1
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
2
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Telford EA, Sanders AJ, Owen S, Ruge F, Harrison GM, Jiang WG, Martin TA. Hepatitis A Virus Cellular Receptor 1 (HAVcr-1) Initiates Prostate Cancer Progression in Human Cells via Hepatocyte Growth Factor (HGF)-Induced Changes in Junctional Integrity. Biomolecules 2022; 12:biom12020338. [PMID: 35204839 PMCID: PMC8869406 DOI: 10.3390/biom12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: HAVcR-1 has been linked to cancer aetiology and may regulate junctional complexes, with its role in prostate cancer still unexplored. This study aims to investigate the expression of HAVcR-1 in prostate cancer samples and the exploration of the cellular/molecular impact of HAVcR-1. Methods: Levels of HAVcR-1 ectodomain in the serum of prostate cancer patients were compared to healthy controls, and assessed as the total protein and gene expression of HAVcR-1 and tissues sections. The manipulation of HAVcR-1 levels within prostate cancer cell lines determined changes in cell behaviour using in vitro cell models and barrier function assays. Protein/phosphoprotein levels were assessed using Western blotting. Results: Levels of HAVcR-1 ectodomain from serum were decreased in patients with prostate cancer. Ectodomain levels correlated with the Gleason score. Histologically, the total protein/gene expression of HAVcR-1 was overexpressed in prostate cancer. The overexpression of HAVcR-1 in prostate cancer cell lines resulted in key changes in cell behaviour and the phosphorylation of β-catenin with a concurrent decrease in membranous E-cadherin, increased nuclear β-catenin and increased cyclin D1 protein expression, which were associated with HGF-promoted changes in the barrier function. Conclusions: HAVcR-1 expression and ectodomain release coincides with the presence of prostate cancer; thus, indicating HAVcR-1 as a potential biomarker to aid in diagnostics, and implicating HAVcR-1 in the dysregulation of junctional complexes.
Collapse
|
4
|
Clinical Value and Potential Mechanism of miRNA-33a-5p in Lung Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2021; 2021:6614331. [PMID: 34888137 PMCID: PMC8649614 DOI: 10.1155/2021/6614331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/15/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
This study is aimed at thoroughly exploring the expression status, clinical significance, and underlying molecular mechanism of miRNA-33a-5p in lung squamous cell carcinoma (LUSC). Here, we detected miRNA-33a-5p in 20 samples from patients with LUSCs and 20 matching non-LUSC specimens by in-house quantitative real-time PCR (RT-qPCR). Relationship between miRNA-33a-5p expression and clinicopathological traits was investigated from materials derived from miRNA sequencing and miRNA microarrays. A pool standard mean difference (SMD) and summary receiver operating characteristic curves (SROC) were calculated to evaluate the integrated expression value of miRNA-33a-5p in LUSC. Twelve online platforms were applied to select potential target genes of miRNA-33a-5p. The differentially expressed genes (DEGs) of LUSC and the candidate target genes of miRNA-33a-5p were overlapped to acquire a set of specific genes for further analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein–protein interaction (PPI) network. miRNA-33a-5p overexpressed in LUSC was supported by 706 LUSC and 261 non-LUSC samples gathering from RT-qPCR, miRNA-seq, and public miRNA microarrays. The pooled SMD was 0.56 (95% CI: -0.01-1.05), and the area under the curve (AUC) of the SROC was 0.78 (95% CI: 0.74-0.82). A total of 240 genes were identified as potential target genes of miRNA-33a-5p for functional enrichment analyses; the results suggested that these target genes may participate in several vital biological processes that promote the proliferation and progression of LUSC. miRNA-33a-5p may play an essential role in the occurrence and development of LUSC by targeting hub genes (ETS1, EDNRB, CYR61, and LRRK2) derived from the PPI network. In summary, our results indicated that miRNA-33a-5p may contribute as a prospective therapeutic target in LUSC.
Collapse
|
5
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Li S, Yu C, Zhang Y, Liu J, Jia Y, Sun F, Zhang P, Li J, Guo L, Xiao H, Gao F, Deng X, Cai Z, Cai J. Circular RNA cir-ITCH Is a Potential Therapeutic Target for the Treatment of Castration-Resistant Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7586521. [PMID: 32904490 PMCID: PMC7456474 DOI: 10.1155/2020/7586521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
cir-ITCH, a well-known tumor-suppressive circular RNA, plays a critical role in different cancers. However, its expression and functional role in prostate cancer (PCa) are unclear. Herein, we explored the potential mechanism and tumor-inhibiting role of cir-ITCH in PCa. Using reverse transcriptase polymerase chain reaction assay, we analyzed the expression of cir-ITCH in PCa and paired adjacent nontumor tissue samples resected during surgical operation, as well as in two cell lines of human PCa (LNCaP and PC-3) and the immortalized normal prostate epithelial cell line (RWPE-1). Cell viability and migration of PCa cell lines were evaluated using CCK-8 and wound-healing assays. Expression of key proteins of the Wnt/β-catenin and PI3K/AKT/mTOR pathways was detected using western blotting. We found that cir-ITCH expression was typically downregulated in the tissues and cell lines of PCa compared to that in the peritumoral tissue and in RWPE-1 cells, respectively. The results showed that cir-ITCH overexpression significantly inhibits the proliferation, migration, and invasion of human PCa cells and that reciprocal inhibition of expression occurred between cir-ITCH and miR-17. Proteins in the Wnt/β-catenin and PI3K/AKT/mTOR pathways were downregulated by overexpression of cir-ITCH both in androgen receptor-positive LNCaP cells and androgen receptor-negative PC-3 cells. Taken together, these data demonstrated that cir-ITCH plays a tumor-suppressive role in human PCa cells, partly through the Wnt/β-catenin and PI3K/AKT/mTOR pathways. Thus, cir-ITCH may serve as a novel therapeutic target for the treatment of PCa, especially castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shoubin Li
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Chunhong Yu
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yunxia Zhang
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Junjiang Liu
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yi Jia
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Fuzhen Sun
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Panying Zhang
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jingpo Li
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Liuxiong Guo
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Helong Xiao
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Fei Gao
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xinna Deng
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Ziqi Cai
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei 050000, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Department of Urology, Health Examination Center, Obstetrics and Gynecology, and Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
- Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd., Shijiazhuang, Hebei 050000, China
| |
Collapse
|
7
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
9
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
10
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
11
|
Park SC, Park IG, Kim H, Lee JM. N-Terminal Domain Mediated Regulation of RORα1 Inhibits Invasive Growth in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071684. [PMID: 30987323 PMCID: PMC6479703 DOI: 10.3390/ijms20071684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Four members of the retinoic acid-related orphan receptor α (RORα) family (RORα1, RORα2, RORα3 and RORα4) are transcription factors that regulate several processes including circadian rhythm, lipid metabolism, cerebellar development, immune function, and cancer. Only two isoforms, RORα1 and 4, are specifically co-expressed in the murine and human. In the present study, we identified a specific N-terminal domain (NTD) of RORα1 that potentiated the downregulation of target genes involved in tumor progression and proliferation, based on results from RORα-deficient mouse embryonic fibroblasts and prostate carcinoma tissues. The hyperactivation of proliferative target genes were observed in RORα-deficient embryonic fibroblasts, and reconstitution of RORα1 inhibited this activation by a NTD dependent manner. Downregulation of RORα1 and upregulation of Wnt/β-catenin target genes were correlated in prostate cancer patients. These findings revealed the control of invasive growth by NTD-mediated RORα1 signaling, suggesting advanced approaches for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Su Chan Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Il-Geun Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Hyunkyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
12
|
Gong L, Lei Y, Tan X, Dong Y, Luo Z, Zhang D, Han S. Propranolol selectively inhibits cervical cancer cell growth by suppressing the cGMP/PKG pathway. Biomed Pharmacother 2019; 111:1243-1248. [PMID: 30841438 DOI: 10.1016/j.biopha.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 01/27/2023] Open
Abstract
AIM To observe the effect of propranolol in cervical cancer and investigate the mechanism of the effect. METHODS AND RESULTS: We found 5 direct protein targets (DPTs) of propranolol (PRO) by DrugBank5.0 firstly. Next, we analyzed protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of PRO DPTs and the result showed that PRO was linked with cGMP/PKG pathway. Then, we recognized the top 38 upexpressed genes of cervical cancer (CC) based original microarray datasets (GSE7803, GSE9750, GSE39001 and GSE63514). Further, we analyzed the biological process with the 38 overexpressed genes by STRING. We found some of overexpressed genes of CC participated in GMP biosynthetic process. Lastly, the function of PRO in CC was validated by MTT assay, Western blotting, flow cytometry and colony formation assay methods. We verified PRO can suppress cGMP/PKG pathway then inhibits CC cell growth. CONCLUSION The bioinformatical analysis combine with traditional experiment can help us understanding potential molecular mechanism about how PRO acting in CC. This method is a new paradigm which can guide future researches about mechanism in existing diseases and drugs.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China
| | - Yutiantian Lei
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China
| | - Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China
| | - Dan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, 710061, PR China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, PR China.
