1
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2025; 40:39-52. [PMID: 39278988 PMCID: PMC11584488 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
2
|
Adel A, Abdul-Hamid M, Abdel-Kawi SH, A. Abdelaziz M, Sakr HI, Ahmed OM. Bone marrow-derived mesenchymal stem cells reduce CCl 4-induced kidney injury and fibrosis in male Wistar rats. Ren Fail 2024; 46:2319330. [PMID: 39049729 PMCID: PMC11275530 DOI: 10.1080/0886022x.2024.2319330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 07/27/2024] Open
Abstract
AIM This study explores the possible therapeutic role of rats and mice bone marrow-derived mesenchymal stem cells (BM-MSCs) on renal damage and toxicity brought on by carbon tetrachloride (CCl4) in Wistar rats. METHODS Following an intraperitoneal injection of CCl4 (0.5 mL/kg b.w. twice weekly) for eight weeks, male Wistar rats were intravenously treated with rats and mice BM-MSCs (1 × 106 cells in 0.2 mL Dulbecco's Modified Eagle Medium (DMEM)/rat/week) a week for four weeks. Kidney functions were evaluated and kidney samples were examined using hematoxylin and eosin (H&E), Masson's trichrome (MT) staining techniques, and electron microscopy analysis. Kidney cyclooxygenase-2 (COX-2), protein 53 (p53), and tumor necrosis factor-α (TNF-α) were detected by immunohistochemical staining techniques. Additionally, bioindicators of oxidative stress and antioxidant defense systems were identified in kidney tissue. RESULTS In CCl4-injected rats, serum creatinine, urea, and uric acid levels significantly increased, as did renal lipid peroxidation (LPO), while superoxide dismutase, glutathione peroxidase (GPx), glutathione (GSH) transferase, and GSH levels significantly dropped in the kidneys. Histologically, the kidneys displayed a wide range of structural abnormalities, such as glomerular shrinkage, tubular dilations, inflammatory leukocytic infiltration, fibroblast proliferation, and elevated collagen content. Inflammatory cytokines like COX-2 and TNF-α as well as the pro-apoptotic mediator p53 were considerably upregulated. Treatment of BM-MSCs from mice and rats with CCl4-injected rats considerably reduced the previously noted abnormalities. CONCLUSIONS By boosting antioxidant defense and reducing apoptosis and inflammation, BM-MSCs from mice and rats were able to enhance kidney function and histological integrity in rats that had received CCl4 injections.
Collapse
Affiliation(s)
- Asmaa Adel
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samraa H. Abdel-Kawi
- Medical Histology and Cell Biology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A. Abdelaziz
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama M. Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
4
|
Ghaffari-Nasab A, Ghiasi F, Keyhanmanesh R, Roshangar L, Salmani Korjan E, Nazarpoor N, Mirzaei Bavil F. Bone marrow-derived c-kit positive stem cell administration protects against diabetes-induced nephropathy in a rat model by reversing PI3K/AKT/GSK-3β pathway and inhibiting cell apoptosis. Mol Cell Biochem 2024; 479:603-615. [PMID: 37129768 DOI: 10.1007/s11010-023-04750-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3β pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 μl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 μl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 μl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3β proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Rana Keyhanmanesh
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Leila Roshangar
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Elnaz Salmani Korjan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Nazarpoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Cho BS, Kim SB, Kim S, Rhee B, Yoon J, Lee JW. Canine Mesenchymal-Stem-Cell-Derived Extracellular Vesicles Attenuate Atopic Dermatitis. Animals (Basel) 2023; 13:2215. [PMID: 37444013 DOI: 10.3390/ani13132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is associated with systemic inflammation and immune modulation. Previously, we have shown that extracellular vesicles resulting from human adipose-tissue-derived mesenchymal stem cells (ASC-EVs) attenuated AD-like symptoms by reducing the levels of multiple inflammatory cytokines. Here, we aimed to investigate the improvement of canine AD upon using canine ASC-exosomes in a Biostir-induced AD mouse model. Additionally, we conducted in vivo toxicity studies to determine whether they targeted organs and their potential toxicity. Firstly, we isolated canine ASCs (cASCs) from the adipose tissue of a canine and characterized the cASCs-EVs. Interestingly, we found that cASC-EVs improved AD-like dermatitis and markedly decreased the levels of serum IgE, ear thickness, inflammatory cytokines, and chemokines such as IL-4 and IFN-γ in a dose-dependent manner. Moreover, there was no systemic toxicity in single- or repeat-dose toxicity studies using ICR mice. In addition, we analyzed miRNA arrays from cASC-EVs using next-generation sequencing (NGS) to investigate the role of miRNAs in improving inflammatory responses. Collectively, our results suggest that cASC-EVs effectively attenuate AD by transporting anti-inflammatory miRNAs to atopic lesions alongside no toxicological findings, resulting in a promising cell-free therapeutic option for treating canine AD.
Collapse
Affiliation(s)
- Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Republic of Korea
| | - Sung-Bae Kim
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| | - Sokho Kim
- Research Center, HLB bioStep Co., Ltd., Incheon 22014, Republic of Korea
| | - Beomseok Rhee
- Research Center, HLB bioStep Co., Ltd., Incheon 22014, Republic of Korea
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Regional Headquarter, Korea Racing Authority, Jeju 63346, Republic of Korea
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
Wanyan P, Wang X, Li N, Huang Y, She Y, Zhang L. Mesenchymal stem cells therapy for acute kidney injury: A systematic review with meta-analysis based on rat model. Front Pharmacol 2023; 14:1099056. [PMID: 37124211 PMCID: PMC10133560 DOI: 10.3389/fphar.2023.1099056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective: To systematically evaluate the efficacy of mesenchymal stem cells (MSCs) for acute kidney injury (AKI) in preclinical studies and to explore the optimal transplantation strategy of MSCs by network meta-analysis with the aim of improving the efficacy of stem cell therapy. Methods: Computer searches of PubMed, Web of Science, Cochrane, Embase, CNKI, Wanfang, VIP, and CBM databases were conducted until 17 August 2022. Literature screening, data extraction and quality evaluation were performed independently by two researchers. Results and Discussion: A total of 50 randomized controlled animal studies were included. The results of traditional meta-analysis showed that MSCs could significantly improve the renal function and injured renal tissue of AKI rats in different subgroups. The results of network meta-analysis showed that although there was no significant difference in the therapeutic effect between different transplant routes and doses of MSCs, the results of surface under the cumulative ranking probability curve (SUCRA) showed that the therapeutic effect of intravenous transplantation of MSCs was better than that of arterial and intrarenal transplantation, and the therapeutic effect of high dose (>1×106) was better than that of low dose (≤1×106). However, the current preclinical studies have limitations in experimental design, measurement and reporting of results, and more high-quality studies, especially direct comparative evidence, are needed in the future to further confirm the best transplantation strategy of MSCs in AKI. Systematic Review Registration: identifier https://CRD42022361199, https://www.crd.york.ac.uk/prospero.
Collapse
Affiliation(s)
- Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Surgery, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Nenglian Li
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yong Huang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yali She
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Tang LX, Wei B, Jiang LY, Ying YY, Li K, Chen TX, Huang RF, Shi MJ, Xu H. Intercellular mitochondrial transfer as a means of revitalizing injured glomerular endothelial cells. World J Stem Cells 2022; 14:729-743. [PMID: 36188114 PMCID: PMC9516466 DOI: 10.4252/wjsc.v14.i9.729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that mesenchymal stem cells (MSCs) can rescue injured target cells via mitochondrial transfer. However, it has not been fully understood how bone marrow-derived MSCs repair glomeruli in diabetic kidney disease (DKD).
AIM To explore the mitochondrial transfer involved in the rescue of injured glomerular endothelial cells (GECs) by MSCs, both in vitro and in vivo.
METHODS In vitro experiments were performed to investigate the effect of co-culture with MSCs on high glucose-induced GECs. The transfer of mitochondria was visualized using fluorescent microscopy. GECs were freshly sorted and ultimately tested for apoptosis, viability, mRNA expression by real-time reverse transcriptase-polymerase chain reaction, protein expression by western blot, and mitochondrial function. Moreover, streptozotocin-induced DKD rats were infused with MSCs, and renal function and oxidative stress were detected with an automatic biochemical analyzer and related-detection kits after 2 wk. Kidney histology was analyzed by hematoxylin and eosin, periodic acid-Schiff, and immunohistochemical staining.
