1
|
Grieco G, Montefusco S, Nusco E, Capuozzo A, Cervellini F, Polishchuk E, Bishop M, Miele A, D’Apolito L, La Vecchia C, Aurilia M, Schiavo M, Staiano L, Cesana M, Oberman R, Lynch AV, Musolino P, Trepiccione F, Grishchuk Y, Medina DL. TRPML-1 Dysfunction and Renal Tubulopathy in Mucolipidosis Type IV. J Am Soc Nephrol 2025; 36:587-601. [PMID: 40168161 PMCID: PMC11975236 DOI: 10.1681/asn.0000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 04/03/2025] Open
Abstract
Background Loss-of-function mutations in the lysosomal channel transient receptor potential cation channel (TRPML-1) cause mucolipidosis type IV (MLIV), a rare lysosomal storage disease characterized by neurological defects, progressive vision loss, and achlorhydria. Recent reports have highlighted kidney disease and kidney failure in patients with MLIV during the second to third decade of life; however, the molecular mechanisms driving kidney dysfunction remain poorly understood. Methods A cross-sectional review of medical records from 21 patients with MLIV (ages 3–43 years) was conducted to assess kidney function impairment. In addition, we examined the kidney phenotype of MLIV mice at various ages, along with human kidney cells silenced for TRPML-1 and primary tubular cells from wild-type and MLIV mice. Immunohistology and cell biology approaches were used to phenotype nephron structure, the endolysosomal compartment, and inflammation. Kidney function was assessed through proteomic analysis of mouse urine and in vivo kidney filtration measurements. Results Of the 21 patients with MLIV, only adults were diagnosed with stage 2–3 CKD. Laboratory abnormalities included lower eGFR and higher levels BUN/creatine in blood and proteinuria. In MLIV mice, we observed significant alterations in endolysosomal morphology, function, and impaired autophagy in proximal and distal tubules. This led to the accumulation of megalin (LRP2) in the subapical region of proximal tubular cells, indicating a block in apical receptor–mediated endocytosis. In vivo and in vitro experiments confirmed reduced fluid-phase endocytosis and impaired uptake of ligands, including β-lactoglobulin, transferrin, and albumin in MLIV proximal tubular cells. Urine analysis revealed tubular proteinuria and enzymuria in mice with MLIV. In addition, early-stage disease was marked by increased inflammatory markers, fibrosis, and activation of the proinflammatory transcription factor NF-κB, coinciding with endolysosomal defects. Importantly, adeno-associated viral–mediated TRPML-1 gene delivery reversed key pathological phenotypes in MLIV mice, underscoring TRPML-1's critical role in kidney function. Conclusions Our findings link TRPML-1 dysfunction to the development of kidney disease in MLIV.
Collapse
Affiliation(s)
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | | | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Martha Bishop
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Antonio Miele
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | - Luciano D’Apolito
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | | | - Miriam Aurilia
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Michela Schiavo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Anna V. Lynch
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Institute of Molecular Biology and Genetics, Biogem, Ariano Irpino, Italy
| | - Yulia Grishchuk
- Department of Neurology, Massachusetts General Hospital Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Hall AM. Protein handling in kidney tubules. Nat Rev Nephrol 2025; 21:241-252. [PMID: 39762367 DOI: 10.1038/s41581-024-00914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/23/2025]
Abstract
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Khare V, Farre JC, Rocca C, Kbaich MA, Tang C, Ma X, Beiderman K, Mathur I, Badell-Grau RA, Sivakumar A, Chen R, Catz SD, Cherqui S. Cystinosin is involved in Na +/H + Exchanger 3 trafficking in the proximal tubular cells: new insights in the renal Fanconi syndrome in cystinosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637793. [PMID: 39990449 PMCID: PMC11844504 DOI: 10.1101/2025.02.12.637793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cystinosis is a systemic lysosomal storage disease resulting from a defective CTNS gene, leading to the accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, the renal Fanconi syndrome (FS) is the first manifestation of cystinosis that presents early in life of the patients while other complications appear years later. Additionally, the cystine reduction therapy, cysteamine, does not prevent the FS. While the matter is still unresolved, it is apparent that specific function(s) of cystinosin in the proximal tubular cells (PTCs) beyond cystine transport explain the early tubular defects in cystinosis. Here, we report a novel interaction of cystinosin with the sodium/hydrogen (Na+/H+) exchanger proteins in the endosomes in both yeast and mammalian cells. One isoform of Na+/H+ exchanger, NHE3, is a major absorptive sodium transporter at the apical membrane of the proximal tubules. Cystinosin was found to play a significant role in NHE3 subcellular localization, trafficking, and resulting sodium uptake in PTCs. Interestingly, introduction of CTNS successfully rescued these defects in CTNS-deficient PTCs, whereas CTNS-LKG, the lysosomal and plasma membrane isoform of cystinosin, did not. NHE3 mislocalization was confirmed in Ctns -/- mice and cystinosis patient kidney. Interestingly, transplantation of wild-type hematopoietic stem and progenitor cells in Ctns -/- mice restored NHE3 expression at the brush border membrane. This study uncovers a new role of cystinosin in the trafficking of NHE3 in the PTCs that is evolutionary conserved, offering new insights in the pathogenesis of the renal FS in cystinosis and potential new therapeutic avenue for this pathology.
Collapse
Affiliation(s)
- Veenita Khare
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jean-Claude Farre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Celine Rocca
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Mouad Ait Kbaich
- Department of Molecular Medicine and Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Cynthia Tang
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Xuan Ma
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Kavya Beiderman
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Ioli Mathur
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Rafael A. Badell-Grau
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Anusha Sivakumar
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Rola Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sergio D. Catz
- Department of Molecular Medicine and Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
5
|
Bellomo F, Pugliese S, Cairoli S, Krohn P, De Stefanis C, Raso R, Rega LR, Taranta A, De Leo E, Ciolfi A, Cicolani N, Petrini S, Luciani A, Goffredo BM, Porzio O, Devuyst O, Dionisi-Vici C, Emma F. Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis. J Am Soc Nephrol 2024; 35:1493-1506. [PMID: 38995697 PMCID: PMC11543012 DOI: 10.1681/asn.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Key Points Ketogenic diet can change the metabolism in the body and helped restore the function of altered pathways in nephropathic cystinosis. Ketogenic diet had significant benefits for preventing kidney damage, even when initiated after the onset of kidney impairment. Ketogenic diet may provide a partial therapeutic alternative in countries where cysteamine therapy is too expensive. Background Nephropathic cystinosis is a rare inherited lysosomal storage disorder caused by mutations in the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. From the standpoint of the kidneys, patients develop early-onset renal Fanconi syndrome and progressive CKD. Current therapy with cysteamine delays but does not prevent kidney failure and has significant side effects that limit adherence and reduce the quality of life of patients. Methods We have tested biochemically and histologically the effects of ketogenic diet on kidney disease of two animal models of nephropathic cystinosis. Results When Ctns −/− mice were fed with ketogenic diet from 3 to 12 months of age, we observed significant nearly complete prevention of Fanconi syndrome, including low molecular weight proteinuria, glycosuria, and polyuria. Compared with wild-type animals, BUN at 12 months was higher in cystinotic mice fed with standard diet (P < 0.001), but not with ketogenic diet. At sacrifice, kidneys of knockout mice fed with ketogenic diet appeared macroscopically similar to those of wild-type animals, which was reflected microscopically by a significant reduction of interstitial cell infiltration (CD3 and CD68 positive cells, P < 0.01), of interstitial fibrosis (Masson and α -smooth muscle actin staining, P < 0.001), and of apoptosis (cleaved caspase-3 levels; P < 0.001), and by indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression, P < 0.05). Beneficial effects of ketogenic diet on tubular function were also observed after mice were fed with this ketogenic diet from the age of 6 months to the age of 15 months, after they had developed proximal tubular dysfunction. Although slightly less pronounced, these results were replicated in Ctns −/− rats fed with ketogenic diet from 2 to 8 months of life. Conclusions These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diet.
