1
|
Sharma N, Liu W, Tsai XQE, Wang Z, Outtrim C, Tang A, Pieper MP, Reinhart GA, Huang Y. A novel soluble guanylate cyclase activator, avenciguat, in combination with empagliflozin, protects against renal and hepatic injury in diabetic db/db mice. Am J Physiol Endocrinol Metab 2025; 328:E362-E376. [PMID: 39907739 DOI: 10.1152/ajpendo.00254.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
Diabetic complications are linked to oxidative stress, which hampers the cyclic guanosine monophosphate production by inhibiting nitric oxide/soluble guanylate cyclase (sGC) signaling. This study aimed to determine whether the administration of a novel sGC activator avenciguat alone or in combination with an SGLT2 inhibitor could slow the progression of renal and liver fibrosis in the type 2 diabetic and uninephrectomized db/db mouse model. Experiment groups included normal controls, untreated db/db mice terminated at 12 and 18 wk of age, and db/db mice treated with either one of two doses of avenciguat alone, empagliflozin (Empa) alone, or a combination of both from weeks 12 to 18 of age. Untreated db/db mice exhibited obesity, hyperglycemia, elevated levels of HbA1c and triglycerides (TG), and developed progressive albuminuria, glomerulosclerosis, fatty liver, and liver fibrosis between weeks 12 and 18 of age, accompanied by increased renal and liver production of fibronectin, type-IV collagen, laminin, and increased oxidative stress markers. Avenciguat had no effect on body weight but reduced both blood HbA1c and TG levels, whereas Empa reduced HbA1c but not TG levels as compared with untreated db/db. Both avenciguat and Empa alone effectively slowed the progression of diabetes-associated glomerulosclerosis and liver fibrosis. Importantly, avenciguat, especially at high doses in combination with Empa, further lowered these progression markers compared with baseline measurements. These results suggested that either avenciguat alone or in combination with Empa is therapeutic. Avenciguat in combination with Empa shows promise in halting the progression of diabetic complications.NEW & NOTEWORTHY Whether combining an sGC activator with an SGLT2 inhibitor could better control diabetes-associated oxidative stress and NO-cGMP signal deficiency has not yet been explored. Using the type 2 diabetic db/db mouse model, this study underscores the sGC activator avenciguat as a novel therapy for diabetic nephropathy and liver injury beyond sGLT2 inhibitors. It also highlights the need for further investigation into the combined effects of these two treatments in managing diabetic complications.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Wenjin Liu
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Xiao-Qing E Tsai
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Zhou Wang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Connor Outtrim
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Anna Tang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Michael P Pieper
- Global Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Glenn A Reinhart
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Zhuang L, Liu W, Tsai XQ, Outtrim C, Tang A, Wang Z, Huang Y. Repurposing Niclosamide to Modulate Renal RNA-Binding Protein HuR for the Treatment of Diabetic Nephropathy in db/db Mice. Int J Mol Sci 2024; 25:9651. [PMID: 39273597 PMCID: PMC11394915 DOI: 10.3390/ijms25179651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Hu antigen R (HuR) plays a key role in regulating genes critical to the pathogenesis of diabetic nephropathy (DN). This study investigates the therapeutic potential of niclosamide (NCS) as an HuR inhibitor in DN. Uninephrectomized mice were assigned to four groups: normal control; untreated db/db mice terminated at 14 and 22 weeks, respectively; and db/db mice treated with NCS (20 mg/kg daily via i.p.) from weeks 18 to 22. Increased HuR expression was observed in diabetic kidneys from db/db mice, which was mitigated by NCS treatment. Untreated db/db mice exhibited obesity, progressive hyperglycemia, albuminuria, kidney hypertrophy and glomerular mesangial matrix expansion, increased renal production of fibronectin and a-smooth muscle actin, and decreased glomerular WT-1+-podocytes and nephrin expression. NCS treatment did not affect mouse body weight, but reduced blood glucose and HbA1c levels and halted the DN progression observed in untreated db/db mice. Renal production of inflammatory and oxidative stress markers (NF-κBp65, TNF-a, MCP-1) and urine MDA levels increased during disease progression in db/db mice but were halted by NCS treatment. Additionally, the Wnt1-signaling-pathway downstream factor, Wisp1, was identified as a key downstream mediator of HuR-dependent action and found to be markedly increased in db/db mouse kidneys, which was normalized by NCS treatment. These findings suggest that inhibition of HuR with NCS is therapeutic for DN by improving hyperglycemia, renal inflammation, and oxidative stress. The reduction in renal Wisp1 expression also contributes to its renoprotective effects. This study supports the potential of repurposing HuR inhibitors as a novel therapy for DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, UT 84132, USA; (L.Z.); (W.L.); (X.-Q.T.); (C.O.); (A.T.); (Z.W.)
| |
Collapse
|
3
|
Wang B, Kim K, Tian M, Kameishi S, Zhuang L, Okano T, Huang Y. Engineered Bone Marrow Stem Cell-Sheets Alleviate Renal Damage in a Rat Chronic Glomerulonephritis Model. Int J Mol Sci 2023; 24:ijms24043711. [PMID: 36835123 PMCID: PMC9959772 DOI: 10.3390/ijms24043711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Although mesenchymal stem cell (MSC)-based regenerative therapy is being developed for the treatment of kidney diseases, cell delivery and engraftment still need to be improved. Cell sheet technology has been developed as a new cell delivery method, to recover cells as a sheet form retaining intrinsic cell adhesion proteins, which promotes its transplantation efficiency to the target tissue. We thus hypothesized that MSC sheets would therapeutically reduce kidney disease with high transplantation efficiency. When the chronic glomerulonephritis was induced by two injections of the anti-Thy 1.1 antibody (OX-7) in rats, the therapeutic efficacy of rat bone marrow stem cell (rBMSC) sheet transplantation was evaluated. The rBMSC-sheets were prepared using the temperature-responsive cell-culture surfaces and transplanted as patches onto the surface of two kidneys of each rat at 24 h after the first injection of OX-7. At 4 weeks, retention of the transplanted MSC-sheets was confirmed, and the animals with MSC-sheets showed significant reductions in proteinuria, glomerular staining for extracellular matrix protein, and renal production of TGFß1, PAI-1, collagen I, and fibronectin. The treatment also ameliorated podocyte and renal tubular injury, as evidenced by a reversal in the reductions of WT-1, podocin, and nephrin and by renal overexpression of KIM-1 and NGAL. Furthermore, the treatment enhanced gene expression of regenerative factors, and IL-10, Bcl-2, and HO-1 mRNA levels, but reduced TSP-1 levels, NF-kB, and NAPDH oxidase production in the kidney. These results strongly support our hypothesis that MSC-sheets facilitated MSC transplantation and function, and effectively retarded progressive renal fibrosis via paracrine actions on anti-cellular inflammation, oxidative stress, and apoptosis and promoted regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Science, Salt Lake City, UT 84132, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Science, Salt Lake City, UT 84112, USA
| | - Mi Tian
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Science, Salt Lake City, UT 84132, USA
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Science, Salt Lake City, UT 84112, USA
| | - Lili Zhuang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Science, Salt Lake City, UT 84132, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah Health Science, Salt Lake City, UT 84112, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: (T.O.); (Y.H.); Tel.: +801-585-0581 (Y.H.); Fax: +801-213-2563 (Y.H.)
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health Science, Salt Lake City, UT 84132, USA
- Correspondence: (T.O.); (Y.H.); Tel.: +801-585-0581 (Y.H.); Fax: +801-213-2563 (Y.H.)
| |
Collapse
|
4
|
Liu X, Zhang J, Tang A, Xu L, Huang Y. A novel peptide ligand-coated nano-siRNA-lipoplex technology for kidney targeted gene therapy. Am J Transl Res 2022; 14:7362-7377. [PMID: 36398217 PMCID: PMC9641478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/03/2022] [Indexed: 03/05/2023]
Abstract
OBJECTIVES Small interfering RNA (siRNA) that silences specific disease-related genes holds the promise for the treatment of renal disease. However, delivery to the intended site of action remains a major obstacle. The goal of this study was to develop glomerulus-specific siRNA particles for targeted gene therapy of kidney diseases. METHODS We used a novel nanoparticle-based system comprised of siRNA in cationic liposomes (Lip) coated with non-inhibitory plasminogen activator inhibitor 1R (PAI-1R) that selectively targets glomerular cells and tested it with transforming growth factor-beta 1 (TGF-β1)-siRNA in nephritic rat model. RESULTS At the optimized ratio of components, three of PAI-1R, Lip and siRNA formed the compact nanostructured particles with close to neutral surface charge (+5.63 ± 1.45 mV) and relatively uniform size (68.9 ± 4.73 nm). When the fluorescence-conjugated siRNA was used, the labeled siRNA nanoparticles appeared specifically in glomeruli. Targeted delivery of siRNA specific to the TGFβ1 gene reduced elevated TGFβ1 mRNA expression and protein production in glomeruli, but had no effect on TGFβ1 mRNA levels in lung, spleen, artery or renal medulla, and in nephritic rats induced by injection of OX-7, for up to 5 days. PAI-1R-Lip-TGF-β1 siRNA administration significantly reduced increases in glomerular matrix accumulation and expression of PAI-1 and fibronectin. CONCLUSIONS We conclude that a single dose of PAI-1R-Lip-TGF-β1 siRNA inhibited glomerular TGF-β1 gene expression thereby ameliorating glomerulosclerosis specifically and efficiently in nephritic rats without affecting most of other organs. The target silencing of genes critical for glomerular diseases may represent a promising treatment strategy for kidney disease.
Collapse
Affiliation(s)
- Xia Liu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health ScienceSalt Lake City, Utah, USA
- Department of Pathophysiology, University of Nantong College of MedicineNantong 226000, Jiangsu, China
| | - Jiandong Zhang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health ScienceSalt Lake City, Utah, USA
| | - Anna Tang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health ScienceSalt Lake City, Utah, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas College of Liberal Arts & SciencesLawrence, KS, USA
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health ScienceSalt Lake City, Utah, USA
| |
Collapse
|
5
|
Salvadori M, Tsalouchos A. How immunosuppressive drugs may directly target podocytes in glomerular diseases. Pediatr Nephrol 2022; 37:1431-1441. [PMID: 34244853 DOI: 10.1007/s00467-021-05196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Podocytes are the direct target of immunologic injury in many immune-mediated glomerular diseases, leading to proteinuria and subsequent kidney failure. Immunosuppressive agents such as steroids, calcineurin inhibitors, and rituximab are the commonly used treatment strategies in this context for their immunotherapeutic or anti-inflammatory properties. However, in recent years, studies have demonstrated that immunosuppressive agents can have a direct effect on podocytes, introducing the concept of the non-immunologic mechanism of kidney protection by immunomodulators. In this review, we focus on the mechanisms by which these agents may directly target the podocyte independent of their systemic effects and examine their clinical significance.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Transplantation Renal Unit, Careggi University Hospital, 50139, Florence, Italy
| | - Aris Tsalouchos
- Department of Medicine, Division of Nephrology, Santa Maria Annunziata Hospital, Via Antella, 58, 50012 Ponte a Niccheri, Bagno a Ripoli, Florence, Italy.
