preparedness plan in response to eventual radiation emergencies in addition to providing information for decision makers and public health officials who assess the magnitude of public, medical, occupational and accidental radiation exposures.
Collapse
|
48
|
De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Regalbuto E, Mammana G, Lista F. Dose estimation using dicentric chromosome assay and cytokinesis block micronucleus assay: comparison between manual and automated scoring in triage mode. HEALTH PHYSICS 2014; 106:787-797. [PMID: 24776913 DOI: 10.1097/hp.0000000000000097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In cases of an accidental overexposure to ionizing radiation, it is essential to estimate the individual absorbed dose of a potentially radiation-exposed person. For this purpose, biological dosimetry can be performed to confirm, complement or even replace physical dosimetry when this proves to be unavailable. The most validated biodosimetry techniques for dose estimation are the dicentric chromosome assay, the "gold standard" for individual dose assessment, and cytokinesis-block micronucleus assay. However, both assays are time consuming and require skilled scorers. In case of large-scale accidents, different strategies have been developed to increase the throughput of cytogenetic service laboratories. These are the decrease of cell numbers to be scored for triage dosimetry; the automation of procedures including the scoring of, for example, aberrant chromosomes and micronuclei; and the establishment of laboratory networks in order to enable mutual assistance if necessary. In this study, the authors compared the accuracy of triage mode biodosimetry by dicentric chromosome analysis and the cytokinesis block micronucleus assay performing both the manual and the automated scoring mode. For dose estimation using dicentric chromosome assay of 10 blind samples irradiated up to 6.4 Gy of x-rays, a number of metaphase spreads were analyzed ranging from 20 up to 50 cells for the manual and from 20 up to 500 cells for the automatic scoring mode. For dose estimation based on the cytokinesis block micronucleus assay, the micronucleus frequency in both 100 and 200 binucleated cells was determined by manual and automatic scoring. The results of both assays and scoring modes were compared and analyzed considering the sensitivity, specificity, and accuracy of dose estimation with regard to the discrimination power of clinically relevant binary categories of exposure doses.
Collapse
Affiliation(s)
- Andrea De Amicis
- *Sezione di Immunologia e Tossicologia, Centro Studi e Ricerche di Sanità e Veterinaria, Via Santo Stefano Rotondo, 4 00184 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
50
|
Yoo SS, Jorgensen TJ, Kennedy AR, Boice JD, Shapiro A, Hu TCC, Moyer BR, Grace MB, Kelloff GJ, Fenech M, Prasanna PGS, Coleman CN. Mitigating the risk of radiation-induced cancers: limitations and paradigms in drug development. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:R25-52. [PMID: 24727460 PMCID: PMC7668684 DOI: 10.1088/0952-4746/34/2/r25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The United States radiation medical countermeasures (MCM) programme for radiological and nuclear incidents has been focusing on developing mitigators for the acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), and biodosimetry technologies to provide radiation dose assessments for guiding treatment. Because a nuclear accident or terrorist incident could potentially expose a large number of people to low to moderate doses of ionising radiation, and thus increase their excess lifetime cancer risk, there is an interest in developing mitigators for this purpose. This article discusses the current status, issues, and challenges regarding development of mitigators against radiation-induced cancers. The challenges of developing mitigators for ARS include: the long latency between exposure and cancer manifestation, limitations of animal models, potential side effects of the mitigator itself, potential need for long-term use, the complexity of human trials to demonstrate effectiveness, and statistical power constraints for measuring health risks (and reduction of health risks after mitigation) following relatively low radiation doses (<0.75 Gy). Nevertheless, progress in the understanding of the molecular mechanisms resulting in radiation injury, along with parallel progress in dose assessment technologies, make this an opportune, if not critical, time to invest in research strategies that result in the development of agents to lower the risk of radiation-induced cancers for populations that survive a significant radiation exposure incident.
Collapse
Affiliation(s)
- Stephen S Yoo
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| | - Timothy J Jorgensen
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC, USA
| | - Ann R Kennedy
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Boice
- Department of Medicine, Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, TN, USA
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | - Alla Shapiro
- Office of Counter-Terrorism and Emergency Coordination, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tom C-C Hu
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Brian R Moyer
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Marcy B Grace
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, Washington, DC, USA
| | - Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Adelaide, Australia
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- SSY, PGSP and CNC had equal contribution in the preparation of this manuscript
| |
Collapse
|