Collapse
Affiliation(s)
- Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Pugliese
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Patrick Krohn
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roberto Raso
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Rita Rega
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anna Taranta
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ester De Leo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Emma
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
6
|
Rahman F, Johnson JL, Ait Kbaich M, Meneses-Salas E, Shukla A, Chen D, Kiosses WB, Gavathiotis E, Cuervo AM, Cherqui S, Catz SD. Reconstitution of Rab11-FIP4 Expression Rescues Cellular Homeostasis in Cystinosis. Mol Cell Biol 2024; 44:577-589. [PMID: 39434668 PMCID: PMC11583627 DOI: 10.1080/10985549.2024.2410814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Rab11 family interacting protein 4 (Rab11-FIP4) regulates endocytic trafficking. A possible role for Rab11-FIP4 in the regulation of lysosomal function has been proposed, but its precise function in the regulation of cellular homeostasis is unknown. By mRNA array and protein analysis, we found that Rab11-FIP4 is downregulated in the lysosomal storage disease cystinosis, which is caused by genetic defects in the lysosomal cystine transporter, cystinosin. Rescue of Rab11-FIP4 expression in Ctns-/- fibroblasts re-established normal autophagosome levels and decreased LC3B-II expression in cystinotic cells. Furthermore, Rab11-FIP4 reconstitution increased the localization of the chaperone-mediated autophagy receptor LAMP2A at the lysosomal membrane. Treatment with genistein, a phytoestrogen that upregulates macroautophagy, or the CMA activator QX77 (CA77) restored Rab11-FIP4 expression levels in cystinotic cells supporting a cross-regulation between two independent autophagic mechanisms, lysosomal function and Rab11-FIP4. Improved cellular homeostasis in cystinotic cells rescued by Rab11-FIP4 expression correlated with decreased endoplasmic reticulum stress, an effect that was potentiated by Rab11 and partially blocked by expression of a dominant negative Rab11. Restoring Rab11-FIP4 expression in cystinotic proximal tubule cells increased the localization of the endocytic receptor megalin at the plasma membrane, suggesting that Rab11-FIP4 reconstitution has the potential to improve cellular homeostasis and function in cystinosis.
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jennifer L. Johnson
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - William B. Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sergio D. Catz
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
7
|
De Leo E, Taranta A, Raso R, Pezzullo M, Piccione M, Matteo V, Vitale A, Bellomo F, Goffredo BM, Diomedi Camassei F, Prencipe G, Rega LR, Emma F. Long-term effects of luteolin in a mouse model of nephropathic cystinosis. Biomed Pharmacother 2024; 178:117236. [PMID: 39096619 DOI: 10.1016/j.biopha.2024.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
In infantile nephropathic cystinosis, variants of the CTNS gene cause accumulation of cystine in lysosomes, causing progressive damage to most organs. Patients usually present before 1 year of age with signs of renal Fanconi syndrome. Cysteamine therapy allows cystine clearance from lysosomes and delays kidney damage but does not prevent progression to end-stage kidney disease, suggesting that pathways unrelated to cystine accumulation are also involved. Among these, impaired autophagy, altered endolysosomal trafficking, and increased apoptosis have emerged in recent years as potential targets for new therapies. We previously showed that luteolin, a flavonoid compound, improves these abnormal pathways in cystinotic cells and in zebrafish models of the disease. Herein, we have investigated if prolonged luteolin treatment ameliorates kidney damage in a murine model of cystinosis. To this end, we have treated Ctns-/- mice from 2 to 8 months with 150 mg/kg/day of luteolin. No significant side effects were observed. Compared to untreated animals, analyses of kidney cortex samples obtained after sacrifice showed that luteolin decreased p62/SQSTM1 levels (p <0.001), improved the number, size, and distribution of LAMP1-positive structures (p <0.02), and decreased tissue expression of cleaved caspase 3 (p <0.001). However, we did not observe improvements in renal Fanconi syndrome and kidney inflammation. Kidney function remained normal during the time of the study. These results indicate that luteolin has positive effects on the apoptosis and endo-lysosomal defects of cystinotic proximal tubular cells. However, these beneficial effects did not translate into improvement of renal Fanconi syndrome.
Collapse
Affiliation(s)
- Ester De Leo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Anna Taranta
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Raso
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Piccione
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Matteo
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Vitale
- Laboratory of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Rita Rega
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Rega LR, Janssens V, Graversen JH, Moestrup SK, Cairoli S, Goffredo BM, Nevo N, Courtoy GE, Jouret F, Antignac C, Emma F, Pierreux CE, Courtoy PJ. Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content. Sci Rep 2023; 13:17276. [PMID: 37828038 PMCID: PMC10570359 DOI: 10.1038/s41598-023-43105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Megalin/LRP2 is a major receptor supporting apical endocytosis in kidney proximal tubular cells. We have previously reported that kidney-specific perinatal ablation of the megalin gene in cystinotic mice, a model of nephropathic cystinosis, essentially blocks renal cystine accumulation and partially preserves kidney tissue integrity. Here, we examined whether inhibition of the megalin pathway in adult cystinotic mice by dietary supplementation (5x-fold vs control regular diet) with the dibasic amino-acids (dAAs), lysine or arginine, both of which are used to treat patients with other rare metabolic disorders, could also decrease renal cystine accumulation and protect cystinotic kidneys. Using surface plasmon resonance, we first showed that both dAAs compete for protein ligand binding to immobilized megalin in a concentration-dependent manner, with identical inhibition curves by L- and D-stereoisomers. In cystinotic mice, 2-month diets with 5x-L-lysine and 5x-L-arginine were overall well tolerated, while 5x-D-lysine induced strong polyuria but no weight loss. All diets induced a marked increase of dAA urinary excretion, most prominent under 5x-D-lysine, without sign of kidney insufficiency. Renal cystine accumulation was slowed down approx. twofold by L-dAAs, and totally suppressed by D-lysine. We conclude that prolonged dietary manipulation of the megalin pathway in kidneys is feasible, tolerable and can be effective in vivo.