| |
Collapse
|
13
|
Yeoh CC, Dabab N, Rigby E, Chhikara R, Akaev I, Gomez RS, Fonseca F, Brennan PA, Rahimi S. Androgen receptor in salivary gland carcinoma: A review of an old marker as a possible new target. J Oral Pathol Med 2018; 47:691-695. [DOI: 10.1111/jop.12741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Chit Cheng Yeoh
- Department of Oncology; Queen Alexandra Hospital; Portsmouth UK
| | - Nedal Dabab
- Department of Oncology; Queen Alexandra Hospital; Portsmouth UK
| | - Elyse Rigby
- Department of Oncology; Queen Alexandra Hospital; Portsmouth UK
| | - Ritu Chhikara
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Iolia Akaev
- School of Pharmacy and Biomedical Science; University of Portsmouth; Portsmouth UK
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Felipe Fonseca
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Peter A. Brennan
- Department of Oral and Maxillofacial Surgery; Queen Alexandra Hospital; Portsmouth UK
| | - Siavash Rahimi
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
- School of Pharmacy and Biomedical Science; University of Portsmouth; Portsmouth UK
| |
Collapse
|
14
|
O'Bryant D, Wang Z. The essential role of WD repeat domain 77 in prostate tumor initiation induced by Pten loss. Oncogene 2018; 37:4151-4163. [PMID: 29706654 DOI: 10.1038/s41388-018-0254-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/06/2018] [Accepted: 03/09/2018] [Indexed: 12/30/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among men, but few genetic factors that drive prostate cancer initiation have been identified. The WD repeat domain 77 (Wdr77) protein is essential for cellular proliferation when localizes in the cytoplasm of epithelial cells at the early stage of prostate development. In the adult prostate, it is transported into the nucleus and functions as a co-regulator of the androgen receptor to promote cellular differentiation and prostate function. This developmental process is reversed during prostate tumorigenesis, i.e., Wdr77 is translocated from the nucleus into the cytoplasm to drive proliferation of prostate cancer cells. In this study, we used in vivo genetic studies to further investigate the role of Wdr77 in prostate tumorigenesis. We found that prostate-specific deletion of Wdr77 abolished prostate tumor initiation induced by loss of the tumor suppressor Pten. Mechanistically, Wdr77 ablation inhibited E2F3 activation and enhanced TGFβ signaling, leading to attenuated cellular proliferation induced by loss of Pten. These findings establish a critical role of Wdr77 for prostate tumor initiation.
Collapse
Affiliation(s)
- Deon O'Bryant
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Zhengxin Wang
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, 30314, USA.
| |
Collapse
|
15
|
Schneider JA, Logan SK. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol Cell Endocrinol 2018; 462:3-8. [PMID: 28189566 PMCID: PMC5550366 DOI: 10.1016/j.mce.2017.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/14/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.
Collapse
Affiliation(s)
- Jeffrey A Schneider
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Susan K Logan
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
16
|
Lins RR, Oshima CTF, Oliveira LAD, Silva MS, Mader AMAA, Waisberg J. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2017; 29:227-231. [PMID: 28076475 PMCID: PMC5225860 DOI: 10.1590/0102-6720201600040004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Background Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. Aim To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Method Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. Results The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors <5 cm (p=0,041) and APC with proximal tumors (p=0,047). Moreover, the expression of TCF-4 was significantly higher in the diffuse type (p=0,017) and T4 tumors (p=0,002). Conclusion The Wnt/betacatenin is not involved in gastric carcinogenesis. However, the high frequency of survivin allows to suggest that other signaling pathways must be involved in the transformation of gastric tissue.
Collapse
Affiliation(s)
- Rodrigo Rego Lins
- Postgraduate Program in Interdisciplinary Surgical Science, Federal University of São Paulo - UNIFESP, São Paulo, SP; Brazil
| | | | - Levindo Alves de Oliveira
- Postgraduate Program in Interdisciplinary Surgical Science, Federal University of São Paulo - UNIFESP, São Paulo, SP; Brazil
| | | | | | - Jaques Waisberg
- Postgraduate Program in Interdisciplinary Surgical Science, Federal University of São Paulo - UNIFESP, São Paulo, SP; Brazil
| |
Collapse
|
17
|
Ramalingam S, Ramamurthy VP, Njar VCO. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J Steroid Biochem Mol Biol 2017; 166:16-27. [PMID: 27481707 PMCID: PMC7371258 DOI: 10.1016/j.jsbmb.2016.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon androgens for their growth and hence effectively combated by androgen deprivation therapy (ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there is no effective therapy presently available. The current review is an attempt to cover and establish an understanding of some major signaling pathways implicated in prostate cancer development and castration-resistance, besides addressing therapeutic strategies that targets the key signaling mechanisms.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
18
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
19
|
AR-Signaling in Human Malignancies: Prostate Cancer and Beyond. Cancers (Basel) 2017; 9:cancers9010007. [PMID: 28085048 PMCID: PMC5295778 DOI: 10.3390/cancers9010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
In the 1940s Charles Huggins reported remarkable palliative benefits following surgical castration in men with advanced prostate cancer, and since then the androgen receptor (AR) has remained the main therapeutic target in this disease. Over the past couple of decades, our understanding of AR-signaling biology has dramatically improved, and it has become apparent that the AR can modulate a number of other well-described oncogenic signaling pathways. Not surprisingly, mounting preclinical and epidemiologic data now supports a role for AR-signaling in promoting the growth and progression of several cancers other than prostate, and early phase clinical trials have documented preliminary signs of efficacy when AR-signaling inhibitors are used in several of these malignancies. In this article, we provide an overview of the evidence supporting the use of AR-directed therapies in prostate as well as other cancers, with an emphasis on the rationale for targeting AR-signaling across tumor types.
Collapse
|
20
|
Geng JH, Lin VC, Yu CC, Huang CY, Yin HL, Chang TY, Lu TL, Huang SP, Bao BY. Inherited Variants in Wnt Pathway Genes Influence Outcomes of Prostate Cancer Patients Receiving Androgen Deprivation Therapy. Int J Mol Sci 2016; 17:E1970. [PMID: 27898031 PMCID: PMC5187770 DOI: 10.3390/ijms17121970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
Abstract
Aberrant Wnt signaling has been associated with many types of cancer. However, the association of inherited Wnt pathway variants with clinical outcomes in prostate cancer patients receiving androgen deprivation therapy (ADT) has not been determined. Here, we comprehensively studied the contribution of common single nucleotide polymorphisms (SNPs) in Wnt pathway genes to the clinical outcomes of 465 advanced prostate cancer patients treated with ADT. Two SNPs, adenomatous polyposis coli (APC) rs2707765 and rs497844, were significantly (p ≤ 0.009 and q ≤ 0.043) associated with both prostate cancer progression and all-cause mortality, even after multivariate analyses and multiple testing correction. Patients with a greater number of favorable alleles had a longer time to disease progression and better overall survival during ADT (p for trend ≤ 0.003). Additional, cDNA array and in silico analyses of prostate cancer tissue suggested that rs2707765 affects APC expression, which in turn is correlated with tumor aggressiveness and patient prognosis. This study identifies the influence of inherited variants in the Wnt pathway on the efficacy of ADT and highlights a preclinical rationale for using APC as a prognostic marker in advanced prostate cancer.
