1
|
Oulerich Z, Sferruzzi-Perri AN. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease. Am J Physiol Renal Physiol 2024; 327:F21-F36. [PMID: 38695077 PMCID: PMC11687964 DOI: 10.1152/ajprenal.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/21/2024] Open
Abstract
According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.
Collapse
Affiliation(s)
- Zoé Oulerich
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Agro Paris Tech, Université Paris-Saclay, Paris, France
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Yan YS, Feng C, Yu DQ, Tian S, Zhou Y, Huang YT, Cai YT, Chen J, Zhu MM, Jin M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front Nutr 2023; 10:1067282. [PMID: 37255932 PMCID: PMC10226394 DOI: 10.3389/fnut.2023.1067282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Diabetes mellitus during pregnancy, which can be classified into pregestational diabetes and gestational diabetes, has become much more prevalent worldwide. Maternal diabetes fosters an intrauterine abnormal environment for fetus, which not only influences pregnancy outcomes, but also leads to fetal anomaly and development of diseases in later life, such as metabolic and cardiovascular diseases, neuropsychiatric outcomes, reproduction malformation, and immune dysfunction. The underlying mechanisms are comprehensive and ambiguous, which mainly focus on microbiota, inflammation, reactive oxygen species, cell viability, and epigenetics. This review concluded with the influence of intrauterine hyperglycemia on fetal structure development and organ function on later life and outlined potential mechanisms that underpin the development of diseases in adulthood. Maternal diabetes leaves an effect that continues generations after generations through gametes, thus more attention should be paid to the prevention and treatment of diabetes to rescue the pathological attacks of maternal diabetes from the offspring.
Collapse
Affiliation(s)
- Yi-Shang Yan
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Qing Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Cai
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao-Miao Zhu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
4
|
Mihalovičová L, Kunšteková V, Miláček D, Janko J, Pastorek M, Konečná B, Gurecká R, Rausová Z, Uličná O, Celec P, Šebeková K. Severe gestational diabetes mellitus in lean dams is associated with low IL-1α levels and affects the growth of the juvenile mouse offspring. Sci Rep 2023; 13:1700. [PMID: 36717684 PMCID: PMC9886986 DOI: 10.1038/s41598-023-28903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We investigated how maternal gestational diabetes (GDM) impacts the metabolic status of offspring. GDM was induced in CD1 mice consuming a fast-food diet (FFD) by repeated low-dose streptozotocin injections before mating. Offspring of normoglycemic standard chow or the FFD consuming dams served as controls. In 4-week-old offspring weaned to standard chow, plasma concentrations of extracellular DNA, inflammatory markers, and parameters of the cardiometabolic status (glycemia, liver lipid content; body, organ, and fat weight) were determined. Two-factor analysis of variance indicated that the male offspring of GDM dams manifest postnatal growth retardation and lower relative kidney weight. Regardless of sex, GDM offspring manifest the lowest IL-1α levels, and other inflammatory markers showed mild and inconsistent alterations. Offspring of dams consuming the FFD displayed higher liver triacylglycerols content. The three groups of offspring showed no significant differences in glycemia and extracellular DNA. Partial least squares-discriminant analysis indicated that male GDM offspring present lower kidney, body, and brown adipose tissue weights; lower IL-1α levels, and higher concentrations of GM-CSF and IL-10 compared with their FFD counterparts. The model failed to select discriminative variables in females. In conclusion, in mice, maternal GDM in the absence of obesity adversely affects the early growth of juvenile male offspring.
Collapse
Affiliation(s)
- Lucia Mihalovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Veronika Kunšteková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Department of Biology, Faculty of Medicine, Slovak Medical University, 833 03, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Oľga Uličná
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.
| |
Collapse
|
5
|
Selle J, Bohl K, Höpker K, Wilke R, Dinger K, Kasper P, Abend B, Schermer B, Müller RU, Kurschat C, Nüsken KD, Nüsken E, Meyer D, Savai Pullamsetti S, Schumacher B, Dötsch J, Alcazar MAA. Perinatal Obesity Sensitizes for Premature Kidney Aging Signaling. Int J Mol Sci 2023; 24:ijms24032508. [PMID: 36768831 PMCID: PMC9916864 DOI: 10.3390/ijms24032508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 01/31/2023] Open
Abstract
Chronic Kidney Disease (CKD), a global health burden, is strongly associated with age-related renal function decline, hypertension, and diabetes, which are all frequent consequences of obesity. Despite extensive studies, the mechanisms determining susceptibility to CKD remain insufficiently understood. Clinical evidence together with prior studies from our group showed that perinatal metabolic disorders after intrauterine growth restriction or maternal obesity adversely affect kidney structure and function throughout life. Since obesity and aging processes converge in similar pathways we tested if perinatal obesity caused by high-fat diet (HFD)-fed dams sensitizes aging-associated mechanisms in kidneys of newborn mice. The results showed a marked increase of γH2AX-positive cells with elevated 8-Oxo-dG (RNA/DNA damage), both indicative of DNA damage response and oxidative stress. Using unbiased comprehensive transcriptomics we identified compartment-specific differentially-regulated signaling pathways in kidneys after perinatal obesity. Comparison of these data to transcriptomic data of naturally aged kidneys and prematurely aged kidneys of genetic modified mice with a hypomorphic allele of Ercc1, revealed similar signatures, e.g., inflammatory signaling. In a biochemical approach we validated pathways of inflammaging in the kidneys after perinatal obesity. Collectively, our initial findings demonstrate premature aging-associated processes as a consequence of perinatal obesity that could determine the susceptibility for CKD early in life.
Collapse
Affiliation(s)
- Jaco Selle
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Katrin Bohl
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Katja Höpker
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Rebecca Wilke
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Katharina Dinger
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Bastian Abend
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Bernhard Schermer
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Roman-Ulrich Müller
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Christine Kurschat
- Department of Medicine II, Nephrology Research Laboratory, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - David Meyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center of Lung Research (DZL), 35392 Gießen, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Translational Experimental Pediatrics—Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center of Lung Research (DZL), 35392 Gießen, Germany
- Correspondence: ; Tel.: +49-221-478-96876; Fax: +49-221-478-46868
| |
Collapse
|
6
|
Fukunaga S, Fujita Y. Low glomerular number at birth can lead to the development of chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1120801. [PMID: 36777357 PMCID: PMC9909536 DOI: 10.3389/fendo.2023.1120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) prevalence is increasing worldwide, and reducing the number of patients with CKD is of utmost importance. The environment during the fetal, perinatal, and early childhood stages may influence CKD development (developmental origins of health and disease). Under conditions of maternal malnutrition, the glomerular number of infants reduces, and the risk of developing CKD may increase. Nephron progenitor cells and ureteric buds interact with each other to form glomeruli at the tip of the ureteric bud. Thus, the number of glomeruli is determined by the number of ureteric bud branches, which are reportedly decreased due to maternal malnutrition, in turn reducing the glomerular number. Four possible mechanisms can explain the low glomerular number resulting from maternal malnutrition: 1) suppression of c-Ret expression, 2) suppression of nephron formation by renin-angiotensin-aldosterone system inhibition, 3) exposure to excess glucocorticoids, and 4) promotion of apoptosis. Additionally, nephron formation does not continue after birth in humans. Therefore, a low glomerular number at birth is a lifelong burden on the glomeruli and increases the risk of developing CKD. Therefore, it is important to maintain the glomerular number at birth. Accurate glomerular counts are essential for conducting studies on the glomerular number. The dissector/fractionator method is the gold standard; however, it can only be performed at some institutions. Recently, methods have been developed to measure the glomerular number by combining computed tomography and pathological examination and measure the glomerular count using magnetic resonance imaging. Models of decreased and increased glomerular numbers have been developed. Moreover, research regarding the causes of decreased glomerular number and its relationship with development of lifestyle-related diseases and renal dysfunction has significantly progressed, furthering our understanding of the importance of glomerular number.
