1
|
Zhou M, Shu Y, Gao J. Thymus Degeneration in Women and the Influence of Female Sexual Hormones on Thymic Epithelial Cells. Int J Mol Sci 2025; 26:3014. [PMID: 40243626 PMCID: PMC11988661 DOI: 10.3390/ijms26073014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The thymus is a central immune organ for T cell development and plays an extremely important role in immune and aging. The unique physiological processes that occur in women, such as the menstrual cycle, pregnancy, and menopause, contribute to sexual dimorphism in thymic immunity. Thymic epithelial cells (TECs) are key stromal cells that affect thymus development and degeneration. Interestingly, TECs in women have stronger proliferation potentiality and ability for output of T cells than those in men. In comparison to men, women exhibit higher susceptibility to autoimmune disease, which can be attributed to lower AIRE expression in the female thymus, which is influenced by fluctuating hormone levels. In this review, we summarize the principles of female thymus regulation by hormones, particularly the influence of female sex hormones in the development and function of TECs, as well as the underlying mechanisms, with the aim of providing new ideas and strategies to inhibit or slow down female thymus degeneration.
Collapse
Affiliation(s)
| | | | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (M.Z.); (Y.S.)
| |
Collapse
|
2
|
Kim JM, Oelmeier K, Braun J, Hammer K, Steinhard J, Köster HA, Koch R, Klockenbusch W, Schmitz R, Möllers M. Fetal Thymus Size at 19-22 Weeks of Gestation: A Possible Marker for the Prediction of Low Birth Weight? Fetal Diagn Ther 2023; 51:7-15. [PMID: 37717568 DOI: 10.1159/000533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION The purpose was to compare thymus size measured during second trimester screening of fetuses who were subsequently small for gestational age at birth (weight below 10th percentile, SGA group) with fetuses with normal birth weight (control group). We hypothesized that measuring the fetal thymic-thoracic ratio (TT-ratio) might help predict low birth weight. METHODS Using three-vessel view echocardiograms from our archives, we measured the anteroposterior thymus size and the intrathoracic mediastinal diameter to derive TT-ratios in the SGA (n = 105) and control groups (n = 533) between 19+0 and 21+6 weeks of gestation. We analyzed the association between TT-ratio and SGA adjusted to the week of gestation using logistic regression. Finally, we determined the possible TT-ratio cut-off point for discrimination between SGA and control groups by means of receiver operating characteristics (ROC) curve analysis. RESULTS The TT-ratio was significantly higher in the SGA group than in the control group (p < 0.001). An increase of the TT-ratio by 0.1 was associated with a 3.1-fold increase in the odds of diagnosing SGA. We determined that a possible discrimination cut-off point between SGA and healthy controls was achieved using a TT-ratio of 0.390 (area under the ROC curve 0.695). CONCLUSION An increased TT-ratio may represent an additional prenatal screening parameter that improves the prediction of birth weight below the 10th percentile. Prospective studies are now needed to evaluate the use of fetal thymus size as predictive parameter for adverse fetal outcome.