Collapse
Affiliation(s)
- L R Rega
- Nephrology Research Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - V Janssens
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium
| | - J H Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - S K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - S Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - B M Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - N Nevo
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - G E Courtoy
- Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, Louvain University Medical School, Brussels, Belgium
| | - F Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - C Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - F Emma
- Nephrology Research Unit, Translational Pediatrics and Clinical Genetics Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C E Pierreux
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium.
| | - P J Courtoy
- Cell Biology Unit, de Duve Institute and Louvain University Medical School, Brussels, Belgium.
| |
Collapse
|
9
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
10
|
Berquez M, Chen Z, Festa BP, Krohn P, Keller SA, Parolo S, Korzinkin M, Gaponova A, Laczko E, Domenici E, Devuyst O, Luciani A. Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization. Nat Commun 2023; 14:3994. [PMID: 37452023 PMCID: PMC10349091 DOI: 10.1038/s41467-023-39261-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Differentiation is critical for cell fate decisions, but the signals involved remain unclear. The kidney proximal tubule (PT) cells reabsorb disulphide-rich proteins through endocytosis, generating cystine via lysosomal proteolysis. Here we report that defective cystine mobilization from lysosomes through cystinosin (CTNS), which is mutated in cystinosis, diverts PT cells towards growth and proliferation, disrupting their functions. Mechanistically, cystine storage stimulates Ragulator-Rag GTPase-dependent recruitment of mechanistic target of rapamycin complex 1 (mTORC1) and its constitutive activation. Re-introduction of CTNS restores nutrient-dependent regulation of mTORC1 in knockout cells, whereas cell-permeant analogues of L-cystine, accumulating within lysosomes, render wild-type cells resistant to nutrient withdrawal. Therapeutic mTORC1 inhibition corrects lysosome and differentiation downstream of cystine storage, and phenotypes in preclinical models of cystinosis. Thus, cystine serves as a lysosomal signal that tailors mTORC1 and metabolism to direct epithelial cell fate decisions. These results identify mechanisms and therapeutic targets for dysregulated homeostasis in cystinosis.
Collapse
Affiliation(s)
- Marine Berquez
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Zhiyong Chen
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Patrick Krohn
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Silvia Parolo
- Fondazione The Microsoft Research University of Trento-Centre for Computational and Systems Biology (COSBI), 38068, Rovereto, Italy
| | - Mikhail Korzinkin
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Anna Gaponova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Endre Laczko
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Enrico Domenici
- Fondazione The Microsoft Research University of Trento-Centre for Computational and Systems Biology (COSBI), 38068, Rovereto, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
- Institute for Rare Diseases, UCLouvain Medical School, 1200, Brussels, Belgium.
| | - Alessandro Luciani
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
De Leo E, Taranta A, Raso R, Polishchuk E, D'Oria V, Pezzullo M, Goffredo BM, Cairoli S, Bellomo F, Battafarano G, Camassei FD, Del Fattore A, Polishchuk R, Emma F, Rega LR. Genistein improves renal disease in a mouse model of nephropathic cystinosis: a comparison study with cysteamine. Hum Mol Genet 2023; 32:1090-1101. [PMID: 36300303 PMCID: PMC10026248 DOI: 10.1093/hmg/ddac266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteamine is currently the only therapy for nephropathic cystinosis. It significantly improves life expectancy and delays progression to end-stage kidney disease; however, it cannot prevent it. Unfortunately, compliance to therapy is often weak, particularly during adolescence. Therefore, finding better treatments is a priority in the field of cystinosis. Previously, we found that genistein, an isoflavone particularly enriched in soy, can revert part of the cystinotic cellular phenotype that is not sensitive to cysteamine in vitro. To test the effects of genistein in vivo, we fed 2-month-old wild-type and Ctns-/- female mice with either a control diet, a genistein-containing diet or a cysteamine-containing diet for 14 months. Genistein (160 mg/kg/day) did not affect the growth of the mice or hepatic functionality. Compared with untreated mice at 16 months, Ctns-/- mice fed with genistein had lower cystine concentrations in their kidneys, reduced formation of cystine crystals, a smaller number of LAMP1-positive structures and an overall better-preserved parenchymal architecture. Cysteamine (400 mg/kg/day) was efficient in reverting the lysosomal phenotype and in preventing the development of renal lesions. These preclinical data indicate that genistein ameliorates kidney injury resulting from cystinosis with no side effects. Genistein therapy represents a potential treatment to improve the outcome for patients with cystinosis.
Collapse
Affiliation(s)
- Ester De Leo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Anna Taranta
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Roberto Raso
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Valentina D'Oria
- Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Marco Pezzullo
- Core Facilities, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Bianca Maria Goffredo
- Department of Pediatric Specialties and Liver-Kidney Transplantation, Division of Metabolic Biochemistry and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Sara Cairoli
- Department of Pediatric Specialties and Liver-Kidney Transplantation, Division of Metabolic Biochemistry and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Bellomo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Francesco Emma
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Laura Rita Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
12
|
Keidel LF, Schworm B, Hohenfellner K, Kruse F, Priglinger S, Luft N, Priglinger C. Posterior Segment Involvement in Infantile Nephropathic Cystinosis - A Review. Klin Monbl Augenheilkd 2023; 240:266-275. [PMID: 36977427 DOI: 10.1055/s-0037-1599653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cystinosis is a rare lysosomal storage disease with a prevalence of 1 : 100 000 - 1 : 200 000 cases. It is caused by biallelic mutations in the CTNS gene, which encodes cystinosin, that transport cystine out of the lysosomes. Due to its dysfunction, cystine crystals accumulate in the lysosomes and ultimately cause apoptosis of the cell. Since cystinosin is ubiquitously present in the body, cystine crystals are deposited in every body structure and lead to the dysfunction of various organ systems in the course of time. Cystine crystals deposited in the cornea are a clinical hallmark of the disease, while there is less awareness of concomitant posterior segment alterations. Symmetrical pigment epithelial mottling and patches of depigmentation frequently start in the periphery and progress towards the posterior pole and can be encountered upon fundus biomicroscopy. Spectral-domain optical coherence tomography (SD-OCT) is an elegant tool for visualizing chorioretinal cystine crystals at the posterior pole. An SD-OCT-based clinical grading of the severity of the chorioretinal manifestation can potentially be applied as a biomarker for systemic disease status and for monitoring oral therapy adherence in the future. Along with previous histological examinations, it may also give information about the location of cystine crystals in the choroid and retina. This review aims to increase the awareness of vision-threatening retinal and choroidal changes in cystinosis and the concomitant findings in SD-OCT.