| |
Collapse
|
6
|
Dehghanbanadaki H, Forouzanfar K, Kakaei A, Zeidi S, Salehi N, Arjmand B, Razi F, Hashemi E. The role of CDH2 and MCP-1 mRNAs of blood extracellular vesicles in predicting early-stage diabetic nephropathy. PLoS One 2022; 17:e0265619. [PMID: 35363774 PMCID: PMC8975111 DOI: 10.1371/journal.pone.0265619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Extracellular vesicles (EVs), including exosomes and microvesicles, are involved in intercellular communication by transferring biomolecules such as mRNA, which has been shown to be as essential biomarkers for many physiological and pathological conditions such as diabetic nephropathy (DN). This study aimed to investigate the expression of CDH1, CDH2, MCP-1, and PAI-1 mRNAs in blood EVs of DN patients and to determine their accuracy in predicting early-stage DN. Methods We recruited 196 participants, including 35 overt DN patients, 53 incipient DN patients, 62 diabetic patients (DM), and 46 healthy individuals. Quantification of the mRNA profile of blood EVs was performed using the qRT-PCR method. The diagnostic performance of mRNA was evaluated using receiver operating characteristic analysis. Results The mRNA expression of CDH2 and MCP-1 was downregulated in overt DN group (0.22-fold change and 0.15-fold change, respectively) and incipient DN group (0.60-fold change and 0.43-fold change, respectively) compared to DM group (1.72-fold change and 2.77-fold change, respectively), while PAI-1 mRNA expression decreased in incipient DN group (0.70-fold change) and DM group (0.58-fold change) compared to control. However, the expression level of CDH1 mRNA was not significantly different among the four groups (p = 0.408). Moreover, CDH2 and MCP-1 mRNAs inversely correlated with creatinine (r = -0.370 and r = -0.361, p<0.001) and Alb/Cr ratio (r = -0.355 and r = -0.297, p<0.001). 1/CDH2 mRNA also predicted overt DN with an accuracy of 0.75 (95%CI: 0.65–0.85) and incipient DN with an accuracy of 0.61 (95%CI: 0.50–0.71) while 1/MCP-1 mRNA had an accuracy of 0.66 (95%CI: 0.55–0.77) for overt DN prediction and an accuracy of 0.61 (95%CI: 0.51–0.71) for incipient DN prediction. Conclusion CDH2 and MCP-1 mRNAs expression in blood EVs was decreased with the development of DN, suggesting the renoprotective effect of these mRNAs in diabetic individuals. Moreover, their quantifications could serve as diagnostic biomarkers for early-stage DN.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zeidi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negar Salehi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Babak Arjmand
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (FR); (EH)
| | - Ehsan Hashemi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail: (FR); (EH)
| |
Collapse
|
7
|
Ohno M, Sasaki M, Orba Y, Sekiya T, Masum MA, Ichii O, Sawamura T, Kakino A, Suzuki Y, Kida H, Sawa H, Shingai M. Abnormal Blood Coagulation and Kidney Damage in Aged Hamsters Infected with Severe Acute Respiratory Syndrome Coronavirus 2. Viruses 2021; 13:v13112137. [PMID: 34834944 PMCID: PMC8618556 DOI: 10.3390/v13112137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/28/2023] Open
Abstract
Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.
Collapse
Affiliation(s)
- Marumi Ohno
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.O.); (H.K.)
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (Y.O.)
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (Y.O.)
| | - Toshiki Sekiya
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Md. Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.A.M.); (O.I.)
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.A.M.); (O.I.)
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo 060-0818, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto 390-8621, Japan; (T.S.); (A.K.)
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto 390-8621, Japan; (T.S.); (A.K.)
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Hiroshi Kida
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.O.); (H.K.)
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.S.); (Y.O.)
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Correspondence: (H.S.); (M.S.); Tel.: +81-11-706-5185 (H.S.); +81-11-706-9494 (M.S.)
| | - Masashi Shingai
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (M.O.); (H.K.)
- Correspondence: (H.S.); (M.S.); Tel.: +81-11-706-5185 (H.S.); +81-11-706-9494 (M.S.)
| |
Collapse
|
8
|
Juin SK, Pushpakumar S, Sen U. GYY4137 Regulates Extracellular Matrix Turnover in the Diabetic Kidney by Modulating Retinoid X Receptor Signaling. Biomolecules 2021; 11:biom11101477. [PMID: 34680110 PMCID: PMC8533431 DOI: 10.3390/biom11101477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney is associated with an accumulation of extracellular matrix (ECM) leading to renal fibrosis. Dysregulation of retinoic acid metabolism involving retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been shown to play a crucial role in diabetic nephropathy (DN). Furthermore, RARs and peroxisome proliferator-activated receptor γ (PPARγ) are known to control the RXR-mediated transcriptional regulation of several target genes involved in DN. Recently, RAR and RXR have been shown to upregulate plasminogen activator inhibitor-1 (PAI-1), a major player involved in ECM accumulation and renal fibrosis during DN. Interestingly, hydrogen sulfide (H2S) has been shown to ameliorate adverse renal remodeling in DN. We investigated the role of RXR signaling in the ECM turnover in diabetic kidney, and whether H2S can mitigate ECM accumulation by modulating PPAR/RAR-mediated RXR signaling. We used wild-type (C57BL/6J), diabetic (C57BL/6-Ins2Akita/J) mice and mouse mesangial cells (MCs) as experimental models. GYY4137 was used as a H2S donor. Results showed that in diabetic kidney, the expression of PPARγ was decreased, whereas upregulations of RXRα, RXRβ, and RARγ1 expression were observed. The changes were associated with elevated PAI-1, MMP-9 and MMP-13. In addition, the expressions of collagen IV, fibronectin and laminin were increased, whereas elastin expression was decreased in the diabetic kidney. Excessive collagen deposition was observed predominantly in the peri-glomerular and glomerular regions of the diabetic kidney. Immunohistochemical localization revealed elevated expression of fibronectin and laminin in the glomeruli of the diabetic kidney. GYY4137 reversed the pathological changes. Similar results were observed in in vitro experiments. In conclusion, our data suggest that RXR signaling plays a significant role in ECM turnover, and GYY4137 modulates PPAR/RAR-mediated RXR signaling to ameliorate PAI-1-dependent adverse ECM turnover in DN.
Collapse
Affiliation(s)
| | | | - Utpal Sen
- Correspondence: ; Tel.: +1-502-852-2030; Fax: +1-502-852-6239
| |
Collapse
|
9
|
Catalpol alleviates Ang II-induced renal injury through NF/κB pathway and TGF-β1/Smads pathway. J Cardiovasc Pharmacol 2021; 79:e116-e121. [PMID: 34654783 DOI: 10.1097/fjc.0000000000001148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Catalpol is an iridoid glycoside obtained from Rehmannia glutinosa, which in previous studies showed various pharmacological properties, including anti-inflammatory, antioxidant, antidiabetic, antitumor and dopaminergic neurons protecting effects. Here, we examined the effect of catalpol on AngII-induced renal injury induced by angiotensin II (AngII), and further to explore its latent molecular mechanisms. We used an in vivo model of AngII-induced renal injury mice, catalpol (25, 50, and 100 mg/kg) was administered for 28 days. Mouse glomerular mesangial cells (SV40 MES 13), rat kidney interstitial fibroblasts cells (NRK-49F), and human proximal tubular epithelial cells (HK-2) were induced by AngII (10 µM) in the presence or absence of catalpol (1, 5, and 10 µM) and incubated for 48 h in vitro. In our study, PAS and masson staining of renal tissue showed that catalpol reduced AngII-induced renal injury in a concentration-dependent manner. The positive expressions of Collagen IV and TGF-β1 were observed to decrease sharply after catalpol treatment. In renal tissue, the levels of pro-inflammatory cytokines TNF-α and IL-6 were evidently decreased after catalpol intervention. Catalpol can relieve AngII-induced renal injury by inactivating NF/κB and TGF-β1/Smads signaling pathways. Therefore, catalpol may act as a potential drug to treat AngII-induced renal injury.
Collapse
|
10
|
Huang Z, Liu S, Tang A, Al-Rabadi L, Henkemeyer M, Mimche P, Huang Y. Key role for EphB2 receptor in kidney fibrosis. Clin Sci (Lond) 2021; 135:2127-2142. [PMID: 34462781 PMCID: PMC8433383 DOI: 10.1042/cs20210644] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022]
Abstract
Erythropoietin producing hepatocellular (Eph)-Eph receptor interacting (Ephrin) receptor-ligand signaling has been implicated in the development of tissue fibrosis, though it has not been well defined in the kidney. We detected substantial up-regulation of expression and phosphorylation of the EphB2 receptor tyrosine kinase in fibrotic kidney tissue obtained both from mice subjected to the unilateral renal ischemia-reperfusion (IR) model at 14 days and in patients suffering from chronic kidney disease (CKD). Knockout (KO) mice lacking EphB2 expression exhibited a normal renal structure and function, indicating no major role for this receptor in kidney development or action. Although IR injury is well-known to cause tissue damage, fibrosis, and renal dysfunction, we found that kidneys from EphB2KO mice showed much less renal tubular injury and retained a more preserved renal function. IR-injured kidneys from EphB2 KOs exhibited greatly reduced fibrosis and inflammation compared with injured wildtype (WT) littermates, and this correlated with a significant reduction in renal expression of profibrotic molecules, inflammatory cytokines, NADPH oxidases, and markers for cell proliferation, tubular epithelial-to-mesenchymal transition (EMT), myofibroblast activation, and apoptosis. A panel of 760 fibrosis-associated genes were further assessed, revealing that 506 genes in WT mouse kidney following IR injury changed their expression. However, 70.9% of those genes were back to or close to normal in expression when EphB2 was deleted. These data indicate that endogenous EphB2 expression and signaling are abnormally activated after kidney injury and subsequently contribute to the development of renal fibrosis via regulation of multiple profibrotic pathways.
Collapse
Affiliation(s)
- Zhimin Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
- Department of Internal Medicine, Division of Nephrology, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Simeng Liu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Anna Tang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Laith Al-Rabadi
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, U.S.A
| | - Patrice N. Mimche
- Department of Pathology, Division of Microbiology and Immunology, Molecular Medicine Program, University of Utah Health Science, Salt Lake City, UT, U.S.A
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health Science, Salt Lake City, UT, U.S.A
| |
Collapse
|
11
|
Stress-induced RNA-chromatin interactions promote endothelial dysfunction. Nat Commun 2020; 11:5211. [PMID: 33060583 PMCID: PMC7566596 DOI: 10.1038/s41467-020-18957-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Chromatin-associated RNA (caRNA) has been proposed as a type of epigenomic modifier. Here, we test whether environmental stress can induce cellular dysfunction through modulating RNA-chromatin interactions. We induce endothelial cell (EC) dysfunction with high glucose and TNFα (H + T), that mimic the common stress in diabetes mellitus. We characterize the H + T-induced changes in gene expression by single cell (sc)RNA-seq, DNA interactions by Hi-C, and RNA-chromatin interactions by iMARGI. H + T induce inter-chromosomal RNA-chromatin interactions, particularly among the super enhancers. To test the causal relationship between H + T-induced RNA-chromatin interactions and the expression of EC dysfunction-related genes, we suppress the LINC00607 RNA. This suppression attenuates the expression of SERPINE1, a critical pro-inflammatory and pro-fibrotic gene. Furthermore, the changes of the co-expression gene network between diabetic and healthy donor-derived ECs corroborate the H + T-induced RNA-chromatin interactions. Taken together, caRNA-mediated dysregulation of gene expression modulates EC dysfunction, a crucial mechanism underlying numerous diseases. Global interaction of chromatin-associated RNAs and DNA can be identified in situ. Here the authors report the genome-wide increase of interchromosomal RNA-DNA interactions and demonstrate the importance of such RNA-DNA contacts exemplified by LINC00607 RNA and SERPINE1 gene’s super enhancer in dysfunctional endothelial cell models.
Collapse
|
12
|
Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 2020; 134:1433-1448. [PMID: 32478392 PMCID: PMC8086301 DOI: 10.1042/cs20200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Recent identification of an RNA-binding protein (HuR) that regulates mRNA turnover and translation of numerous transcripts via binding to an ARE in their 3′-UTR involved in inflammation and is abnormally elevated in varied kidney diseases offers a novel target for the treatment of renal inflammation and subsequent fibrosis. Thus, we hypothesized that treatment with a selective inhibition of HuR function with a small molecule, KH-3, would down-regulate HuR-targeted proinflammatory transcripts thereby improving glomerulosclerosis in experimental nephritis, where glomerular cellular HuR is elevated. Three experimental groups included normal and diseased rats treated with or without KH-3. Disease was induced by the monoclonal anti-Thy 1.1 antibody. KH-3 was given via daily intraperitoneal injection from day 1 after disease induction to day 5 at the dose of 50 mg/kg BW/day. At day 6, diseased animals treated with KH-3 showed significant reduction in glomerular HuR levels, proteinuria, podocyte injury determined by ameliorated podocyte loss and podocin expression, glomerular staining for periodic acid-Schiff positive extracellular matrix proteins, fibronectin and collagen IV and mRNA and protein levels of profibrotic markers, compared with untreated disease rats. KH-3 treatment also reduced disease-induced increases in renal TGFβ1 and PAI-1 transcripts. Additionally, a marked increase in renal NF-κB-p65, Nox4, and glomerular macrophage cell infiltration observed in disease control group was largely reversed by KH-3 treatment. These results strongly support our hypothesis that down-regulation of HuR function with KH-3 has therapeutic potential for reversing glomerulosclerosis by reducing abundance of pro-inflammatory transcripts and related inflammation.