Collapse
Affiliation(s)
- Shohei Fukunaga
- Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| | - Yuki Fujita
- Department of Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
- *Correspondence: Shohei Fukunaga, ; Yuki Fujita,
| |
Collapse
|
7
|
Youth versus adult-onset type 2 diabetic kidney disease: Insights into currently known structural differences and the potential underlying mechanisms. Clin Sci (Lond) 2022; 136:1471-1483. [PMID: 36326718 PMCID: PMC10175439 DOI: 10.1042/cs20210627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Type 2 diabetes (T2D) is a global health pandemic with significant humanitarian, economic, and societal implications, particularly for youth and young adults who are experiencing an exponential rise in incident disease. Youth-onset T2D has a more aggressive phenotype than adult-onset T2D, and this translates to important differences in rates of progression of diabetic kidney disease (DKD). We hypothesize that youth-onset DKD due to T2D may exhibit morphometric, metabolic, and molecular characteristics that are distinct from adult-onset T2D and develop secondary to inherent differences in renal energy expenditure and substrate metabolism, resulting in a central metabolic imbalance. Kidney structural changes that are evident at the onset of puberty also serve to exacerbate the organ’s baseline high rates of energy expenditure. Additionally, the physiologic state of insulin resistance seen during puberty increases the risk for kidney disease and is exacerbated by both concurrent diabetes and obesity. A metabolic mismatch in renal energetics may represent a novel target for pharmacologic intervention, both for prevention and treatment of DKD. Further investigation into the underlying molecular mechanisms resulting in DKD in youth-onset T2D using metabolomics and RNA sequencing of kidney tissue obtained at biopsy is necessary to expand our understanding of early DKD and potential targets for therapeutic intervention. Furthermore, large-scale clinical trials evaluating the duration of kidney protective effects of pharmacologic interventions that target a metabolic mismatch in kidney energy expenditure are needed to help mitigate the risk of DKD in youth-onset T2D.
Collapse
|
8
|
Abstract
The functional mass of kidney tissue in an adult is an important determinant of human health. Kidney formation during development is an essential determinant of the final nephron endowment of the adult organ, and no evidence has been reported that mice or humans are able to generate new nephrons after the developmental period. Mechanisms controlling organ growth after development are essential to establish the final adult organ size. The potential for organ growth is maintained in adult life and the size of one kidney may be significantly increased by loss of the contralateral kidney. The mouse has provided a model system for investigators to critically explore genetic, cell biological, and hormonal control of developmental and juvenile kidney growth. This article reviews three basic aspects of kidney size regulation: (1) Mechanisms that control nephron formation and how these are altered by the cessation of nephrogenesis at the end of the developmental period. (2) Applicability of the general model for growth hormone-insulin like growth factor control to kidney growth both pre- and postnatally. (3) Commonalities between mechanisms of juvenile kidney growth and the compensatory growth that is stimulated in adult life by reduction of kidney mass. Understanding the mechanisms that determine set-points for cell numbers and size in the kidney may inform ongoing efforts to generate kidney tissue from stem cells.
Collapse
Affiliation(s)
- Leif Oxburgh
- The Rogosin Institute, New York, NY, United States.
| |
Collapse
|
9
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
10
|
Miyata KN, Lo CS, Zhao S, Zhao XP, Chenier I, Yamashita M, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Deletion of heterogeneous nuclear ribonucleoprotein F in renal tubules downregulates SGLT2 expression and attenuates hyperfiltration and kidney injury in a mouse model of diabetes. Diabetologia 2021; 64:2589-2601. [PMID: 34370045 PMCID: PMC8992778 DOI: 10.1007/s00125-021-05538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
11
|
Liao MC, Pang YC, Chang SY, Zhao XP, Chenier I, Ingelfinger JR, Chan JSD, Zhang SL. AT 2R deficiency in mice accelerates podocyte dysfunction in diabetic progeny in a sex-dependent manner. Diabetologia 2021; 64:2108-2121. [PMID: 34047808 DOI: 10.1007/s00125-021-05483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS The angiotensin II receptor type 2 (AT2R) may be a potential therapeutic target for the treatment of hypertension and chronic kidney disease (CKD). The expression and function of AT2R in the vasculature and kidney appear sexually dimorphic. We hypothesised that Agtr2 knockout dams (AT2RKO) with gestational diabetes would program their offspring for subsequent hypertension and CKD in a sex-dependent manner. METHODS Age- and sex-matched offspring of non-diabetic and diabetic dams of wild-type (WT) and AT2RKO mice were followed from 4 to 20 weeks of age and were monitored for development of hypertension and nephropathy; a mouse podocyte cell line (mPOD) was also studied. RESULTS Body weight was progressively lower in female compared with male offspring throughout the lifespan. Female but not male offspring from diabetic AT2RKO dams developed insulin resistance. Compared with the offspring of non-diabetic dams, the progeny of diabetic dams had developed more hypertension and nephropathy (apparent glomerulosclerosis with podocyte loss) at 20 weeks of age; this programming was more pronounced in the offspring of AT2RKO diabetic dams, particularly female AT2RKO progeny. Female AT2RKO offspring had lower basal ACE2 glomerular expression, resulting in podocyte loss. The aberrant ACE2/ACE ratio was far more diminished in glomeruli of female progeny of diabetic AT2RKO dams than in male progeny. Knock-down of Agtr2 in mPODs confirmed the in vivo data. CONCLUSIONS/INTERPRETATION AT2R deficiency accelerated kidney programming in female progeny of diabetic dams, possibly due to loss of protective effects of ACE2 expression in the kidney.
Collapse
Affiliation(s)
- Min-Chun Liao
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yu-Chao Pang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shiao-Ying Chang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John S D Chan
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shao-Ling Zhang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
12
|
Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res 2021; 44:605-617. [PMID: 33526913 DOI: 10.1038/s41440-020-00612-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023]
Abstract
Total nephron counts vary widely between individuals and may affect susceptibility to certain diseases, including hypertension and chronic kidney disease. Detailed analyses of whole kidneys collected from autopsy patients remain the only method for accurately counting nephrons in humans, with no equivalent option in living subjects. Current technological advances have enabled estimations of nephron numbers in vivo, particularly the use of total nephron number and whole-kidney glomerular filtration rate to estimate the mean single-nephron glomerular filtration rate. The use of this method would allow physicians to detect dynamic changes in filtration function at the single-nephron level rather than to simply count the number of nephrons that appear to be functioning. Currently available methods for estimating total nephron number in clinical practice have the potential to overcome limitations associated with autopsy analyses and may therefore pave the way for new therapeutic interventions and improved clinical outcomes.
Collapse
|
13
|
Effects of Environmental Conditions on Nephron Number: Modeling Maternal Disease and Epigenetic Regulation in Renal Development. Int J Mol Sci 2021; 22:ijms22084157. [PMID: 33923831 PMCID: PMC8073167 DOI: 10.3390/ijms22084157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.
Collapse
|
14
|
Argeri R, Thomazini F, Lichtenecker DCK, Thieme K, do Carmo Franco M, Gomes GN. Programmed Adult Kidney Disease: Importance of Fetal Environment. Front Physiol 2020; 11:586290. [PMID: 33101064 PMCID: PMC7546361 DOI: 10.3389/fphys.2020.586290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
The Barker hypothesis strongly supported the influence of fetal environment on the development of chronic diseases in later life. Multiple experimental and human studies have identified that the deleterious effect of fetal programming commonly leads to alterations in renal development. The interplay between environmental insults and fetal genome can induce epigenetic changes and lead to alterations in the expression of renal phenotype. In this review, we have explored the renal development and its functions, while focusing on the epigenetic findings and functional aspects of the renin-angiotensin system and its components.