RESULTS Fluorescence imaging confirmed that MSCs transferred mitochondria to injured GECs when co-cultured in vitro. We found that the apoptosis, proliferation, and mitochondrial function of injured GECs were improved following co-culture. Additionally, MSCs decreased pro-inflammatory cytokines [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α] and pro-apoptotic factors (caspase 3 and Bax). Mitochondrial transfer also enhanced the expression of superoxide dismutase 2, B cell lymphoma-2, glutathione peroxidase (GPx) 3, and mitofusin 2 and inhibited reactive oxygen species (ROS) and dynamin-related protein 1 expression. Furthermore, MSCs significantly ameliorated functional parameters (blood urea nitrogen and serum creatinine) and decreased the production of malondialdehyde, advanced glycation end products, and ROS, whereas they increased the levels of GPx and superoxide dismutase in vivo. In addition, significant reductions in the glomerular basement membrane and renal interstitial fibrosis were observed following MSC treatment.
CONCLUSION MSCs can rejuvenate damaged GECs via mitochondrial transfer. Additionally, the improvement of renal function and pathological changes in DKD by MSCs may be related to the mechanism of mitochondrial transfer.
Collapse
Affiliation(s)
- Li-Xia Tang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Bing Wei
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lu-Yao Jiang
- Department of Medical Rehabilitation, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - You-You Ying
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ke Li
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Tian-Xi Chen
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ruo-Fei Huang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Miao-Jun Shi
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Hang Xu
- Department of Hemodialysis/Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| |
Collapse
|
8
|
Dosing Limitation for Intra-Renal Arterial Infusion of Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158268. [PMID: 35955404 PMCID: PMC9368110 DOI: 10.3390/ijms23158268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) make MSC therapy a promising therapeutic strategy in kidney disease. A targeted MSC administration via the renal artery offers an efficient delivery method with limited spillover to other organs. Although local administration alleviates safety issues with MSCs in systemic circulation, it introduces new safety concerns in the kidneys. In a porcine model, we employed intra-renal arterial infusion of ten million allogenic adipose tissue-derived MSCs. In order to trigger any potential adverse events, a higher dose (hundred million MSCs) was also included. The kidney function was studied by magnetic resonance imaging after the MSC infusion and again at two weeks post-treatment. The kidneys were assessed by single kidney glomerular filtration rate (skGFR) measurements, histology and inflammation, and fibrosis-related gene expression. None of the measured parameters were affected immediately after the administration of ten million MSCs, but the administration of one hundred million MSCs induced severe adverse events. Renal perfusion was reduced immediately after MSC administration which coincided with the presence of microthrombi in the glomeruli and signs of an instant blood-mediated inflammatory reaction. At two weeks post-treatment, the kidneys that were treated with one hundred million MSCs showed reduced skGFR, signs of tissue inflammation, and glomerular and tubular damage. In conclusions, the intra-renal administration of ten million MSCs is well-tolerated by the porcine kidney. However, higher concentrations (one hundred million MSCs) caused severe kidney damage, implying that very high doses of intra-renally administered MSCs should be undertaken with caution.
Collapse
|
9
|
Xie X, Liu W, Zhu W, Zhang G, Dai Y, Wu J, Nie H, Lei L. A cell penetrating peptide‐modified magnetic/fluorescent probe for in vivo tracking of mesenchymal stem cells. J Biomed Mater Res A 2022; 110:1881-1891. [PMID: 35852385 DOI: 10.1002/jbm.a.37420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xing Xie
- Department of Orthodontics Xiangya Stomatological Hospital, Central South University Changsha China
| | - Wei Liu
- Department of Biomedical Sciences College of Biology, Hunan University Changsha China
| | - Wanzong Zhu
- Department of Biomedical Sciences College of Biology, Hunan University Changsha China
| | - Gongyuan Zhang
- Department of Biomedical Sciences College of Biology, Hunan University Changsha China
| | - Yiyao Dai
- Department of Biomedical Sciences College of Biology, Hunan University Changsha China
| | - Jiumei Wu
- Department of Orthodontics Xiangya Stomatological Hospital, Central South University Changsha China
| | - Hemin Nie
- Department of Biomedical Sciences College of Biology, Hunan University Changsha China
| | - Lei Lei
- Department of Orthodontics Xiangya Stomatological Hospital, Central South University Changsha China
| |
Collapse
|
10
|
Kim SY, Yoon TH, Na J, Yi SJ, Jin Y, Kim M, Oh TH, Chung TW. Mesenchymal Stem Cells and Extracellular Vesicles Derived from Canine Adipose Tissue Ameliorates Inflammation, Skin Barrier Function and Pruritus by Reducing JAK/STAT Signaling in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23094868. [PMID: 35563259 PMCID: PMC9101369 DOI: 10.3390/ijms23094868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.
Collapse
Affiliation(s)
- Sung Youl Kim
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Tae Hong Yoon
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Jungtae Na
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Seong Joon Yi
- Department of Veterinary Anatomy, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yunseok Jin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
- Correspondence: (T.-H.O.); (T.-W.C.)
| | - Tae-Wook Chung
- JIN BioCell Co., Ltd., R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Korea
- Correspondence: (T.-H.O.); (T.-W.C.)
| |
Collapse
|
11
|
Haruhara K, Suzuki T, Wakui H, Azushima K, Kurotaki D, Kawase W, Uneda K, Kobayashi R, Ohki K, Kinguchi S, Yamaji T, Kato I, Ohashi K, Yamashita A, Tamura T, Tsuboi N, Yokoo T, Tamura K. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int 2022; 101:912-928. [PMID: 35240129 DOI: 10.1016/j.kint.2022.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Although activation of the renin-angiotensin system and of its glomerular components is implicated in the pathogenesis of diabetic nephropathy, the functional roles of the tubular renin-angiotensin system with AT1 receptor signaling in diabetic nephropathy are unclear. Tissue hyperactivity of the renin-angiotensin system is inhibited by the angiotensin II type 1 receptor-associated protein ATRAP, which negatively regulates receptor signaling. The highest expression of endogenous ATRAP occurs in the kidney, where it is mainly expressed by tubules but rarely in glomeruli. Here, we found that hyperactivation of angiotensin II type 1 receptor signaling in kidney tubules exacerbated diabetic glomerular injury in a mouse model of streptozotocin-induced diabetic nephropathy. These phenomena were accompanied by decreased expression of CD206, a marker of alternatively activated and tissue-reparative M2 macrophages, in the kidney tubulointerstitium. Additionally, adoptive transfer of M2- polarized macrophages into diabetic ATRAP-knockout mice ameliorated the glomerular injury. As a possible mechanism, the glomerular mRNA levels of tumor necrosis factor-α and oxidative stress components were increased in diabetic knockout mice compared to non-diabetic knockout mice, but these increases were ameliorated by adoptive transfer. Furthermore, proximal tubule-specific ATRAP downregulation reduced tubulointerstitial expression of CD206, the marker of M2 macrophages in diabetic mice. Thus, our findings indicate that tubular ATRAP-mediated functional modulation of angiotensin II type 1 receptor signaling modulates the accumulation of tubulointerstitial M2 macrophages, thus affecting glomerular manifestations of diabetic nephropathy via tubule-glomerular crosstalk.
Collapse
Affiliation(s)
- Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Kawase
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
12
|
Habib SAH, Alalawy AI, Saad EA, El-Sadda RR. Biochemical and histopathological evaluations of chronic renal failure rats treated with pluripotent human stem cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Zedan MM, Mansour AK, Bakr AA, Sobh MA, Khodadadi H, Salles EL, Alhashim A, Baban B, Golubnitschaja O, Elmarakby AA. Effect of Everolimus versus Bone Marrow-Derived Stem Cells on Glomerular Injury in a Rat Model of Glomerulonephritis: A Preventive, Predictive and Personalized Implication. Int J Mol Sci 2021; 23:344. [PMID: 35008770 PMCID: PMC8745690 DOI: 10.3390/ijms23010344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Glomerular endothelial injury and effectiveness of glomerular endothelial repair play a crucial role in the progression of glomerulonephritis. Although the potent immune suppressive everolimus is increasingly used in renal transplant patients, adverse effects of its chronic use have been reported clinically in human glomerulonephritis and experimental renal disease. Recent studies suggest that progenitor stem cells could enhance glomerular endothelial repair with minimal adverse effects. Increasing evidence supports the notion that stem cell therapy and regenerative medicine can be effectively used in pathological conditions within the predictive, preventive and personalized medicine (PPPM) paradigm. In this study, using an experimental model of glomerulonephritis, we tested whether bone marrow-derived stem cells (BMDSCs) could provide better effect over everolimus in attenuating glomerular injury and improving the repair process in a rat model of glomerulonephritis. Anti-Thy1 glomerulonephritis was induced in male Sprague Dawley rats by injection of an antibody against Thy1, which is mainly expressed on glomerular mesangial cells. Additional groups of rats were treated with the immunosuppressant everolimus daily after the injection of anti-Thy1 or injected with single bolus dose of BMDSCs after one week of injection of anti-Thy1 (n = 6-8). Nine days after injection of anti-Thy1, glomerular albumin permeability and albuminuria were significantly increased when compared to control group (p < 0.05). Compared to BMDSCs, everolimus was significantly effective in attenuating glomerular injury, nephrinuria and podocalyxin excretion levels as well as in reducing inflammatory responses and apoptosis. Our findings suggest that bolus injection of BMDSCs fails to improve glomerular injury whereas everolimus slows the progression of glomerular injury in Anti-Thy-1 induced glomerulonephritis. Thus, everolimus could be used at the early stage of glomerulonephritis, suggesting potential implications of PPPM in the treatment of progressive renal injury.