Collapse
Affiliation(s)
- Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan.
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan.
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan.
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
- Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hsin-Ling Yin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, China Medical University, Taichung 404, Taiwan.
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Nursing, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
21
|
Zhang W, Xiong H, Zou Y, Xu S, Quan L, Yuan X, Xu N, Wang Y. Frequently rearranged in advanced T‑cell lymphomas‑1 demonstrates oncogenic properties in prostate cancer. Mol Med Rep 2016; 14:3551-8. [PMID: 27599661 PMCID: PMC5042777 DOI: 10.3892/mmr.2016.5704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/06/2016] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is the fifth most common cause of cancer-associated mortality for males worldwide. Although dysregulation of the β-catenin/T-cell factor (TCF) pathway has been previously reported in prostate cancer, the mechanisms underlying this process remain unknown. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) functions as a positive regulator of the β-catenin/TCF signaling pathway. However, to the best of our knowledge, the molecular association between FRAT1 and the β-catenin/TCF pathway in prostate cancer has not been investigated. In the present study, FRAT1 expression was analyzed in normal prostate tissues and prostate adenocarcinoma samples using publicly available databases, a commercial tissue microarray and immunohistochemistry techniques. In addition, FRAT1 expression levels were altered by overexpression or RNA interference-mediated depletion in prostate cancer cells. The effects of FRAT1 expression on tumor growth were determined using cell growth curves in vitro and xenografts in nude mice in vivo. The effects of FRAT1 on β-catenin/TCF activity were measured using the TOPFLASH reporter assay. FRAT1 was expressed exclusively in the nuclei of normal prostate basal cells, and nuclear FRAT1 was detected in 68% (40/59) of prostate adenocarcinoma samples. In addition, FRAT1 activated the TCF luciferase reporter gene promoter in prostate cancer cells, and was observed to promote the growth of prostate cancer cells in vitro. Furthermore, FRAT1 expression was sufficient to transform NIH3T3 mouse embryonic fibroblast cells and lead to tumor formation in vivo. These results suggest that FRAT1 demonstrates oncogenic properties in prostate cancer, potentially by suppressing the inhibitory effect of nuclear glycogen synthase 3β against β-catenin/TCF activity, thus activating the Wnt/β-catenin signaling pathway and promoting cell growth.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lanping Quan
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P.R. China
| | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, Xu Z, Xiao Y, Cheng C, Shen A. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology 2016; 26:820-833. [PMID: 27060025 DOI: 10.1093/glycob/cww025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/22/2016] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating in the liver. Previous studies have indicated that O-GlcNAc transferase (OGT) and histone deacetylase-1 (HDAC1) play important roles in the pathogenesis of HCC. In the present study, we investigated the physical link between OGT and HDAC1. The O-GlcNAcylation of HDAC1 is overexpressed in HCC. We found that HDAC1 has two major sites of O-GlcNAcylation in its histone deacetylase domain. HDAC1 O-GlcNAcylation increases the activated phosphorylation of HDAC1, which enhances its enzyme activity. HDAC1 O-GlcNAc mutants promote the p21 transcription regulation through affecting the acetylation levels of histones from chromosome, and then influence the proliferation of HCC cells. We also found that mutants of O-GlcNAcylation site of HDAC1 affect invasion and migration of HepG2 cells. E-cadherin level is highly up-regulated in HDAC1 O-GlcNAc mutant-treated liver cancer cells, which inhibit the occurrence and development of HCC. Our findings suggest that OGT promotes the O-GlcNAc modification of HDAC1in the development of HCC. Therefore, inhibiting O-GlcNAcylation of HDAC1 may repress the progression of HCC.
Collapse
Affiliation(s)
- Guizhou Zhu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Tao Tao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Dongmei Zhang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaojuan Liu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Huiyuan Qiu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - LiJian Han
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Zhiwei Xu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Ying Xiao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Chun Cheng
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aiguo Shen
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
- Department of Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| |
Collapse
|
23
|
LIU BO, WU SONG, HAN LIHUA, ZHANG CHAOYUE. β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Int J Mol Med 2015; 36:1572-82. [PMID: 26496941 PMCID: PMC4678161 DOI: 10.3892/ijmm.2015.2382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023] Open
Abstract
Both β-catenin (β-cat) and osterix (OSX) are known to be essential for embryonic and postnatal osteoblast differentiation and bone growth. In the present study, we explored the crosstalk between β-cat signaling and OSX, and assessed its effect on the osteoblastogenic differentiation of human pre-osteoblastic cells (MG-63) and bone marrow stromal cells (HS-27A). In the HS-27A and MG-63 cells, the selective β-cat signaling inhibitor, CCT031374, and the stable overexpression of a constitutively active β-cat mutant respectively decreased and increased the cytoplasmic/soluble β-cat levels, and respectively decreased and increased TOPflash reporter activity, the mRNA levels of β-cat signaling target genes c-Myc and c-Jun, as well as the mRNA and protein expression levels of OSX. Mutational analyses and electrophoretic mobility shift assays revealed that the increased binding activity of c-Jun at a putative c-Jun binding site (-858/-852 relative to the translation start codon, which was designated as +1) in the human OSX gene promoter was required for teh β-cat signaling-induced expression of OSX in the HS-27A and MG-63 cells. During osteoblastogenic culture, stimulating β-cat signaling activity by the stable overexpression of the active β-cat mutant markedly increased alkaline phosphatase (ALP) activity and calcium deposition in the HS-27A and MG-63 cells, which was abolished by knocking down OSX using shRNA. On the other hand, the inhibition of β-cat signaling activity with CCT031374 decreased the ALP activity and calcium deposition, which was completely reversed by the overexpression of OSX. On the whole, the findings of our study suggest that β-cat signaling upregulates the expression of OSX in human pre-osteoblastic and bone marrow stromal cells by trans-activating the OSX gene promoter mainly through increased c-Jun binding at a putative c-Jun binding site; OSX largely mediates β-cat signaling-induced osteoblastogenic differentiation. The present study provides new insight into the molecular mechanisms underlying osteoblast differentiation.
Collapse
Affiliation(s)
- BO LIU
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - SONG WU
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - LIHUA HAN
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - CHAOYUE ZHANG
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
24
|
Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J Hematol Oncol 2015; 8:128. [PMID: 26566796 PMCID: PMC4644296 DOI: 10.1186/s13045-015-0225-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
It is now understood that persistent activation of the androgen receptor (AR) signaling pathway often underlies the development of castration-resistant prostate cancer (CRPC). This realization led to renewed interest in targeting the AR and ultimately to the development of the potent next-generation AR-directed agents abiraterone and enzalutamide. While these drugs prolong survival in men with CRPC, they are unfortunately not curative. Perhaps not surprisingly, evidence points to persistent AR signaling as one of the key drivers by which resistances to these agents develops. In this context, activation of the AR signaling program can occur through a number of molecular adaptations, including alterations leading to persistent canonical AR signaling (e.g., AR amplification/overexpression, elucidations/concentration of intratumoral androgens), activation of the AR program via feedback pathways (e.g., AKT/mTOR/Pi3K, HER2/Neu), and activation of the AR program via mutation or substitution (e.g., AR ligand binding domain mutation; AR splice variants; glucocorticoid receptor signaling). This review will provide an overview of the more clinical relevant (i.e., druggable) pathways that have been implicated in the emergence of drug resistance in men with CRPC and highlight some of the ongoing efforts towards developing therapeutics to impair these mechanisms.