Collapse
Affiliation(s)
- Julia Maria Kim
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Kathrin Oelmeier
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Janina Braun
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Kerstin Hammer
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Johannes Steinhard
- Fetal Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Helen Ann Köster
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Raphael Koch
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Walter Klockenbusch
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Ralf Schmitz
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Mareike Möllers
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Orlova E, Loginova O, Shirshev S. Leptin regulates thymic plasmacytoid dendritic cell ability to influence the thymocyte distribution in vitro. Int Immunopharmacol 2023; 117:109912. [PMID: 36857934 DOI: 10.1016/j.intimp.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity. Thymic plasmacytoid DCs (pDCs) are predominated in the thymus. They play an important role in thymocyte differentiation. We have analyzed whether leptin mediates its effects on human thymocytes by influencing on pDCs. We used leptin at concentration corresponding to its level during II-III trimesters of physiological pregnancy. We cultivated leptin-primed pDCs with autologous thymocytes and estimated the main thymocyte subsets expressing αβ chains of the T-cell receptor (αβTCR), natural regulatory T-cells (tTreg), natural T-helpers producing interleukin-17 (nTh17) and invariant natural killer T-cells (iNKT) in vitro. We have shown that leptin augmented CD86, CD276 expressions and depressed IL-10 productions by pDCs. Leptin-primed pDCs decreased the percentage of CD4+CD8+αβTCR+ thymocytes, increased CD4hiCD8-/loαβTCR+ cells. pDCs cultivated with leptin decreased the number of iNKT precursors, and did not change the number of tTreg and nTh17 precursors. Thus, leptin's important role in regulation of thymic pDC abilities to influence on the thymocyte distribution was indicated in vitro.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Olga Loginova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Sergei Shirshev
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| |
Collapse
|
4
|
Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165642. [PMID: 31866417 DOI: 10.1016/j.bbadis.2019.165642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The goal of this review is to gain a better understanding of marrow adipocyte development, its regulation of energy, and its characterization responsible for bone homeostasis. RECENT FINDINGS Despite major advances in uncovering the complex association of bone-fat in the marrow, the underlying basic biological process of adipose tissue development, as well as its interaction with bone homeostasis in pathophysiological conditions, is still not well understood. This review identifies many pro- and anti-osteogenic factors secreted by adipocytes to play a role in the manipulating the fate of mesenchymal stem cells as well as the osteoblastic activity during bone remodeling. It also addresses the function of adipose tissue capable of negative regulation of the hematopoietic microenvironment to influence the bone quantity and the nature of bone homeostasis.
Collapse
Affiliation(s)
- Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand.
| | - Tao Wang
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand
| | - Jian-Ming Lin
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand
| |
Collapse
|
6
|
Stressors increase leptin receptor-expressing thymic epithelial cells in the infant/child thymus. Int J Legal Med 2018; 132:1665-1670. [PMID: 29460108 DOI: 10.1007/s00414-018-1793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/09/2018] [Indexed: 01/30/2023]
Abstract
The thymus, the organ that is the most sensitive to stress, presents acute involution as a result of exposure to strong stress in childhood. Thymic involution is thus often considered evidence of child abuse/neglect in forensic autopsies. A portion of the thymic epithelial cells express leptin receptor, and leptin showed a thymo-protective function against stress-induced thymic involution in an animal model. Leptin receptor-expressing thymic epithelial cells (LR-TECs) may play a key role in the thymic remodeling provoked by a stressful environment. Here, we sought to clarify the changes of histopathological findings and human LR-TECs in stressful environment. We examined human thymus specimens obtained from 40 forensic autopsy cases (26 male, 14 female; age 21 to 3221 days). We divided the cases into stressor-positive (SP, n = 29) and stressor-negative (SN, n = 11) groups. Cases were classified according to the histological classification of thymic involution and investigated by leptin receptor immunostaining. The results revealed that (1) the SP group showed obvious histological thymic involution (p < 0.01) and (2) the LR-TECs/TECs ratio in the cortex was markedly and significantly increased in the SP group compared to the SN group (p < 0.01). The increase in the cortical LR-TECs/TECs ratio in the SP group may be part of the stress response mechanism in the human thymus. We thus speculate that the quantification of LR-TECs in the thymic cortex is a valuable stress marker for forensic autopsy cases.