Collapse
Affiliation(s)
- Rogério Argeri
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda Thomazini
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Karina Thieme
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Maria do Carmo Franco
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guiomar Nascimento Gomes
- Department of Physiology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Brennan S, Kandasamy Y, Rudd DM, Schneider ME, Jones RE, Watson DL. The effect of diabetes during pregnancy on fetal renal parenchymal growth. J Nephrol 2020; 33:1079-1089. [PMID: 32889637 DOI: 10.1007/s40620-020-00815-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Diabetes in pregnancy is thought to adversely affect the developing fetal kidneys. The rate of gestational diabetes is increasing globally with major consequences for future renal function. Very little is known about the impact of hyperglycaemia on the fetal renal parenchyma which contains the developing nephrons. The aim of this study was to measure the fetal renal parenchymal thickness and evaluate whether diabetes during pregnancy affects the growth of the fetal kidneys. METHODS This prospective, observational study used serial ultrasound measurements to evaluate the fetal renal parenchymal growth of 55 pregnancies with diabetes compared to 72 control pregnancies. Mixed effects modelling was used to analyse the data. RESULTS The renal parenchyma of fetuses from mothers with gestational diabetes was significantly thicker than those from the control group (LR Chisq = 4.8, df = 1, p = 0.029), however, the difference was proportional to the larger size of these fetuses. Fetuses of pregestational diabetics demonstrated no significant difference in renal parenchymal thickness compared to the control group even though they were also larger fetuses. Parenchymal growth slowed with increasing abdominal circumference in the pregestational diabetic group, suggesting an adverse effect on nephrogenesis, however this did not reach statistical significance. CONCLUSIONS/INTERPRETATION Our study provides unique data on how diabetes during pregnancy influences fetal kidney growth. Appropriate management of diabetic pregnancies may mitigate some of the adverse effects on the fetal kidneys. Increasing degrees of hyperglycaemia, as seen sometimes in pregestational diabetes, may affect nephrogenesis; however larger studies are needed.
Collapse
Affiliation(s)
- Sonja Brennan
- Ultrasound Department, Townsville University Hospital, IMB 47, P.O. Box 670, Douglas, Townsville, QLD, 4810, Australia. .,Division of Tropical Health and Medicine, James Cook University, Townsville, Australia.
| | - Yogavijayan Kandasamy
- Division of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Department of Neonatology, Townsville University Hospital, Townsville, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, The University of Newcastle, Newcastle, Australia
| | - Donna M Rudd
- Division of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Michal E Schneider
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia
| | - Rhondda E Jones
- Division of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - David L Watson
- Division of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Maternal Fetal Medicine Unit and Department of Obstetrics and Gynaecology, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
16
|
Abstract
Chronic kidney disease increasingly is being recognized as an important global public health problem. Interindividual susceptibility to kidney disease is high and likely is dependent on risk modulation through genetics, fetal and early childhood development, environmental circumstances, and comorbidities. Traditionally, the chronic kidney disease burden has been ascribed largely to hypertension and diabetes. Increasingly, evidence is accumulating that nontraditional risk factors may predominate in some regions and populations, contributing to epidemics of kidney disease. Such nontraditional risk factors include environmental exposures, traditional medicines, fetal and maternal factors, infections, kidney stones, and acute kidney injury. Genetic factors may predispose patients to chronic kidney disease in some populations. Chronic kidney disease of unknown origin has its epicenters in Central America and South Asia. Such clustering of CKD may represent either genetic or environmentally driven kidney disease, or combinations of both. Developmental conditions impacting kidney development often are related to poverty and structural factors that persist throughout life. In this article, we explore the possibilities that genetic and developmental factors may be important contributors to the epidemics in these regions and suggest that optimization of factors impacting kidney development hold promise to reduce the risk of kidney disease in future generations.
Collapse
Affiliation(s)
- David Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Valerie A Luyckx
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Institute for Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Miyata KN, Zhao XP, Chang SY, Liao MC, Lo CS, Chenier I, Ethier J, Cailhier JF, Lattouf JB, Troyanov S, Chiasson JL, Ingelfinger JR, Chan JSD, Zhang SL. Increased urinary excretion of hedgehog interacting protein (uHhip) in early diabetic kidney disease. Transl Res 2020; 217:1-10. [PMID: 31794697 DOI: 10.1016/j.trsl.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023]
Abstract
Glomerular endothelial cell (GEC) dysfunction occurs in diabetic kidney disease (DKD) and generally precedes albuminuria. We recently reported that hedgehog interacting protein (Hhip), highly expressed in GECs, contributes to DKD development in diabetic mice. Here, we hypothesized that urinary Hhip (uHhip) could identify early DKD; we tested uHhip in mice and humans with diabetes (DM). In both type 1 (Akita) and type 2 (db/db) DM mice, uHhip is elevated prior to the development of albuminuria, while non-DM controls excrete minimal amount of uHhip. In 87 type 2 DM patients and 39 healthy controls, the uHhip/creatinine (Cr) ratio provides a significant discrimination between non-DM and DM groups; 0 [0-69.5] in non-DM, 9.9 [1.7-39.5] in normoalbuminuric DM, 167.7 [95.7-558.7] in microalbuminuric DM, and 207.9 [0-957.2] in macroalbuminuric DM (median [IQR] ng/mmol, P < 0.0001). The log-uHhip/Cr is positively correlated with urine albumin/Cr ratio (UACR) (spearman correlation coefficient 0.47, P < 0.0001). The log-uHhip/Cr is also associated with eGFR, pulse pressure, and urinary cytokines (IL-1β, IL-6, IL-8, and TGFβ1) independent of UACR. By immunostaining, Hhip is localized in glomeruli and tubules, and is increased in human DM kidneys compared with non-DM kidneys. TGFβ1 shares the similar staining pattern as Hhip in human DM kidneys. Thus, uHhip appears to be a novel indicator of diabetic GEC injury and is elevated in early DKD before the development of microalbuminuria in mice and humans. Clinical value for detecting early DKD warrants further investigation.