Collapse
Affiliation(s)
| | - Benedikt Schworm
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | | | - Franziska Kruse
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | | | - Nikolaus Luft
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
13
|
Veys K, Zadora W, Hohenfellner K, Bockenhauer D, Janssen MCH, Niaudet P, Servais A, Topaloglu R, Besouw M, Novo R, Haffner D, Kanzelmeyer N, Pape L, Wühl E, Harms E, Awan A, Sikora P, Ariceta G, van den Heuvel B, Levtchenko E. Outcome of infantile nephropathic cystinosis depends on early intervention, not genotype: A multicenter sibling cohort study. J Inherit Metab Dis 2023; 46:43-54. [PMID: 36117148 DOI: 10.1002/jimd.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Infantile nephropathic cystinosis (INC) is an inheritable lysosomal storage disorder characterized by lysosomal cystine accumulation, progressive kidney disease, and multiple extrarenal complications (ERCs). Cysteamine postpones the onset of end-stage kidney disease (ESKD) and reduces the incidence of ERCs; however, cysteamine is generally initiated upon establishment of the renal Fanconi syndrome (FS) and partial loss of kidney function, whereas data on long-term effects of cysteamine administered from neonatal age are lacking. An international multicenter retrospective cohort study of siblings with INC was set up to investigate the outcome in relation to age at initiation of cysteamine versus CTNS genotype, with attention to patients treated with cysteamine from neonatal age. None of the siblings treated from neonatal age (n = 9; age 10 ± 6 years) had reached ESKD, while 22% of their index counterparts (n = 9; age 14 ± 5 years) had commenced renal replacement therapy. Siblings treated with cysteamine from the onset of symptoms at a younger age compared with their index counterparts, reached ESKD at a significant older age (13 ± 3 vs. 10 ± 3 years, p = 0.002). In contrast, no significant difference in ERCs was observed between sibling and index patients, independently from the age at initiation of cysteamine. The CTNS genotype had no impact on the overall outcome in this cohort. In INC, presymptomatic treatment with cysteamine results in a better renal outcome in comparison to treatment initiated from the onset of symptoms. This justifies including cystinosis into newborn screening programs. SYNOPSIS: In infantile nephropathic cystinosis, presymptomatic treatment with cysteamine improves the renal outcome which justifies the inclusion of cystinosis into newborn screening programs.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Ward Zadora
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Detlef Bockenhauer
- Department of Pediatric Nephrology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust (GOSH) and Department of Renal Medicine, University College London, London, UK
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick Niaudet
- Department of Pediatric Nephrology, Hôpital Necker-Enfants Malades, Paris, France
| | - Aude Servais
- Department of Adult Nephrology and Transplantation, Hôpital Necker, Paris, France
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Martine Besouw
- Department of Pediatric Nephrology, University of Groningen, Groningen, The Netherlands
| | - Robert Novo
- Pediatric Nephrology, Hôpital Jeanne de Flandre, University Hospital Lille, Lille, France
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Lars Pape
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Erik Harms
- Children's University Hospital Münster, Münster, Germany
| | - Atif Awan
- Paediatric Nephrology and Transplantation, Temple Street Children's University Hospital, Dublin, Ireland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Bert van den Heuvel
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Hollywood JA, Kallingappa PK, Cheung PY, Martis RM, Sreebhavan S, 'Atiola RD, Chatterjee A, Buckels EJ, Matthews BG, Lewis PM, Davidson AJ. Cystinosin deficient rats recapitulate the phenotype of nephropathic cystinosis. Am J Physiol Renal Physiol 2022; 323:F156-F170. [PMID: 35695380 DOI: 10.1152/ajprenal.00277.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lysosomal storage disease cystinosis is caused by mutations in CTNS, encoding a cystine transporter, and in its severest form leads to proximal tubule dysfunction followed by kidney failure. Patients receive the drug-based therapy cysteamine from diagnosis. However, despite long-term treatment, cysteamine only slows the progression of end-stage renal disease. Pre-clinical testing in cystinotic rodents is required to evaluate new therapies; however, the current models are sub-optimal. To solve this problem we generated a new cystinotic rat model using CRISPR/Cas9-mediated gene editing to disrupt exon 3 of Ctns and measured various parameters over a 12-month time-course. Ctns-/- rats display hallmarks of cystinosis by 3-6 months of age as seen by a failure to thrive, excessive thirst and urination, cystine accumulation in tissues, corneal cystine crystals, a loss of Lrp2 in proximal tubules and immune cell infiltration. High levels of glucose, calcium, albumin and protein are excreted at 6-months of age, consistent with the onset of Fanconi syndrome, with a progressive diminution of urine urea and creatinine from 9-months of age, indicative of chronic kidney disease. The kidney histology and immunohistochemistry showed proximal tubule atrophy and glomerular damage as well as classic 'swan neck' lesions. Overall, Ctns-/- rats show a disease progression that more faithfully recapitulates nephropathic cystinosis than existing rodent models. The Ctns-/- rat provides an excellent new rodent model of nephropathic cystinosis that is ideally suited for conducting pre-clinical drug testing and a powerful tool to advance cystinosis research.
Collapse
Affiliation(s)
- Jennifer Anne Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Prasanna Kumar Kallingappa
- Faculty of Medical and Health Sciences, Vernon Jansen Unit, The University of Auckland, Auckland, New Zealand
| | - Pang Yuk Cheung
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Renita M Martis
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Sree Sreebhavan
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Robert Douglas 'Atiola
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Aparajita Chatterjee
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Emma Jane Buckels
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Paula M Lewis
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Veys K, Berlingerio SP, David D, Bondue T, Held K, Reda A, van den Broek M, Theunis K, Janssen M, Cornelissen E, Vriens J, Diomedi-Camassei F, Gijsbers R, van den Heuvel L, Arcolino FO, Levtchenko E. Urine-Derived Kidney Progenitor Cells in Cystinosis. Cells 2022; 11:cells11071245. [PMID: 35406807 PMCID: PMC8997687 DOI: 10.3390/cells11071245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022] Open
Abstract
Nephropathic cystinosis is an inherited lysosomal storage disorder caused by pathogenic variants in the cystinosin (CTNS) gene and is characterized by the excessive shedding of proximal tubular epithelial cells (PTECs) and podocytes into urine, development of the renal Fanconi syndrome and end-stage kidney disease (ESKD). We hypothesized that in compensation for epithelial cell losses, cystinosis kidneys undertake a regenerative effort, and searched for the presence of kidney progenitor cells (KPCs) in the urine of cystinosis patients. Urine was cultured in a specific progenitor medium to isolate undifferentiated cells. Of these, clones were characterized by qPCR, subjected to a differentiation protocol to PTECs and podocytes and assessed by qPCR, Western blot, immunostainings and functional assays. Cystinosis patients voided high numbers of undifferentiated cells in urine, of which various clonal cell lines showed a high capacity for self-renewal and expressed kidney progenitor markers, which therefore were assigned as cystinosis urine-derived KPCs (Cys-uKPCs). Cys-uKPC clones showed the capacity to differentiate between functional PTECs and/or podocytes. Gene addition with wild-type CTNS using lentiviral vector technology resulted in significant reductions in cystine levels. We conclude that KPCs present in the urine of cystinosis patients can be isolated, differentiated and complemented with CTNS in vitro, serving as a novel tool for disease modeling.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Dries David
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
| | - Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Ahmed Reda
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Koen Theunis
- Department of Human Genetics, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
| | - Mirian Janssen
- Department of Internal Medicine, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Elisabeth Cornelissen
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine (LEERM), Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (K.H.); (J.V.)
| | - Francesca Diomedi-Camassei
- Unit of Pathology, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (D.D.); (R.G.)