Collapse
Affiliation(s)
- Mohamed M. Zedan
- Department of Pediatric, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.M.Z.); (A.K.M.); (A.A.B.)
| | - Ahmed K. Mansour
- Department of Pediatric, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.M.Z.); (A.K.M.); (A.A.B.)
| | - Ashraf A. Bakr
- Department of Pediatric, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.M.Z.); (A.K.M.); (A.A.B.)
| | - Mohamed A. Sobh
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hesam Khodadadi
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (H.K.); (E.L.S.); (B.B.)
| | - Evila Lopes Salles
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (H.K.); (E.L.S.); (B.B.)
| | | | - Babak Baban
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (H.K.); (E.L.S.); (B.B.)
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Ahmed A. Elmarakby
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; (H.K.); (E.L.S.); (B.B.)
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
14
|
Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13:914-933. [PMID: 34367484 PMCID: PMC8316868 DOI: 10.4252/wjsc.v13.i7.914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Research Department, Cytopeutics, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
15
|
Extracellular Vesicles Derived from Endothelial Progenitor Cells Protect Human Glomerular Endothelial Cells and Podocytes from Complement- and Cytokine-Mediated Injury. Cells 2021; 10:cells10071675. [PMID: 34359843 PMCID: PMC8304261 DOI: 10.3390/cells10071675] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glomerulonephritis are renal inflammatory processes characterized by increased permeability of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its structural and functional integrity through the release of paracrine mediators. Activation of the complement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA, microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate an angiogenic program in quiescent endothelial cells and renoprotection in different experimental models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and cell migration by modulating gene expression and inducing the release of growth factors such as VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential role as therapeutic agents for drug-resistant glomerulonephritis.
Collapse
|
16
|
Endothelial Progenitor Cell-Derived Extracellular Vesicles: Potential Therapeutic Application in Tissue Repair and Regeneration. Int J Mol Sci 2021; 22:ijms22126375. [PMID: 34203627 PMCID: PMC8232313 DOI: 10.3390/ijms22126375] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, many studies investigated the role of a specific type of stem cell named the endothelial progenitor cell (EPC) in tissue regeneration and repair. EPCs represent a heterogeneous population of mononuclear cells resident in the adult bone marrow. EPCs can migrate and differentiate in injured sites or act in a paracrine way. Among the EPCs’ secretome, extracellular vesicles (EVs) gained relevance due to their possible use for cell-free biological therapy. They are more biocompatible, less immunogenic, and present a lower oncological risk compared to cell-based options. EVs can efficiently pass the pulmonary filter and deliver to target tissues different molecules, such as micro-RNA, growth factors, cytokines, chemokines, and non-coding RNAs. Their effects are often analogous to their cellular counterparts, and EPC-derived EVs have been tested in vitro and on animal models to treat several medical conditions, including ischemic stroke, myocardial infarction, diabetes, and acute kidney injury. EPC-derived EVs have also been studied for bone, brain, and lung regeneration and as carriers for drug delivery. This review will discuss the pre-clinical evidence regarding EPC-derived EVs in the different disease models and regenerative settings. Moreover, we will discuss the translation of their use into clinical practice and the possible limitations of this process.
Collapse
|
17
|
Aithal AP, Bairy LK, Seetharam RN. Safety and therapeutic potential of human bone marrow-derived mesenchymal stromal cells in regenerative medicine. Stem Cell Investig 2021; 8:10. [PMID: 34124233 DOI: 10.21037/sci-2020-036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Regenerative medicine is considered as an alternative approach to healthcare. Owing to their pluripotent abilities and their relative lack of ethical and legal issues, adult stem cells are considered as optimal candidates for use in the treatment of various diseases. Bone marrow-derived mesenchymal stem cells are among the most promising candidates for clinical applications as they have expressed a higher degree of plasticity in vitro. Many investigators have begun to examine how bone marrow stem cells might be used to rebuild damaged tissues. The systemic administration of cells for therapeutic applications requires efficient migration and homing of cells to the target site. Cell adhesion molecules and their ligands, chemokines, extracellular matrix components and specialized bone marrow niches all participate in the proper regulation of this process. MSCs suppress the pathophysiological process that is mediated by chronic inflammation and contributes to a modification of the microenvironment and tissue regeneration. Due to the intricacy of the mesenchymal stem cell, there is ever-increasing amount of data emerging about their migration and regenerative mechanisms. Many factors influence MSC mobilization and their homing to injured tissues. This review summarizes the current clinical and pre-clinical data available in literature regarding the use of MSC in tissue repair and their prospective therapeutic role in various diseases and the underlying repair mechanisms will be discussed.
Collapse
Affiliation(s)
- Ashwini P Aithal
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, India
| | - Laxminarayana K Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | |
Collapse
|
18
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Yang W, Chen L, Jhuang Y, Lin Y, Hung P, Ko Y, Tsai M, Lee Y, Hsu L, Yeh C, Hsu H, Huang C. Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng Transl Med 2021; 6:e10212. [PMID: 34027096 PMCID: PMC8126810 DOI: 10.1002/btm2.10212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Podocytes are highly differentiated epithelial cells that are crucial for maintaining the glomerular filtration barrier in the kidney. Podocyte injury followed by depletion is the major cause of pathological progression of kidney diseases. Although cell therapy has been considered a promising alternative approach to kidney transplantation for the treatment of kidney injury, the resultant therapeutic efficacy in terms of improved renal function is limited, possibly owing to significant loss of engrafted cells. Herein, hybrid three-dimensional (3D) cell spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells were designed to mimic the glomerular microenvironment and as a cell delivery vehicle to replenish the podocyte population by cell transplantation. After creating a native glomerulus-like condition, the expression of multiple genes encoding growth factors and basement membrane factors that are strongly associated with podocyte maturation and functionality was significantly enhanced. Our in vivo results demonstrated that intrarenal transplantation of podocytes in the form of hybrid 3D cell spheroids improved engraftment efficiency and replenished glomerular podocytes. Moreover, the proteinuria of the experimental mice with hypertensive nephropathy was effectively reduced. These data clearly demonstrated the potential of hybrid 3D cell spheroids for repairing injured kidneys.
Collapse
Affiliation(s)
- Wen‐Yu Yang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Chi Chen
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Ya‐Ting Jhuang
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yu‐Jie Lin
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Yu Hung
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yi‐Ching Ko
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Meng‐Yu Tsai
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yun‐Wei Lee
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Wen Hsu
- Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan
| | - Chih‐Kuang Yeh
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiang‐Hao Hsu
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- College of Medicine, School of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chieh‐Cheng Huang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
20
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
21
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
22
|
Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE, Casaro EB, Balby-Rocha MTA, Simplício-Filho A, Alves-Silva J, Rangel ÉB. Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
Affiliation(s)
- Christian Sávio-Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Poliana E. Soinski-Sousa
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Expedito B. Casaro
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Antônio Simplício-Filho
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Jamille Alves-Silva
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Érika B. Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Nazari-Shafti TZ, Neuber S, Garcia Duran A, Xu Z, Beltsios E, Seifert M, Falk V, Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med 2020; 9:1558-1569. [PMID: 32761804 PMCID: PMC7695640 DOI: 10.1002/sctm.19-0432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardiovascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate the immune response. There is growing evidence that MSC‐derived extracellular vesicles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role in this paracrine mechanism. In particular, encapsulated microRNAs have been identified as important positive regulators of angiogenesis in pathological settings of insufficient blood supply to the heart, thus opening a new path for the treatment of CVD. In the present review, we discuss the current knowledge related to the proangiogenic potential of MSCs and MSC‐derived EVs as well as methods to enhance their biological activities for improved cardiac tissue repair. Increasing our understanding of mechanisms supporting angiogenesis will help optimize future approaches to CVD intervention.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Garcia Duran
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhiyi Xu
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleftherios Beltsios
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiovascular Surgery, University of Zurich, Zurich, Switzerland
| | - Christof Stamm
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease. Kidney Int Rep 2020; 5:1870-1893. [PMID: 33163710 PMCID: PMC7609979 DOI: 10.1016/j.ekir.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with plasma cell dyscrasias produce free abnormal monoclonal Ig light chains that circulate in the blood stream. Some of them, termed glomerulopathic light chains, interact with the mesangial cells and trigger, in a manner dependent of their structural and physicochemical properties, a sequence of pathological events that results in either light chain–derived (AL) amyloidosis (AL-Am) or light chain deposition disease (LCDD). The mesangial cells play a key role in the pathogenesis of both diseases. The interaction with the pathogenic light chain elicits specific cellular processes, which include apoptosis, phenotype transformation, and secretion of extracellular matrix components and metalloproteinases. Monoclonal light chains associated with AL-Am but not those producing LCDD are avidly endocytosed by mesangial cells and delivered to the mature lysosomal compartment where amyloid fibrils are formed. Light chains from patients with LCDD exert their pathogenic signaling effect at the cell surface of mesangial cells. These events are generic mesangial responses to a variety of adverse stimuli, and they are similar to those characterizing other more frequent glomerulopathies responsible for many cases of end-stage renal disease. The pathophysiologic events that have been elucidated allow to propose future therapeutic approaches aimed at preventing, stopping, ameliorating, or reversing the adverse effects resulting from the interactions between glomerulopathic light chains and mesangium.