Collapse
|
7
|
Pérez AR, Morrot A, Carvalho VF, de Meis J, Savino W. Role of Hormonal Circuitry Upon T Cell Development in Chagas Disease: Possible Implications on T Cell Dysfunctions. Front Endocrinol (Lausanne) 2018; 9:334. [PMID: 29963015 PMCID: PMC6010535 DOI: 10.3389/fendo.2018.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
T cell response plays an essential role in the host resistance to infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. This infection is often associated with multiple manifestations of T cell dysfunction, both during the acute and the chronic phases of disease. Additionally, the normal development of T cells is affected. As seen in animal models of Chagas disease, there is a strong thymic atrophy due to massive death of CD4+CD8+ double-positive cells by apoptosis and an abnormal escape of immature and potentially autoreactive thymocytes from the organ. Furthermore, an increase in the release of corticosterone triggered by T. cruzi-driven systemic inflammation is strongly associated with the alterations seen in the thymus of infected animals. Moreover, changes in the levels of other hormones, including growth hormone, prolactin, and testosterone are also able to contribute to the disruption of thymic homeostasis secondary to T. cruzi infection. In this review, we discuss the role of hormonal circuits involved in the normal T cell development and trafficking, as well as their role on the thymic alterations likely related to the peripheral T cell disturbances largely reported in both chagasic patients and animal models of Chagas disease.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
- *Correspondence: Ana Rosa Pérez, ,
| | - Alexandre Morrot
- Faculty of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
D’Attilio L, Santucci N, Bongiovanni B, Bay ML, Bottasso O. Tuberculosis, the Disrupted Immune-Endocrine Response and the Potential Thymic Repercussion As a Contributing Factor to Disease Physiopathology. Front Endocrinol (Lausanne) 2018; 9:214. [PMID: 29765355 PMCID: PMC5938357 DOI: 10.3389/fendo.2018.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory reaction to combat infection but at the same time tries to prevent collateral damage, through several regulatory mechanisms, like an endocrine response involving the production of adrenal steroid hormones. Our studies show that active tuberculosis (TB) patients present an immune-endocrine imbalance characterized by an impaired cellular immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing specific treatment revealed that cortisol levels remained increased even after several months of initiating therapy. In addition to the well-known metabolic and immunological effects, glucocorticoids are involved in thymic cortical depletion with immature thymocytes being quite sensitive to such an effect. The thymus is a central lymphoid organ supporting thymocyte T-cell development, i.e., lineage commitment, selection events and thymic emigration. While thymic TB is an infrequent manifestation of the disease, several pieces of experimental and clinical evidence point out that the thymus can be infected by mycobacteria. Beyond this, the thymic microenvironment during TB may be also altered because of the immune-hormonal alterations. The thymus may be then an additional target of organ involvement further contributing to a deficient control of infection and disease immunopathology.
Collapse
|
9
|
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol 2017; 14:121-137. [PMID: 29225343 DOI: 10.1038/nrneph.2017.165] [Citation(s) in RCA: 576] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Sepsis can induce acute kidney injury and multiple organ failures and represents the most common cause of death in the intensive care unit. Sepsis initiates a complex immune response that varies over time, with the concomitant occurrence of both pro-inflammatory and anti-inflammatory mechanisms. As a result, most patients with sepsis rapidly display signs of profound immunosuppression, which is associated with deleterious consequences. Scientific advances have highlighted the role of metabolic failure, epigenetic reprogramming, myeloid-derived suppressor cells, immature suppressive neutrophils and immune alterations in primary lymphoid organs (the thymus and bone marrow) in sepsis. An improved understanding of the mechanisms underlying this immunosuppression as well as of the similarities between sepsis-induced immunosuppression and immune defects in cancer or immunosenescence has led to novel therapeutic strategies aimed at stimulating immune function in patients with sepsis. Trials assessing the therapeutic benefit of IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF) and antibodies against programmed cell death protein 1 (PD1) and programmed cell death 1 ligand 1 (PDL1) for the treatment of sepsis are in progress. The reappraisal of sepsis pathophysiology has also resulted in a novel approach to the design of clinical trials evaluating sepsis treatments, based on an evaluation of the immune status and biomarker-based stratification of patients.