Collapse
Affiliation(s)
- Michael T Schweizer
- Division of Oncology, Department of Medicine, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Evan Y Yu
- Division of Oncology, Department of Medicine, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
25
|
Hong JH, Lee G, Choi HY. Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts. Korean J Urol 2015; 56:656-65. [PMID: 26366279 PMCID: PMC4565901 DOI: 10.4111/kju.2015.56.9.656] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022] Open
Abstract
Purpose Curcumin is a nontoxic, chemopreventive agent possessing multifaceted functions. Our previous study showed that curcumin inhibits androgen receptor (AR) through modulation of Wnt/β-catenin signaling in LNCaP cells. Therefore, we investigated the in vivo effects of curcumin by using LNCaP xenografts. Materials and Methods LNCaP cells were subcutaneously inoculated in Balb/c nude mice. When the tumor volume reached greater than 100 mm3, either curcumin (500 mg/kg body weight) or vehicle was administered through oral gavage three times weekly for 4 weeks. The expression of AR and intermediate products of Wnt/β-catenin were assessed. Results Curcumin had an inhibitory effect on tumor growth during the early period, which was followed by a slow increase in growth over time. Tumor growth was delayed about 27% in the curcumin group. The mean prostate-specific antigen (PSA) doubling time in the curcumin group was approximately twice that in the untreated group. Curcumin significantly decreased AR expression at both the mRNA and protein level. The PSA levels tended to be reduced in the curcumin group. However, there were no significant changes in expression of Wnt/β-catenin pathway intermediates. Conclusions This study revealed that curcumin initially interferes with prostate cancer growth by inhibiting AR activity and possibly by reducing PSA expression. Further research is needed to investigate the plausible mechanism of the antiandrogenic action of curcumin.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| | - Gilho Lee
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Lee SH, Luong R, Johnson DT, Cunha GR, Rivina L, Gonzalgo ML, Sun Z. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene 2015; 35:702-14. [PMID: 25893287 PMCID: PMC4615253 DOI: 10.1038/onc.2015.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/05/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
Emerging evidence has demonstrated the critical roles for both androgen and Wnt pathways in prostate tumorigenesis. A recent integrative genomic analysis of human prostate cancers has revealed a unique enrichment of androgen and Wnt signaling in early onset prostate cancers, implying their clinical significance in the disease. Additionally, interaction between the androgen receptor (AR) and β-catenin has long been detected in prostate cancer cells. However, the consequence of this interaction in prostate tumorigenesis is still unknown. Because mutations in adenomatous polyposis coli (APC), β-catenin, and other components of the destruction-complex are generally rare in prostate cancers, other mechanisms of aberrant Wnt signaling activation have been speculated. To address these critical questions, we developed Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 mice, in which transgenic AR and stabilized β-catenin are co-expressed in prostatic epithelial cells. We observed accelerated tumor development, aggressive tumor invasion, and a decreased survival rate in Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice compared to age-matched Ctnnb1L(ex3)/+:PB-Cre4 littermate controls, which only have stabilized β-catenin expression in the prostate. Castration of the above transgenic mice resulted in significant tumor regression, implying an essential role of androgen signaling in tumor growth and maintenance. Implantation of the prostatic epithelial cells isolated from the transgenic mice regenerated PIN and prostatic adenocarcinoma lesions. Microarray analyses of transcriptional profiles showed more robust enrichment of known tumor and metastasis promoting genes: Spp1, Egr1, c-Myc, Sp5, and Sp6 genes in samples isolated from Ctnnb1L(ex3)/+/R26hARL/+:PB-Cre4 compound mice than those from Ctnnb1L(ex3)/+:PB-Cre4 and R26hARL/+:PB-Cre4 littermate controls. Together, these data demonstrate a confounding role of androgen signaling in β-catenin initiated oncogenic transformation in prostate tumorigenesis.
Collapse
Affiliation(s)
- S H Lee
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - R Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D T Johnson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - G R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - M L Gonzalgo
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Z Sun
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Differential requirements for β-catenin in murine prostate cancer originating from basal versus luminal cells. J Pathol 2015; 236:290-301. [DOI: 10.1002/path.4521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
|
28
|
Zheng L, Li N, Guo F, Jian XC, Jiang CH, Yin P, Min AJ, Huang L. Twist-related protein 1 enhances oral tongue squamous cell carcinoma cell invasion through β-catenin signaling. Mol Med Rep 2014; 11:2255-61. [PMID: 25378227 DOI: 10.3892/mmr.2014.2904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/07/2014] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that β‑catenin signaling may be involved in oral tongue squamous cell carcinoma (OTSCC) cell invasion. Abnormal activation of twist‑related protein 1 (TWIST1 or TWIST) has been identified in several types of human cancer. A recent study showed that overexpression of TWIST is associated with a poor prognosis in patients with OTSCC and may enhance OTSCC cell invasion. This study investigated the effect of TWIST on β‑catenin signaling in OTSCC cells and its impact on OSTCC cell invasion. Stable overexpression of TWIST, with or without knockdown of β‑catenin, and stable knockdown of TWIST were performed in SCC‑4 and TCA8113 human OTSCC cells. Overexpression of TWIST in SCC‑4 and TCA8113 cells increased β‑catenin signaling luciferase reporter activity, mRNA levels of the β‑catenin signaling target genes, c‑Myc and c‑Jun levels, soluble β‑catenin level, the phosphorylation status of glycogen synthase kinase‑3β (GSK‑3β) at serine 9, matrix metalloproteinase‑2 (MMP‑2) expression and cell invasion. Knockdown of TWIST had the opposite effect. All of these changes, with the exception of phosphorylation of GSK‑3β, were eliminated by stable knockdown of β‑catenin. In addition, the phosphatidylinositol 3‑kinase (PI3K) inhibitor, LY294002 abrogated the enhancing effects of TWIST on mRNA levels of c‑Myc and c‑Jun, soluble β‑catenin levels, MMP‑2 expression, cell invasion and GSK‑3β phosphorylation. In conclusion, the present study demonstrated that TWIST enhances cell invasion and MMP‑2 expression in OTSCC cells through β‑catenin signaling, probably via a PI3K‑dependent mechanism. This study provides novel insights into the molecular mechanisms underlying OTSCC progression.
Collapse
Affiliation(s)
- Lian Zheng
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xin-Chun Jian
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - An-Jie Min
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Huang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
29
|
TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One 2014; 9:e109868. [PMID: 25360740 PMCID: PMC4215977 DOI: 10.1371/journal.pone.0109868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
Collapse
|
30
|
Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation via β-catenin signaling. PLoS One 2014; 9:e111343. [PMID: 25349993 PMCID: PMC4211695 DOI: 10.1371/journal.pone.0111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Both podocalyxin (PODX) and β-catenin (β-cat) signaling reportedly play important roles in glioblastoma multiforme (GBM) progression. In this study, we for the first time explored crosstalk between PODX and β-cat signaling in GBM cells, and assessed its impact on GBM cell invasion and proliferation. Stable overexpression of PODX in LN-229 and U-118 MG human GBM cells increased the soluble/intracellular β-cat level, TOPflash luciferase reporter activity, the mRNA levels of β-cat signaling target genes, matrix metalloproteinase 9 (MMP9) expression/activity, and cell invasion and proliferation, which was abolished by selective p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 and selective β-cat signaling inhibitor CCT031374. On the other hand, stable knockdown of PODX in LN-229 and U-118 MG cells decreased the soluble β-cat level, TOPflash luciferase reporter activity, the mRNA levels of β-cat signaling target genes, MMP9 expression/activity, and cell invasion and proliferation, which was completely reversed by overexpression of a constitutively active β-cat mutant. In addition, overexpression of PODX induced p38 MAPK activity and inactivating phosphorylation of glycogen synthase kinase-3β (GSK-3β) at serine 389 in LN-229 and U-118 MG cells, which was abolished by PD169316, but not CCT031374; knockdown of PODX decreased p38 MAPK activity and inactivating phosphorylation of GSK-3β at serine 389 in both cell lines, which was not significantly affected by overexpression of constitutively active β-cat. In conclusion, this study indicates that PODX promotes GBM cell invasion and proliferation by elevating the soluble β-cat level/β-cat signaling through the p38 MAPK/GSK-3β pathway. Uncovering the PODX/β-cat signaling axis adds new insights not only into the biological functions of PODX and β-cat, but also into the molecular mechanisms underlying GBM progression.