Collapse
Affiliation(s)
- Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Shiao-Ying Chang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Isabelle Chenier
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Jean Ethier
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Jean-Francois Cailhier
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Stephan Troyanov
- Nephrology Division, Hôpital du Sacré-Coeur de Montreal, Montreal, Quebec, Canada
| | - Jean-Louis Chiasson
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
18
|
Low birth weight, a risk factor for diseases in later life, is a surrogate of insulin resistance at birth. J Hypertens 2019; 37:2123-2134. [DOI: 10.1097/hjh.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Cerqueira DM, Hemker SL, Bodnar AJ, Ortiz DM, Oladipupo FO, Mukherjee E, Gong Z, Appolonia C, Muzumdar R, Sims-Lucas S, Ho J. In utero exposure to maternal diabetes impairs nephron progenitor differentiation. Am J Physiol Renal Physiol 2019; 317:F1318-F1330. [PMID: 31509011 PMCID: PMC6879946 DOI: 10.1152/ajprenal.00204.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
The incidence of diabetes mellitus has significantly increased among women of childbearing age, and it has been shown that prenatal exposure to maternal diabetes increases the risk of associated congenital anomalies of the kidney. Congenital anomalies of the kidney are among the leading causes of chronic kidney disease in children. To better understand the effect of maternal diabetes on kidney development, we analyzed wild-type offspring (DM_Exp) of diabetic Ins2+/C96Y mice (Akita mice). DM_Exp mice at postnatal day 34 have a reduction of ~20% in the total nephron number compared with controls, using the gold standard physical dissector/fractionator method. At the molecular level, the expression of the nephron progenitor markers sine oculis homeobox homolog 2 and Cited1 was increased in DM_Exp kidneys at postnatal day 2. Conversely, the number of early developing nephrons was diminished in DM_Exp kidneys. This was associated with decreased expression of the intracellular domain of Notch1 and the canonical Wnt target lymphoid enhancer binding factor 1. Together, these data suggest that the diabetic intrauterine environment impairs the differentiation of nephron progenitors into nephrons, possibly by perturbing the Notch and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelby L Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniella M Ortiz
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Favour O Oladipupo
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elina Mukherjee
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhenwei Gong
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Corynn Appolonia
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Radhika Muzumdar
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Woolf AS. Growing a new human kidney. Kidney Int 2019; 96:871-882. [PMID: 31399199 PMCID: PMC6856720 DOI: 10.1016/j.kint.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
There are 3 reasons to generate a new human kidney. The first is to learn more about the biology of the developing and mature organ. The second is to generate tissues with which to model congenital and acquired kidney diseases. In particular, growing human kidneys in this manner ultimately should help us understand the mechanisms of common chronic kidney diseases such as diabetic nephropathy and others featuring fibrosis, as well as nephrotoxicity. The third reason is to provide functional kidney tissues that can be used directly in regenerative medicine therapies. The second and third reasons to grow new human kidneys are especially compelling given the millions of persons worldwide whose lives depend on a functioning kidney transplant or long-term dialysis, as well as those with end-stage renal disease who die prematurely because they are unable to access these treatments. As shown in this review, the aim to create healthy human kidney tissues has been partially realized. Moreover, the technology shows promise in terms of modeling genetic disease. In contrast, barely the first steps have been taken toward modeling nongenetic chronic kidney diseases or using newly grown human kidney tissue for regenerative medicine therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, United Kingdom; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
21
|
Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman RU, Liwinski T, Lindner S, Grahammer F, Kretz O, Wlodek ME, Romano T, Moritz KM, Boerries M, Busch H, Bonn S, Little MH, Bechtel-Walz W, Huber TB. DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. J Am Soc Nephrol 2019; 30:63-78. [PMID: 30518531 PMCID: PMC6317605 DOI: 10.1681/asn.2018070736] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.
Collapse
Affiliation(s)
| | - Julia Vornweg
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Faculty of Biology
| | - Alexander Combes
- Anatomy and Neuroscience
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Julia Plappert
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Gesa Rafflenbeul
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Raza-Ur Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
| | - Timur Liwinski
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Lindner
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Oliver Kretz
- III. Department of Medicine
- Department of Neuroanatomy, University of Freiburg, Freiburg, Germany
| | | | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Melanie Boerries
- German Cancer Consortium, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research
- Lübeck Institute of Experimental Dermatology, Lübeck, Germany; and
| | - Stefan Bonn
- Institute of Molecular Medicine and Cell Research
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Melissa H Little
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
- Pediatrics, University of Melbourne, Melbourne, Australia
| | - Wibke Bechtel-Walz
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Tobias B Huber
- III. Department of Medicine,
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Centre for Biological Signalling Studies (BIOSS) and Center for Biological Systems Analysis (ZBSA), and
- Freiburg Institute for Advanced Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; Departments of
| |
Collapse
|
22
|
The relationship between maternal obesity and diabetes during pregnancy on offspring kidney structure and function in humans: a systematic review. J Dev Orig Health Dis 2018; 10:406-419. [PMID: 30411699 DOI: 10.1017/s2040174418000867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence from animal models indicates that exposure to an obesogenic or hyperglycemic intrauterine environment adversely impacts offspring kidney development and renal function. However, evidence from human studies has not been evaluated systematically. Therefore, the aim of this systematic review was to synthesize current research in humans that has examined the relationship between gestational obesity and/or diabetes and offspring kidney structure and function. Systematic electronic database searches were conducted of five relevant databases (CINAHL, Cochrane, EMBASE, MEDLINE and Scopus). Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed, and articles screened by two independent reviewers generated nine eligible papers for inclusion. Six studies were assessed as being of 'neutral' quality, two of 'negative' and one 'positive' quality. Observational studies suggest that offspring exposed to a hyperglycemic intrauterine environment are more likely to display markers of renal dysfunction and are at higher risk of end-stage renal disease. There was limited and inconsistent evidence for a link between exposure to an obesogenic intrauterine environment and offspring renal outcomes. Offspring renal outcome measures across studies were diverse, with a large variation in offspring age at follow-up, limiting comparability across studies. The collective current body of evidence suggests that intrauterine exposure to maternal obesity and/or diabetes adversely impacts renal programming in offspring, with an increased risk of kidney disease in adulthood. Further high-quality, longitudinal, prospective cohort studies that measure indicators of offspring renal development and function, including fetal kidney volume and albuminuria, at standardized follow-up time points, are warranted.
Collapse
|
23
|
Rabadi MM, Abdulmahdi W, Nesi L, Jules E, Marghani Y, Sheinin E, Tilzer J, Gupta S, Chen S, Cassimatis ND, Lipphardt M, Kozlowski PB, Ratliff BB. Maternal malnourishment induced upregulation of fetuin-B blunts nephrogenesis in the low birth weight neonate. Dev Biol 2018; 443:78-91. [DOI: 10.1016/j.ydbio.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/21/2018] [Accepted: 09/01/2018] [Indexed: 11/16/2022]
|
24
|
Luo H, Chen C, Guo L, Xu Z, Peng X, Wang X, Wang J, Wang N, Li C, Luo X, Wang H, Jose PA, Fu C, Huang Y, Shi W, Zeng C. Exposure to Maternal Diabetes Mellitus Causes Renal Dopamine D 1 Receptor Dysfunction and Hypertension in Adult Rat Offspring. Hypertension 2018; 72:962-970. [PMID: 30354705 PMCID: PMC6207228 DOI: 10.1161/hypertensionaha.118.10908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental studies suggest that maternal diabetes mellitus programs hypertension that is associated with impaired sodium excretion in the adult offspring. However, the underlying mechanisms are not clear. Because dopamine receptor function is involved in the pathogenesis of hypertension, we hypothesized that impaired renal dopamine D1 receptor function is also involved in the hypertension in offspring of maternal diabetes mellitus. Maternal diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (35 mg/kg) to pregnant Sprague-Dawley rats at day 0 of gestation. Compared with the offspring of mothers injected with citrate buffer (control mother offspring), the diabetic mother offspring (DMO) had increased systolic blood pressure and impaired D1 receptor-mediated diuresis and natriuresis, accompanied by increased renal PKC (protein kinase C) expression and activity, GRK-2 (G protein-coupled receptor kinase-2) expression, D1 receptor phosphorylation, D1 receptor/Gαs uncoupling, and loss of D1 receptor-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule cells from DMO. Inhibition of PKC reduced the increased GRK-2 expression and normalized D1 receptor function in primary cultures of renal proximal tubule cells from DMO. In addition, DMO, relative to control mother offspring, in vivo, had increased oxidative stress, indicated by decreased renal glutathione and increased renal malondialdehyde and urine 8-isoprostane. Normalization of oxidative stress with tempol also normalized the renal D1 receptor phosphorylation, D1 receptor-mediated diuresis and natriuresis, and blood pressure in DMO. Our present study indicates that maternal diabetes mellitus-programed hypertension in the offspring is caused by impaired renal D1 receptor function because of oxidative stress that is mediated by increased PKC-GRK-2 activity.