Collapse
|
25
|
Ahmadi A, Rad NK, Ezzatizadeh V, Moghadasali R. Kidney Regeneration: Stem Cells as a New Trend. Curr Stem Cell Res Ther 2020; 15:263-283. [DOI: 10.2174/1574888x15666191218094513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Renal disease is a major worldwide public health problem that affects one in ten people.
Renal failure is caused by the irreversible loss of the structural and functional units of kidney (nephrons)
due to acute and chronic injuries. In humans, new nephrons (nephrogenesis) are generated until
the 36th week of gestation and no new nephron develops after birth. However, in rodents, nephrogenesis
persists until the immediate postnatal period. The postnatal mammalian kidney can partly repair
their nephrons. The kidney uses intrarenal and extra-renal cell sources for maintenance and repair.
Currently, it is believed that dedifferentiation of surviving tubular epithelial cells and presence of resident
stem cells have important roles in kidney repair. Many studies have shown that stem cells obtained
from extra-renal sites such as the bone marrow, adipose and skeletal muscle tissues, in addition
to umbilical cord and amniotic fluid, have potential therapeutic benefits. This review discusses the
main mechanisms of renal regeneration by stem cells after a kidney injury.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar K. Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Lau RWK, Al‐Rubaie A, Saini S, Wise AF, Ricardo SD. Percutaneous intrarenal transplantation of differentiated induced pluripotent stem cells into newborn mice. Anat Rec (Hoboken) 2020; 303:2603-2612. [DOI: 10.1002/ar.24371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ricky W. K. Lau
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Ali Al‐Rubaie
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Sheetal Saini
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Andrea F. Wise
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Sharon D. Ricardo
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| |
Collapse
|
27
|
Mesenchymal stromal cell-based therapies for acute kidney injury: progress in the last decade. Kidney Int 2020; 97:1130-1140. [PMID: 32305128 DOI: 10.1016/j.kint.2019.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A little over 10 years ago, the therapeutic potential of mesenchymal stromal cells (MSCs) for the treatment of acute kidney injury (AKI) was becoming widely recognized. Since then, there has been further intensive study of this topic with a clear translational intent. Over the past decade, many more animal model studies have strengthened the evidence that systemically or locally delivered MSCs ameliorate renal injury in sterile and sepsis-associated AKI. Some of these preclinical studies have also provided a range of compelling new insights into the in vivo fate and mechanisms of action of MSCs in the setting of AKI and other inflammatory conditions. Coupled with increased knowledge of the functional roles of resident and infiltrating immune cell mediators in determining the severity and outcome of AKI, the progress made in the past decade would appear to have significantly strengthened the translational pathway for MSC-based therapies. In contrast, however, the extent of the clinical experience with MSC administration in human subjects with AKI or sepsis-associated AKI has been limited to a small number of early-phase clinical trials, which appear to demonstrate safety but have not thus far delivered a strong signal of efficacy. In this review, we summarize the most significant new developments in the field of MSC-based therapies as they relate to AKI and reflect on the key gaps in knowledge and technology that remain to be addressed for the true clinical potential of MSCs and, perhaps, other emerging cellular therapies to be realized.
Collapse
|
28
|
Wang X, Sun N, Meng X, Chen M, Jiang C, Cai J. Review of clinical nerve repair strategies for neurorestoration of central nervous system tumor damage. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Central nervous system (CNS) tumors are common. In recent years, with the continuous development and popularization of neurosurgery and the advancement of diagnostic and therapeutic instruments, the diagnosis and treatment of diseases have made great progress, but the prognosis of patients depends on multiple clinical factors. In this study, we selected various literatures in the PubMed and Google Scholar search engines using the keywords "nerve repair strategies" , "central nervous system tumor" as well as searched scientifically reviewed historical perspectives and recent advancements and achievements in Neurorestoratology of the CNS. Therefore, this study focuses on the Neurorestoratology of the CNS and its prospects, aiming to provide scientific guidance for the clinical diagnosis and treatment of CNS tumors in the future, and improve the prognosis and quality of life of patients.
Collapse
|
29
|
Ornellas FM, Ramalho RJ, Fanelli C, Garnica MR, Malheiros DMAC, Martini SV, Morales MM, Noronha IL. Mesenchymal Stromal Cells Induce Podocyte Protection in the Puromycin Injury Model. Sci Rep 2019; 9:19604. [PMID: 31862892 PMCID: PMC6925195 DOI: 10.1038/s41598-019-55284-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
Podocytes are specialized cells with a limited capacity for cell division that do not regenerate in response to injury and loss. Insults that compromise the integrity of podocytes promote proteinuria and progressive renal disease. The aim of this study was to evaluate the potential renoprotective and regenerative effects of mesenchymal stromal cells (mSC) in a severe form of the podocyte injury model induced by intraperitoneal administration of puromycin, aggravated by unilateral nephrectomy. Bone derived mSC were isolated and characterized according to flow cytometry analyses and to their capacity to differentiate into mesenchymal lineages. Wistar rats were divided into three groups: Control, PAN, and PAN+ mSC, consisting of PAN rats treated with 2 × 105 mSC. PAN rats developed heavy proteinuria, hypertension, glomerulosclerosis and significant effacement of the foot process. After 60 days, PAN rats treated with mSC presented a significant amelioration of all these abnormalities. In addition, mSC treatment recovered WT1 expression, improved nephrin, podocin, synaptopodin, podocalyxin, and VEGF expression, and downregulated proinflammatory Th1 cytokines in the kidney with a shift towards regulatory Th2 cytokines. In conclusion, mSC administration induced protection of podocytes in this experimental PAN model, providing new perspectives for the treatment of renal diseases associated with podocyte damage.
Collapse
Affiliation(s)
- Felipe Mateus Ornellas
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo J Ramalho
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, Brazil
| | - Camilla Fanelli
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, Brazil
| | - Margoth Ramos Garnica
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, Brazil
| | - Denise M A C Malheiros
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, Brazil
| | - Sabrina Vargas Martini
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Irene L Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Chang HH, Hsu SP, Chien CT. Intrarenal Transplantation of Hypoxic Preconditioned Mesenchymal Stem Cells Improves Glomerulonephritis through Anti-Oxidation, Anti-ER Stress, Anti-Inflammation, Anti-Apoptosis, and Anti-Autophagy. Antioxidants (Basel) 2019; 9:antiox9010002. [PMID: 31861336 PMCID: PMC7022467 DOI: 10.3390/antiox9010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
To confer further therapeutic potential and prevent some adverse effects by the mesenchymal stem cells (MSCs) transplantation, we explored the effects of locally intrarenal arterial administration of hypoxic preconditioned MSCs in the anti-Thy1.1 induced rat glomerulonephritis. Proteinuria, histochemical staining, and western blotting were used to explore the therapeutic effects and mechanisms. Locally intrarenal arterial MSCs transplantation successfully implanted the fluorescent or CD44 labeled MSCs in the nephritic glomeruli, ameliorated proteinuria, and glomerulosclerosis in nephritic rats. Hypoxic preconditioning significantly upregulated hypoxic inducible factor-1α/VEGF (HIF-1α/VEGF) in the MSCs and was more efficient than normoxic MSCs in reducing the degree of urinary protein, glomerulosclerosis, fibrosis, macrophage/monocyte infiltration, GRP78 mediated endoplasmic reticulum stress, Beclin-1/LC3-II mediated autophagy, and Bax/Bcl-2/caspase 3 mediated apoptosis. Hypoxic MSCs could further promote intranuclear nuclear factor (erythroid-derived 2, Nrf2) and reduce nuclear factor kappa B expression in nephritic kidneys. As compared to normoxic MSCs, hypoxic MSCs transplantation significantly upregulated the renal expression of anti-oxidative response elements/enzymes including glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione peroxidase, catalase, Mn, and Cu/Zn superoxide dismutase. In summary, intrarenal hypoxic preconditioning MSCs transplantation was more effective to activate hypoxic inducible factor-1α/VEGF/Nrf2 (HIF-1α/VEGF/Nrf2) signaling, preserve anti-oxidant proteins and anti-oxidative responsive element proteins, and subsequently reduce glomerular apoptosis, autophagy, and inflammation.