Collapse
|
31
|
Ren Y, Zheng J, Yao X, Weng G, Wu L. Essential role of the cGMP/PKG signaling pathway in regulating the proliferation and survival of human renal carcinoma cells. Int J Mol Med 2014; 34:1430-8. [PMID: 25244411 DOI: 10.3892/ijmm.2014.1925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/26/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) plays a key role in regulating the intracellular cyclic GMP (cGMP) concentration, which influences anti-proliferative and pro-apoptotic mechanisms in multiple carcinomas. PDE5 inhibitors, such as exisulind and its analogs have anticancer activities. In this study, we found that suppressing PDE5 gene expression by PDE5 siRNA inhibited cell proliferation and induced apoptosis in OS-RC-2 human renal cell carcinoma cells. These effects were enhanced by 8-Br-cGMP, a cell membrane permeable cGMP derivative, and were inhibited by KT5823, a protein kinase G (PKG) inhibitor, indicating that PKG was activated by intracellular cyclic GMP. In addition, there was a reduction in both the mRNA and protein expression of cyclin D1, while p21 protein expression was increased; the reduction in cyclin D1 expression was blocked by the proteasome inhibitor, MG132, or c-Jun N-terminal kinase (JNK) inhibitor; both β-catenin and JNK were phosphorylated by activated PKG. Furthermore, p21 protein expression was decreased in Sp1 siRNA transfected-cells treated with 8-Br-cGMP, indicating that p21 may be partly controlled by the PKG activation through Sp1. Furthermore, we found that PKG Iβ was responsible for the anticancer activities. Our findings indicate that the downregulation of PKG-activated genes, such as cyclin D1 partly accounts for the pro-apoptotic effects in PDE5 siRNA-transfected OS-RC-2 cells.
Collapse
Affiliation(s)
- Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jianjian Zheng
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuping Yao
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Guobin Weng
- Department of Urologic Surgery, Ningbo Yinzhou People's Hospital, Zhejiang 315000, P.R. China
| | - Ling Wu
- Department of Pediatric Rheumatology and Immunology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
32
|
Xie Y, Lu W, Liu S, Yang Q, Carver BS, Li E, Wang Y, Fazli L, Gleave M, Chen Z. Crosstalk between nuclear MET and SOX9/β-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol 2014; 28:1629-39. [PMID: 25099011 DOI: 10.1210/me.2014-1078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Castration-resistant prostate cancer (PCa) (CRPC) is relapse after various forms of androgen ablation therapy and causes a major mortality in PCa patients, yet the mechanism remains poorly understood. Here, we report the nuclear form of mesenchymal epithelial transition factor (nMET) is essential for CRPC. Specifically, nMET is remarkably increased in human CRPC samples compared with naïve samples. Androgen deprivation induces endogenous nMET and promotes cell proliferation and stem-like cell self-renewal in androgen-nonresponsive PCa cells. Mechanistically, nMET activates SRY (sex determining region Y)-box9, β-catenin, and Nanog homeobox and promotes sphere formation in the absence of androgen stimulus. Combined treatment of MET and β-catenin enhances the inhibition of PCa cell growth. Importantly, MET accumulation is detected in nucleus of recurrent prostate tumors of castrated Pten/Trp53 null mice, whereas MET elevation is predominantly found in membrane of naïve tumors. Our findings reveal for the first time an essential role of nMET association with SOX9/β-catenin in CRPC in vitro and in vivo, highlighting that nuclear RTK activate cell reprogramming to drive recurrence, and targeting nMET would be a new avenue to treat recurrent cancers.
Collapse
Affiliation(s)
- Yingqiu Xie
- Department of Biochemistry and Cancer Biology (Y.X., W.L., S.L., Q.Y., Z.C.), Meharry Medical College, Nashville, Tennessee 37208; Department of Surgery and Division of Urology (B.S.C.), Memorial Sloan-Kettering Cancer Center, New York, New York 10065; and Vancouver Prostate Centre and Department of Urologic Sciences (E.L., Y.W., L.F., M.G.), The University of British Columbia, Vancouver, British Columbia, Canada V6H 3Z6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ha JR, Hao L, Venkateswaran G, Huang YH, Garcia E, Persad S. β-catenin is O-GlcNAc glycosylated at Serine 23: implications for β-catenin's subcellular localization and transactivator function. Exp Cell Res 2013; 321:153-66. [PMID: 24342833 DOI: 10.1016/j.yexcr.2013.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND We have previously reported that β-catenin is post-translationally modified with a single O-linked attachment of β-N-acetyl-glucosamine (O-GlcNAc). We showed that O-GlcNAc regulated β-catenin's subcellular localization and transcriptional activity. OBJECTIVE The objectives of this investigation were to identify the putative O-GlcNAc sites of β-catenin and the relevance of identified sites in the regulation of β-catenin's localization and transcriptional activity. METHOD Missense mutations were introduced to potential O-GlcNAc sites of pEGFP-C2-N-Terminal- or pEGFP-C2-Wild Type-β-catenin by site-directed mutagenesis. We determined the levels of O-GlcNAc-β-catenin, subcellular localization, interaction with binding partners and transcriptional activity of the various constructs. RESULTS Serine 23 of β-catenin was determined as a site for O-GlcNAc modification which regulated its subcellular distribution, its interactions with cellular partners and consequently its transcriptional activity. SIGNIFICANCE O-GlcNAcylation of Serine 23 is a novel regulatory modification for β-catenin's subcellular localization and transcriptional activity. This study is the first report to characterize site specific regulation of β-catenin by the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Li Hao
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Geetha Venkateswaran
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Yu Hao Huang
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Elizabeth Garcia
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Sujata Persad
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|
34
|
Chan DW, Mak CSL, Leung THY, Chan KKL, Ngan HYS. Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget 2013; 3:1546-56. [PMID: 23295859 PMCID: PMC3681493 DOI: 10.18632/oncotarget.667] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although the mortality rate of endometrial cancer is comparatively low in gynecologic malignancies, a rising trend of this cancer has been observed for the past decade. The understanding of the molecular mechanism will favor for the clinical management of this disease. Aberrant activation of Wnt/β-catenin signaling pathway plays a major role in the pathogenesis of endometrioid adenocarcinoma including this cancer type. In this study, we reported that Sox7, one of Sox transcriptional factors, was frequently underexpressed in endometrial cancer and importantly, it was associated with dysregulation of the Wnt/β-catenin signaling activity. Immunohistochemical and quantitative RT-PCR analyses showed that Sox7 was underexpressed and was associated with high-grade tumor (P=0.021), increased expressions of β-catenin (P=0.038) and its downstream targets; CyclinD1 (P<0.001) and FGF9 (P<0.001). In addition, using HEK293T cell model, we found that Sox7 was able to inhibit TCF/LEF-1-dependent luciferase activity induced by Wnt-1. This was further proved by that Sox7 could significantly suppress the expressions of Wnt targets; Cyclin D1 and C-myc in endometrial cells. Immuno-fluorescent microscopy revealed that Sox7 was co-localizaed with either mutant β-catenin or TCF4 protein in nucleus, while co-immunopreciptation assay demonstrated that Sox7 could physically interact with not only wild-type but also mutant β-catenin, as well as TCF4 proteins. Functionally, enforced expression of Sox7 could significantly inhibit endometrial or endometrioid ovarian cancer cells (OEA) harboring either wild-type or mutant β-catenin. These data suggest Sox7 is a negative regulator of Wnt/β-catenin signaling pathway through impeding the transcriptional machinery of β-catenin/TCF/LEF-1 transcriptional complex, and the loss of expression may be involved in the pathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- David W Chan