- Leuven Viral Vector Core, KU Leuven, B-3000 Leuven, Belgium
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Fanny O. Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium;
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven Campus Gasthuisberg, B-3000 Leuven, Belgium; (S.P.B.); (T.B.); (A.R.); (L.v.d.H.); (F.O.A.)
- Correspondence: ; Tel.: +32-16-34-13-62
| |
Collapse
|
16
|
Edwards A, Long KR, Baty CJ, Shipman KE, Weisz OA. Modeling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J Physiol 2022; 600:1933-1952. [PMID: 35178707 PMCID: PMC9012691 DOI: 10.1113/jp282885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We used new and published data to develop a mathematical model that predicts the profile of albumin uptake in the mouse proximal tubule (PT) in normal and nephrotic states, and partially accounts for competitive inhibition of uptake by normally filtered and pathologic ligands. Three pathways, consisting of high-affinity uptake by cubilin receptors, low-affinity uptake by megalin receptors, and fluid phase uptake, contribute to the overall retrieval of filtered proteins. The axial profile and efficiency of protein uptake depend on the initial filtrate composition and the individual protein affinities for megalin and cubilin. Under normal conditions, the majority of albumin is retrieved in S1 but shifts to S2 under nephrotic conditions. Other proteins exhibit different uptake profiles. Our model explains how tubular proteinuria can occur despite a large excess in potential PT uptake capacity. ABSTRACT Recent studies indicate that filtered albumin is retrieved in the proximal tubule (PT) via three pathways: receptor-mediated endocytosis via cubilin (high affinity) and megalin (low affinity), and fluid-phase uptake. Expression of megalin is required to maintain all three pathways, making it challenging to determine their respective contributions. Moreover, uptake of filtered molecules varies between the sub-segments (S1, S2, and S3) that make up the PT. Here we used new and published data to develop a mathematical model that predicts the rates of albumin uptake in mouse PT sub-segments in normal and nephrotic states, and partially accounts for competition by β2-microglobulin (β2m) and Immunoglobulin G (IgG). Our simulations indicate that receptor-mediated, rather than fluid-phase uptake, accounts for the vast majority of ligand recovery. Our model predicts that ∼75% of normally filtered albumin is reabsorbed via cubilin; however, megalin-mediated uptake predominates under nephrotic conditions. Our results also suggest that ∼80% of albumin is normally recovered in S1, whereas nephrotic conditions or knockout of cubilin shifts the bulk of albumin uptake to S2. The model predicts β2m and IgG axial recovery profiles qualitatively similar to those of albumin under normal conditions. In contrast with albumin however, the bulk of IgG and β2m uptake still occurs in S1 under nephrotic conditions. Overall, our model provides a kinetic rationale for why tubular proteinuria can occur even though a large excess in potential PT uptake capacity exists, and suggests testable predictions to expand our understanding of the recovery profile of filtered proteins along the PT. Abstract figure legend. Data from mouse models and from cultured proximal tubule (PT) cells were used to create a mathematical model that predicts the uptake profile of albumin and other filtered ligands along the mouse PT in normal and nephrotic states. The distinct contributions of cubilin receptors (magenta), megalin receptors (green), and fluid phase uptake (blue) to total albumin retrieval (black) in S1, S2, and S3 subsegments of the PT are delineated. Under normal conditions, albumin is primarily recovered in the S1 segment by cubilin, whereas the majority is retrieved in S2 under nephrotic conditions. Other proteins exhibit strikingly different uptake profiles. Our model explains how the distribution and capacity of high-affinity and low-affinity uptake pathways enable uptake of albumin over a broad range of filtered concentrations, and how tubular proteinuria can occur despite a large excess in potential PT uptake capacity. Created with BioRender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
17
|
Programmed Cell Death in Cystinosis. Cells 2022; 11:cells11040670. [PMID: 35203319 PMCID: PMC8870229 DOI: 10.3390/cells11040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cystinosis is a lethal autosomal recessive disease that has been known clinically for over 100 years. There are now specific treatments including dialysis, renal transplantation and the orphan drug, cysteamine, which greatly improve the duration and quality of patient life, however, the cellular mechanisms responsible for the phenotype are unknown. One cause, programmed cell death, is clearly involved. Study of extant literature via Pubmed on “programmed cell death” and “apoptosis” forms the basis of this review. Most of such studies involved apoptosis. Numerous model systems and affected tissues in cystinosis have shown an increased rate of apoptosis that can be partially reversed with cysteamine. Proposed mechanisms have included changes in protein signaling pathways, autophagy, gene expression programs, and oxidative stress.
Collapse
|
18
|
Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle. Cells 2022; 11:cells11030326. [PMID: 35159136 PMCID: PMC8834619 DOI: 10.3390/cells11030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding—and potentially reversing—the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.
Collapse
|
19
|
Krohn P, Rega LR, Harvent M, Festa BP, Taranta A, Luciani A, Dewulf J, Cremonesi A, Camassei FD, Hanson JVM, Gerth-Kahlert C, Emma F, Berquez M, Devuyst O. OUP accepted manuscript. Hum Mol Genet 2022; 31:2262-2278. [PMID: 35137071 PMCID: PMC9262394 DOI: 10.1093/hmg/ddac033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
Recessive mutations in the CTNS gene encoding the lysosomal transporter cystinosin cause cystinosis, a lysosomal storage disease leading to kidney failure and multisystem manifestations. A Ctns knockout mouse model recapitulates features of cystinosis, but the delayed onset of kidney manifestations, phenotype variability and strain effects limit its use for mechanistic and drug development studies. To provide a better model for cystinosis, we generated a Ctns knockout rat model using CRISPR/Cas9 technology. The Ctns−/− rats display progressive cystine accumulation and crystal formation in multiple tissues including kidney, liver and thyroid. They show an early onset and progressive loss of urinary solutes, indicating generalized proximal tubule dysfunction, with development of typical swan-neck lesions, tubulointerstitial fibrosis and kidney failure, and decreased survival. The Ctns−/− rats also present crystals in the cornea, and bone and liver defects, as observed in patients. Mechanistically, the loss of cystinosin induces a phenotype switch associating abnormal proliferation and dedifferentiation, loss of apical receptors and transporters, and defective lysosomal activity and autophagy in the cells. Primary cultures of proximal tubule cells derived from the Ctns−/− rat kidneys confirmed the key changes caused by cystine overload, including reduced endocytic uptake, increased proliferation and defective lysosomal dynamics and autophagy. The novel Ctns−/− rat model and derived proximal tubule cell system provide invaluable tools to investigate the pathogenesis of cystinosis and to accelerate drug discovery.