Collapse
Affiliation(s)
- Hao-Hsiang Chang
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Shih-Ping Hsu
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence: (S.-P.H.); or (C.T.-C.)
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan;
- Correspondence: (S.-P.H.); or (C.T.-C.)
| |
Collapse
|
31
|
Rangel ÉB, Gomes SA, Kanashiro-Takeuchi R, Hare JM. Progenitor/Stem Cell Delivery by Suprarenal Aorta Route in Acute Kidney Injury. Cell Transplant 2019; 28:1390-1403. [PMID: 31409111 PMCID: PMC6802150 DOI: 10.1177/0963689719860826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Progenitor/stem cell-based kidney regenerative strategies are a key step towards the development of novel therapeutic regimens for kidney disease treatment. However, the route of cell delivery, e.g., intravenous, intra-arterial, or intra-parenchymal, may affect the efficiency for kidney repair in different models of acute and chronic injury. Here, we describe a protocol of intra-aorta progenitor/stem cell injection in rats following either acute ischemia-reperfusion injury or acute proteinuria induced by puromycin aminonucleoside (PAN) - the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. Vascular clips were applied across both renal pedicles for 35 min, or a single dose of PAN was injected via intra-peritoneal route, respectively. Subsequently, 2 x 106 stem cells [green fluorescent protein (GFP)-labeled c-Kit+ progenitor/stem cells or GFP-mesenchymal stem cells] or saline were injected into the suprarenal aorta, above the renal arteries, after application of a vascular clip to the abdominal aorta below the renal arteries. This approach contributed to engraftment rates of ∼10% at day 8 post ischemia-reperfusion injury, when c-Kit+ progenitor/stem cells were injected, which accelerated kidney recovery. Similar rates of engraftment were found after PAN-induced podocyte damage at day 21. With practice and gentle surgical technique, 100% of the rats could be injected successfully, and, in the week following injection, ∼ 85% of the injected rats will recover completely. Given the similarities in mammals, much of the data obtained from intra-arterial delivery of progenitor/stem cells in rodents can be tested in translational research and clinical trials with endovascular catheters in humans.
Collapse
Affiliation(s)
- Érika B. Rangel
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Federal University of São Paulo, Brazil
| | - Samirah A. Gomes
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal
Division, University of São Paulo, Brazil
| | - Rosemeire Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
- Division of Cardiology, Leonard M Miller School of Medicine,
University of Miami, USA
| |
Collapse
|
32
|
Sierra-Parraga JM, Munk A, Andersen C, Lohmann S, Moers C, Baan CC, Ploeg RJ, Pool M, Keller AK, Møller BK, Leuvenink H, Hoogduijn MJ, Jespersen B, Eijken M. Mesenchymal Stromal Cells Are Retained in the Porcine Renal Cortex Independently of Their Metabolic State After Renal Intra-Arterial Infusion. Stem Cells Dev 2019; 28:1224-1235. [PMID: 31280676 DOI: 10.1089/scd.2019.0105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regenerative capacities of mesenchymal stromal cells (MSCs) make them suitable for renal regenerative therapy. The most common delivery route of MSC is through intravenous infusion, which is associated with off-target distribution. Renal intra-arterial delivery offers a targeted therapy, but limited knowledge is available regarding the fate of MSCs delivered through this route. Therefore, we studied the efficiency and tissue distribution of MSCs after renal intra-arterial delivery to a porcine renal ischemia-reperfusion model. MSCs were isolated from adipose tissue of healthy male pigs, fluorescently labeled and infused into the renal artery of female pigs. Flow cytometry allowed MSC detection and quantification in tissue and blood. In addition, quantitative polymerase chain reaction was used to trace MSCs by their Y-chromosome. During infusion, a minor number of MSCs left the kidney through the renal vein, and no MSCs were identified in arterial blood. Ischemic and healthy renal tissues were analyzed 30 min and 8 h after infusion, and 1-4 × 104 MSCs per gram of tissue were detected, predominantly, in the renal cortex, with a viability >70%. Confocal microscopy demonstrated mainly glomerular localization of MSCs, but they were also observed in the capillary network around tubuli. The infusion of heat-inactivated (HI) MSCs, which are metabolically inactive, through the renal artery showed that HI-MSCs were distributed in the kidney in a similar manner to regular MSCs, suggesting a passive retention mechanism. Long-term MSC survival was analyzed by Y-chromosome tracing, and demonstrated that a low percentage of the infused MSCs were present in the kidney 14 days after administration, while HI-MSCs were completely undetectable. In conclusion, renal intra-arterial MSC infusion limited off-target engraftment, leading to efficient MSC delivery to the kidney, most of them being cleared within 14 days. MSC retention was independent of the metabolic state of MSC, indicating a passive mechanism.
Collapse
Affiliation(s)
- Jesus M Sierra-Parraga
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Munk
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Stine Lohmann
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Ebens CL, McGrath JA, Tamai K, Hovnanian A, Wagner JE, Riddle MJ, Keene DR, DeFor TE, Tryon R, Chen M, Woodley DT, Hook K, Tolar J. Bone marrow transplant with post-transplant cyclophosphamide for recessive dystrophic epidermolysis bullosa expands the related donor pool and permits tolerance of nonhaematopoietic cellular grafts. Br J Dermatol 2019; 181:1238-1246. [PMID: 30843184 DOI: 10.1111/bjd.17858] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe systemic genodermatosis lacking therapies beyond supportive care for its extensive, life-limiting manifestations. OBJECTIVES To report the safety and preliminary responses of 10 patients with RDEB to bone marrow transplant (BMT) with post-transplant cyclophosphamide (PTCy BMT) after reduced-intensity conditioning with infusions of immunomodulatory donor-derived mesenchymal stromal cells (median follow-up 16 months). METHODS BMT toxicities, donor blood and skin engraftment, skin biopsies, photographic and dynamic assessments of RDEB disease activity were obtained at intervals from pre-BMT to 1 year post-BMT. RESULTS Related donors varied from haploidentical (n = 6) to human leucocyte antigen (HLA)-matched (n = 3), with one HLA-matched unrelated donor. Transplant complications included graft failure (n = 3; two pursued a second PTCy BMT), veno-occlusive disease (n = 2), posterior reversible encephalopathy (n = 1) and chronic graft-versus-host disease (n = 1; this patient died). In the nine ultimately engrafted patients, median donor chimerism at 180 days after transplant was 100% in peripheral blood and 27% in skin. Skin biopsies showed stable (n = 7) to improved (n = 2) type VII collagen protein expression by immunofluorescence and gain of anchoring fibril components (n = 3) by transmission electron microscopy. Early signs of clinical response include trends toward reduced body surface area of blisters/erosions from a median of 49·5% to 27·5% at 100 days after BMT (P = 0·05), with parental measures indicating stable quality of life. CONCLUSIONS PTCy BMT in RDEB provides a means of attaining immunotolerance for future donor-derived cellular grafts (ClinicalTrials.gov identifier NCT02582775). What's already known about this topic? Severe, generalized recessive dystrophic epidermolysis bullosa (RDEB) is marked by great morbidity and early death. No cure currently exists for RDEB. Bone marrow transplant (BMT) is the only described systemic therapy for RDEB. What does this study add? The first description of post-transplant cyclophosphamide (PTCy) BMT for RDEB. PTCy was well tolerated and provided excellent graft-versus-host disease prophylaxis, replacing long courses of calcineurin inhibitors in patients receiving human leucocyte antigen-matched sibling BMT. What is the translational message? The PTCy BMT platform permits identification of a suitable related donor for most patients and for subsequent adoptive transfer of donor nonhaematopoietic cells after establishment of immunological tolerance.