Collapse
Affiliation(s)
- Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
10
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan
- University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
13
|
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism. Eur J Immunol 2017; 47:225-235. [PMID: 28054344 DOI: 10.1002/eji.201646423] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/23/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022]
Abstract
T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
Murphy S, Patrick K, Thoner T, Edwards RW, Gubbels Bupp MR. T cell up-regulation of CD127 is associated with reductions in the homeostatic set point of the peripheral T cell pool during malnourishment. Biochem Biophys Rep 2016; 7:164-172. [PMID: 28955903 PMCID: PMC5613352 DOI: 10.1016/j.bbrep.2016.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
The following study was undertaken to better understand the mechanisms that relate the homeostatic set point of the peripheral T cell population to energy availability in mice. We report that the total number of peripheral naïve and memory CD4+ and CD8+T cells notably declined after one week of malnourishment, a time period too short to be entirely due to malnutrition-induced thymic involution. Peripheral malnourished T cells expressed higher levels of the IL-7 receptor component, CD127, and were less sensitive to death-by-neglect as compared to control T cells. Overall levels of IL-7 were similar in malnourished and control mice. Adoptive transfer studies revealed that CD127 expression did not correlate with increased survival in vivo and that all naïve CD8+T cells upregulated CD127, regardless of initial expression levels. Corticosterone levels were elevated in malnourished mice and this correlated in time with peripheral T cell up-regulation of CD127 and the diminishment of the peripheral T cell pool. Overall, these data suggest a model in which CD127 levels are up-regulated quickly during malnourishment, thereby increasing the scavenge rate of IL-7, and providing a mechanism to quickly adjust the total number of T cells during malnutrition. Malnourishment results in reduced numbers of peripheral CD8+T cells. The IL-7R alpha subunit, CD127 is up-regulated on CD8+T cells during malnourishment. Malnourished CD8+T cells are less sensitive to death-by-neglect. Levels of IL-7 are unchanged in malnourishment, while glucocorticoids are elevated.
Collapse
|
15
|
Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol 2016; 12:77-89. [PMID: 26437623 DOI: 10.1038/nrendo.2015.168] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Mireille Dardenne
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
16
|
Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A. The thymoprotective function of leptin is indirectly mediated via suppression of obesity. Immunology 2015; 146:122-9. [PMID: 26059465 DOI: 10.1111/imm.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.
Collapse
Affiliation(s)
- Jayasree Sreenivasan
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan Schlenner
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Dean Franckaert
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - James Dooley
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:136-44. [PMID: 24273001 DOI: 10.4049/jimmunol.1301158] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.
Collapse
Affiliation(s)
- Donte C Saucillo
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
18
|
Manarin R, Villar SR, Fernández Bussy R, González FB, Deschutter EV, Bonantini AP, Roggero E, Pérez AR, Bottasso O. Reciprocal influences between leptin and glucocorticoids during acute Trypanosoma cruzi infection. Med Microbiol Immunol 2013; 202:339-52. [DOI: 10.1007/s00430-013-0294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/09/2013] [Indexed: 02/06/2023]
|
19
|
Shi Y, Zhu M. Medullary thymic epithelial cells, the indispensable player in central tolerance. SCIENCE CHINA. LIFE SCIENCES 2013; 56:392-8. [PMID: 23633070 DOI: 10.1007/s11427-013-4482-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 02/06/2023]
Abstract
Crosstalk between thymocytes and thymic epithelial cells is critical for T cell development and the establishment of central tolerance. Medullary thymic epithelial cells (mTECs) play important roles in the late stage of T cell development, especially negative selection and Treg generation. The function of mTECs is highly dependent on their characteristic features such as ectopic expression of peripheral tissue restricted antigens (TRAs) and their master regulator-autoimmune regulator (Aire), expression of various chemokines and cytokines. In this review, we summarize the current understanding of cellular and molecular mechanisms of mTEC development and its functions in T cell development and the establishment of central tolerance. The open questions in this field are also discussed. Understanding the function and underlying mechanisms of mTECs will contribute to the better control of autoimmune diseases and the improvement of immune reconstitution during aging or after infection, chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
20
|
Abstract
Inflammatory bowel disease is characterized by a number of immunological alterations, not the least in the T-cell compartment. Numerous animal models of colitis have revealed aberrant thymocyte dynamics associated with skewed thymocyte development. The recent advancements in quantitative methods have proposed critical kinetic alterations in the thymocyte development during the progression of colitis. This review focuses on the aberrant thymocyte dynamics in Gαi2-deficient mice as this mouse model provides most quantitative data of the thymocyte development associated with colitis. Herein, we discuss several dynamic changes during the progression of colitis and propose a hypothesis for the underlying causes for the skewed proportions of the thymocyte populations seen in the Gαi2-deficient mice and in other mouse models of colitis.