Collapse
Affiliation(s)
- Patrick Krohn
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Laura Rita Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Marianne Harvent
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | | | - Anna Taranta
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | | | - Joseph Dewulf
- Department of Laboratory Medicine, Cliniques universitaires Saint Luc, UCLouvain, Brussels 1200, Belgium
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels 1200, Belgium
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | | | - James V M Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Francesco Emma
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
- Department of Pediatric Subspecialties, Division of Nephrology, Children’s Hospital Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Marine Berquez
- To whom correspondence should be addressed at: University of Zurich, Mechanisms of Inherited Kidney Disorders Group, Winterthurerstrasse 190, Zurich 8057, Switzerland. Tel: +41 (0)44 635 51 07; (Marine Berquez); Tel: +41 (0)44 635 50 82; Fax: +41 (0)44 635 68 14; (Olivier Devuyst)
| | - Olivier Devuyst
- To whom correspondence should be addressed at: University of Zurich, Mechanisms of Inherited Kidney Disorders Group, Winterthurerstrasse 190, Zurich 8057, Switzerland. Tel: +41 (0)44 635 51 07; (Marine Berquez); Tel: +41 (0)44 635 50 82; Fax: +41 (0)44 635 68 14; (Olivier Devuyst)
| |
Collapse
|
20
|
Cheung PY, Harrison PT, Davidson AJ, Hollywood JA. In Vitro and In Vivo Models to Study Nephropathic Cystinosis. Cells 2021; 11:6. [PMID: 35011573 PMCID: PMC8750259 DOI: 10.3390/cells11010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.
Collapse
Affiliation(s)
- Pang Yuk Cheung
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, T12 XF62 Cork, Ireland;
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Jennifer A. Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| |
Collapse
|
21
|
Goodman S, Khan M, Sharma J, Li Z, Cano J, Castellanos C, Estrada MV, Gertsman I, Cherqui S. Deficiency of the sedoheptulose kinase (Shpk) does not alter the ability of hematopoietic stem cells to rescue cystinosis in the mouse model. Mol Genet Metab 2021; 134:309-316. [PMID: 34823997 PMCID: PMC8935660 DOI: 10.1016/j.ymgme.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Cystinosis is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin, and leading to multi-organ degeneration including kidney failure. A clinical trial for cystinosis is ongoing to test the safety and efficacy of transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) ex vivo gene-modified to introduce functional CTNS cDNA. Preclinical studies in Ctns-/- mice previously showed that a single HSPC transplantation led to significant tissue cystine decrease and long-term tissue preservation. The main mechanism of action involves the differentiation of the transplanted HSPCs into macrophages within tissues and transfer of cystinosin-bearing lysosomes to the diseased cells via tunneling nanotubes. However, a major concern was that the most common cystinosis-causing mutation in humans is a 57-kb deletion that eliminates not only CTNS but also the adjacent sedopheptulose kinase SHPK/CARKL gene encoding a metabolic enzyme that influences macrophage polarization. Here, we investigated if absence of Shpk could negatively impact the efficiency of transplanted HSPCs to differentiate into macrophages within tissues and then to prevent cystinosis rescue. We generated Shpk knockout mouse models and detected a phenotype consisting of perturbations in the pentose phosphate pathway (PPP), the metabolic shunt regulated by SHPK. Shpk-/- mice also recapitulated the urinary excretion of sedoheptulose and erythritol found in cystinosis patients homozygous for the 57-kb deletion. Transplantation of Shpk-/--HSPCs into Ctns-/- mice resulted in significant reduction in tissue cystine load and restoration of Ctns expression, as well as improved kidney architecture comparable to WT-HSPC recipients. Altogether, these data demonstrate that absence of SHPK does not alter the ability of HSPCs to rescue cystinosis, and then patients homozygous for the 57-kb deletion should benefit from ex vivo gene therapy and can be enrolled in the ongoing clinical trial. However, because of the limits inherent to animal models, outcomes of this patient population will be carefully compared to the other enrolled subjects.
Collapse
Affiliation(s)
- Spencer Goodman
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Meisha Khan
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Jay Sharma
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Zijie Li
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Jose Cano
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Carlos Castellanos
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Monica V Estrada
- Tissue Technology Shared Resource, Biorepository and Tissue Technology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Bellomo F, De Leo E, Taranta A, Giaquinto L, Di Giovamberardino G, Montefusco S, Rega LR, Pastore A, Medina DL, Di Bernardo D, De Matteis MA, Emma F. Drug Repurposing in Rare Diseases: An Integrative Study of Drug Screening and Transcriptomic Analysis in Nephropathic Cystinosis. Int J Mol Sci 2021; 22:ijms222312829. [PMID: 34884638 PMCID: PMC8657658 DOI: 10.3390/ijms222312829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.
Collapse
Affiliation(s)
- Francesco Bellomo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
- Correspondence: (F.B.); (F.E.)
| | - Ester De Leo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Anna Taranta
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Laura Giaquinto
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | | | - Sandro Montefusco
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | - Laura Rita Rega
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
| | - Anna Pastore
- Management Diagnostic Innovations Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Diego Luis Medina
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
| | - Diego Di Bernardo
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80138 Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon InstituFte of Genetics and Medicine, 80078 Naples, Italy; (L.G.); (S.M.); (D.L.M.); (D.D.B.); (M.A.D.M.)
- Department of Medical Biotechnologies and Molecular Medicine, University of Naples Federico II, 80138 Naples, Italy
| | - Francesco Emma
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.D.L.); (A.T.); (L.R.R.)
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (F.B.); (F.E.)
| |
Collapse
|
23
|
Taranta A, Elmonem MA, Bellomo F, De Leo E, Boenzi S, Janssen MJ, Jamalpoor A, Cairoli S, Pastore A, De Stefanis C, Colucci M, Rega LR, Giovannoni I, Francalanci P, van den Heuvel LP, Dionisi-Vici C, Goffredo BM, Masereeuw R, Levtchenko E, Emma F. Benefits and Toxicity of Disulfiram in Preclinical Models of Nephropathic Cystinosis. Cells 2021; 10:3294. [PMID: 34943802 PMCID: PMC8699074 DOI: 10.3390/cells10123294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating Ctns-/- mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in Ctns-/- mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells.