Collapse
Affiliation(s)
- Hao Luo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Li Guo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoyu Peng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunjiang Fu
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Weibin Shi
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Abdulmahdi W, Rabadi MM, Jules E, Marghani Y, Marji N, Leung J, Zhang F, Siani A, Siskind T, Vedovino K, Chowdhury N, Sekulic M, Ratliff BB. Kidney dysfunction in the low-birth weight murine adult: implications of oxidative stress. Am J Physiol Renal Physiol 2018; 315:F583-F594. [DOI: 10.1152/ajprenal.00164.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Maternal undernutrition (MUN) during pregnancy leads to low-birth weight (LBW) neonates that have a reduced kidney nephron endowment and higher morbidity as adults. Using a severe combined caloric and protein-restricted mouse model of MUN to generate LBW mice, we examined the progression of renal insufficiency in LBW adults. Through 6 mo of age, LBW males experienced greater albuminuria (ELISA analysis), a more rapid onset of glomerular hypertrophy, and a worse survival rate than LBW females. In contrast, both sexes experienced a comparable progressive decline in renal vascular density (immunofluorescence analysis), renal blood flow (Laser-Doppler flowmetry analysis), glomerular filtration rate (FITC-sinistrin clearance analysis), and a progressive increase in systemic blood pressure (measured via tail-cuff method). Isolated aortas from both LBW sexes demonstrated reduced vasodilation in response to ACh, indicative of reduced nitric oxide bioavailability and endothelial dysfunction. ELISA and immunofluorescence analysis revealed a significant increase of circulating reactive oxygen species and NADPH oxidase type 4 (NOX4) expression in both LBW sexes, although these increases were more pronounced in males. Although more effective in males, chronic tempol treatment did improve all observed pathologies in both sexes of LBW mice. Chronic NOX4 inhibition with GKT137831 was more effective than tempol in preventing pathologies in LBW males. In conclusion, despite some minor differences, LBW female and male adults have a reduced nephron endowment comparable with progressive renal and vascular dysfunction, which is associated with increased oxidative stress and subsequent endothelial dysfunction. Tempol treatment and/or NOX4 inhibition attenuates renal and vascular dysfunction in LBW adults.
Collapse
Affiliation(s)
- Wasan Abdulmahdi
- Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York
| | - May M. Rabadi
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Edson Jules
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Yara Marghani
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Noor Marji
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Jessica Leung
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Avi Siani
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Tamar Siskind
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Kiara Vedovino
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Nazrul Chowdhury
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
| | - Miroslav Sekulic
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian B. Ratliff
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York
- Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York
| |
Collapse
|
26
|
Effects of bisphenol A treatment during pregnancy on kidney development in mice: a stereological and histopathological study. J Dev Orig Health Dis 2017; 9:208-214. [PMID: 29103408 DOI: 10.1017/s2040174417000939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bisphenol A (BPA) is a chemical found in plastics that resembles oestrogen in organisms. Developmental exposure to endocrine-disrupting chemicals, such as BPA, increases the susceptibility to type 2 diabetes (T2DM) and cardiovascular diseases. Animal studies have reported a nephron deficit in offspring exposed to maternal diabetes. The aim of this study was to investigate the prenatal BPA exposure effects on nephrogenesis in a mouse model that was predisposed to T2DM. This study quantitatively evaluated the renal structural changes using stereology and histomorphometry methods. The OF1 pregnant mice were treated with a vehicle or BPA (10 or 100 μg/kg/day) during days 9-16 of gestation (early nephrogenesis). The 30-day-old offspring were sacrificed, and tissue samples were collected and prepared for histopathological and stereology studies. Glomerular abnormalities and reduced glomerular formation were observed in the BPA offspring. The kidneys of the BPA10 and BPA100 female offspring had a significantly lower glomerular number and density than those of the CONTROL female offspring. The glomerular histomorphometry revealed a significant difference between the female and male CONTROL offspring for the analysed glomerular parameters that disappeared in the BPA10 and BPA100 offspring. In addition, the kidney histopathological examination showed typical male cuboidal epithelial cells of the Bowman capsule in the female BPA offspring. Exposure to environmentally relevant doses of BPA during embryonic development altered nephrogenesis. These structural changes could be associated with an increased risk of developing cardiometabolic diseases later in life.
Collapse
|
27
|
Liao MC, Zhao XP, Chang SY, Lo CS, Chenier I, Takano T, Ingelfinger JR, Zhang SL. AT 2 R deficiency mediated podocyte loss via activation of ectopic hedgehog interacting protein (Hhip) gene expression. J Pathol 2017; 243:279-293. [PMID: 28722118 DOI: 10.1002/path.4946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/26/2017] [Accepted: 07/08/2017] [Indexed: 01/10/2023]
Abstract
Angiotensin II type 2 receptor (AT2 R) deficiency in AT2 R knockout (KO) mice has been linked to congenital abnormalities of the kidney and urinary tract; however, the mechanisms by which this occurs are poorly understood. In this study, we examined whether AT2 R deficiency impaired glomerulogenesis and mediated podocyte loss/dysfunction in vivo and in vitro. Nephrin-cyan fluorescent protein (CFP)-transgenic (Tg) and Nephrin/AT2 RKO mice were used to assess glomerulogenesis, while wild-type and AT2 RKO mice were used to evaluate maturation of podocyte morphology/function. Immortalized mouse podocytes (mPODs) were employed for in vitro studies. AT2 R deficiency resulted in diminished glomerulogenesis in E15 embryos, but had no impact on actual nephron number in neonates. Pups lacking AT2 R displayed features of renal dysplasia with lower glomerular tuft volume and podocyte numbers. In vivo and in vitro studies demonstrated that loss of AT2 R was associated with elevated NADPH oxidase 4 levels, which in turn stimulated ectopic hedgehog interacting protein (Hhip) gene expression in podocytes. Consequently, ectopic Hhip expression activation either triggers caspase-3 and p53-related apoptotic processes resulting in podocyte loss, or activates TGFβ1-Smad2/3 cascades and α-SMA expression to transform differentiated podocytes to undifferentiated podocyte-derived fibrotic cells. We analyzed HHIP expression in the kidney disease database (Nephroseq) and then validated this using HHIP immunohistochemistry staining of human kidney biopsies (controls versus focal segmental glomerulosclerosis). In conclusion, loss of AT2 R is associated with podocyte loss/dysfunction and is mediated, at least in part, via augmented ectopic Hhip expression in podocytes. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Min-Chun Liao
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| | - Xin-Ping Zhao
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| | - Shiao-Ying Chang
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| | - Chao-Sheng Lo
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| | - Isabelle Chenier
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| | - Tomoko Takano
- McGill University Health Centre, Montréal, Québec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shao-Ling Zhang
- Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, Montréal, Québec, Canada
| |
Collapse
|
28
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
29
|
Ahmed Abd Rabou M, Ahmed Eid F. Possible Protective Role of Parsley Extract on the Diabetic Pregnant Rats and Their Fetuses. Pak J Biol Sci 2017; 20:552-562. [PMID: 30187738 DOI: 10.3923/pjbs.2017.552.562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Gestational diabetes mellitus (GDM) is one form of diabetes. It causes obstetrical complications and affects between 5-18% of all pregnancies and leads to congenital malformations and long-term postnatal disorders. Supportive therapy in treatment of diabetes during pregnancy takes place by anti-diabetic plants such as parsley. The current study has been undertaken to investigate the possible anti-diabetic and antioxidant role of aqueous parsley extract on streptozotocin (STZ) induced gestational diabetes mellitus in rats. MATERIALS AND METHODS Fifty pregnant albino rats were categorized after mating into five groups: group C (control group), group D1 (pregnant rats injected with interperitoneally single dose of STZ (40 mg kg-1 b.wt.) in the 1st day of gestation, group D1+P: Pregnant rats were treated with parsley extract (1 m/150 g b.wt.) from the 1st to the 19th day of gestation post injection with STZ (40 mg kg-1 b.wt.), group D7: Pregnant rats were injected with STZ (40 mg kg-1 b.wt.) on day 7of gestation, group D7+P: Pregnant rats were treated with parsley extract (1 m/150 g b.wt.) from the 7th to the 19th day of gestation post injection with STZ (40 mg kg-1 b.wt.). The pregnant rats were dissected on the 19th day of pregnancy and the uterine horns were removed freshly and then photographed. Abnormalities or any morphological changes were recorded, weight of fetuses and placenta and placental index were determined. Blood samples were collected to estimate the glucose and biochemical parameters of the main kidney functions. Also, kidney samples of fetuses were taken for the histopathological study. RESULTS Fetuses of the diabetic mothers showed some developmental changes such as very thin skin, very thin muscle layer under the skin, absence of eyelid and ear pinna, exencephaly and kyphosis. On the other hand, fetuses of the diabetic mothers which were treated with parsley leaves extract showed somewhat normal morphological development. According to the biochemical histopathological observations, the parsley leaf extract succeeded to minimize the drastic changes, which were observed in the diabetic rats and their fetuses. CONCLUSION Administration of the parsley leaf extract has the ability to minimize the damage of hyperglycemia.