Collapse
Affiliation(s)
- C L Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - J A McGrath
- St John's Institute of Dermatology, King's College London, London, U.K
| | - K Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, University of Osaka, Osaka, Japan
| | - A Hovnanian
- INSERM UMR1163, Imagine Institute, Department of Genetics, University Paris Descartes, Necker Hospital, Paris, France
| | - J E Wagner
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - M J Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - D R Keene
- Microimaging Center, Shriners Hospital for Children, Portland, OR, U.S.A
| | - T E DeFor
- Biostatistic Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, U.S.A
| | - R Tryon
- Genetics Division, Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - M Chen
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - D T Woodley
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - K Hook
- Department of Dermatology, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - J Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
34
|
Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Cetinkaya B, Unek G, Kipmen-Korgun D, Koksoy S, Korgun ET. Effects of Human Placental Amnion Derived Mesenchymal Stem Cells on Proliferation and Apoptosis Mechanisms in Chronic Kidney Disease in the Rat. Int J Stem Cells 2019; 12:151-161. [PMID: 30595007 PMCID: PMC6457703 DOI: 10.15283/ijsc18067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives The feature of chronic kidney failure (CKF) is loss of kidney functions due to erosion of healthy tissue and fibrosis. Recent studies showed that Mesenchymal stem cells (MSCs) differentiated into tubular epithelial cells thus renal function and structures renewed. Furthermore, MSCs protect renal function in CKF. Therefore, we aimed to investigate whether human amnion-derived mesenchymal stem cells (hAMSCs) can repair fibrosis and determine the effects on proliferation and apoptosis mechanisms in chronic kidney failure. Methods and Results In this study, rat model of CKF was constituted by applying Aristolochic acid (AA). hAMSCs were isolated from term placenta amnion membrane and transplanted into tail vein of rats. At the end of 30 days and 60 days of recovery period, we examined expressions of PCNA, p57 and Parp-1 by western blotting. Immunoreactivity of PCNA, Ki67, IL-6 and Collagen type I were detected by immunohistochemistry. Besides, apoptosis was detected by TUNEL. Serum creatinine and urea were measured. Expressions of PCNA and Ki67 increased in hAMSC groups compared with AA group. Furthermore, expressions of PARP-1 apoptosis marker and p57 cell cycle inhibitory protein increased in AA group significantly according to control, hAMSC groups and sham groups. IL-6 proinflammatory cytokine increased in AA group significantly according to control, hAMSCs groups and sham groups. Expressions of Collagen type I protein reduced in hAMSCs groups compared to AA group. After hAMSC treatment, serum creatinine and urea levels significantly decreased compared to AA group. After injection of hAMSC to rats, Masson’s Trichrome and Sirius Red staining showed fibrosis reduction in kidney. Conclusions According to our results hAMSCs can be ameliorate renal failure.
Collapse
Affiliation(s)
- Busra Cetinkaya
- Departments of Histology and Embryology.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | | | | | - Sadi Koksoy
- Medical Microbiology and Immunology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
36
|
Sahu A, Foulsham W, Amouzegar A, Mittal SK, Chauhan SK. The therapeutic application of mesenchymal stem cells at the ocular surface. Ocul Surf 2019; 17:198-207. [PMID: 30695735 DOI: 10.1016/j.jtos.2019.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been heralded by their multipotentiality and immunomodulatory capacity. MSCs migrate toward sites of tissue damage, where specific pro-inflammatory factors 'license' their immunosuppressive functions. Recent studies in animal models of ocular surface disease have demonstrated the potential of MSC-derived therapies to limit inflammation and promote tissue repair. Herein, we review the immunoregulatory mechanisms of MSCs, as well as strategies to harness their regenerative function at the cornea. We examine reports of the therapeutic application of MSCs in the setting of ocular surface inflammation; including corneal injury, transplantation, ocular surface autoimmunity and allergy.
Collapse
Affiliation(s)
- Anuradha Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Institute of Ophthalmology, University College London, London, UK
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Leng Z, Kethidi N, Chang AJ, Sun L, Zhai J, Yang Y, Xu J, He X. Muse cells and Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells were discovered in 2010 as a subpopulation of mesenchymal stroma cells (MSCs). Muse cells can self-renew and tolerate severe culturing conditions. These cells can differentiate into three lineage cells spontaneously or in induced medium but do not form teratoma in vitro or in vivo. Central nervous system (CNS) diseases, such as intracerebral hemorrhage (ICH), cerebral infarction, and spinal cord injury are normally disastrous. Despite numerous therapy strategies, CNS diseases are difficult to recover. As a novel kind of pluripotent stem cells, Muse cells have shown great regeneration capacity in many animal models, including acute myocardial infarction, hepatectomy, and acute cerebral ischemia (ACI). After injection into injury sites, Muse cells survived, migrated, and differentiated into functional neurons with synaptic junctions to local neurons and contributed to recovery of function. Furthermore, Muse cell differentiation did not need to be induced pre-transplantation and no tumors were observed post- transplantation. The Muse cell population is promising and may lead to a revolution in regenerative medicine. This review focuses on recent advances regarding the Muse cells therapies in Neurorestoratology and discusses future perspectives in this field.
Collapse
|
38
|
Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE. The Transcriptome of Human Endometrial Mesenchymal Stem Cells Under TGFβR Inhibition Reveals Improved Potential for Cell-Based Therapies. Front Cell Dev Biol 2018; 6:164. [PMID: 30564575 PMCID: PMC6288489 DOI: 10.3389/fcell.2018.00164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with favorable properties for cell therapies and regenerative medicine. Human endometrium harbors a small population of perivascular, clonogenic MSCs (eMSCs) identified by the SUSD2 marker. As for other MSCs, eMSCs require extensive in vitro expansion to generate clinically relevant numbers of cells, resulting in spontaneous differentiation, replicative senescence and cell death, decreasing therapeutic potency. We previously demonstrated that A83-01, a TGF-β receptor inhibitor, maintained eMSC clonogenicity, promoted proliferation, prevented apoptosis and maintained MSC function in vitro. Here we compare the transcriptome of passaged eMSCs from six women cultured with and without A83-01 for 7 days. We identified 1206 differentially expressed genes (DEG) using a false discovery rate cut-off at 0.01 and fold change >2. Significant enrichment of genes involved in anti-inflammatory responses, angiogenesis, cell migration and proliferation, and collagen fibril and extracellular matrix organization were revealed. TGF-β, Wnt and Akt signaling pathways were decreased. Anti-fibrotic and anti-apoptotic genes were induced, and fibroblast proliferation and myofibroblast related genes were downregulated. We found increased MSC potency genes (TWIST1, TWIST2, JAG1, LIFR, and SLIT2) validating the enhanced potency of A83-01-treated eMSCs, and importantly no pluripotency gene expression. We also identified eMSCs’ potential for secreting exosomes, possibly explaining their paracrine properties. Angiogenic and cytokine protein arrays confirmed the angiogenic, anti-fibrotic and immunomodulatory phenotype of A83-01-treated eMSCs, and increased angiogenic activity was functionally demonstrated in vitro. eMSCs culture expanded with A83-01 have enhanced clinically relevant properties, suggesting their potential for cell-therapies and regenerative medicine applications.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sarah Williams
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Rangel EB, Gomes SA, Kanashiro-Takeuchi R, Saltzman RG, Wei C, Ruiz P, Reiser J, Hare JM. Kidney-derived c-kit + progenitor/stem cells contribute to podocyte recovery in a model of acute proteinuria. Sci Rep 2018; 8:14723. [PMID: 30283057 PMCID: PMC6170432 DOI: 10.1038/s41598-018-33082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney-derived c-kit+ cells exhibit progenitor/stem cell properties and can regenerate epithelial tubular cells following ischemia-reperfusion injury in rats. We therefore investigated whether c-kit+ progenitor/stem cells contribute to podocyte repair in a rat model of acute proteinuria induced by puromycin aminonucleoside (PAN), the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. We found that c-kit+ progenitor/stem cells accelerated kidney recovery by improving foot process effacement (foot process width was lower in c-kit group vs saline treated animals, P = 0.03). In particular, these cells engrafted in small quantity into tubules, vessels, and glomeruli, where they occasionally differentiated into podocyte-like cells. This effect was related to an up regulation of α-Actinin-4 and mTORC2-Rictor pathway. Activation of autophagy by c-kit+ progenitor/stem cells also contributed to kidney regeneration and intracellular homeostasis (autophagosomes and autophagolysosomes number and LC3A/B-I and LC3A/B-II expression were higher in the c-kit group vs saline treated animals, P = 0.0031 and P = 0.0009, respectively). Taken together, our findings suggest that kidney-derived c-kit+ progenitor/stem cells exert reparative effects on glomerular disease processes through paracrine effects, to a lesser extent differentiation into podocyte-like cells and contribution to maintenance of podocyte cytoskeleton after injury. These findings have clinical implications for cell therapy of glomerular pathobiology.
Collapse
Affiliation(s)
- Erika B Rangel
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA.
- Hospital Israelita Albert Einstein Hospital, São Paulo, 05652, São Paulo, Brazil.
- Federal University of São Paulo, São Paulo, 04023, São Paulo, Brazil.
| | - Samirah A Gomes
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, 01246, São Paulo, Brazil
| | - Rosemeire Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, 33136, Florida, USA
| | - Russell G Saltzman
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, 60612, Illinois, USA
| | - Phillip Ruiz
- Departments of Surgery and Pathology, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, 60612, Illinois, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA.
- Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, 33136, Florida, USA.