Collapse
|
13
|
Tian M, Carroll LS, Tang L, Uehara H, Westenfelder C, Ambati BK, Huang Y. Systemic AAV10.COMP-Ang1 rescues renal glomeruli and pancreatic islets in type 2 diabetic mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e000882. [PMID: 32792355 PMCID: PMC7430492 DOI: 10.1136/bmjdrc-2019-000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/05/2020] [Accepted: 06/14/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Diabetic hyperglycemia causes progressive and generalized damage to the microvasculature. In renal glomeruli, this results in the loss of podocytes with consequent loss of constitutive angiopoietin-1 (Ang1) signaling, which is required for stability of the glomerular endothelium. Repeated tail vein injection of adenovirus expressing COMP-Ang1 (a stable bioengineered form of Ang1) was previously reported to improve diabetic glomerular damage despite the liver and lungs being primary targets of adenoviral infection. We thus hypothesized that localizing delivery of sustained COMP-Ang1 to the kidney could increase its therapeutic efficacy and safety for the treatment of diabetes. RESEARCH DESIGN AND METHODS Using AAVrh10 adeno-associated viral capsid with enhanced kidney tropism, we treated 10-week-old uninephrectomized db/db mice (a model of type 2 diabetes) with a single dose of AAVrh10.COMP-Ang1 delivered via the intracarotid artery, compared with untreated diabetic db/db control and non-diabetic db/m mice. RESULTS Surprisingly, both glomerular and pancreatic capillaries expressed COMP-Ang1, compensating for diabetes-induced loss of tissue Ang1. Importantly, treatment with AAVrh10.COMP-Ang1 yielded a significant reduction of glycemia (blood glucose, 241±193 mg/dL vs 576±31 mg/dL; glycosylated hemoglobin, 7.2±1.5% vs 11.3±1.3%) and slowed the progression of albuminuria and glomerulosclerosis in db/db mice by 70% and 61%, respectively, compared with untreated diabetic db/db mice. Furthermore, COMP-Ang1 ameliorated diabetes-induced increases of NF-kBp65, nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase-2 (Nox2), p47phox and productions of myeloperoxidase, the inflammatory markers in both renal and pancreatic tissues, and improved beta-cell density in pancreatic islets. CONCLUSIONS These results highlight the potential of localized Ang1 therapy for treatment of diabetic visceropathies and provide a mechanistic explanation for reported improvements in glucose control via Ang1/Tie2 signaling in the pancreas.
Collapse
Affiliation(s)
- Mi Tian
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
- Internal Medicine/Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lara S Carroll
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Li Tang
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - Hironori Uehara
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | | | - Balamurali K Ambati
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Yufeng Huang
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Du Y, Yang YT, Tang G, Jia JS, Zhu N, Yuan WJ. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway. FASEB J 2020; 34:10462-10475. [PMID: 32539181 DOI: 10.1096/fj.202000431r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
It has been reported that butyrate played an protect role in diabetic kidney disease (DKD) while the mechanism was still not clear. Transforming growth factor-β1 (TGF-β1) is the initial factor which triggers the profibrotic signaling cascades. P311 is an RNA-binding protein, which could stimulate TGF-β1 translation in several cell types. In our study, we found that supplementary of butyrate alleviated fibrosis and suppressed the expression of TGF-β1 and P311 in the kidney of db/db mice as well as high glucose (HG)-induced SV40-MES-13 cells. Overexpression of P311 offset the inhibition of butyrate on TGF-β1 in SV40-MES-13 cells. To make clear the mechanism of butyrate in regulating P311, microRNAs (miRNAs) of the SV40-MES-13 cells were sequenced. We found that miR-7a-5p was significantly decreased in the HG-induced SV40-MES-13 cells and the kidney of db/db mice, while giving butyrate reversed this change. Besides, miR-7a-5p could specifically target the 3' UTR of P311's mRNA and suppressed the expression of P311 in the SV40-MES-13 cells. Giving miR-7a-5p inhibitor blocked the inhibition of butyrate on P311 and TGF-β1. Introducing the miR-7a-5p agomir into db/db mice alleviated renal fibrosis and inhibit the expression of P311 and TGF-β1. In conclusion, butyrate alleviated DKD by mediating the miR-7a-5p/P311/TGF-β1 pathway.
Collapse
Affiliation(s)
- Yi Du
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Tong Yang
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Gang Tang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Shuang Jia
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Hum JM, O'Bryan LM, Tatiparthi AK, Clinkenbeard EL, Ni P, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith RC, White KE. Sustained Klotho delivery reduces serum phosphate in a model of diabetic nephropathy. J Appl Physiol (1985) 2019; 126:854-862. [PMID: 30605400 PMCID: PMC6485689 DOI: 10.1152/japplphysiol.00838.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized ( db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease. The FGF23 coreceptor, α-Klotho, circulates as a soluble, cleaved form (cKL) and may directly influence phosphate handling. Our study sought to test the effects of cKL on mineral metabolism in db/db-uni mice. Mice were placed into either mild or moderate disease groups on the basis of the albumin-to-creatinine ratio (ACR). Body weights of db/db-uni mice were significantly greater across the study compared with lean controls regardless of disease severity. Adeno-associated cKL administration was associated with increased serum Klotho, intact, bioactive FGF23 (iFGF23), and COOH-terminal fragments of FGF23 ( P < 0.05). Blood urea nitrogen was improved after cKL administration, and cKL corrected hyperphosphatemia in the high- and low-ACR db/db-uni groups. Interestingly, 2 wk after cKL delivery, blood glucose levels were significantly reduced in db/db-uni mice with high ACR ( P < 0.05). Interestingly, several genes associated with stabilizing active iFGF23 were also increased in the osteoblastic UMR-106 cell line with cKL treatment. In summary, delivery of cKL to a model of DN normalized blood phosphate levels regardless of disease severity, supporting the concept that targeting cKL-affected pathways could provide future therapeutic avenues in DN. NEW & NOTEWORTHY In this work, systemic and continuous delivery of the "soluble" or "cleaved" form of the FGF23 coreceptor α-Klotho (cKL) via adeno-associated virus to a rodent model of diabetic nephropathy (DN), the db/db uninephrectomized mouse, normalized blood phosphate levels regardless of disease severity. This work supports the concept that targeting cKL-affected pathways could provide future therapeutic avenues for the severe mineral metabolism defects associated with DN.
Collapse
Affiliation(s)
- Julia M Hum
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University , Indianapolis, Indiana
| | - Linda M O'Bryan
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Arun K Tatiparthi
- Lead Optimization Toxicology and Pharmacology, Covance Incorporated, Greenfield, Indiana
| | - Erica L Clinkenbeard
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Pu Ni
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Martin S Cramer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Manoj Bhaskaran
- Toxicology and Pathology, Eli Lilly and Company , Indianapolis, Indiana
| | - Robert L Johnson
- Toxicology and Pathology, Eli Lilly and Company , Indianapolis, Indiana
| | - Jonathan M Wilson
- Tailored Therapeutics, Eli Lilly and Company , Indianapolis, Indiana
| | - Rosamund C Smith
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Kenneth E White
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
16
|
Zhang Y, Hansson KM, Liu T, Magnell K, Huang Y, Carlson NG, Kishore BK. Genetic deletion of ADP-activated P2Y 12 receptor ameliorates lithium-induced nephrogenic diabetes insipidus in mice. Acta Physiol (Oxf) 2019; 225:e13191. [PMID: 30257062 DOI: 10.1111/apha.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
Abstract
AIM Therapeutic use of lithium in bipolar disorder is limited by the development of nephrogenic diabetes insipidus (NDI). We reported that pharmacological blockade of P2Y12 receptor (R) with clopidogrel or prasugrel significantly ameliorated lithium-induced NDI in rodents. Using mice genetically lacking P2Y12 -R we evaluated whether the observed amelioration is mediated through P2Y12 -R METHODS: P2ry12-/- mouse line (C57/BL6) was rederived from cryopreserved embryos of the knockout (KO) mice generated by Deltagen Inc. Syngeneic wild type (WT) mice obtained by heterozygous crossing were inbred. Groups of adult WT and KO mice were fed lithium-added (40 mmol LiCl/kg food) or regular diet, and euthanized after 2 or 4 weeks. Twenty-four hour urine samples and terminal blood and kidney samples were analyzed. RESULTS At both time points, lithium-induced polyuria and decrease in aquaporin-2 (AQP2) protein abundance in the kidney medulla were less marked in KO vs WT mice. Immunofluorescence microscopy revealed that lithium-induced alterations in the cellular disposition of AQP2 protein in the medullary collecting ducts of WT mice were blunted in KO mice. Serum lithium, sodium and osmolality were similar in both genotypes after lithium treatment. After 2 weeks, lithium induced marked increases in urinary excretion of Na, K, and arginine vasopressin in WT mice but not in KO mice. CONCLUSION Taken together, our data show that similar to pharmacological blockade, deletion of P2Y12 -R significantly ameliorates lithium-induced NDI, without reducing serum lithium levels. Hence, targeting P2Y12 -R with currently available drugs in the market offers a novel and safer method for treating NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kenny M. Hansson
- Cardiovascular, Renal and Metabolism Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Tao Liu
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kerstin Magnell
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Yufeng Huang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
| | - Noel G. Carlson
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Neurobiology and Anatomy; University of Utah Health Sciences Center; Salt Lake City Utah
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Bellamkonda K. Kishore
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Nutrition and Integrative Physiology; University of Utah College of Health; Salt Lake City Utah
| |
Collapse
|
17
|
Zhang Y, Riquier-Brison A, Liu T, Huang Y, Carlson NG, Peti-Peterdi J, Kishore BK. Genetic Deletion of P2Y 2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Front Physiol 2018; 9:1765. [PMID: 30618788 PMCID: PMC6304354 DOI: 10.3389/fphys.2018.01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic lithium administration for the treatment of bipolar disorder leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation among other features. Previously, using a 2-week lithium-induced NDI model, we reported that P2Y2 receptor (R) knockout mice are significantly resistant to polyuria, natriuresis, kaliuresis, and decrease in AQP2 protein abundance in the kidney relative to wild type mice. Here we show this protection is long-lasting, and is also associated with significant amelioration of lithium-induced collecting duct remodeling and cell proliferation. Age-matched wild type and knockout mice were fed regular (n = 5/genotype) or lithium-added (40 mmol/kg chow; n = 10/genotype) diet for 5 months and euthanized. Water intake, urine output and osmolality were monitored once in every month. Salt blocks were provided to mice on lithium-diet to prevent sodium loss. At the end of 5 months mice were euthanized and serum and kidney samples were analyzed. There was a steady increase in lithium-induced polyuria, natriuresis and kaliuresis in wild type mice over the 5-month period. Increases in these urinary parameters were very low in lithium-fed knockout mice, resulting in significantly widening differences between the wild type and knockout mice. Terminal AQP2 and NKCC2 protein abundances in the kidney were significantly higher in lithium-fed knockout vs. wild type mice. There were no significant differences in terminal serum lithium or sodium levels between the wild type and knockout mice. Confocal immunofluorescence microscopy revealed that lithium-induced marked remodeling of collecting duct with significantly increased proportion of [H+]-ATPase-positive intercalated cells and decreased proportion of AQP2-positive principal cells in the wild type, but not in knockout mice. Lithium-induced collecting duct cell proliferation (indicated by Ki67 labeling), was significantly lower in knockout vs. wild type mice. This is the first piece of evidence that purinergic signaling is potentially involved in lithium-induced collecting duct remodeling and cell proliferation. Our results demonstrate that genetic deletion of P2Y2-R protects against the key structural and functional alterations in Li-induced NDI, and underscore the potential utility of targeting this receptor for the treatment of NDI in bipolar patients on chronic lithium therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Tao Liu
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Yufeng Huang
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Noel G. Carlson
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Bellamkonda K. Kishore
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Mathematical model of hemodynamic mechanisms and consequences of glomerular hypertension in diabetic mice. NPJ Syst Biol Appl 2018; 5:2. [PMID: 30564457 PMCID: PMC6288095 DOI: 10.1038/s41540-018-0077-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 06/29/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Many preclinically promising therapies for diabetic kidney disease fail to provide efficacy in humans, reflecting limited quantitative translational understanding between rodent models and human disease. To quantitatively bridge interspecies differences, we adapted a mathematical model of renal function from human to mice, and incorporated adaptive and pathological mechanisms of diabetes and nephrectomy to describe experimentally observed changes in glomerular filtration rate (GFR) and proteinuria in db/db and db/db UNX (uninephrectomy) mouse models. Changing a small number of parameters, the model reproduced interspecies differences in renal function. Accounting for glucose and Na+ reabsorption through sodium glucose cotransporter 2 (SGLT2), increasing blood glucose and Na+ intake from normal to db/db levels mathematically reproduced glomerular hyperfiltration observed experimentally in db/db mice. This resulted from increased proximal tubule sodium reabsorption, which elevated glomerular capillary hydrostatic pressure (Pgc) in order to restore sodium balance through increased GFR. Incorporating adaptive and injurious effects of elevated Pgc, we showed that preglomerular arteriole hypertrophy allowed more direct transmission of pressure to the glomerulus with a smaller mean arterial pressure rise; Glomerular hypertrophy allowed a higher GFR for a given Pgc; and Pgc-driven glomerulosclerosis and nephron loss reduced GFR over time, while further increasing Pgc and causing moderate proteinuria, in agreement with experimental data. UNX imposed on diabetes increased Pgc further, causing faster GFR decline and extensive proteinuria, also in agreement with experimental data. The model provides a mechanistic explanation for hyperfiltration and proteinuria progression that will facilitate translation of efficacy for novel therapies from mouse models to human. Many drugs for diabetic kidney disease appear to work in rodents, but fail in humans, reflecting incomplete understanding of disease processes. A team led by Melissa Hallow at the University of Georgia has developed a mathematical model that explains how elevated blood glucose in diabetes causes kidney injury in mice. They first showed that normal human, rat, or mouse kidney physiology could be reproduced with the same model by changing a small number of parameters. They then showed that diabetes-induced increases in sodium reabsorption cause unintuitive changes in kidney function that increase pressure on glomerular capillaries, causing protein leakage and nephron loss. The model reproduced faster disease progression observed in diabetic mice who have had one kidney removed. This mathematical understanding of diabetic kidney injury may improve translation of novel therapies from mice to human.