Collapse
|
30
|
Chen G, Sun W, Liang Y, Chen T, Guo W, Tian W. Maternal diabetes modulates offspring cell proliferation and apoptosis during odontogenesis via the TLR4/NF-κB signalling pathway. Cell Prolif 2016; 50. [PMID: 27981756 DOI: 10.1111/cpr.12324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Maternal gestational diabetes leads to an adverse in utero environment and increases the risk of malformations during embryo organogenesis. In the present study, we analysed the effects of maternal diabetes on tooth germ cell proliferation and apoptosis in offspring, and investigated their underlying mechanisms. MATERIALS AND METHODS A rat model of maternal diabetes was induced by intraperitoneal injection of streptozotocin and the pregnant rats were divided into three groups: controls, the diabetic group and diabetic group with insulin treatment. Offspring of the three groups were collected and cell proliferation and apoptosis in tooth germs were analysed. Primary dental papilla cells and dental epithelial stem cells were isolated and treated with high glucose in vitro, in an attempt to simulate maternal diabetes-induced hyperglycaemia in vivo. RESULTS Maternal diabetes significantly affected cell proliferation and apoptosis in offspring tooth germs. The TLR4/NF-ĸB signalling pathway was activated in the tooth germs of offspring of diabetic dams. High glucose treatment activated the TLR4/NF-ĸB signalling pathway in primary dental papilla cells and dental epithelial stem cells in vitro, resulting in suppression of cell proliferation and enhancement of apoptosis. TLR4 knockdown significantly reduced adverse effects induced by high glucose treatment. CONCLUSIONS Maternal gestational diabetes significantly impaired dental epithelial and mesenchymal cell proliferation and apoptosis in offspring, possibly by activation of the TLR4/NF-ĸB signalling pathway.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Wenhua Sun
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yan Liang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Hokke S, Arias N, Armitage JA, Puelles VG, Fong K, Geraci S, Gretz N, Bertram JF, Cullen-McEwen LA. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes Metab Res Rev 2016; 32:816-826. [PMID: 27037899 DOI: 10.1002/dmrr.2805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Leprdb /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney. METHODS Nephron endowment was assessed in offspring of C57BKS/J Leprdb /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Leprdb /+ dams were analysed. RESULTS Compared with +/+ dams, Leprdb /+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Leprdb /+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Leprdb /+ dams than in +/+ offspring. CONCLUSIONS IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Nicole Arias
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - James A Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Stefania Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
32
|
Richter VFI, Briffa JF, Moritz KM, Wlodek ME, Hryciw DH. The role of maternal nutrition, metabolic function and the placenta in developmental programming of renal dysfunction. Clin Exp Pharmacol Physiol 2016; 43:135-41. [PMID: 26475203 DOI: 10.1111/1440-1681.12505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 11/27/2022]
Abstract
The intrauterine environment is critical for the development of the foetus. Barker and colleagues were the first to identify that adverse perturbations during foetal development are associated with an increased risk of developing diseases in adulthood, including cardiorenal disease. Specifically for the kidney, perturbations in utero can lead to nephron deficits and renal dysfunction by a number of mechanisms. Altered programming of nephron number is associated with an increased risk of developing kidney disease via glomerular hypertrophy and reduced vasodilative capacity of the renal blood vessels; both of which would contribute to hypertension in adulthood, with males being more susceptible to disease outcomes. Additionally, alterations in the renin-angiotensin system (RAS) such as an upregulation or downregulation of specific receptors, depending on the nature of the insult, have also been implicated in the development of renal dysfunction. Sex-specific differences in the expression of the RAS during late gestation and in the early postnatal environment have also been identified. Extensive research has demonstrated that both uteroplacental insufficiency and maternal malnutrition alter renal development in utero. Equally, exposure to maternal diabetes and maternal obesity during development are also associated with an increased risk of developing renal disease, however, the mechanism behind this association is poorly understood. Therefore, identifying the link between an adverse intrauterine environment and the programmed kidney disease risk in adulthood may facilitate the development of strategies to alleviate the epidemics of cardiorenal disease worldwide, in addition to understanding why males are more susceptible to adult-onset cardiovascular diseases.
Collapse
Affiliation(s)
- V F I Richter
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| | - J F Briffa
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| | - K M Moritz
- School of Biomedical Sciences, University of Queensland, St. Lucia, Qld, Australia
| | - M E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| | - D H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Perinatal programming of renal function reflects the epigenetic alteration of genetically determined development by environmental factors. These include intrauterine malnutrition, pre and postnatal overnutrition, glucocorticoids, and certain toxins such as smoking. This review aims to summarize the most important findings. RECENT FINDINGS Human studies may show an increased susceptibility toward the general prevalence of renal failure in already small for gestational age children and adolescents. In particular, glomerular diseases present with a more severe clinical course. Partially related, partially independently, arterial hypertension is found in this at-risk group. The findings can mostly be confirmed in animal models. Both intrauterine nutrient deprived and overfed rodents show a tendency toward developing glomerulosclerosis and other renal disorders. Animal studies attempt to imitate clinical conditions, however, there are difficulties in transferring the findings to the human setting. The reduction of nephron number, especially in intrauterine growth-restricted humans and animals, is one mechanism of perinatal programming in the kidneys. In addition, vascular and endocrine alterations are prevalent. The molecular changes behind these mechanisms include epigenetic changes such as DNA-methylation, microRNAs, and histone modifications. SUMMARY Future research will have to establish clinical studies with clear and well defined inclusion criteria which also reflect prenatal life. The use of transgenic animal models might help to obtain a deeper insight into the underlying mechanisms.
Collapse
|
34
|
França-Silva N, Oliveira NDG, Balbi APC. Morphofunctional renal alterations in rats induced by intrauterine hyperglycemic environment. Arch Med Sci 2016; 12:243-51. [PMID: 27186167 PMCID: PMC4848350 DOI: 10.5114/aoms.2015.48220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/28/2014] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The renal development of rats begins in intrauterine life, finishing by 15 days after birth. Diabetes and other diseases during pregnancy can cause systemic changes in the offspring. We evaluated the structural and functional renal alterations of the offspring from diabetic mothers. MATERIAL AND METHODS Pregnant rats were separated and 1, 7, 30 and 90 days-old (DO) pups were divided into groups according to the treatment that the mothers received: G1: control, G2: untreated diabetic and G3: insulin-treated diabetic. The kidneys from offspring at 1, 7 and 30 DO were removed for immunohistochemical and histological studies. Furthermore, blood and urine samples were collected from animals at 30 DO to determine the glomerular filtration rate (GFR) by creatinine clearance, and the animals at 90 DO were subjected to blood pressure measurement by plethysmography. RESULTS Our results show an increase of PCNA(+) glomerular cells at 7 DO and a reduction in 30 DO animals as well as increased α-smooth muscle actin (α-SMA) tubulointerstitial expression at 1 and 7 DO in animals from G2, when compared with controls. The adult offspring from G2 showed reduced GFR and increased blood pressure. CONCLUSIONS Maternal diabetes may have induced programming of renal damage in offspring of hyperglycemic mothers, which may have contributed to the impairment of renal function.