- Division of Cardiology, Leonard M Miller School of Medicine University of Miami, Miami, 33136, Florida, USA.
| |
Collapse
|
40
|
Yeo WS, Zhang YC. Bioengineering in renal transplantation: technological advances and novel options. Pediatr Nephrol 2018; 33:1105-1111. [PMID: 28589209 DOI: 10.1007/s00467-017-3706-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 01/03/2023]
Abstract
End-stage kidney disease (ESKD) is one of the most prevalent diseases in the world with significant morbidity and mortality. Current modes of renal replacement therapy include dialysis and renal transplantation. Although dialysis is an acceptable mode of renal replacement therapy, it does have its shortcomings, which include poorer life expectancy compared with renal transplantation, risk of infections and vascular thrombosis, lack of vascular access and absence of biosynthetic functions of the kidney. Renal transplantation, in contrast, is the preferred option of renal replacement therapy, with improved morbidity and mortality rates and quality of life, compared with dialysis. Renal transplantation, however, may not be available to all patients with ESKD. Some of the key factors limiting the availability and efficiency of renal transplantation include shortage of donor organs and the constant risk of rejection with complications associated with over-immunosuppression respectively. This review focuses chiefly on the potential roles of bioengineering in overcoming limitations in renal transplantation via the development of cell-based bioartificial dialysis devices as bridging options before renal transplantation, and the development of new sources of organs utilizing cell and organ engineering.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Division of Pediatric Nephrology, Dialysis and Renal Transplantation, Shaw-National Kidney Foundation, National University Hospital Children's Kidney Centre, Khoo Teck Puat-National University, Children's Medical Institute, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Yao-Chun Zhang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
A Systematic Review and Meta-analysis of Mesenchymal Stem Cell Injections for the Treatment of Perianal Crohn's Disease: Progress Made and Future Directions. Dis Colon Rectum 2018; 61:629-640. [PMID: 29578916 DOI: 10.1097/dcr.0000000000001093] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND There has been a surge in clinical trials studying the safety and efficacy of mesenchymal stem cells for the treatment of perianal Crohn's disease. OBJECTIVE The purpose of this work was to systematically review the literature to determine safety and efficacy of mesenchymal stem cells for the treatment of refractory perianal Crohn's disease. DATA SOURCES Sources included PubMed, Cochrane Library Central Register of Controlled Trials, and Embase. STUDY SELECTION Studies that reported safety and/or efficacy of mesenchymal stem cells for the treatment of perianal Crohn's disease were included. Two independent assessors reviewed eligible articles. INTERVENTION The study intervention was delivery of mesenchymal stem cells to treat perianal Crohn's disease. MAIN OUTCOMES MEASURES Safety and efficacy of mesenchymal stem cells used to treat perianal Crohn's disease were measured. RESULTS Eleven studies met the inclusion criteria and were included in the systematic review. Three trials with a comparison arm were included in the meta-analysis. There were no significant increases in adverse events (OR = 1.07 (95% CI, 0.61-1.89); p = 0.81) or serious adverse events (OR = 0.53 (95% CI, 0.28-0.98); p = 0.04) in patients treated with mesenchymal stem cells. Mesenchymal stem cells were associated with improved healing as compared with control subjects at primary end points of 6 to 24 weeks (OR = 3.06 (95% CI, 1.05-8.90); p = 0.04) and 24 to 52 weeks (OR = 2.37 (95% CI, 0.90-6.25); p = 0.08). LIMITATIONS The study was limited by its multiple centers and heterogeneity in the study inclusion criteria, mesenchymal stem cell origin, dose and frequency of delivery, use of scaffolding, and definition and time point of fistula healing. CONCLUSIONS Although there have been only 3 trials conducted with control arms, existing data demonstrate improved efficacy and no increase in adverse or serious adverse events with mesenchymal stem cells as compared with control subjects for the treatment of perianal Crohn's disease.
Collapse
|
42
|
Gan EH, Robson W, Murphy P, Pickard R, Pearce S, Oldershaw R. Isolation of a multipotent mesenchymal stem cell-like population from human adrenal cortex. Endocr Connect 2018; 7:617-629. [PMID: 29622661 PMCID: PMC5919938 DOI: 10.1530/ec-18-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex. METHODS Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR. RESULTS The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers. CONCLUSION Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison's disease.
Collapse
Affiliation(s)
- Earn H Gan
- Institute of Genetic MedicineNewcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- Endocrine UnitRoyal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Wendy Robson
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
| | - Peter Murphy
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
| | - Robert Pickard
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
- Institute of Cellular MedicineNewcastle University, Newcastle upon Tyne, UK
| | - Simon Pearce
- Institute of Genetic MedicineNewcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- Endocrine UnitRoyal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Herrera GA, Teng J, Zeng C, Xu H, Liang M, Alexander JS, Liu B, Boyer C, Turbat-Herrera EA. Phenotypic plasticity of mesenchymal stem cells is crucial for mesangial repair in a model of immunoglobulin light chain-associated mesangial damage. Ultrastruct Pathol 2018; 42:262-288. [PMID: 29668344 DOI: 10.1080/01913123.2018.1449772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mesangiopathies produced by glomerulopathic monoclonal immunoglobulin light chains (GLCs) acting on the glomerular mesangium produce two characteristic lesions: AL-amyloidosis (AL-Am) and light chain deposition disease (LCDD). In both cases, the pathology is centered in the mesangium, where initial and progressive damage occurs. In AL-Am the mesangial matrix is destroyed and replaced by amyloid fibrils and in LCDD, the mesangial matrix is increased and remodeled. The collagen IV rich matrix is replaced by tenascin. In both conditions, mesangial cells (MCs) become apoptotic as a direct effect of the GLCs. MCs were incubated in-vitro with GLCs and animal kidneys were perfused ex-vivo via the renal artery with GLCs, producing expected lesions, and then mesenchymal stem cells (MSCs) were added to both platforms. Each of the two platforms provided unique information that when put together created a comprehensive evaluation of the processes involved. A "cocktail" with growth and differentiating factors was used to study its effect on mesangial repair. MSCs displayed remarkable phenotypic plasticity during the repair process. The first role of the MSCs after migrating to the affected areas was to dispose of the amyloid fibrils (in AL-Am), the altered mesangial matrix (in LCDD) and apoptotic MCs/debris. To accomplish this task, MSCs transformed into facultative macrophages acquiring an abundance of lysosomes and endocytotic capabilities required to engage in phagocytic functions. Once the mesangial cleaning was completed, MSCs transformed into functional MCs restoring the mesangium to normal. "Cocktail" made the repair process more efficient.
Collapse
Affiliation(s)
- Guillermo A Herrera
- a Departments of Pathology and Translational Pathobiology and Cell Biology and Anatomy , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Jiamin Teng
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Chun Zeng
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Hongzhi Xu
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Man Liang
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - J Steven Alexander
- c Department of Molecular and Cellular Physiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Bing Liu
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Chris Boyer
- c Department of Molecular and Cellular Physiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Elba A Turbat-Herrera
- d Departments of Pathology and Translational Pathobiology , Medicine, and Cell Biology and Anatomy, Louisiana State Health Sciences Center , Shreveport , LA , USA
| |
Collapse
|
44
|
Zhao M, Li P, Xu H, Pan Q, Zeng R, Ma X, Li Z, Lin H. Dexamethasone-Activated MSCs Release MVs for Stimulating Osteogenic Response. Stem Cells Int 2018; 2018:7231739. [PMID: 29760734 PMCID: PMC5926524 DOI: 10.1155/2018/7231739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The extracellular microvesicles (MVs) are attracting much attention because they are found to be the key paracrine mediator participating in tissue regeneration. Dexamethasone (DXM) is widely accepted as an important regulator in tailoring the differentiation potential of mesenchymal stem cells (MSCs). However, the effect of DXM on the paracrine signaling of MSCs remains unknown. To this point, we aimed to explore the role of DXM in regulating the paracrine activity of MSCs through evaluating the release and function of MSC-MVs, based on their physicochemical characteristics and support on osteogenic response. Results showed that DXM had no evident impact on the release of MSC-MVs but played a pivotal role in regulating the function of MSC-MVs. MVs obtained from the DXM-stimulated MSCs (DXM-MVs) increased MC3T3 cell proliferation and migration and upregulated Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) expression. The repair efficiency of DXM-MVs for femur defects was further investigated in an established rat model. It was found that DXM-MVs accelerated the healing process of bone formation in the defect area. Thus, we conclude that using DXM as stimuli to obtain functional MSCs-MVs could become a valuable tool for promoting bone regeneration.