Collapse
|
19
|
Prorenin independently causes hypertension and renal and cardiac fibrosis in cyp1a1-prorenin transgenic rats. Clin Sci (Lond) 2018; 132:1345-1363. [PMID: 29848510 PMCID: PMC6024026 DOI: 10.1042/cs20171659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Plasma prorenin is commonly elevated in diabetic patients and appears to predict the development of diabetic nephropathy. However, the pathological role of prorenin is unclear. In the present study, a transgenic, inducible, hepatic prorenin-overexpressing rat model was generated and the effect of prorenin in organ injury was examined. Four groups of rats (cyp1a1 prorenin transgenic male and female rats and non-transgenic littermates) were assigned to receive a diet containing 0.3% of the transgene inducer indole-3-carbinol (I3C) for 4 weeks. Plasma prorenin concentration was increased and mean arterial pressure (MAP) increased from 80 ± 18 to 138 ± 17 (mmHg), whereas renal prorenin/renin protein expression was unchanged, in transgenic rats fed with I3C diet. The intact prorenin, not renin, in plasma and urine samples was further observed by Western blot analysis. Importantly, transgenic rats with high levels of prorenin developed albuminuria, glomerular and tubulointerstitial fibrosis associated with increased expression of transforming growth factor β (TGFβ) 1 (TGFβ1), plasminogen activator inhibitor-1 (PAI-1), collagen, and fibronectin (FN). These rats also exhibited cardiac hypertrophy determined by echocardiography, with elevated ratio of heart weight to body weight (HW/BW). Cardiac collagen in interstitial and perivascular regions was prominent, accompanied by the increase in mRNA contents of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC), TGFβ1, PAI-1, and collagen in the heart tissue. Furthermore, renal protein levels of p-NF-κB-p65 and monocyte chemoattractant protein-1 (MCP-1), NAPDH oxidases, malondialdehyde (MDA) and 8-isoprostane (8-IP), p-ERK, p-β-catenin, and p-Akt were dramatically increased in prorenin overexpressing rats. These results indicate that prorenin, without being converted into renin, causes hypertension, renal and cardiac fibrosis via the induction of inflammation, oxidative stress and the ERK, β-catenin, and Akt-mediated signals.
Collapse
|
20
|
Tian M, Tang L, Wu Y, Beddhu S, Huang Y. Adiponectin attenuates kidney injury and fibrosis in deoxycorticosterone acetate-salt and angiotensin II-induced CKD mice. Am J Physiol Renal Physiol 2018; 315:F558-F571. [PMID: 29873514 DOI: 10.1152/ajprenal.00137.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adiponectin (ApN) is a multifunctional adipokine. However, high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism, and the role of ApN in CKD is unclear. Herein, we investigated the effect of ApN overexpression on progressive renal injury resulting from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (ANG II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice [wild type receiving no infusion (WT) and WT and cytochrome P450 1a1 (cyp1a1)-ApN transgenic mice (ApN-Tg) receiving DOCA+ANG II infusion (WT/DOCA+ANG II and ApN-Tg/DOCA+ANG II)] were assigned to receive normal food containing 0.15% of the transgene inducer indole-3-carbinol (I3C) for 3 wk. In the I3C-induced ApN-Tg/DOCA+ANG II mice, not the WT or WT/DOCA+ANG II mice, overexpression of ApN in liver resulted in 3.15-fold increases in circulating ApN compared with nontransgenic controls. Of note, the transgenic mice receiving DOCA+ANG II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement, and alleviated tubular injury determined by ameliorated mRNA overexpression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+ANG II mice. In addition, renal production of NF-κB-p65, NAPDH oxidase 2, and p47 phox and MAPK-related cellular proliferation, which were induced in WT/DOCA+ANG II mice, were markedly reduced in ApN-Tg/DOCA+ANG II mice. These results indicate that elevated ApN in the CKD mouse model is renal protective. Enhancing ApN production or signaling may have therapeutic potential for CKD.
Collapse
Affiliation(s)
- Mi Tian
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Division of Nephrology, Department of Internal Medicine, Shengjing Hospital, China Medical University , Shenyang , China
| | - Li Tang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Center of Kidney Transplantation, Ningbo Urology and Nephrology Hospital , Ningbo , China
| | - Yuanyuan Wu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Srinivasan Beddhu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| |
Collapse
|
21
|
Zhao X, Hwang DY, Kao HY. The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. NUCLEAR RECEPTOR RESEARCH 2018; 5. [PMID: 30417008 PMCID: PMC6224173 DOI: 10.11131/2018/101323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is a glucocorticoid-activated transcription factor that regulates gene expression and controls the development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by kidney diseases. These include minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy (IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, unwanted side effects and steroid-resistance remain major issues for their long-term use. Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have begun to explore the mechanism of GC action in podocytes. This review will discuss progress in our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte physiology and their renoprotective activity in nephrotic syndrome.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
22
|
Thomsen LH, Fog-Tonnesen M, Nielsen Fink L, Norlin J, García de Vinuesa A, Hansen TK, de Heer E, Ten Dijke P, Rosendahl A. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model. Ren Fail 2018; 39:629-642. [PMID: 28805484 PMCID: PMC6446227 DOI: 10.1080/0886022x.2017.1361837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Uncontrolled activation of transforming growth factor beta (TGF-β) family members is hypothesized to participate in type 2 diabetes (T2D) dependent diabetic nephropathy (DN). We evaluated and compared downstream activation of the Smad2-signaling pathway in kidney samples from T2D patients to kidneys from the T2D model of leptin receptor deficient db/db mouse. Furthermore, expression of TGF-β family members was evaluated to elucidate molecular mechanisms in the mouse model. Kidney samples from patients with advanced stages of DN showed elevated pSmad2 staining whereas db/db mouse kidneys surprisingly showed a decrease in pSmad2 in the tubular compartment. Structurally, kidney tissue showed dilated tubules and expanded glomeruli, but no clear fibrotic pattern was found in the diabetic mice. Selective TGF-β family members were up-regulated at the mRNA level. Antagonists of bone morphogenetic protein (BMP) ligands, such as Gremlin1, USAG1 and Sclerostin, were strongly up-regulated suggesting a dampening effect on BMP pathways. Together, these results indicate a lack of translation from T2D patient kidneys to the db/db model with regards to Smad signaling pathway. It is plausible that a strong up-regulation of BMP antagonizing factors account for the lack of Smad1/5/8 activation, in spite of increased expression of several BMP members.
Collapse
Affiliation(s)
- Lise Høj Thomsen
- a Department of Diabetes Complications Research , Novo Nordisk A/S , Måløv , Denmark.,b Department of Endocrinology and Internal Medicine , Aarhus University Hospital , Aarhus , Denmark
| | - Morten Fog-Tonnesen
- a Department of Diabetes Complications Research , Novo Nordisk A/S , Måløv , Denmark
| | - Lisbeth Nielsen Fink
- a Department of Diabetes Complications Research , Novo Nordisk A/S , Måløv , Denmark
| | - Jenny Norlin
- c Department of Incretin & Obesity Pharmacology , Novo Nordisk A/S , Måløv , Denmark
| | - Amaya García de Vinuesa
- d Department of Molecular Cell Biology , Cancer Genomics Centre Netherlands, Leiden University Medical Center , Leiden , The Netherlands
| | - Troels Krarup Hansen
- b Department of Endocrinology and Internal Medicine , Aarhus University Hospital , Aarhus , Denmark
| | - Emile de Heer
- e Department of Pathology , Leiden University Medical Center , Leiden , The Netherlands
| | - Peter Ten Dijke
- d Department of Molecular Cell Biology , Cancer Genomics Centre Netherlands, Leiden University Medical Center , Leiden , The Netherlands
| | - Alexander Rosendahl
- a Department of Diabetes Complications Research , Novo Nordisk A/S , Måløv , Denmark
| |
Collapse
|
23
|
Bamberg K, Johansson U, Edman K, William-Olsson L, Myhre S, Gunnarsson A, Geschwindner S, Aagaard A, Björnson Granqvist A, Jaisser F, Huang Y, Granberg KL, Jansson-Löfmark R, Hartleib-Geschwindner J. Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. PLoS One 2018; 13:e0193380. [PMID: 29474466 PMCID: PMC5825103 DOI: 10.1371/journal.pone.0193380] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/11/2018] [Indexed: 11/23/2022] Open
Abstract
Excess mineralocorticoid receptor (MR) activation promotes target organ dysfunction, vascular injury and fibrosis. MR antagonists like eplerenone are used for treating heart failure, but their use is limited due to the compound class-inherent hyperkalemia risk. Here we present evidence that AZD9977, a first-in-class MR modulator shows cardio-renal protection despite a mechanism-based reduced liability to cause hyperkalemia. AZD9977 in vitro potency and binding mode to MR were characterized using reporter gene, binding, cofactor recruitment assays and X-ray crystallopgraphy. Organ protection was studied in uni-nephrectomised db/db mice and uni-nephrectomised rats administered aldosterone and high salt. Acute effects of single compound doses on urinary electrolyte excretion were tested in rats on a low salt diet. AZD9977 and eplerenone showed similar human MR in vitro potencies. Unlike eplerenone, AZD9977 is a partial MR antagonist due to its unique interaction pattern with MR, which results in a distinct recruitment of co-factor peptides when compared to eplerenone. AZD9977 dose dependently reduced albuminuria and improved kidney histopathology similar to eplerenone in db/db uni-nephrectomised mice and uni-nephrectomised rats. In acute testing, AZD9977 did not affect urinary Na+/K+ ratio, while eplerenone increased the Na+/K+ ratio dose dependently. AZD9977 is a selective MR modulator, retaining organ protection without acute effect on urinary electrolyte excretion. This predicts a reduced hyperkalemia risk and AZD9977 therefore has the potential to deliver a safe, efficacious treatment to patients prone to hyperkalemia.