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, PRChina
| | | | | | | | | |
Collapse
|
35
|
Abstract
Four cardiac hormones, namely atrial natriuretic peptide, vessel dilator, kaliuretic peptide, and long-acting natriuretic peptide, reduce up to 97% of all cancer cells in vitro. These four cardiac hormones eliminate up to 86% of human small-cell lung carcinomas, two-thirds of human breast cancers, and up to 80% of human pancreatic adenocarcinomas growing in athymic mice. Their anticancer mechanisms of action, after binding to specific receptors on cancer cells, include targeting the rat sarcoma-bound GTP (RAS) (95% inhibition)-mitogen-activated protein kinase kinase 1/2 (MEK 1/2) (98% inhibition)-extracellular signal-related kinase 1/2 (ERK 1/2) (96% inhibition) cascade in cancer cells. They also inhibit MAPK9, i.e. c-Jun N-terminal kinase 2. They are dual inhibitors of vascular endothelial growth factor (VEGF) and its VEGFR2 receptor (up to 89%). One of the downstream targets of VEGF is β-catenin, which they reduce up to 88%. The WNT pathway is inhibited up to 68% and secreted frizzled-related protein 3 decreased up to 84% by the four cardiac hormones. AKT, a serine/threonine protein kinase, is reduced up to 64% by the cardiac hormones. STAT3, a final 'switch' that activates gene expression that leads to malignancy, is decreased by up to 88% by the cardiac hormones. STAT3 is specifically decreased as they do not affect STAT1. There is a cross-talk between the RAS-MEK 1/2-ERK 1/2 kinase cascade, VEGF, β-catenin, WNT, JNK, and STAT pathways and each of these pathways is inhibited by the cardiac hormones.
Collapse
Affiliation(s)
- David L Vesely
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine, Molecular Pharmacology and Physiology, James A. Haley VA Medical Center-151, University of South Florida Cardiac Hormone Center, Tampa, Florida 33612, USA.
| |
Collapse
|
36
|
Li Y, Zheng Y, Izumi K, Ishiguro H, Ye B, Li F, Miyamoto H. Androgen activates β-catenin signaling in bladder cancer cells. Endocr Relat Cancer 2013; 20:293-304. [PMID: 23447569 DOI: 10.1530/erc-12-0328] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) signals have been implicated in bladder carcinogenesis and tumor progression. Activation of Wnt/β-catenin signaling has also been reported to correlate with bladder cancer progression and poor patients' outcomes. However, cross talk between AR and β-catenin pathways in bladder cancer remains uncharacterized. In radical cystectomy specimens, we immunohistochemically confirmed aberrant expression of β-catenin especially in aggressive tumors. There was a strong association between nuclear expressions of AR and β-catenin in bladder tumors (P=0.0215). Kaplan-Meier and log-rank tests further revealed that reduced membranous β-catenin expression (P=0.0276), nuclear β-catenin expression (P=0.0802), and co-expression of nuclear AR and β-catenin (P=0.0043) correlated with tumor progression after cystectomy. We then assessed the effects of androgen on β-catenin in AR-positive and AR-negative bladder cancer cell lines. A synthetic androgen R1881 increased the expression of an active form of β-catenin and its downstream target c-myc only in AR-positive lines. R1881 also enhanced the activity of β-catenin-mediated transcription, which was abolished by an AR antagonist hydroxyflutamide. Using western blotting and immunofluorescence, R1881 was found to induce nuclear translocation of β-catenin when co-localized with AR. Finally, co-immunoprecipitation revealed androgen-induced associations of AR with β-catenin or T-cell factor (TCF) in bladder cancer cells. Thus, it was likely that androgen was able to activate β-catenin signaling through the AR pathway in bladder cancer cells. Our results also suggest that activation of β-catenin signaling possibly via formation of AR/β-catenin/TCF complex contributes to the progression of bladder cancer, which may enhance the feasibility of androgen deprivation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang Y, Jiao L, Hou J, Xu C, Wang L, Yu Y, Li Y, Yang C, Wang X, Sun Y. Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of Wnt-3a and matrix metalloproteinases. Mol Biol Rep 2013; 40:4241-50. [PMID: 23652996 DOI: 10.1007/s11033-013-2506-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
To identify Dishevelled-2 (Dvl2) is a prostate cancer-associated gene and analyze the effects on the growth and invasive capacity of human prostate cancer (PCa) cells. Dvl2 mRNA expression was measured in PCa cell lines and tissue samples, by real-time reverse transcription PCR (qRT-PCR). Immunohistochemistry was used to examine the distribution of Dvl2 in PCa specimens. Silencing Dvl2 in LNCaP cells, proliferation was measured by the CCK-8 assay, cell motility and invasiveness by scratch wound and transwell migration assays, and Wnt-3a, AR, and matrix metalloproteinase (MMP) expression by western blotting. Dvl2 was overexpressed in LNCaP cells compared with the AI PCa lines DU-145 and PC-3, as well as in the majority of PCa tissue specimens examined by qRT-PCR (14/27, 51.9 %). Dvl2 expression was low in all 10 BPH specimens, weakly positive in 26/104 AD PCa specimens (23.8 %), positive in 60/104 AD PCa specimens (55 %), and strongly positive in all 5 AI PCa specimens. Dvl2 expression was significantly correlated with combined Gleason score (p = 0.02), lymph node metastasis (p = 0.005), and TNM stage (p = 0.015). Silencing of Dvl2 mRNA expression significantly reduced LNCaP cell proliferation, motility, invasiveness and Wnt-3a, AR, MMP-2, and MMP-9 expression. Dvl2 may increase PCa growth and metastasis potential, possibly by upregulating Wnt-3a, AR, and MMP expression. Silencing Dvl2 expression may be an effective treatment strategy for PCa.
Collapse
Affiliation(s)
- Yinhui Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer 2013; 2013:920612. [PMID: 23738079 PMCID: PMC3657461 DOI: 10.1155/2013/920612] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
Collapse
|
39
|
Fiandalo MV, Wu W, Mohler JL. The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy. Curr Drug Targets 2013; 14:420-40. [PMID: 23565755 PMCID: PMC3991464 DOI: 10.2174/1389450111314040004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/22/2022]
Abstract
Prostate cancer (CaP) is the most frequently diagnosed cancer and leading cause of cancer death in American men. Almost all men present with advanced CaP and some men who fail potentially curative therapy are treated with androgen deprivation therapy (ADT). ADT is not curative and CaP recurs as the lethal phenotype. The goal of this review is to apply our current understanding of CaP and castration-recurrent CaP (CR-CaP) to earlier studies that characterized ADT and the molecular mechanisms that facilitate the transition from androgen-stimulated CaP to CR-CaP. Reexamination of earlier studies also may provide a better understanding of how more newly recognized mechanisms, such as intracrine metabolism, may be involved with the early events that allow CaP survival after initiation of ADT and subsequent development of CR-CaP.