Collapse
|
21
|
Abstract
This chapter provides protocols necessary for quantifying human, mouse, and nonhuman primate signal joint T cell receptor excision circles (sjTRECs) produced during T cell receptor alpha (TCRA) gene rearrangement. These non-replicated episomal circles of DNA are generated by the recombination process used to produce antigen-specific T cell receptors. The number of sjTRECs per mg of thymus tissue or per 100,000 lysed cells has been shown to be a molecular marker of thymopoiesis and naïve T cells. This technology is beneficial to investigators interested in quantitating the level of naïve T cell production occurring under various circumstances in a variety of systems, and complements traditional phenotypic analyses of thymopoiesis. This chapter specifically describes procedures required for rapid detection and quantitation of sjTRECs in thymus tissue or isolated cells using real-time quantitative polymerase chain reaction (PCR). The sjTREC assay system comprises species-specific forward and reverse primers for amplification of a unique site on the T cell receptor δ (TCRD) sjTREC, a fluorescently labeled (FAM/ZEN/IABkFQ) species-specific real-time probe, and a species-specific sjTREC DNA plasmid standard for quantitation.
Collapse
Affiliation(s)
- Heather E Lynch
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
22
|
Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence. Semin Immunol 2012; 24:321-30. [DOI: 10.1016/j.smim.2012.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 01/13/2023]
|
23
|
Basu S, Dewangan S, Shukla RC, Anupurva S, Kumar A. Thymic involution as a predictor of early-onset neonatal sepsis. Paediatr Int Child Health 2012; 32:147-51. [PMID: 22824662 DOI: 10.1179/2046905512y.0000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Diagnosis of early-onset neonatal sepsis (EONS) is often difficult because of vague clinical signs and non-specific laboratory parameters. OBJECTIVE To assess the statistical validity of thymic size estimation as a diagnostic marker of EONS compared with cord blood interleukin-6 (IL-6) concentrations. SUBJECTS AND METHODS Thirty-two neonates delivered in hospital and admitted to the neonatal unit with EONS comprised the study group. EONS was diagnosed on the basis of development of clinical signs and symptoms of sepsis within 72 hours of birth in the presence of antenatal risk factors for chorio-amnionitis and a positive blood culture. Thirty-two gestational age- and gender-matched healthy neonates served as controls. Cord blood IL-6 concentrations were estimated by ELISA. Thymic size was assessed by sonological measurement of thymic dimensions (longitudinal and transverse diameters, thymic volume and thymic index) within 24 hours of birth in the study infants and the controls. Data were analyzed by SPSS 16.0. RESULTS Thymic size was significantly smaller whereas cord blood IL-6 concentrations were significantly higher (P<0.001) in the sepsis group than in the controls. Sensitivity and specificity of thymic dimensions were comparable to IL-6 concentrations for diagnosing EONS. Significant correlation was noted between reduction in thymic size and a rise in IL-6 concentrations. CONCLUSION Thymic involution can be used as a reliable diagnostic marker for EONS.