Collapse
Affiliation(s)
- Nathane França-Silva
- Department of Physiological Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Ana Paula Coelho Balbi
- Department of Physiological Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
35
|
Aliou Y, Liao MC, Zhao XP, Chang SY, Chenier I, Ingelfinger JR, Zhang SL. Post-weaning high-fat diet accelerates kidney injury, but not hypertension programmed by maternal diabetes. Pediatr Res 2016; 79:416-24. [PMID: 26571223 DOI: 10.1038/pr.2015.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of this study was to establish the underlying mechanisms by which a post-weaning high-fat diet (HFD) accelerates the perinatal programming of kidney injury occurring in the offspring of diabetic mothers. METHODS Male mice, offspring of nondiabetic and diabetic dams were fed with normal diet (ND) or HFD from 4 to 20 wk of age. Rat renal proximal tubular cells were used in vitro. RESULTS On ND, the offspring of dams with severe maternal diabetes had an intrauterine growth restriction (IUGR) phenotype and developed mild hypertension and evidence of kidney injury in adulthood. Exposing the IUGR offspring to HFD resulted in rapid weight gain, catch-up growth, and later to profound kidney injury with activation of renal TGFβ1 and collagen type IV expression, increased oxidative stress, and enhanced renal lipid deposition, but not systemic hypertension. Given our data, we speculate that HFD or free fatty acids may accelerate the process of perinatal programming of kidney injury, via increased CD36 and fatty acid-binding protein 4 expression, which may target reactive oxygen species, nuclear factor-kappa B, and TGFβ1 signaling in vivo and in vitro. CONCLUSION Early postnatal exposure to overnutrition with a HFD increases the risk of development of kidney injury, but not hypertension, in IUGR offspring of dams with maternal diabetes.
Collapse
Affiliation(s)
- Yessoufou Aliou
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Min-Chun Liao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Shiao-Ying Chang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Isabelle Chenier
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School Boston, Boston, Massachusetts
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| |
Collapse
|
36
|
|
37
|
de Queiroz DB, Sastre E, Caracuel L, Callejo M, Xavier FE, Blanco-Rivero J, Balfagón G. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats. Br J Pharmacol 2015; 172:4699-713. [PMID: 26177571 DOI: 10.1111/bph.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. EXPERIMENTAL APPROACH Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. KEY RESULTS Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. CONCLUSIONS AND IMPLICATIONS The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats.
Collapse
Affiliation(s)
- D B de Queiroz
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - L Caracuel
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - M Callejo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - F E Xavier
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| | - G Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Paz (IdIPAZ), Madrid, Spain
| |
Collapse
|
38
|
Nguyen HTT, Bhattarai JP, Park SJ, Lee JC, Cho DH, Han SK. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice. J Diabetes Complications 2015; 29:629-36. [PMID: 25891974 DOI: 10.1016/j.jdiacomp.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022]
Abstract
Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong Chae Lee
- Department of Orthodontics, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
39
|
Awazu M, Hida M. Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats. Pediatr Res 2015; 77:633-9. [PMID: 25675424 DOI: 10.1038/pr.2015.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/29/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal nutrient restriction produces offspring with fewer nephrons. We studied whether the reduced nephron number is due to the inhibition of ureteric branching or early cessation of nephrogenesis in rats. Signaling pathways involved in kidney development were also examined. METHODS The offspring of dams given food ad libitum (control (CON)) and those subjected to 50% food restriction (nutrient restriceted (NR)) were examined. RESULTS At embryonic day 13 (E13), there was no difference between NR and CON in body weight or kidney size. Ureteric buds branched once in both NR and CON. At E14 and E15, body and kidney size were significantly reduced in NR. Ureteric bud tip numbers were also reduced to 50% of CON. On the other hand, the disappearance of nephrogenic zone and a nephron progenitor marker Cited1 was not different between CON and NR. The final glomerular number of NR was 80% of CON. Activated extracellular signal-regulated kinase (ERK), p38, PI3K, Akt, and mammallian target of rapamycin (mTOR), and protein expression of β-catenin were downregulated at E15. CONCLUSION Ureteric branching is inhibited and developmentally regulated signaling pathways are downregulated at an early stage by maternal nutrient restriction. These changes, not early cessation of nephrogenesis, may be a mechanism for the inhibited kidney growth and nephrogenesis.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Hida
- 1] Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan [2] Perinatal Center and Department of Neonatology, Yokohama Rosai Hospital, Kanagawa, Japan
| |
Collapse
|
40
|
Dart AB, Ruth CA, Sellers EA, Au W, Dean HJ. Maternal Diabetes Mellitus and Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in the Child. Am J Kidney Dis 2015; 65:684-91. [DOI: 10.1053/j.ajkd.2014.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
|
41
|
Abstract
An adverse intrauterine environment is associated with an increased risk of elevated blood pressure and kidney disease in later life. Many studies have focused on low birth weight, prematurity and growth restriction as surrogate markers of an adverse intrauterine environment; however, high birth weight, exposure to maternal diabetes and rapid growth during early childhood are also emerging as developmental risk factors for chronic diseases. Altered programming of nephron number is an important link between exposure to developmental stressors and subsequent risk of hypertension and kidney disease. Maternal, fetal, and childhood nutrition are crucial contributors to these programming effects. Resource-poor countries experience the sequential burdens of fetal and childhood undernutrition and subsequent overnutrition, which synergistically act to augment the effects of developmental programming; this observation might explain in part the disproportionate burden of chronic disease in these regions. Numerous nutritional interventions have been effective in reducing the short-term risk of low birth weight and prematurity. Understanding the potential long-term benefits of such interventions is crucial to inform policy decisions to interrupt the developmental programming cycle and stem the growing epidemics of hypertension and kidney disease worldwide.
Collapse
|
42
|
Wang YP, Chen X, Zhang ZK, Cui HY, Wang P, Wang Y. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression. J Renin Angiotensin Aldosterone Syst 2014; 16:1028-35. [PMID: 25271252 DOI: 10.1177/1470320314543808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yan-Ping Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Xu Chen
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Zhi-Kun Zhang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Hong-Yan Cui
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Peng Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| | - Yue Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, China
| |
Collapse
|
43
|
Zhao XP, Liao MC, Chang SY, Abdo S, Aliou Y, Chenier I, Ingelfinger JR, Zhang SL. Maternal diabetes modulates kidney formation in murine progeny: the role of hedgehog interacting protein (HHIP). Diabetologia 2014; 57:1986-96. [PMID: 24957663 DOI: 10.1007/s00125-014-3297-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that maternal diabetes impairs kidney formation in offspring via augmented expression of hedgehog interacting protein (HHIP). Our gene-array results were performed in neonatal kidneys from our murine model of maternal diabetes and indicated that Hhip expression was significantly modulated by maternal diabetes. METHODS We systematically examined the functional role of HHIP in kidney formation in our murine maternal diabetes model and elucidated the potential mechanisms related to dysnephrogenesis in vitro. RESULTS The kidneys of the offspring of diabetic dams, compared with those of the offspring of control non-diabetic dams, showed retardation of development--small kidneys and less ureteric bud (UB) branching morphogenesis. Augmented HHIP expression was observed in the offspring of diabetic dams, initially localised to differentiated metanephric mesenchyme and UB epithelium and subsequently in maturing glomerular endothelial and tubulointerstitial cells. The heightened HHIP targeting TGF-β1 signalling was associated with dysmorphogenesis. In vitro, HHIP overexpression decreased sonic hedgehog and paired box gene 2 proteins (SHH and PAX2, respectively) and increased transcriptional nuclear factor-kappa B (NFκB, p50/p65), phosphorylation of p53, and TGF-β1 expression. In contrast, overexpression of PAX2 inhibited HHIP and NFκB and activated SHH, N-myc and p27(Kip1) expression. Moreover, high glucose stimulated HHIP expression, and then targeted TGF-β1 signalling. Thus, PAX2, via a negative autocrine feedback mechanism, attenuated the stimulatory effect of high glucose on HHIP expression. CONCLUSIONS/INTERPRETATION Maternal diabetes modulates kidney formation in young progeny mediated, at least in part, via augmented HHIP expression.