Collapse
MESH Headings
- Administration, Oral
- Aldosterone
- Animals
- Benzoates/chemistry
- Benzoates/pharmacokinetics
- Benzoates/pharmacology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Eplerenone
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice, Mutant Strains
- Mineralocorticoid Receptor Antagonists/chemistry
- Mineralocorticoid Receptor Antagonists/pharmacokinetics
- Mineralocorticoid Receptor Antagonists/pharmacology
- Molecular Structure
- Oxazines/chemistry
- Oxazines/pharmacokinetics
- Oxazines/pharmacology
- Potassium/urine
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Sodium/urine
- Sodium, Dietary
- Spironolactone/analogs & derivatives
- Spironolactone/chemistry
- Spironolactone/pharmacokinetics
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Krister Bamberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Johansson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lena William-Olsson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Myhre
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Aagaard
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM U1138 Team 1, Paris, France
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth L. Granberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Judith Hartleib-Geschwindner
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Tang L, Wu Y, Tian M, Sjöström CD, Johansson U, Peng XR, Smith DM, Huang Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E563-E576. [PMID: 28811292 DOI: 10.1152/ajpendo.00086.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic oral agents indicating promising effects on cardiovascular and renal end points. However, the renoprotective effects of SGLT2 inhibitors are not fully understood. Also, metabolic effects of SGLT2 inhibition on other organ systems, such as effects on hepatic steatosis, are not fully understood. This study sought to address these questions by treating 18-wk-old uninephrectomized db/db mice with the selective SGLT2 inhibitor dapagliflozin. Untreated db/db mice developed progressive albuminuria, glomerular mesangial matrix expansion, and fatty liver associated with increased renal expression of TGFβ1, PAI-1, type IV collagen and fibronectin, and liver deposition of fibronectin, type I and III collagen, and laminin. Treatment with dapagliflozin (1 mg·kg-1·day-1) via gel diet from 18 to 22 wk of age not only reduced blood glucose (371.14 ± 55.02 mg/dl in treated db/db vs. 573.53 ± 21.73 mg/dl in untreated db/db, P < 0.05) and Hb A1c levels (9.47 ± 0.79% in treated db/db vs. 12.1 ± 0.73% in untreated db/db, P < 0.05) but also ameliorated the increases in albuminuria and markers of glomerulosclerosis and liver injury seen in untreated db/db mice. Furthermore, both renal expressions of NF-kB p65, MCP-1, Nox4, Nox2, and p47phox and urine TBARS levels and liver productions of myeloperoxidase and reactive oxygen species, the markers of tissue inflammation and oxidative stress, were increased in untreated db/db mice, which were reduced by dapagliflozin administration. These results demonstrate that dapagliflozin not only improves hyperglycemia but also slows the progression of diabetes-associated glomerulosclerosis and liver fibrosis by improving hyperglycemia-induced tissue inflammation and oxidative stress.
Collapse
Affiliation(s)
- Li Tang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Center of Kidney Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China
| | - Yuanyuan Wu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mi Tian
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - C David Sjöström
- Global Medicine Development Unit, AstraZeneca Gothenburg, Sweden
| | - Ulrika Johansson
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden; and
| | - Xiao-Rong Peng
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden; and
| | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Yufeng Huang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah;
| |
Collapse
|
25
|
Fan Y, Zhang J, Xiao W, Lee K, Li Z, Wen J, He L, Gui D, Xue R, Jian G, Sheng X, He JC, Wang N. Rtn1a-Mediated Endoplasmic Reticulum Stress in Podocyte Injury and Diabetic Nephropathy. Sci Rep 2017; 7:323. [PMID: 28336924 PMCID: PMC5428279 DOI: 10.1038/s41598-017-00305-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
We previously reported a critical role of reticulon (RTN) 1A in mediating endoplasmic reticulum (ER) stress in kidney tubular cells and the expression of RTN1A correlates with the renal function and the severity of kidney injury in patients with diabetic nephropathy (DN). Here, we determined the roles of RTN1A and ER stress in podocyte injury and DN. We used db/db mice with early unilateral nephrectomy (Unx) as a murine model of progressive DN and treated mice with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress. We found increased expression of RTN1A and ER stress markers in the kidney of db/db-Unx mice. Treatment of TUDCA not only attenuated proteinuria and kidney histological changes, but also ameliorated podocyte and glomeruli injury in diabetic mice, which were associated with reduction of RTN1A and ER stress marker expression in the podocytes of TUDCA-treated mice. In vitro, we showed RTN1A mediates albumin-induced ER stress and apoptosis in human podocytes. A positive feedback loop between RTN1A and CHOP was found leading to an enhanced ER stress in podocytes. Our data suggest that ER stress plays a major role in podocyte injury in DN and RTN1A might be a key regulator of ER stress in podocytes.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenzhen Xiao
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Zhengzhe Li
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohua Sheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, United States. .,Renal Section, James J Peter Veterans Administration Medical Center, Bronx, NY, United States.
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
26
|
Zhao X, Khurana S, Charkraborty S, Tian Y, Sedor JR, Bruggman LA, Kao HY. α Actinin 4 (ACTN4) Regulates Glucocorticoid Receptor-mediated Transactivation and Transrepression in Podocytes. J Biol Chem 2016; 292:1637-1647. [PMID: 27998979 DOI: 10.1074/jbc.m116.755546] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are a general class of steroids that possess renoprotective activity in glomeruli through their interaction with the glucocorticoid receptor. However, the mechanisms by which glucocorticoids ameliorate proteinuria and glomerular disease are not well understood. In this study, we demonstrated that α actinin 4 (ACTN4), an actin-cross-linking protein known to coordinate cytoskeletal organization, interacts with the glucocorticoid receptor (GR) in the nucleus of human podocytes (HPCs), a key cell type in the glomerulus critical for kidney filtration function. The GR-ACTN4 complex enhances glucocorticoid response element (GRE)-driven reporter activity. Stable knockdown of ACTN4 by shRNA in HPCs significantly reduces dexamethasone-mediated induction of GR target genes and GRE-driven reporter activity without disrupting dexamethasone-induced nuclear translocation of GR. Synonymous mutations or protein expression losses in ACTN4 are associated with kidney diseases, including focal segmental glomerulosclerosis, characterized by proteinuria and podocyte injury. We found that focal segmental glomerulosclerosis-linked ACTN4 mutants lose their ability to bind liganded GR and support GRE-mediated transcriptional activity. Mechanistically, GR and ACTN4 interact in the nucleus of HPCs. Furthermore, disruption of the LXXLL nuclear receptor-interacting motif present in ACTN4 results in reduced GR interaction and dexamethasone-mediated transactivation of a GRE reporter while still maintaining its actin-binding activity. In contrast, an ACTN4 isoform, ACTN4 (Iso), that loses its actin-binding domain is still capable of potentiating a GRE reporter. Dexamethasone induces the recruitment of ACTN4 and GR to putative GREs in dexamethasone-transactivated promoters, SERPINE1, ANGPLT4, CCL20, and SAA1 as well as the NF-κB (p65) binding sites on GR-transrepressed promoters such as IL-1β, IL-6, and IL-8 Taken together, our data establish ACTN4 as a transcriptional co-regulator that modulates both dexamethasone-transactivated and -transrepressed genes in podocytes.
Collapse
Affiliation(s)
- Xuan Zhao
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Simran Khurana
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Sharmistha Charkraborty
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yuqian Tian
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - John R Sedor
- Rammelkamp Center for Education and Research and Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Leslie A Bruggman
- Rammelkamp Center for Education and Research and Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.
| |
Collapse
|
27
|
Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int 2016; 90:1045-1055. [DOI: 10.1016/j.kint.2016.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 06/16/2016] [Indexed: 01/31/2023]
|
28
|
Roshanravan H, Kim EY, Dryer SE. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes 2016; 65:3139-50. [PMID: 27388219 PMCID: PMC5033270 DOI: 10.2337/db16-0209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptors are expressed throughout the kidney, and the abundance of these receptors and some of their endogenous agonists are increased in diabetes. Moreover, sustained activation of podocyte NMDA receptors induces Ca(2+) influx, oxidative stress, loss of slit diaphragm proteins, and apoptosis. We observed that NMDA receptor subunits and their transcripts are increased in podocytes and mesangial cells cultured in elevated glucose compared with controls. A similar increase in NMDA subunits, especially NR1, NR2A, and NR2C, was observed in glomeruli and tubules of Akita mice. Sustained continuous treatment with the strong NMDA receptor antagonist dizocilpine (MK-801) for 28 days starting at 8 weeks of age reduced 24-h albumin excretion and mesangial matrix expansion and improved glomerular ultrastructure in Akita mice. MK-801 did not alleviate reduced Akita mouse body weight and had no effect on kidney histology or ultrastructure in DBA/2J controls. The structurally dissimilar NMDA antagonist memantine also reduced diabetic nephropathy, although it was less effective than MK-801. Inhibition of NMDA receptors may represent a valid therapeutic approach to reduce renal complications of diabetes, and it is possible to develop well-tolerated agents with minimal central nervous system effects. Two such agents, memantine and dextromethorphan, are already in widespread clinical use.
Collapse
Affiliation(s)
- Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX Division of Nephrology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
29
|
Gu C, Zhang J, Noble NA, Peng XR, Huang Y. An additive effect of anti-PAI-1 antibody to ACE inhibitor on slowing the progression of diabetic kidney disease. Am J Physiol Renal Physiol 2016; 311:F852-F863. [PMID: 27511457 DOI: 10.1152/ajprenal.00564.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
While angiotensin II blockade slows the progression of diabetic nephropathy, current data suggest that it alone cannot stop the disease process. New therapies or drug combinations will be required to further slow or halt disease progression. Inhibition of plasminogen activator inhibitor type 1 (PAI-1) aimed at enhancing ECM degradation has shown therapeutic potential in diabetic nephropathy. Here, using a mouse model of type diabetes, the maximally therapeutic dose of the PAI-1-neutralizing mouse monoclonal antibody (MEDI-579) was determined and compared with the maximally effective dose of enalapril. We then examined whether addition of MEDI-579 to enalapril would enhance the efficacy in slowing the progression of diabetic nephropathy. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis associated with increased expression of transforming growth factor (TGF)-β1, PAI-1, type IV collagen, and fibronectin from weeks 18 to 22, which were reduced by MEDI-579 at 3 mg/kg body wt, similar to enalapril given alone from weeks 12 to 22 Adding MEDI-579 to enalapril from weeks 18 to 22 resulted in further reduction in albuminuria and markers of renal fibrosis. Renal plasmin generation was dramatically reduced by 57% in diabetic mice, a decrease that was partially reversed by MEDI-579 or enalapril given alone but was further restored by these two treatments given in combination. Our results suggest that MEDI-579 is effective in slowing the progression of diabetic nephropathy in db/db mice and that the effect is additive to ACEI. While enalapril is renal protective, the add-on PAI-1 antibody may offer additional renoprotection in progressive diabetic nephropathy via enhancing ECM turnover.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Pathology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China.,Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Jiandong Zhang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Nancy A Noble
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| | - Xiao-Rong Peng
- Bioscience, AstraZeneca R&D, Pepparredsleden 1, Molndal SE-43183, Sweden
| | - Yufeng Huang
- Division of Nephrology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
30
|
Zhou G, Johansson U, Peng XR, Bamberg K, Huang Y. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am J Transl Res 2016; 8:1339-1354. [PMID: 27186263 PMCID: PMC4859623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Although blockade of the renin-angiotensin-system (RAS) has become standard therapy for diabetic nephropathy (DN), decline in kidney function towards end-stage renal disease is seen in many patients. Elevated plasma aldosterone often accompanies RAS blockade by a phenomenon known as "aldosterone escape" and activates the mineralocorticoid receptor (MR). We therefore examined whether addition of the MR antagonist eplerenone to an ACEI would enhance the efficacy in slowing the progression of DN. Untreated uninephrectomized diabetic db/db mice developed progressive albuminuria and glomerulosclerosis between weeks 18 and 22, associated with decreased number of podocytes and increased renal expression of fibrotic markers. The therapeutic effect of eplerenone at 100 mg/kg BW/d on albuminuria, podocyte injury and renal fibrosis was similar to that of enalapril given alone at maximally effective doses. Adding eplerenone to enalapril resulted in further reduction in these measurements. Renal expressions of TNF-α, MCP-1, Nox2 and p47phox and renal TBARS levels, markers of inflammation and oxidative stress, were increased during disease progression in diabetic mice, which were reduced by eplerenone or enalapril given alone and further reduced by the two drugs given in combination. However, there were no treatment related effects on plasma K+. Our results suggest that eplerenone is effective in slowing the progression of DN in db/db mice and that the effect is additive to an ACEI. The addition of an MR antagonist void of effects on plasma K+ to an ACEI may offer additional renoprotection in progressive DN via blocking the effects of aldosterone due to escape or diabetes-induction.