Collapse
Affiliation(s)
- Michael V. Fiandalo
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
40
|
Wu J, Liao Q, He H, Zhong D, Yin K. TWIST interacts with β-catenin signaling on osteosarcoma cell survival against cisplatin. Mol Carcinog 2012; 53:440-6. [PMID: 23280703 DOI: 10.1002/mc.21991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/11/2012] [Accepted: 11/27/2012] [Indexed: 11/06/2022]
Abstract
Both TWIST and Wnt/β-catenin signaling reportedly play important roles in osteosarcoma development. In the present study, we explored the regulatory effect of TWIST on β-catenin in osteosarcoma cells and assessed how the functional interaction between TWIST and β-catenin would impact osteosarcoma cell survival against chemotherapy agent cisplatin. Overexpression and knockdown of TWIST were respectively performed in Saos-2 and MG-63 osteosarcoma cells. Overexpression of TWIST in Saos-2 cells significantly decreased the soluble β-catenin level, phosphorylation of glycogen synthase kinase-3β (GSK-3β) at serine 9, the mRNA level of β-catenin signaling target genes, and cell survival against cisplatin, which was strengthened by knocking down β-catenin. Knockdown of TWIST in MG-63 cells significantly increased the soluble β-catenin level, phosphorylation of GSK-3β at serine 9, the mRNA level of β-catenin signaling target genes, and cell survival against cisplatin, which was reversed by knocking down β-catenin or phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In conclusion, we demonstrate that TWIST decreases osteosarcoma cell survival against cisplatin by decreasing the soluble β-catenin level through a PI3K-dependent manner. This study provides the first evidence of a functional link between TWIST and β-catenin signaling in osteosarcoma cells, which adds fresh insights into the molecular mechanism of osteosarcoma development.
Collapse
Affiliation(s)
- Jianhuang Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Spine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
41
|
Mao W, Millar JC, Wang WH, Silverman SM, Liu Y, Wordinger RJ, Rubin JS, Pang IH, Clark AF. Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci 2012; 53:7043-51. [PMID: 22956608 DOI: 10.1167/iovs.12-9664] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE We previously discovered elevated levels of secreted frizzled-related protein 1 (sFRP1), the Wnt signaling pathway inhibitor, in the glaucomatous trabecular meshwork (GTM), and found that key canonical Wnt signaling pathway genes are expressed in the trabecular meshwork (TM). The purpose of our study was to determine whether a functional canonical Wnt signaling pathway exists in the human TM (HTM). METHODS Western immunoblotting and/or immunofluorescent microscopy were used to study β-catenin translocation as well as the actin cytoskeleton in transformed and primary HTM cells. A TCF/LEF luciferase assay was used to study functional canonical Wnt signaling, which was confirmed further by WNT3a-induced expression of a pathway target gene, AXIN2, via quantitative PCR. Intravitreal injection of an Ad5 adenovirus expressing Dickkopf-related protein-1 (DKK1) was used to study the in vivo effect of canonical Wnt signaling on IOP in mice. RESULTS WNT3a induced β-catenin translocation in the HTM, which was blocked by co-treatment with sFRP1. Similarly, WNT3a enhanced luciferase levels in TCF/LEF luciferase assays, which also were blocked by sFRP1. Furthermore, AXIN2 expression was elevated significantly by WNT3a. However, neither WNT3a nor sFRP1 affected actin cytoskeleton organization, which theoretically could be regulated by noncanonical Wnt signaling in HTM cells. Exogenous DKK1, a specific inhibitor for the canonical Wnt signaling pathway, or sFRP1 elevated mouse IOP to equivalent levels. CONCLUSIONS There is a canonical Wnt signaling pathway in the TM, and this canonical Wnt pathway, but not the noncanonical Wnt signaling pathway, regulates IOP.
Collapse
Affiliation(s)
- Weiming Mao
- Department of Cell Biology and Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Du C, Zhang C, Li Z, Biswas MHU, Balaji KC. Beta-catenin phosphorylated at threonine 120 antagonizes generation of active beta-catenin by spatial localization in trans-Golgi network. PLoS One 2012; 7:e33830. [PMID: 22511927 PMCID: PMC3325232 DOI: 10.1371/journal.pone.0033830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/22/2012] [Indexed: 11/29/2022] Open
Abstract
The stability and subcellular localization of beta-catenin, a protein that plays a major role in cell adhesion and proliferation, is tightly regulated by multiple signaling pathways. While aberrant activation of beta-catenin signaling has been implicated in cancers, the biochemical identity of transcriptionally active beta-catenin (ABC), commonly known as unphosphorylated serine 37 (S37) and threonine 41 (T41) β-catenin, remains elusive. Our current study demonstrates that ABC transcriptional activity is influenced by phosphorylation of T120 by Protein Kinase D1 (PKD1). Whereas the nuclear β-catenin from PKD1-low prostate cancer cell line C4-2 is unphosphorylated S37/T41/T120 with high transcription activity, the nuclear β-catenin from PKD1-overexpressing C4-2 cells is highly phosphorylated at T120, S37 and T41 with low transcription activity, implying that accumulation of nuclear β-catenin alone cannot be simply used as a read-out for Wnt activation. In human normal prostate tissue, the phosphorylated T120 β-catenin is mainly localized to the trans-Golgi network (TGN, 22/30, 73%), and this pattern is significantly altered in prostate cancer (14/197, 7.1%), which is consistent with known down regulation of PKD1 in prostate cancer. These in vitro and in vivo data unveil a previously unrecognized post-translational modification of ABC through T120 phosphorylation by PKD1, which alters subcellular localization and transcriptional activity of β-catenin. Our results support the view that β-catenin signaling activity is regulated by spatial compartmentation and post-translational modifications and protein level of β-catenin alone is insufficient to count signaling activity.
Collapse
Affiliation(s)
- Cheng Du
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (CD); (KCB)
| | - Chuanyou Zhang
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhuo Li
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Md. Helal Uddin Biswas
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - K. C. Balaji
- Department of Urology and Institute of Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, United States of America
- * E-mail: (CD); (KCB)
| |
Collapse
|
43
|
Lee J, Ju J, Park S, Hong SJ, Yoon S. Inhibition of IGF-1 signaling by genistein: modulation of E-cadherin expression and downregulation of β-catenin signaling in hormone refractory PC-3 prostate cancer cells. Nutr Cancer 2011; 64:153-62. [PMID: 22098108 DOI: 10.1080/01635581.2012.630161] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Elevated levels of insulin-like growth factor-1 (IGF-1) are associated with an increased risk of several different cancers, including prostate cancer. Inhibition of IGF-1 and the downstream signaling pathways mediated by the activation of the IGF-1 receptor (IGF-1R) may be involved in inhibiting prostate carcinogenesis. We investigated whether genistein downregulated the IGF-1/IGF-1R signaling pathway and inhibited cell growth in hormone refractory PC-3 prostate cancer cells. Genistein treatment caused a significant inhibition of IGF-1-stimulated cell growth. Flow cytometry analysis revealed that genistein significantly decreased the number of IGF-1-stimulated cells in the G0/G1 phase of the cell cycle. In IGF-1-treated cells, genistein effectively inhibited the phosphorylation of IGF-1R and the phosphorylation of its downstream targets, such as Src, Akt, and glycogen synthase kinase-3β (GSk-3β). IGF-1 treatment decreased the levels of E-cadherin but increased the levels of β-catenin and cyclin D1. However, genistein treatment greatly attenuated IGF-1-induced β-catenin signaling that correlated with increasing the levels of E-cadherin and decreasing cyclin D1 levels in PC-3 cells. In addition, genistein inhibited T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity. These results showed that genistein effectively inhibited cell growth in IGF-1-stimulated PC-3 cells, possibly by inhibiting downstream of IGF-1R activation.