Collapse
Affiliation(s)
- Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Haijia Xu
- Department of Orthopaedics, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Qunwen Pan
- Department of Surgery, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Rong Zeng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaotang Ma
- Department of Surgery, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhanghua Li
- Department of Orthopaedics, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Lin
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
45
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
46
|
Abstract
Every year 13.3 million people suffer acute kidney injury (AKI), which is associated with a high risk of death or development of long-term chronic kidney disease (CKD) in a substantial percentage of patients besides other organ dysfunctions. To date, the mortality rate per year for AKI exceeds 50 % at least in patients requiring early renal replacement therapy and is higher than the mortality for breast and prostate cancer, heart failure and diabetes combined.Until now, no effective treatments able to accelerate renal recovery and improve survival post AKI have been developed. In search of innovative and effective strategies to foster the limited regeneration capacity of the kidney, several studies have evaluated the ability of mesenchymal stem cells (MSCs) of different origin as an attractive therapeutic tool. The results obtained in several models of AKI and CKD document that MSCs have therapeutic potential in repair of renal injury, preserving renal function and structure thus prolonging animal survival through differentiation-independent pathways. In this chapter, we have summarized the mechanisms underlying the regenerative processes triggered by MSC treatment, essentially due to their paracrine activity. The capacity of MSC to migrate to the site of injury and to secrete a pool of growth factors and cytokines with anti-inflammatory, mitogenic, and immunomodulatory effects is described. New modalities of cell-to-cell communication via the release of microvesicles and exosomes by MSCs to injured renal cells will also be discussed. The translation of basic experimental data on MSC biology into effective care is still limited to preliminary phase I clinical trials and further studies are needed to definitively assess the efficacy of MSC-based therapy in humans.
Collapse
Affiliation(s)
- Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
| | - Cinzia Rota
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
- Unit of Nephrology and Dialysis, A.O. Papa Giovanni XXIII, 24127, Bergamo, Italy
| |
Collapse
|
47
|
Lightner AL, Faubion WA. Mesenchymal Stem Cell Injections for the Treatment of Perianal Crohn's Disease: What We Have Accomplished and What We Still Need to Do. J Crohns Colitis 2017; 11:1267-1276. [PMID: 28387832 DOI: 10.1093/ecco-jcc/jjx046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Perianal Crohn's disease [CD] is found in a quarter of patients with CD and remains notoriously difficult to treat. Several medical and surgical therapies are available. However, none is particularly effective nor reliably provides sustained remission. In addition, surgical intervention is complicated by poor healing and the potential for incontinence. Mesenchymal stem cell-based therapies provide a promising treatment alternative for perianal CD, with demonstrated safety, improved efficacy, and a decreased side effect profile. Several phase I, II, and now III randomised controlled trials have now reported safety and efficacy in treating perianal CD. The aim of this review is to discusses the outcomes of conventional treatment approaches, outcomes of mesenchymal stem cell therapies, considerations specific to stem cell-based therapies, and future directions for research.
Collapse
Affiliation(s)
- Amy L Lightner
- Division of Colon and Rectal Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
48
|
Anan HH, Zidan RA, Shaheen MA, Abd-El Fattah EA. Therapeutic efficacy of bone marrow derived mesenchymal stromal cells versus losartan on adriamycin-induced renal cortical injury in adult albino rats. Cytotherapy 2017; 18:970-984. [PMID: 27378342 DOI: 10.1016/j.jcyt.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Renal disease is a major health problem. Recent studies have reported the efficacy of stem cell therapy in nephropathy animal models. AIM OF THE WORK This study was designed to investigate the therapeutic effectiveness of bone marrow-derived mesenchymal stromal cells (MSCs) versus losartan in the treatment of renal alterations induced by adriamycin (ADR). MATERIALS AND METHODS Thirty-five adult male albino rats were divided into four groups. Group I was the control group. Group II (adriamycin-treated group),which included ten rats that were injected with a single dose of adriamycin (15 mg/kg) intraperitoneally, was subdivided into subgroup IIa and IIb and they were sacrificed 1 week and 5 weeks after adriamycin injection, respectively. Group III was the adriamycin + losartan-treated group and 1 week after adriamycin injection five rats received 10 mg/kg of losartan orally and daily for 4 weeks. Group IV was the adriamycin + MSC-treated group); five rats were injected with adriamycin as group II then supplied with MSCs at a dose of 1 × 10(6) cells suspended in 0.5 mL of phosphate-buffered saline (PBS) per rat in the tail vein 1 week after adriamycin injection. Rats of this group were sacrificed 4 weeks after the stem cell injection. Blood urea nitrogen and serum creatinine were measured. Samples from renal cortex were processed for light and electron microscope examination. As regards light microscope, sections were stained with hematoxylin and eosin (H-E), periodic acid-Schiff (PAS), masson trichrome, proliferating cell nuclear antigen (PCNA) and Caspase-3 immunohistochemical stains. Morphometrical and statistical analyses were also conducted. RESULTS Examination of adriamycin-treated group revealed deterioration of renal functions and various degrees of renal structural alterations as vacuolated cytoplasm, dark nuclei and detached epithelial lining. Administration of losartan partially improved ADR-induced kidney dysfunction, whereas MSCs denoted a more ameliorative role evidenced by structural and functional recovery. CONCLUSION MSCs have a relevant therapeutic potential against ADR-induced renal damage. MSCs may accomplish this role by decreasing caspase-3 expression and increasing proliferating cell nuclear antigen staining which influence the regeneration of the kidney.
Collapse
Affiliation(s)
- Hoda H Anan
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Zidan
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Mohammad A Shaheen
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enas A Abd-El Fattah
- Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Matsuda T, Takami T, Sasaki R, Nishimura T, Aibe Y, Paredes BD, Quintanilha LF, Matsumoto T, Ishikawa T, Yamamoto N, Tani K, Terai S, Taura Y, Sakaida I. A canine liver fibrosis model to develop a therapy for liver cirrhosis using cultured bone marrow-derived cells. Hepatol Commun 2017; 1:691-703. [PMID: 29404486 PMCID: PMC5721436 DOI: 10.1002/hep4.1071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
Abstract
We have been developing a therapy for liver cirrhosis using cultured autologous bone marrow-derived mesenchymal stem cells (BMSCs). Before human clinical trials can be considered, the safety and efficacy of BMSC infusion in medium to large animals must be confirmed; thus, we developed a canine liver fibrosis model. A small amount of bone marrow fluid was aspirated from the canine humerus to assess the characteristics of BMSCs. We implanted a venous catheter in the stomach and a subcutaneous infusion port in the back of the neck of each canine. Repeated injection of CCl4 through the catheter was performed to induce liver cirrhosis. After 10 weeks of CCl4 injection, eight canines were equally divided into two groups: no cell infusion (control group) and autologous BMSC infusion through the peripheral vein (BMSC group). A variety of assays were carried out before and 4 weeks after the infusion. The area of liver fibrosis stained with sirius red was significantly reduced in the BMSC group 4 weeks after BMSC infusion, consistent with a significantly shortened half-life of indocyanine green and improved liver function. Conclusion: We established a useful canine liver fibrosis model and confirmed that cultured autologous BMSC infusion improved liver fibrosis without adverse effects. (Hepatology Communications 2017;1:691-703).
Collapse
Affiliation(s)
- Takashi Matsuda
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Taro Takami
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Ryo Sasaki
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Tatsuro Nishimura
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Yuki Aibe
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Bruno Diaz Paredes
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Luiz Fernando Quintanilha
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Tsuyoshi Ishikawa
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan
| | - Naoki Yamamoto
- Yamaguchi University Health Administration Center Yamaguchi University Yamaguchi Japan
| | - Kenji Tani
- Department of Veterinary Surgery Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology Niigata University Graduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Yasuho Taura
- Department of Veterinary Surgery Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi Japan
| | - Isao Sakaida
- Department of Gastroenterology & Hepatology Yamaguchi University Graduate School of Medicine Yamaguchi Japan.,Center for Reparative MedicineYamaguchi University Graduate School of Medicine, Yamaguchi University Yamaguchi Japan
| |
Collapse
|
50
|
Trachtman H. Investigational drugs in development for focal segmental glomerulosclerosis. Expert Opin Investig Drugs 2017; 26:945-952. [PMID: 28707483 DOI: 10.1080/13543784.2017.1351544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Focal segmental glomerulosclerosis is an important cause of end stage kidney disease and is a paradigm for the study of glomerular scarring. There are no FDA approved treatments for this condition. Current therapies, assessed based on reduction in proteinuria, are generally effective in a subset of patients which suggests that FSGS is a heterogeneous group of glomerular disorders or podocytopathies that converge on a common histopathological phenotype. Areas covered: We searched for investigational drugs agents that target different pathophysiological pathways using the key words 'FSGS' and 'podocyte' in American and European clinical trial registers (clinicaltrials.gov; clinicaltrialsregister.eu). Published articles were searched in PubMed, Medline, the Web of Science and the Cochrane Central Register of Controlled Trials Library. Expert opinion: Progress is being made in defining the mechanism of action of subtypes of FSGS. Current and investigational therapies for FSGS target these different pathways of injury. It is anticipated that advances in systems biology will further refine the classification of FSGS by subdividing the disease based on the primary mechanism of glomerular injury, identify biomarkers to discriminate between different subtypes, and enable appropriate selection of appropriate therapy for each individual in accordance with the goals of precision medicine.
Collapse
Affiliation(s)
- Howard Trachtman
- a Department of Pediatrics, Division of Nephrology , NYU Langone Medical Center , New York , NY , USA
| |
Collapse
|