Collapse
Affiliation(s)
- Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Tour Viger, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The normal development of the kidney may be affected by several factors, including abnormalities in placental function, resulting in fetal growth restriction, exposure to maternal disease states, including hypertension and diabetes, antenatal steroids, chorioamnionitis, and preterm delivery. After preterm birth, several further insults may occur that may influence nephrogenesis and renal health, including exposure to nephrotoxic medications, postnatal growth failure, and obesity after growth restriction. In this review article, common clinical neonatal scenarios are used to highlight these renal risk factors, and the animal and human evidence on which these risk factors are based are discussed.
Collapse
Affiliation(s)
- Megan Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dana Ryan
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alison L Kent
- Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, PO Box 11, Woden 2606, Australian Capital Territory, Australia; Australian National University Medical School, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
45
|
Renal echo-3D and microalbuminuria in children of diabetic mothers: a preliminary study. J Dev Orig Health Dis 2014; 4:285-9. [PMID: 24993001 DOI: 10.1017/s204017441300007x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternal diabetes has assumed epidemic relevance in recent years and animal studies have provided some evidence that it may cause abnormalities in renal development and a reduction in nephron endowment in the offspring; however, human data are lacking. The renal cortex contains ∼95% of the glomeruli and its volume could be taken as a surrogate measure of glomerular number; based on this assumption, we measured renal cortex volume and in addition, microalbuminuria in a homogeneous sample of 42 children of diabetic (pregestational, n = 13, and gestational, n = 29) mothers, compared with 21 healthy children born of non-diabetic mothers. The offspring of diabetic mothers showed a significant reduction of renal cortex volume and higher albumin excretion compared with controls, possibly attributable to a reduction in the number of nephrons and the difference was statistically significant (P < 0.001). Although further studies on a larger sample are necessary, our preliminary findings suggest that maternal diabetes may affect renal development with sequelae later in life, requiring closer monitoring and follow-up. Furthermore, the importance of strict maternal diabetes management and control must be emphasized.
Collapse
|
46
|
Fetale und perinatale Programmierung der Nierenfunktion. GYNAKOLOGISCHE ENDOKRINOLOGIE 2014. [DOI: 10.1007/s10304-013-0593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T. Clinicopathological assessment of the nephron number. Clin Kidney J 2014; 7:107-14. [PMID: 25852857 PMCID: PMC4377791 DOI: 10.1093/ckj/sfu018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated much larger variability in the total number of nephrons in normal populations than previously suspected. In addition, it has been suggested that individuals with a low nephron number may have an increased lifetime risk of hypertension or renal insufficiency, emphasizing the importance of evaluating the nephron number in each individual. In view of the fact that all previous reports of the nephron number were based on analyses of autopsy kidneys, the identification of surrogate markers detectable in living subjects is needed in order to enhance understanding of the clinical significance of this parameter. In this review, we summarize the clinicopathological factors and findings indicating a reduction in the nephron number, focusing particularly on those found at the time of a preserved renal function.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
48
|
Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JAE. Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 2013; 9:978-86. [PMID: 24370773 DOI: 10.2215/cjn.08900813] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract are the major cause of ESRD in childhood. Children with a solitary functioning kidney form an important subgroup of congenital anomalies of the kidney and urinary tract patients, and a significant fraction of these children is at risk for progression to CKD. However, challenges remain in distinguishing patients with a high risk for disease progression from those patients without a high risk of disease progression. Although it is hypothesized that glomerular hyperfiltration in the lowered number of nephrons underlies the impaired renal prognosis in the solitary functioning kidney, the high proportion of ipsilateral congenital anomalies of the kidney and urinary tract in these patients may further influence clinical outcome. Pathogenic genetic and environmental factors in renal development have increasingly been identified and may play a crucial role in establishing a correct diagnosis and prognosis for these patients. With fetal ultrasound now enabling prenatal identification of individuals with a solitary functioning kidney, an early evaluation of risk factors for renal injury would allow for differentiation between patients with and without an increased risk for CKD. This review describes the underlying causes and consequences of the solitary functioning kidney from childhood together with its clinical implications. Finally, guidelines for follow-up of solitary functioning kidney patients are recommended.
Collapse
Affiliation(s)
- Rik Westland
- Departments of Pediatric Nephrology and, §Pediatrics, VU University Medical Center, Amsterdam, The Netherlands;, †Division of Nephrology, Columbia University, New York, New York;, ‡Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, ‖Department of Pediatrics, Emma Children's Hospital, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Hokke SN, Armitage JA, Puelles VG, Short KM, Jones L, Smyth IM, Bertram JF, Cullen-McEwen LA. Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy. PLoS One 2013; 8:e58243. [PMID: 23516451 PMCID: PMC3596403 DOI: 10.1371/journal.pone.0058243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/31/2013] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence from human and animal models that exposure to maternal hyperglycemia during in utero development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified ex vivo using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, p<0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, p = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, p<0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.
Collapse
Affiliation(s)
- Stacey N. Hokke
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - James A. Armitage
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Victor G. Puelles
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kieran M. Short
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Lynelle Jones
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Luise A. Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
50
|
Lin CY, Lin TY, Lee MC, Chen SC, Chang JS. Hyperglycemia: GDNF-EGR1 pathway target renal epithelial cell migration and apoptosis in diabetic renal embryopathy. PLoS One 2013; 8:e56731. [PMID: 23468876 PMCID: PMC3585314 DOI: 10.1371/journal.pone.0056731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Maternal hyperglycemia can inhibit morphogenesis of ureteric bud branching, Glial cell line-derived neurotrophilic factor (GDNF) is a key regulator of the initiation of ureteric branching. Early growth response gene-1 (EGR-1) is an immediate early gene. Preliminary study found EGR-1 persistently expressed with GDNF in hyperglycemic environment. To evaluate the potential relationship of hyperglycemia-GDNF-EGR-1 pathway, in vitro human renal proximal tubular epithelial (HRPTE) cells as target and in vivo streptozotocin-induced mice model were used. Our in vivo microarray, real time-PCR and confocal morphological observation confirmed apoptosis in hyperglycemia-induced fetal nephropathy via activation of the GDNF/MAPK/EGR-1 pathway at E12-E15. Detachment between ureteric branch and metanephrons, coupled with decreasing number and collapse of nephrons on Day 1 newborn mice indicate hyperglycemic environment suppress ureteric bud to invade metanephric rudiment. In vitro evidence proved that high glucose suppressed HRPTE cell migration and enhanced GDNF-EGR-1 pathway, inducing HRPTE cell apoptosis. Knockdown of EGR-1 by siRNA negated hyperglycemic suppressed GDNF-induced HRPTE cells. EGR-1 siRNA also reduced GDNF/EGR-1-induced cRaf/MEK/ERK phosphorylation by 80%. Our findings reveal a novel mechanism of GDNF/MAPK/EGR-1 activation playing a critical role in HRPTE cell migration, apoptosis and fetal hyperglycemic nephropathy.
Collapse
Affiliation(s)
- Ching-Yuang Lin
- Clinical Immunology Center, China Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|