Collapse
Affiliation(s)
- Guangyu Zhou
- Division of Nephrology, Department of Internal Medicine, Shengjing Hospital, China Medical University36 Sanhao Avenue, Heping District, Shenyang 110004, China
- Division of Nephrology&Hypertension, Department of Internal Medicine, University of Utah School of MedicineSalt Lake City, UT, 84108, USA
| | - Ulrika Johansson
- Bioscience, AstraZeneca R&DPepparredsleden 1, Molndal, SE-43183, Sweden
| | - Xiao-Rong Peng
- Bioscience, AstraZeneca R&DPepparredsleden 1, Molndal, SE-43183, Sweden
| | - Krister Bamberg
- Bioscience, AstraZeneca R&DPepparredsleden 1, Molndal, SE-43183, Sweden
| | - Yufeng Huang
- Division of Nephrology&Hypertension, Department of Internal Medicine, University of Utah School of MedicineSalt Lake City, UT, 84108, USA
| |
Collapse
|
31
|
Liu RM, Eldridge S, Watanabe N, Deshane J, Kuo HC, Jiang C, Wang Y, Liu G, Schwiebert L, Miyata T, Thannickal VJ. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma. Am J Physiol Lung Cell Mol Physiol 2015; 310:L328-36. [PMID: 26702150 DOI: 10.1152/ajplung.00217.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022] Open
Abstract
Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Stephanie Eldridge
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nobuo Watanabe
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Jessy Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui-Chien Kuo
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa Schwiebert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Ding W, Xu C, Wang B, Zhang M. Rotenone Attenuates Renal Injury in Aldosterone-Infused Rats by Inhibiting Oxidative Stress, Mitochondrial Dysfunction, and Inflammasome Activation. Med Sci Monit 2015; 21:3136-43. [PMID: 26474533 PMCID: PMC4614375 DOI: 10.12659/msm.895945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) and inflammation both contribute to the progression of aldosterone-induced renal injury. To better understand the underlying mechanisms, we examined mitochondrial dysfunction and NLRP3 inflammasome activation in aldosterone-infused rats, and explored the role of rotenone in attenuating these injuries. MATERIAL AND METHODS Sprague-Dawley rats were divided into 3 groups: vehicle-treated, aldosterone-infused, and aldosterone plus rotenone. Renal damage was evaluated using PAS staining and electron microscopy. Levels of ROS were measured from renal tissue and serum; immunohistochemistry analysis examined the inflammation pathway; Western blot and real-time PCR assessed NLRP3 inflammasome activity. RESULTS Glomerular segmental sclerosis, foot process effacement, and proteinuria were demonstrated in the aldosterone-infused rats. Specifically, the thiobarbituric acid-reactive substances (TBARS) oxidative stress marker, MDA, was significantly increased; ATP content and mtDNA copy number were markedly decreased; inflammatory mediators NF-κB p65 and CTGF were upregulated; and NLRP3 inflammasome and its related target proteins, IL-1β and IL-18, were also increased. Treatment with rotenone, an inhibitor of mitochondrial complex I, significantly attenuated oxidative stress, mitochondrial dysfunction, and inflammasome response in aldosterone-infused rats. CONCLUSIONS Rotenone ameliorated aldosterone-infused renal injury, possibly by inhibiting oxidative stress, mitochondrial dysfunction, and NLRP3 inflammasome activity. These results provide novel evidence for the role of rotenone in aldosterone-induced renal injury or other chronic kidney disease.
Collapse
Affiliation(s)
- Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Chengyan Xu
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai, China (mainland)
| | - Bin Wang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai, China (mainland)
| | - Minmin Zhang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
33
|
Zhou G, Liu X, Cheung AK, Huang Y. Efficacy of aliskiren, compared with angiotensin II blockade, in slowing the progression of diabetic nephropathy in db/db mice: should the combination therapy be a focus? Am J Transl Res 2015; 7:825-840. [PMID: 26175845 PMCID: PMC4494135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
Although the intensive use of angiotensin II blockade (ACEI or ARB), progression of diabetic nephropathy is common. A feedback increase in renin production often accompanies angiotensin II blockade. We therefore examined whether aliskiren, a direct renin inhibitor, confers better renoprotection than angiotensin II blockade and whether the addition of aliskiren to an ACEI or ARB would enhance the efficacy in slowing the progression of glomerulosclerosis in diabetes. Untreated db/db mice developed progressive mesangial matrix expansion and albuminuria between weeks 18 and 22, associated with reduction of WT-1 immunopositive podocytes and nephrin and podocin production and induction of desmin and B7-1 generation and renal expression of TGFß1, PAI-1, fibronectin and type IV collagen. Treatment with aliskiren at 30 mg/kg/d inhibited the increases in albuminuria and markers of renal fibrosis and the changes that are indicative of podocyte injury seen in the db/db mice. Notably, the therapeutic effect of aliskiren was similar to that of either enalapril or valsartan given alone at maximally effective doses. Combined therapy caused the loss of 10% ~ 16.6% of db/db mice, yielded no further reduction in renal fibrosis and podocyte injury but further reduced albuminuria and renal production of TNFα, Nox2 and p47phox and urine MCP-1 and malondialdehyde levels, the markers of renal inflammation and oxidative stress. These results suggest that aliskiren, enalapril and valsartan are equally effective in slowing the progression of diabetic nephropathy. The use of combination therapy with aliskiren and ACEI/ARB may not be strongly supported.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Internal Medicine, Division of Nephrology, Shengjing Hospital, China Medical UniversityShenyang, China
- Department of Internal Medicine, Division of Nephrology, University of Utah School of MedicineSalt Lake City, Utah, USA
| | - Xia Liu
- Department of Internal Medicine, Division of Nephrology, University of Utah School of MedicineSalt Lake City, Utah, USA
| | - Alfred K Cheung
- Department of Internal Medicine, Division of Nephrology, University of Utah School of MedicineSalt Lake City, Utah, USA
- Medical Care Center, Veterans Affairs Salt Lake City Health Care SystemSalt Lake City, Utah, USA
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology, University of Utah School of MedicineSalt Lake City, Utah, USA
| |
Collapse
|
34
|
Xu C, Ding W, Zhang M, Gu Y. Protective effects of angiotensin-(1-7) administrated with an angiotensin-receptor blocker in a rat model of chronic kidney disease. Nephrology (Carlton) 2014; 18:761-9. [PMID: 23901805 DOI: 10.1111/nep.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Abstract
AIM Angiotensin-(1-7) (Ang-(1-7)) opposes angiotensin-II-induced cell growth, matrix accumulation and fibrosis in cardiac tissue. However, the role of Ang-(1-7) in the pathogenesis of renal fibrosis is uncertain. This study observed the effects of Ang-(1-7), on its own or in combination with losartan, an angiotensin-receptor blocker, on five-sixths nephrectomized rats. METHODS Male Sprague-Dawley rats underwent five-sixths nephrectomy, and then were either untreated, treated with Ang-(1-7), treated with losartan, or treated with a combination therapy of Ang-(1-7) and losartan. After 8 weeks, renal function was assessed by measuring systolic blood pressure, serum creatinine and proteinuria. The effect of nephrectomy on the renin-angiotensin system was examined by measuring plasma levels of Ang-II and Ang-(1-7). The extent of glomerulosclerosis and tubulointerstitial fibrosis was assessed by periodic acid-Schiff staining and Masson-trichrome staining. The expression of plasminogen activator inhibitor-1, fibronectin and angiopoietins-Tie-2 was investigated by immunohistochemistry and western blot. RESULTS In the groups of treated rats, serum creatinine, proteinuria and markers of glomerulosclerosis, such as fibronectin and plasminogen activator inhibitor-1, were ameliorated compared with the untreated, nephrectomized rats. Plasma Ang-(1-7) levels were elevated in all treatment groups, but the plasma Ang-II levels were reduced in the Ang-(1-7)-treated group and the combination therapy group. The ratio of Ang-1/Ang-2 was increased in the combination therapy group compared with two other treatment groups. CONCLUSION Ang-(1-7) ameliorated the renal injury of nephrectomized rats. The combination of Ang-(1-7) treatment alongside losartan exerted a superior effect to that of Ang-(1-7) alone on regression of glomerulosclerosis.
Collapse
Affiliation(s)
- Chengyan Xu
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
35
|
Rankin AC, Hendry BM, Corcoran JP, Xu Q. An in vitro model for the pro-fibrotic effects of retinoids: mechanisms of action. Br J Pharmacol 2014; 170:1177-89. [PMID: 23992207 DOI: 10.1111/bph.12348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/21/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinoids, including all-trans retinoic acid (tRA), have dose-dependent pro-fibrotic effects in experimental kidney diseases. To understand and eventually prevent such adverse effects, it is important to establish relevant in vitro models and unravel their mechanisms. EXPERIMENTAL APPROACH Fibrogenic effects of retinoids were assessed in NRK-49F renal fibroblasts using picro-Sirius red staining for collagens and quantified by spectrophotometric analysis of the eluted stain. Other methods included RT-qPCR, immunoassays and matrix metalloproteinase (MMP) activity assays. KEY RESULTS With or without TGF-β1, tRA was dose-dependently pro-fibrotic, notably increasing collagen accumulation. tRA and TGF-β1 additively suppressed expression of mRNA for MMP2, 3 and 13 and suppressed MMP activity. tRA, in the presence of TGF-β1, induced plasminogen activator inhibitor-1 (PAI-1) mRNA and they additively induced PAI-1 protein expression. A PAI-1 inhibitor, a pan-retinoic acid receptor (RAR) antagonist and a pan-retinoid X receptor (RXR) antagonist each partially prevented the pro-fibrotic effect of tRA. The dose-dependent pro-fibrotic effects of a pan-RXR agonist were similar to those of tRA. A pan-RAR agonist showed weaker, less dose-dependent pro-fibrotic effects and the pro-fibrotic effects of RARα and RARβ-selective agonists were even smaller. An RARγ-selective agonist did not affect fibrogenesis. CONCLUSIONS AND IMPLICATIONS An in vitro model for the pro-fibrotic effects of retinoids was established in NRK-49F cells. It was associated with reduced MMP activity and increased PAI-1 expression, and was probably mediated by RXR and RAR. To avoid or antagonize the pro-fibrotic activity of tRA, further studies on RAR isotype-selective agonists and PAI-1 inhibitors might be of value.
Collapse
Affiliation(s)
- A C Rankin
- Department of Renal Medicine, King's College London, London, UK
| | | | | | | |
Collapse
|
36
|
Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. J Transl Med 2014; 94:633-44. [PMID: 24687120 PMCID: PMC4361016 DOI: 10.1038/labinvest.2014.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/27/2013] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) promotes or abates fibrotic processes occurring in different organs. Binding of PAI-1 to vitronectin, an extracellular matrix component, may inhibit vitronectin-integrin complex-mediated cellular responses in pathophysiological conditions. To investigate the importance of plasmin suppression vs vitronectin-binding pathways of PAI-1 in cardiac fibrosis, we studied uninephrectomized mice fed a high salt diet and infused with angiotensin II (Ang II) together with different PAI-1 variants, including PAI-1AK (AK) that inhibits plasminogen activators but does not bind vitronectin, PAI-1RR (RR) that binds vitronectin but does not have protease inhibitory effects or control PAI-1 (CPAI), the control mutant that has similar molecular backbone and half-life as AK and RR while retaining all functions of native PAI-1. Compared with RR and CPAI, non-vitronectin-binding AK significantly increased expression of cardiac fibroblast marker, periostin (Ang+AK 8.40±3.55 vs Ang+RR 2.23±0.44 and Ang+CPAI 2.33±0.12% positive area, both P<0.05) and cardiac fibrosis (Ang+AK 1.79±0.26% vs Ang+RR 0.91±0.18% and Ang+CPAI 0.81±0.12% fibrotic area, both P<0.05), as well as Col1 mRNA (Ang+AK 12.81±1.84 vs Ang+RR 4.04±1.06 and Ang+CPAI 5.23±1.21 fold increase, both P<0.05). To elucidate mechanisms underlying the protective effects of vitronectin-binding PAI-1 against fibrosis, fibroblasts from normal adult human ventricles were stimulated with Ang and different PAI-1 variants. Protease inhibitory AK and CPAI increased supernatant fibronectin, while decreasing plasminogen activator/plasmin activities and matrix metalloproteinase. RR and CPAI variants significantly reduced fibroblast expression of integrin β3, vitronectin level in the supernatant and fibroblast adhesion to vitronectin compared with the non-vitronectin-binding AK. Further, RR and CPAI preserved apoptotic, decreased anti-apoptotic and proliferative activities in fibroblasts. Thus, PAI-1 promotes or protects against development of cardiac fibrosis differentially through the protease inhibitory pathway or through its binding to vitronectin.