Collapse
Affiliation(s)
- Joomin Lee
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University College of Human Ecology, Seodaemun-Gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
44
|
Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and Prostate Cancer. Genes Cancer 2011; 1:617-28. [PMID: 21779461 DOI: 10.1177/1947601910379132] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer, the majority of which is adenocarcinoma, is the most common epithelial cancer affecting a majority of elderly men in Western nations. Its manifestation, however, varies from clinically asymptomatic insidious neoplasms that progress slowly and do not threaten life to one that is highly aggressive with a propensity for metastatic spread and lethality if not treated in time. A number of somatic genetic and epigenetic alterations occur in prostate cancer cells. Some of these changes, such as loss of the tumor suppressors PTEN and p53, are linked to disease progression. Others, such as ETS gene fusions, appear to be linked more with early phases of the disease, such as invasion. Alterations in chromosome 8q24 in the region of MYC have also been linked to disease aggressiveness for many years. However, a number of recent studies in human tissues have indicated that MYC appears to be activated at the earliest phases of prostate cancer (e.g., in tumor-initiating cells) in prostatic intraepithelial neoplasia, a key precursor lesion to invasive prostatic adenocarcinoma. The initiation and early progression of prostate cancer can be recapitulated in genetically engineered mouse models, permitting a richer understanding of the cause and effects of loss of tumor suppressors and activation of MYC. The combination of studies using human tissues and mouse models paints an emerging molecular picture of prostate cancer development and early progression. This picture reveals that MYC contributes to disease initiation and progression by stimulating an embryonic stem cell-like signature characterized by an enrichment of genes involved in ribosome biogenesis and by repressing differentiation. These insights pave the way to potential novel therapeutic concepts based on MYC biology.
Collapse
|
45
|
Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM. Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells 2011; 29:678-88. [PMID: 21308863 DOI: 10.1002/stem.606] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony ("prostasphere") formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1(+) CD49f(+) basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in "triple positive" (cytokeratin [CK] 5(+), CK8(+), p63(+)) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling.
Collapse
Affiliation(s)
- Payam Shahi
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77025, USA
| | | | | | | | | |
Collapse
|
46
|
Steinert G, Oancea C, Roos J, Hagemeyer H, Maier T, Ruthardt M, Puccetti E. Sulindac sulfide reverses aberrant self-renewal of progenitor cells induced by the AML-associated fusion proteins PML/RARα and PLZF/RARα. PLoS One 2011; 6:e22540. [PMID: 21811629 PMCID: PMC3139642 DOI: 10.1371/journal.pone.0022540] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 06/29/2011] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.
Collapse
Affiliation(s)
- Gunnar Steinert
- Department of Hematology, Goethe-University, Frankfurt, Germany
- Institute of Molecular Biology and Tumor Research, Philipps-Universität, Marburg, Germany
| | - Claudia Oancea
- Department of Hematology, Goethe-University, Frankfurt, Germany
| | - Jessica Roos
- Department of Hematology, Goethe-University, Frankfurt, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Heike Hagemeyer
- Institute of Molecular Biology and Tumor Research, Philipps-Universität, Marburg, Germany
| | - Thorsten Maier
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Martin Ruthardt
- Department of Hematology, Goethe-University, Frankfurt, Germany
- * E-mail: (EP); (MR)
| | - Elena Puccetti
- Institute of Molecular Biology and Tumor Research, Philipps-Universität, Marburg, Germany
- * E-mail: (EP); (MR)
| |
Collapse
|
47
|
Hong H, Nadesan P, Poon R, Alman BA. Testosterone regulates cell proliferation in aggressive fibromatosis (desmoid tumour). Br J Cancer 2011; 104:1452-8. [PMID: 21468052 PMCID: PMC3101926 DOI: 10.1038/bjc.2011.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Aggressive fibromatosis (desmoid tumour) is a locally invasive tumour caused by mutations resulting in β-catenin protein stabilisation. Apc1638N mice are predisposed to developing aggressive fibromatosis tumours, and male mice develop greater numbers of tumours than female mice, suggesting a role for androgens in this tumour type. Methods: Human aggressive fibromatosis tumours were examined for the expression of the androgen receptor, and primary human tumour cell cultures were treated with testosterone. Orchidectomised Apc1638N mice were investigated for the development of tumours, and were treated with testosterone to study the effect of tumour formation and the level of β-catenin. Results: Androgen receptors are universally expressed in human aggressive fibromatosis tumours. Testosterone increased the proliferation rate and β-catenin protein level in a dose-dependent manner in human aggressive fibromatosis tumours. Orchiectomy reduced the number and size of tumours that formed in male Apc1638N mice to a similar level as observed in female mice. Testosterone treatment increased the number of tumours that formed in orchidectomised male mice, and resulted in a marked increase in β-catenin protein levels. Conclusion: Testosterone regulates β-catenin protein level and proliferation rate in this mesenchymal tumour. This work identifies the therapeutic use of testosterone blockade in aggressive fibromatosis as an area for further investigation.
Collapse
Affiliation(s)
- H Hong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto Medical Discovery Tower, 101 College Street, Toronto, ON, Canada M5G 1L7
| | | | | | | |
Collapse
|
48
|
To die or to survive, a fatal question for the destiny of prostate cancer cells after androgen deprivation therapy. Cancers (Basel) 2011; 3:1498-512. [PMID: 24212771 PMCID: PMC3757374 DOI: 10.3390/cancers3021498] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed non-skin cancer in adult males in North America and is the second leading cause of cancer-related mortality. For locally advanced or metastatic disease, androgen deprivation, through medical or surgical castration, is the primary treatment to induce prostate cancer cell death and extend patient survival. However, the vast majority of cancers progress to a castration-resistant/androgen-independent state where the cell death processes are no longer active. This review describes the main cell death processes, apoptosis, autophagy, necrosis and necroptosis, which may be activated in prostate cancers after androgen deprivation therapy as well as the molecular mechanisms through which the cancers progress to become castration resistant. In particular, the central role of persistent androgen receptor (AR)-mediated signaling and AR crosstalk with other critical cell signaling pathways, including (i) the PI3K/Akt pathway, (ii) receptor tyrosine kinases, (iii) the p38 MAPK pathway, and (iv) the Wnt/β-catenin pathway, as well as reactivation of AR by de novo synthesized androgen are discussed in this context. Understanding the molecular changes that subvert normal cell death mechanisms and thereby compromise the survival of prostate cancer patients continues to be a major challenge.
Collapse
|
49
|
Choi HY, Lim JE, Hong JH. Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis 2010; 13:343-9. [PMID: 20680030 DOI: 10.1038/pcan.2010.26] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, studies have investigated the significance of the Wnt/β-catenin pathway in prostate cancer. The transcriptional activity of the androgen receptor (AR) is modulated by interaction with coregulators, one of which is β-catenin. Curcumin, a dietary yellow pigment of Curcuma longa, has emerged as having a chemopreventive role. Although curcumin has been shown to inhibit AR expression, its molecular mechanism has not been fully elucidated. In this study, whether curcumin mediates the Wnt/β-catenin signaling pathway with regard to AR/β-catenin interactions was studied. Curcumin was shown to induce significant inhibition of AR expression in a dose-dependent manner. Marked curcumin-induced suppression of β-catenin was shown in the nuclear and cytoplasmic extracts as well as whole cell lysates. Further analysis revealed that phosphorylation of Akt and glycogen synthase kinase-3β were attenuated, but phosphorylated β-catenin was increased after curcumin treatment. Finally, cyclin D1 and c-myc, the target gene of the β-catenin/T-cell factor transcriptional complex, were also decreased. These findings suggest that curcumin modulates the Wnt/β-catenin signaling pathway and might have a significant role in mediating inhibitory effects on LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- H Y Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
50
|
Noori-Daloii MR, Momeny M, Yousefi M, Shirazi FG, Yaseri M, Motamed N, Kazemialiakbar N, Hashemi S. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol 2010; 28:1395-404. [DOI: 10.1007/s12032-010-9603-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
|