Collapse
Affiliation(s)
- Sriparna Basu
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | | | | | | | | |
Collapse
|
24
|
Dooley J, Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol 2012; 42:1073-9. [PMID: 22539280 DOI: 10.1002/eji.201142305] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The thymus is the primary organ for T-cell differentiation and maturation. Unlike other major organs, the thymus is highly dynamic, capable of undergoing multiple rounds of almost complete atrophy followed by rapid restoration. The process of thymic atrophy, or involution, results in decreased thymopoiesis and emigration of naïve T cells to the periphery. Multiple processes can trigger transient thymic involution, including bacterial and viral infection(s), aging, pregnancy and stress. Intense investigations into the mechanisms that underlie thymic involution have revealed diverse cellular and molecular mediators, with elaborate control mechanisms. This review outlines the disparate pathways through which involution can be mediated, from the transient infection-mediated pathway, tightly controlled by microRNA, to the chronic changes that occur through aging.
Collapse
Affiliation(s)
- James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Belgium.
| | | |
Collapse
|
25
|
Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc Natl Acad Sci U S A 2012; 109:7622-9. [PMID: 22538809 DOI: 10.1073/pnas.1205129109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rodent model of diet-induced obesity revealed that obesity significantly altered hematopoietic and lymphopoietic functions in the bone marrow and thymus. C57BL/6 mice were fed a mixed high-fat diet (HFD) of 45% fat or 10% fat diet (lean controls) for 180 d. A sustained increase in the numbers of cells found in bone marrow and thymus of HFD mice occurred from day 90 to day 180. However, with the exception of a 10-18% increase in the proportion of lymphocytes, the composition of monocytes, granulocytes, erythrocytes, and mixed progenitor lineages remained normal in the marrow. Likewise, thymuses of HFD mice increased 30-50% in size compared with controls, with analogous increases in thymocyte numbers. The overall thymus cellular composition remained normal. Although increased blood and lymphatic volume in obese mice would play a role in increased hematopoiesis, there were large and disproportionate increases in blood leukocytes of HFD mice, indicating that homeostasis was not maintained. Leptin, which promotes lymphopoiesis and myelopoiesis, reached 100 ng/mL in sera from HFD mice. Moreover, a three- to sixfold increase in adipocytes in marrow resulted in spiked leptin mRNA expression in bones of HFD mice compared with lean controls. Other cytokines and growth factors did not show any increases in obese marrow. The substantial increase in lymphopoietic and hematopoietic processes in HFD mice indicates that the primary tissues are another facet of the immune system dysregulated by obesity, which was perhaps fostered by higher amounts of leptin in marrow and serum.
Collapse
|
26
|
Billard MJ, Gruver AL, Sempowski GD. Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One 2011; 6:e17940. [PMID: 21437240 PMCID: PMC3060875 DOI: 10.1371/journal.pone.0017940] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/18/2011] [Indexed: 11/28/2022] Open
Abstract
Background Productive thymopoiesis is essential for a robust and healthy immune system.
Thymus unfortunately is acutely sensitive to stress resulting in involution
and decreased T cell production. Thymic involution is a complication of many
clinical settings, including infection, malnutrition, starvation, and
irradiation or immunosuppressive therapies. Systemic rises in
glucocorticoids and inflammatory cytokines are known to contribute to thymic
atrophy. Little is known, however, about intrathymic mechanisms that may
actively contribute to thymus atrophy or initiate thymic recovery following
stress events. Methodology/Principal Findings Phenotypic, histologic and transcriptome/pathway analysis of murine thymic
tissue during the early stages of endotoxemia-induced thymic involution was
performed to identify putative mechanisms that drive thymic involution
during stress. Thymus atrophy in this murine model was confirmed by
down-regulation of genes involved in T cell development, cell activation,
and cell cycle progression, correlating with observed phenotypic and
histologic thymus involution. Significant gene changes support the
hypothesis that multiple key intrathymic pathways are differentially
activated during stress-induced thymic involution. These included direct
activation of thymus tissue by LPS through TLR signaling, local expression
of inflammatory cytokines, inhibition of T cell signaling, and induction of
wound healing/tissue remodeling. Conclusions/Significance Taken together, these observations demonstrated that in addition to the
classic systemic response, a direct intrathymic response to endotoxin
challenge concurrently contributes to thymic involution during endotoxemia.
These findings are a substantial advancement over current understanding of
thymus response to stress and may lead to the development of novel
therapeutic approaches to ameliorate immune deficiency associated with
stress events.