Collapse
|
37
|
Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci (Lond) 2014; 126:707-20. [PMID: 24195695 DOI: 10.1042/cs20130223] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Higher doses of AngII (angiotensin II) blockers are intended to optimize albuminuria reduction rather than for blood pressure control in chronic kidney disease. However, the long-term renoprotection of high-dose AngII blockers has yet to be defined. The present study sought to determine whether doses of ARB (AngII receptor blocker) that maximally reduce proteinuria could slow the progression of glomerulosclerosis in the uninephrectomized db/db mouse, a model of Type 2 diabetes. Untreated uninephrectomized db/db mice had normal blood pressure, but developed progressive albuminuria and mesangial matrix expansion between 18 and 22 weeks of age, which was associated with increased renal expression of TGFβ1 (transforming growth factor β1), PAI-1 (plasminogen-activator inhibitor-1), type IV collagen and FN (fibronectin). Treatment with valsartan in the drinking water of db/db mice from 18 to 22 weeks of age, at a dose that was determined previously to maximally reduce proteinuria, prevented the increases in albuminuria and the markers of renal fibrosis seen in untreated db/db mice. In addition, WT-1 (Wilms tumour protein-1)-immunopositive podocyte numbers were found to be lower in the untreated glomeruli of mice with diabetes. The expression of podocin and nephrin were continually decreased in mice with diabetes between 18 and 22 weeks of age. These changes are indicative of podocyte injury and the administration of valsartan ameliorated them substantially. Renal expression of TNFα (tumour necrosis factor α), MCP-1 (monocyte chemoattractant protein-1), Nox2 (NADPH oxidase 2), p22phox and p47phox and urine TBARS (thiobarbituric acid-reacting substance) levels, the markers of renal inflammation and oxidative stress, were increased during disease progression in mice with diabetes. Valsartan treatment was shown to reduce these markers. Thus high doses of valsartan not only reduce albuminuria maximally, but also halt the progression of the glomerulosclerosis resulting from Type 2 diabetes via a reduction in podocyte injury and renal oxidative stress and inflammation.
Collapse
|
38
|
Guo X, Zhou G, Guo M, Cheung AK, Huang Y, Beddhu S. Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin II. Physiol Rep 2014; 2:e00230. [PMID: 24744899 PMCID: PMC3966238 DOI: 10.1002/phy2.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/13/2022] Open
Abstract
Adiponectin is a multifunctional adipokine with insulin-sensitizing, anti-inflammatory, and vasoprotective properties. Epidemiology studies have, however, shown that high levels of serum adiponectin are associated with kidney disease progression. We, therefore, examined the effect of adiponectin administration on the progression of glomerulosclerosis in the obese diabetic (db/db) mouse, a model of type II diabetes. Recombinant human adiponectin was administered intraperitoneally at a dose of 30 or 150 μg per day from weeks 18 to 20. Rosiglitazone administered by gavage at 20 mg/kg body weight (BW) daily served as a therapeutic control. Untreated uninephrectomized db/db mice developed progressive albuminuria and glomerular matrix expansion, associated with increased expression of transforming growth factor beta 1 (TGFβ1), plasminogen activator inhibitor type 1 (PAI-1), collagen I (Col I), and fibronectin (FN). Treatment with adiponectin at either dose reduced the increases in albuminuria and markers of renal fibrosis seen in db/db mice, without affecting BW and blood glucose. Renal expressions of tumor necrosis factor-α (TNF-α) and monocyte-chemoattractant protein-1 (MCP-1) and urinary TNF-α levels, the markers of renal inflammation, were increased in diabetic mice, whereas adiponectin treatment significantly reduced the levels of these markers. Furthermore, adiponectin obliterated the stimulatory effects of angiotensin II (Ang II), but not the total effect of TGFβ1, on the mRNA expression of PAI-1, Col I, and FN by cultured glomerular mesangial cells. These observations suggest that adiponectin treatment reduces glomerulosclerosis resulting from type II diabetes probably through its anti-inflammatory and angiotensin-antagonistic effects. Thus, adiponectin has therapeutic implications in the prevention of progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaohua Guo
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guangyu Zhou
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah ; Division of Nephrology, Department of Internal Medicine, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Meizi Guo
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Alfred K Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah ; Medical Care Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Srinivasan Beddhu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah ; Medical Care Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
39
|
Zhang J, Gu C, Lawrence DA, Cheung AK, Huang Y. A plasminogen activator inhibitor type 1 mutant retards diabetic nephropathy in db/db mice by protecting podocytes. Exp Physiol 2014; 99:802-15. [PMID: 24443353 DOI: 10.1113/expphysiol.2013.077610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A mutant non-inhibiting plasminogen activator inhibitor type 1 (PAI-1), termed PAI-1R, which reduces endogenous PAI-1 activity, has been shown to inhibit albuminuria and reduce glomerulosclerosis in experimental diabetes. The mechanism of the reduction of albuminuria is unclear. This study sought to determine whether the administration of PAI-1R protected podocytes from injury directly, thereby reducing albuminuria in the db/db mouse, a model of type 2 diabetes. Untreated uninephrectomized db/db mice developed significant mesangial matrix expansion and albuminuria at week 22 of age, associated with segmental podocyte foot-process effacement, reduction of renal nephrin, podocin and zonula occludin-1 production and induction of renal desmin and B7-1 generation. In contrast, treatment with PAI-1R at 0.5 mg (kg body weight)(-1) i.p., twice daily from week 20 to 22, reduced glomerular matrix accumulation, fibronectin and collagen production and albuminuria by 36, 62, 65 and 31%, respectively (P < 0.05), without affecting blood glucose level or body weight. Podocyte morphology and protein markers were also significantly attenuated by PAI-1R administration. Importantly, recombinant PAI-1 downregulated nephrin and zonula occludin-1 but increased desmin and B7-1 mRNA expression and protein production by podocytes in vitro, similar to the effects of transforming growth factor-β1. These observations provide evidence that PAI-1, in a manner similar to transforming growth factor-β1, directly induces podocyte injury, particularly in the setting of diabetes, where elevated PAI-1 may contribute to the progression of albuminuria. Reducing the increased PAI-1 activity by administration of PAI-1R, in fact, reduces podocyte injury, thereby reducing albuminuria. Therefore, PAI-1R provides an additional therapeutic effect in slowing the progression of diabetic nephropathy via the protection of podocytes.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chunyan Gu
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA Medical Care Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Yufeng Huang
- Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
40
|
Zimering MB, Zhang JH, Guarino PD, Emanuele N, McCullough PA, Fried LF. Endothelial cell autoantibodies in predicting declining renal function, end-stage renal disease, or death in adult type 2 diabetic nephropathy. Front Endocrinol (Lausanne) 2014; 5:128. [PMID: 25157242 PMCID: PMC4127944 DOI: 10.3389/fendo.2014.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023] Open
Abstract
Albuminuria is a strong predictor of diabetic nephropathy chronic kidney disease outcomes. Yet, therapeutic albuminuria-lowering has not consistently translated into a reduction in clinical events suggesting the involvement of additional pathogenic factors. Our hypothesis is that anti-endothelial cell autoantibodies play a role in development and progression in diabetic nephropathy. We determined anti-endothelial cell antibody (AECA) bioactivity in protein A-elutes of baseline plasma in 305 participants in the VA NEPHRON-D study, a randomized trial of angiotensin receptor blocker (ARB) or dual ARB plus angiotensin-converting enzyme inhibitor therapy in type 2 diabetes with proteinuric nephropathy. Thirty-eight percent (117/305) of participants had significantly reduced endothelial cell survival ( ≤80%) in the IgG fraction of plasma. A VA NEPHRON-D primary endpoint [end-stage renal disease (ESRD), significant reduction in estimated glomerular filtration rate, or death] was experienced by 58 individuals. In adjusted Cox regression analysis, there was a significant interaction effect of baseline anti-endothelial cell-mediated cell survival and albuminuria on the hazard rate (HR) for primary composite endpoint (P = 0.017). Participants lacking strongly inhibitory antibodies with albuminuria ≥1 g/g creatinine had a significantly increased primary event hazard ratio, 3.41 - 95% confidence intervals (CI 1.84-6.33; P < 0.001) compared to those lacking strongly inhibitory antibodies with lower baseline albuminuria ( <1 g/g creatinine). These results suggest that anti-endothelial cell antibodies interact significantly with albuminuria in predicting the composite endpoint of death, ESRD, or substantial decline in renal function in older, adult type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Mark B. Zimering
- Medical Service, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- *Correspondence: Mark B. Zimering, Veterans Affairs New Jersey Healthcare System, Medical Service 111, 151 Knollcroft Road, Lyons, NJ 07939, USA e-mail:
| | - Jane H. Zhang
- West Haven Cooperative Studies Program Coordinating Center, Connecticut Veterans Healthcare System, West Haven, CT, USA
| | - Peter D. Guarino
- West Haven Cooperative Studies Program Coordinating Center, Connecticut Veterans Healthcare System, West Haven, CT, USA
| | | | - Peter A. McCullough
- Baylor University Medical Center, Baylor Heart and Vascular Institute, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX, USA
- The Heart Hospital, Plano, TX, USA
| | | | | |
Collapse
|
41
|
Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A, Stavar L, Masson EA, Momen A, Shikatani EA, John R, Husain M, Fantus IG. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013; 62:3874-86. [PMID: 23942551 PMCID: PMC3806624 DOI: 10.2337/db12-1010] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α-converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose-stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose-induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK-signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Kanta Taniguchi
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ling Xia
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Howard J. Goldberg
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ken W.K. Lee
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anu Shah
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laura Stavar
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Elodie A.Y. Masson
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Abdul Momen
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Eric A. Shikatani
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - I. George Fantus
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: I. George Fantus,
| |
Collapse
|
42
|
Małgorzewicz S, Skrzypczak-Jankun E, Jankun J. Plasminogen activator inhibitor-1 in kidney pathology (Review). Int J Mol Med 2013; 31:503-10. [PMID: 23314920 DOI: 10.3892/ijmm.2013.1234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/09/2012] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) inhibits tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), which convert plasminogen to plasmin, a strong proteolytic enzyme. Thus, PAI-1 is a primary and negative regulator of plasmin-driven proteolysis. In addition to its main role as an inhibitor of fibrinolysis, PAI‑1 has been implicated as a mediator in other processes, including fibrosis, rheumatoid arthritis, atherosclerosis, tumor angiogenesis and bacterial infections. It also significantly modulates cellular adhesion or migration, wound healing, angiogenesis and tumor cell metastasis. However, in the present study, we have reviewed the literature in relation to different kidney diseases where PAI-1 regulates fibrinolysis and acts independently of proteolysis. PAI-1 is normally produced in trace amounts in healthy kidneys but is synthesized in a wide variety of both acute and chronic diseased kidneys. We reviewed the role of PAI-1 in diabetic kidney nephropathy, chronic kidney disease, hemodialysis, peritoneal dialysis and in kidney transplantation. Increased PAI-1 expression results in accumulation of extracellular matrix (ECM) leading to numerous kidney diseases. Predisposition to some diseases is due to the genetic role of PAI-1 in their development. A number of studies demonstrated that the inhibition of PAI-1 activity or therapy with a mutant PAI-1 increases matrix turnover and reduces glomerulosclerosis by competing with endogenous PAI-1. This strongly suggests that PAI-1 is a valid target in the treatment of fibrotic renal disease. However, net proteolytic activity depends on the delicate balance between its negative regulation by PAI-1 and activation by uPA and tPA. Also, plasmin activated by its inhibitors upregulates activity of other enzymes. Thus, assessment of prognosis for the diseased kidney should include a variety of proteolysis regulators and enzymes.