Collapse
Affiliation(s)
- Anna Taranta
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt;
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.P.v.d.H.); (E.L.)
| | - Francesco Bellomo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
| | - Ester De Leo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
| | - Sara Boenzi
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.B.); (S.C.); (C.D.-V.); (B.M.G.)
| | - Manoe J. Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.J.J.); (A.J.); (R.M.)
| | - Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.J.J.); (A.J.); (R.M.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.B.); (S.C.); (C.D.-V.); (B.M.G.)
| | - Anna Pastore
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Cristiano De Stefanis
- Histology-Core Facility, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
| | - Laura R. Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
| | - Isabella Giovannoni
- Department of Pathology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (I.G.); (P.F.)
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (I.G.); (P.F.)
| | - Lambertus P. van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.P.v.d.H.); (E.L.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.B.); (S.C.); (C.D.-V.); (B.M.G.)
| | - Bianca M. Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.B.); (S.C.); (C.D.-V.); (B.M.G.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.J.J.); (A.J.); (R.M.)
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.P.v.d.H.); (E.L.)
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Francesco Emma
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.B.); (E.D.L.); (M.C.); (L.R.R.); (F.E.)
- Division of Nephrology, Department of Pediatric Subspecialities, Bambino Gesù Children’s Hospital, IRCSS, 00165 Rome, Italy
| |
Collapse
|
24
|
Cherqui S. Hematopoietic Stem Cell Gene Therapy for Cystinosis: From Bench-to-Bedside. Cells 2021; 10:3273. [PMID: 34943781 PMCID: PMC8699556 DOI: 10.3390/cells10123273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The gene involved is the CTNS gene that encodes cystinosin, a seven-transmembrane domain lysosomal protein, which is a proton-driven cystine transporter. Cystinosis is characterized by the lysosomal accumulation of cystine, a dimer of cysteine, in all the cells of the body leading to multi-organ failure, including the failure of the kidney, eye, thyroid, muscle, and pancreas, and eventually causing premature death in early adulthood. The current treatment is the drug cysteamine, which is onerous and expensive, and only delays the progression of the disease. Employing the mouse model of cystinosis, using Ctns-/- mice, we first showed that the transplantation of syngeneic wild-type murine hematopoietic stem and progenitor cells (HSPCs) led to abundant tissue integration of bone marrow-derived cells, a significant decrease in tissue cystine accumulation, and long-term kidney, eye and thyroid preservation. To translate this result to a potential human therapeutic treatment, given the risks of mortality and morbidity associated with allogeneic HSPC transplantation, we developed an autologous transplantation approach of HSPCs modified ex vivo using a self-inactivated lentiviral vector to introduce a functional version of the CTNS cDNA, pCCL-CTNS, and showed its efficacy in Ctns-/- mice. Based on these promising results, we held a pre-IND meeting with the Food and Drug Administration (FDA) to carry out the FDA agreed-upon pharmacological and toxicological studies for our therapeutic candidate, manufacturing development, production of the GMP lentiviral vector, design Phase 1/2 of the clinical trial, and filing of an IND application. Our IND was cleared by the FDA on 19 December 2018, to proceed to the clinical trial using CD34+ HSPCs from the G-CSF/plerixafor-mobilized peripheral blood stem cells of patients with cystinosis, modified by ex vivo transduction using the pCCL-CTNS vector (investigational product name: CTNS-RD-04). The clinical trial evaluated the safety and efficacy of CTNS-RD-04 and takes place at the University of California, San Diego (UCSD) and will include up to six patients affected with cystinosis. Following leukapheresis and cell manufacturing, the subjects undergo myeloablation before HSPC infusion. Patients also undergo comprehensive assessments before and after treatment to evaluate the impact of CTNS-RD-04 on the clinical outcomes and cystine and cystine crystal levels in the blood and tissues for 2 years. If successful, this treatment could be a one-time therapy that may eliminate or reduce renal deterioration as well as the long-term complications associated with cystinosis. In this review, we will describe the long path from bench-to-bedside for autologous HSPC gene therapy used to treat cystinosis.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
25
|
Rahman F, Johnson JL, Zhang J, He J, Pestonjamasp K, Cherqui S, Catz SD. DYNC1LI2 regulates localization of the chaperone-mediated autophagy receptor LAMP2A and improves cellular homeostasis in cystinosis. Autophagy 2021; 18:1108-1126. [PMID: 34643468 PMCID: PMC9196850 DOI: 10.1080/15548627.2021.1971937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dynein motor protein complex is required for retrograde transport but the functions of the intermediate-light chains that form the cargo-binding complex are not elucidated and the importance of individual subunits in maintaining cellular homeostasis is unknown. Here, using mRNA arrays and protein analysis, we show that the dynein subunit, DYNC1LI2 (dynein, cytoplasmic 1 light intermediate chain 2) is downregulated in cystinosis, a lysosomal storage disorder caused by genetic defects in CTNS (cystinosin, lysosomal cystine transporter). Reconstitution of DYNC1LI2 expression in ctns-/- cells reestablished endolysosomal dynamics. Defective vesicular trafficking in cystinotic cells was rescued by DYNC1LI2 expression which correlated with decreased endoplasmic reticulum stress manifested as decreased expression levels of the chaperone HSPA5/GRP78, and the transcription factors ATF4 and DDIT3/CHOP. Mitochondrial fragmentation, membrane potential and endolysosomal-mitochondrial association in cystinotic cells were rescued by DYNC1LI2. Survival of cystinotic cells to oxidative stress was increased by DYNC1LI2 reconstitution but not by its paralog DYNC1LI1, which also failed to decrease ER stress and mitochondrial fragmentation. DYNC1LI2 expression rescued the localization of the chaperone-mediated autophagy (CMA) receptor LAMP2A, CMA activity, cellular homeostasis and LRP2/megalin expression in cystinotic proximal tubule cells, the primary cell type affected in cystinosis. DYNC1LI2 failed to rescue phenotypes in cystinotic cells when LAMP2A was downregulated or when co-expressed with dominant negative (DN) RAB7 or DN-RAB11, which impaired LAMP2A trafficking. DYNC1LI2 emerges as a regulator of cellular homeostasis and potential target to repair underlying trafficking and CMA in cystinosis, a mechanism that is not restored by lysosomal cystine depletion therapies. Abbreviations: ACTB: actin, beta; ATF4: activating transcription factor 4; CMA: chaperone-mediated autophagy; DYNC1LI1: dynein cytoplasmic 1 light intermediate chain 1; DYNC1LI2: dynein cytoplasmic 1 light intermediate chain 2; ER: endoplasmic reticulum; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; LIC: light-intermediate chains; LRP2/Megalin: LDL receptor related protein 2; PTCs: proximal tubule cells; RAB: RAB, member RAS oncogene family; RAB11FIP3: RAB11 family interacting protein 3; RILP: Rab interacting lysosomal protein
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jing He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
26
|
Jamalpoor A, van Gelder CAGH, Yousef Yengej FA, Zaal EA, Berlingerio SP, Veys KR, Pou Casellas C, Voskuil K, Essa K, Ammerlaan CME, Rega LR, van der Welle REN, Lilien MR, Rookmaaker MB, Clevers H, Klumperman J, Levtchenko E, Berkers CR, Verhaar MC, Altelaar M, Masereeuw R, Janssen MJ. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med 2021; 13:e13067. [PMID: 34165243 PMCID: PMC8261496 DOI: 10.15252/emmm.202013067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide-cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Charlotte AGH van Gelder