Collapse
Affiliation(s)
- Matthew J. Billard
- Department of Biostatistics & Bioinformatics, Duke University Medical
Center, Durham, North Carolina, United States of America
| | - Amanda L. Gruver
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
| | - Gregory D. Sempowski
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
- * E-mail:
| |
Collapse
|
27
|
Hsu HC, Mountz JD. Metabolic syndrome, hormones, and maintenance of T cells during aging. Curr Opin Immunol 2010; 22:541-8. [PMID: 20591642 PMCID: PMC2937064 DOI: 10.1016/j.coi.2010.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/17/2010] [Accepted: 05/30/2010] [Indexed: 12/26/2022]
Abstract
Although the phenotype of T-cell senescence has been extensively investigated, few studies have analyzed the factors that promote the generation and maintenance of naïve and memory T cells that exist throughout the lifespan of the individuals. Unlike senescent T cells, naïve and memory T cells are able to participate in useful immune responses as well as respond to new activation. Hormones such as leptin, ghrelin, insulin-like growth factor 1, IGFBP3, and cytokines, including IL-7, regulate both thymopoiesis and maintenance of naïve T cells in the periphery. Although chronic viruses such as cytomegalovirus (CMV) are thought to drive T-cell senescence, other microbes may be important for the maintenance of nonsenescent T cells. Microbiota of the gut can induce metabolic syndrome as well as modulate T-cell development into specific subpopulations of effector cells. Finally, T-cell generation, maintenance, and apoptosis depend upon pathways of energy utilization within the T cells, which parallel those that regulate overall metabolism. Therefore, better understanding of metabolic syndrome, T-cell metabolism, hormones, and microbiota may lead to new insights into the maintenance of proper immune responses in old age.
Collapse
Affiliation(s)
- Hui-Chen Hsu
- Department of Medicine, University of Alabama at Birmingham, Alabama 35294, U.S.A
| | - John D. Mountz
- Department of Medicine, University of Alabama at Birmingham, Alabama 35294, U.S.A
- Veterans Administration Medical Center, Birmingham, Alabama 35294, U.S.A
| |
Collapse
|
28
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 PMCID: PMC3123661 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
29
|
Gameiro J, Nagib P, Verinaud L. The thymus microenvironment in regulating thymocyte differentiation. Cell Adh Migr 2010; 4:382-90. [PMID: 20418658 DOI: 10.4161/cam.4.3.11789] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.
Collapse
Affiliation(s)
- Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | |
Collapse
|
30
|
Role of leptin in the activation of immune cells. Mediators Inflamm 2010; 2010:568343. [PMID: 20368778 PMCID: PMC2846344 DOI: 10.1155/2010/568343] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/15/2010] [Accepted: 01/23/2010] [Indexed: 01/29/2023] Open
Abstract
Adipose tissue is an active endocrine organ that secretes various humoral factors (adipokines), and its shift to production of proinflammatory cytokines in obesity likely contributes to the low-level systemic inflammation that may be present in metabolic syndrome-associated chronic pathologies such as atherosclerosis. Leptin is one of the most important hormones secreted by adipocytes, with a variety of physiological roles related to the control of metabolism and energy homeostasis. One of these functions is the connection between nutritional status and immune competence. The adipocyte-derived hormone leptin has been shown to regulate the immune response, innate and adaptive response, both in normal and pathological conditions. The role of leptin in regulating immune response has been assessed in vitro as well as in clinical studies. It has been shown that conditions of reduced leptin production are associated with increased infection susceptibility. Conversely, immune-mediated disorders such as autoimmune diseases are associated with increased secretion of leptin and production of proinflammatory pathogenic cytokines. Thus, leptin is a mediator of the inflammatory response.
Collapse
|
31
|
Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun 2010; 394:562-8. [PMID: 20227394 DOI: 10.1016/j.bbrc.2010.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022]
Abstract
Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.
Collapse
|