Collapse
Affiliation(s)
- Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk 80-211, Poland
| | | | | |
Collapse
|
43
|
Gu C, Zhou G, Noble NA, Border WA, Cheung AK, Huang Y. Targeting reduction of proteinuria in glomerulonephritis: Maximizing the antifibrotic effect of valsartan by protecting podocytes. J Renin Angiotensin Aldosterone Syst 2012; 15:177-89. [DOI: 10.1177/1470320312466127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chunyan Gu
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Guangyu Zhou
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Nancy A Noble
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Wayne A Border
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Alfred K Cheung
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Yufeng Huang
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| |
Collapse
|
44
|
Chen L, Wu YG, Liu D, Lv LL, Zheng M, Ni HF, Cao YH, Liu H, Zhang P, Zhang JD, Liu BC. Urinary mRNA expression of CCN2/CCN3 as a noninvasive marker for monitoring glomerular structure changes in nondiabetic chronic kidney disease. Biomarkers 2012; 17:714-20. [DOI: 10.3109/1354750x.2012.722229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Glibenclamide induces collagen IV catabolism in high glucose-stimulated mesangial cells. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:183535. [PMID: 23008698 PMCID: PMC3447387 DOI: 10.1155/2012/183535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/12/2022]
Abstract
We have shown the full prevention of mesangial expansion in insulin-deficient diabetic rats by treatment with clinically-relevant dosages of glibenclamide (Glib). Studies in mesangial cells (MCs) also demonstrated reduction in the high glucose (HG)-induced accumulation of collagens, proposing that this was due to increased catabolism. In the present study, we investigated the signaling pathways that may be implicated in Glib action. Rat primary MCs were exposed to HG for 8 weeks with or without Glib in therapeutic (0.01 μM) or supratherapeutic (1.0 μM) concentrations. We found that HG increased collagen IV protein accumulation and PAI-1 mRNA and protein expression, in association with decreased cAMP generating capacity and decreased PKA activity. Low Glib increased collagen IV mRNA but fully prevented collagen IV protein accumulation and PAI-1 overexpression while enhancing cAMP formation and PKA activity. MMP2 mRNA, protein expression and gelatinolytic activity were also enhanced. High Glib was, overall, ineffective. In conclusion, low dosage/concentration Glib prevents HG-induced collagen accumulation in MC by enhancing collagen catabolism in a cAMP-PKA-mediated PAI-1 inhibition.
Collapse
|
46
|
Liu GC, Fang F, Zhou J, Koulajian K, Yang S, Lam L, Reich HN, John R, Herzenberg AM, Giacca A, Oudit GY, Scholey JW. Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 2012; 55:2522-32. [PMID: 22653270 DOI: 10.1007/s00125-012-2586-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/17/2012] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Reactive oxygen species (ROS) contribute to diabetes-induced glomerular injury and endoplasmic reticulum (ER) stress-induced beta cell dysfunction, but the source of ROS has not been fully elucidated. Our aim was to determine whether p47(phox)-dependent activation of NADPH oxidase is responsible for hyperglycaemia-induced glomerular injury in the Akita mouse, a model of type 1 diabetes mellitus resulting from ER stress-induced beta cell dysfunction. METHODS We examined the effect of deleting p47 (phox) (also known as Ncf1), the gene for the NADPH oxidase subunit, on diabetic nephropathy in the Akita mouse (Ins2 (WT/C96Y)) by studying four groups of mice: (1) non-diabetic mice (Ins2 (WT/WT)/p47 (phox+/+)); (2) non-diabetic p47 (phox)-null mice (Ins2 (WT/WT)/p47 (phox-/-)); (3) diabetic mice: (Ins2 (WT/C96Y)/p47 (phox+/+)); and (4) diabetic p47 (phox)-null mice (Ins2 (WT/C96Y)/p47 (phox-/-)). We measured the urinary albumin excretion rate, oxidative stress, mesangial matrix expansion, and plasma and pancreatic insulin concentrations in 16-week-old mice; we also measured glucose tolerance and insulin sensitivity, islet and glomerular NADPH oxidase activity and subunit expression, and pro-fibrotic gene expression in 8-week-old mice. In addition, we measured NADPH oxidase activity, subunit expression and pro-fibrotic gene expression in high glucose-treated murine mesangial cells. RESULTS Deletion of p47 (phox) reduced kidney hypertrophy, oxidative stress and mesangial matrix expansion, and also reduced hyperglycaemia by increasing pancreatic and circulating insulin concentrations. p47 (phox-/-) mice exhibited improved glucose tolerance, but modestly decreased insulin sensitivity. Deletion of p47 (phox) attenuated high glucose-induced activation of NADPH oxidase and pro-fibrotic gene expression in glomeruli and mesangial cells. CONCLUSIONS/INTERPRETATION Deletion of p47 (phox) attenuates diabetes-induced glomerular injury and beta cell dysfunction in the Akita mouse.
Collapse
Affiliation(s)
- G C Liu
- Institute of Medical Sciences, University of Toronto, 7326 Medical Sciences Building, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jankun J. Challenging delivery of VLHL NS plasminogen activator inhibitor-1 by osmotic pumps in diabetic mouse: A case report. Exp Ther Med 2012; 4:661-664. [PMID: 23170122 PMCID: PMC3501414 DOI: 10.3892/etm.2012.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/05/2012] [Indexed: 11/06/2022] Open
Abstract
ALZET(®) osmotic pumps are implantable devices used in animals for the continuous infusion of drugs or proteins at controlled rates from 1 day to 4 weeks. Pumps have been used successfully in a number of studies on the effects of controlled delivery of a wide range of experimental agents, independent of their properties. In the present study, use of these pumps was made in mice with diabetic nephropathy. Plasminogen activator inhibitor-1 (PAI-1) mediates diabetic nephropathy, which is characterized by the excessive accumulation of extracellular matrix (ECM) in the kidney. Disproportionate PAI-1 inactivates tissue plasminogen activator, which is one of the proteolytic enzymes in a cascade responsible for ECM remodeling in the kidney. The decrease of PAI-1 in the kidney has been shown to arrest the progression of nephropathy in experimental animals. This was achieved using inactive PAI-1R which increased the clearance of wild-type PAI-1 in order to protect net proteolytic activity and ECM clearance. However, this protein has a brief half-life in vivo, therefore, high and frequent doses are required. Thus, VLHL NS PAI-1 protein with a long half-life of over 700 h (Gln197Cys, Gly355Cys) inactivated by single point mutation (Arg369Ala) was used. Following the sacrifice of animals the tips of the flow moderators of the osmotic pumps in the treated animals were found to be clogged. In addition, from each pump from the treatment group, but not controls, we collected 50-150 μl of clear liquid containing VLHL NS PAI-1, cellular and serum proteins suggesting early pump sealing by cellular material. In conclusion, despite encouraging results obtained for the PAI-1R protein, the method of VLHL PAI-1 delivery should be ameliorated.
Collapse
Affiliation(s)
- Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, University of Toledo, Toledo, OH, USA ; Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland ; Protein Research Chair, Biochemistry Department, College of Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Wang L, Ly CM, Ko CY, Meyers EE, Lawrence DA, Bernstein AM. uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci 2012; 53:4765-75. [PMID: 22700714 DOI: 10.1167/iovs.12-10042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Vitronectin (VN) in provisional extracellular matrix (ECM) promotes cell migration. Fibrotic ECM also includes VN and, paradoxically, strongly adherent myofibroblasts (Mfs). Because fibrotic Mfs secrete elevated amounts of urokinase plasminogen activator (uPA), we tested whether increased extracellular uPA promotes the persistence of Mfs on VN. METHODS Primary human corneal fibroblasts (HCFs) were cultured in supplemented serum-free medium on VN or collagen (CL) with 1 ng/mL transforming growth factor β1 (TGFβ1). Adherent cells were quantified using crystal violet. Protein expression was measured by Western blotting and flow cytometry. Transfection of short interfering RNAs was performed by nucleofection. Mfs were identified by α-smooth muscle actin (α-SMA) stress fibers. Plasminogen activator inhibitor (PAI-1) levels were quantified by ELISA. RESULTS TGFβ1-treated HCFs secreted PAI-1 (0.5 uM) that bound to VN, competing with αvβ3/αvβ5 integrin/VN binding, thus promoting cell detachment from VN. However, addition of uPA to cells on VN increased Mf differentiation (9.7-fold), cell-adhesion (2.2-fold), and binding by the VN integrins αvβ3 and -β5 (2.2-fold). Plasmin activity was not involved in promoting these changes, as treatment with the plasmin inhibitor aprotinin had no effect. A dominant negative PAI-1 mutant (PAI-1R) that binds to VN but does not inhibit uPA prevented the increase in uPA-stimulated cell adhesion and reduced uPA-stimulated integrin αvβ3/αvβ5 binding to VN by 73%. CONCLUSIONS uPA induction of TGFβ1-dependent Mf differentiation on VN supports the hypothesis that elevated secretion of uPA in fibrotic tissue may promote cell adhesion and the persistence of Mfs. By blocking uPA-stimulated cell adhesion, PAI-1R may be a useful agent in combating corneal scarring.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
49
|
Jeon H, Kim JH, Kim JH, Lee WH, Lee MS, Suk K. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation 2012; 9:149. [PMID: 22747686 PMCID: PMC3418576 DOI: 10.1186/1742-2094-9-149] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/29/2012] [Indexed: 01/05/2023] Open
Abstract
Background Plasminogen activator inhibitor type 1 (PAI-1) is the primary inhibitor of urokinase type plasminogen activators (uPA) and tissue type plasminogen activators (tPA), which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP) 1/Janus kinase (JAK)/signal transducer and activator of transcription (STAT)1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.
Collapse
Affiliation(s)
- Hyejin Jeon
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Daegu, Joong-gu, 700-422, South Korea
| | | | | | | | | | | |
Collapse
|
50
|
Zheng M, Lv LL, Cao YH, Liu H, Ni J, Dai HY, Liu D, Lei XD, Liu BC. A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy. PLoS One 2012; 7:e34824. [PMID: 22629296 PMCID: PMC3356359 DOI: 10.1371/journal.pone.0034824] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/06/2012] [Indexed: 01/17/2023] Open
Abstract
Background The initiation and progression of diabetic nephropathy (DN) is complex. Quantification of mRNA expression in urinary sediment has emerged as a novel strategy for studying renal diseases. Considering the numerous molecules involved in DN development, a high-throughput platform with parallel detection of multiple mRNAs is needed. In this study, we constructed a self-assembling mRNA array to analyze urinary mRNAs in DN patients with aims to reveal its potential in searching novel biomarkers. Methods mRNA array containing 88 genes were fabricated and its performance was evaluated. A pilot study with 9 subjects including 6 DN patients and 3 normal controls were studied with the array. DN patients were assigned into two groups according to their estimate glomerular rate (eGFR): DNI group (eGFR>60 ml/min/1.73 m2, n = 3) and DNII group (eGFR<60 ml/min/1.73 m2, n = 3). Urinary cell pellet was collected from each study participant. Relative abundance of these target mRNAs from urinary pellet was quantified with the array. Results The array we fabricated displayed high sensitivity and specificity. Moreover, the Cts of Positive PCR Controls in our experiments were 24±0.5 which indicated high repeatability of the array. A total of 29 mRNAs were significantly increased in DN patients compared with controls (p<0.05). Among these genes, α-actinin4, CDH2, ACE, FAT1, synaptopodin, COL4α, twist, NOTCH3 mRNA expression were 15-fold higher than those in normal controls. In contrast, urinary TIMP-1 mRNA was significantly decreased in DN patients (p<0.05). It was shown that CTGF, MCP-1, PAI-1, ACE, CDH1, CDH2 mRNA varied significantly among the 3 study groups, and their mRNA levels increased with DN progression (p<0.05). Conclusion Our pilot study demonstrated that mRNA array might serve as a high-throughput and sensitive tool for detecting mRNA expression in urinary sediment. Thus, this primary study indicated that mRNA array probably could be a useful tool for searching new biomarkers for DN.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu-Han Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hou-Yong Dai
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | | | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- * E-mail:
| |
Collapse
|