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Sante P Berlingerio
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Koenraad R Veys
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Carla Pou Casellas
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Koen Voskuil
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Khaled Essa
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Carola ME Ammerlaan
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laura Rita Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research AreaBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Reini EN van der Welle
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marc R Lilien
- Department of Pediatric NephrologyWilhelmina Children’s HospitalUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Manoe J Janssen
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
27
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Festa BP, Berquez M, Nieri D, Luciani A. Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Rev Physiol Biochem Pharmacol 2021; 185:233-257. [PMID: 33649992 DOI: 10.1007/112_2020_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Christensen EI, Kristoffersen IB, Grann B, Thomsen JS, Andreasen A, Nielsen R. A well-developed endolysosomal system reflects protein reabsorption in segment 1 and 2 of rat proximal tubules. Kidney Int 2020; 99:841-853. [PMID: 33340516 DOI: 10.1016/j.kint.2020.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Proteinuria is a well-established marker and predictor of kidney disease. The receptors megalin and cubilin reabsorb filtered proteins and thereby proteinuria is avoided. It is unknown if all segments of the proximal tubule are involved in clearing the filtrate or if there exists a reserve capacity in case of increased glomerular protein filtration. To determine this, we performed serial sectioning of rat kidney and used stereology to quantify the endolysosomal system of the three segments of cortical and juxtamedullary nephrons by electron microscopy. Immunohistochemistry was applied to analyze the adaptor protein Dab2, which assists in megalin mediated endocytosis, megalin, and endocytic uptake of two endogenous megalin ligands; retinol binding protein and β2-microglobulin at exact tubular positions. Proteinuric rats (puromycin-treated) and mice (podocin knock-out) were analyzed to clarify the response of the tubule to increased protein filtration. We found that the endolysosomal system was most prominent in segment 1 and 2, whereas segment 3 was less developed. The depth of ligand uptake varied among nephrons, but it descended into segment 2 although uptake was lower than in segment 1 and it was never observed in segment 3. This was supported by prominent expression of Dab2 in segment 1 and 2. When protein filtration increased, segment 3 was included in the reabsorption process in proteinuric animals. Thus, segment 1 and 2 are responsible for clearing the filtrate for protein during normal physiological conditions, but the tubule exhibits plasticity and is able to include segment 3 under proteinuric stress.
Collapse
Affiliation(s)
| | | | - Birgitte Grann
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Jesper S Thomsen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Arne Andreasen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
De Leo E, Elmonem MA, Berlingerio SP, Berquez M, Festa BP, Raso R, Bellomo F, Starborg T, Janssen MJ, Abbaszadeh Z, Cairoli S, Goffredo BM, Masereeuw R, Devuyst O, Lowe M, Levtchenko E, Luciani A, Emma F, Rega LR. Cell-Based Phenotypic Drug Screening Identifies Luteolin as Candidate Therapeutic for Nephropathic Cystinosis. J Am Soc Nephrol 2020; 31:1522-1537. [PMID: 32503896 PMCID: PMC7351012 DOI: 10.1681/asn.2019090956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. METHODS To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. RESULTS Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. CONCLUSIONS Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.
Collapse
Affiliation(s)
- Ester De Leo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roberto Raso
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Francesco Bellomo
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Manoe Jacoba Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Zeinab Abbaszadeh
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Sara Cairoli
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Bianca Maria Goffredo
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | | | - Francesco Emma
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Laura Rita Rega
- Renal Diseases Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
31
|
Hollywood JA, Przepiorski A, D'Souza RF, Sreebhavan S, Wolvetang EJ, Harrison PT, Davidson AJ, Holm TM. Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis. J Am Soc Nephrol 2020; 31:962-982. [PMID: 32198276 DOI: 10.1681/asn.2019070712] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.
Collapse
Affiliation(s)
- Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania
| | - Randall F D'Souza
- Discipline of Nutrition, The University of Auckland, Auckland, New Zealand
| | - Sreevalsan Sreebhavan
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick T Harrison
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Teresa M Holm
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, Henriques MDG, Pinheiro AAS, Caruso-Neves C. IL-4 Receptor α Chain Protects the Kidney Against Tubule-Interstitial Injury Induced by Albumin Overload. Front Physiol 2020; 11:172. [PMID: 32174845 PMCID: PMC7056741 DOI: 10.3389/fphys.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα–/– mice treated with saline; and (4) KO + BSA, IL4Rα–/– mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor β. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
De Rasmo D, Signorile A, De Leo E, Polishchuk EV, Ferretta A, Raso R, Russo S, Polishchuk R, Emma F, Bellomo F. Mitochondrial Dynamics of Proximal Tubular Epithelial Cells in Nephropathic Cystinosis. Int J Mol Sci 2019; 21:ijms21010192. [PMID: 31888107 PMCID: PMC6982165 DOI: 10.3390/ijms21010192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022] Open
Abstract
Nephropathic cystinosis is a rare lysosomal storage disorder caused by mutations in CTNS gene leading to Fanconi syndrome. Independent studies reported defective clearance of damaged mitochondria and mitochondrial fragmentation in cystinosis. Proteins involved in the mitochondrial dynamics and the mitochondrial ultrastructure were analyzed in CTNS-/- cells treated with cysteamine, the only drug currently used in the therapy for cystinosis but ineffective to treat Fanconi syndrome. CTNS-/- cells showed an overexpression of parkin associated with deregulation of ubiquitination of mitofusin 2 and fission 1 proteins, an altered proteolytic processing of optic atrophy 1 (OPA1), and a decreased OPA1 oligomerization. According to molecular findings, the analysis of electron microscopy images showed a decrease of mitochondrial cristae number and an increase of cristae lumen and cristae junction width. Cysteamine treatment restored the fission 1 ubiquitination, the mitochondrial size, number and lumen of cristae, but had no effect on cristae junction width, making CTNS-/- tubular cells more susceptible to apoptotic stimuli.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy;
- Correspondence: (D.D.R.); (F.B.); Tel.: +39-080-5448516 (D.D.R.); +39-06-68592997 (F.B)
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (S.R.)
| | - Ester De Leo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital—IRCCS, 00146 Rome, Italy; (E.D.L.); (R.R.)
| | - Elena V. Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (E.V.P.); (R.P.)
| | - Anna Ferretta
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy;
| | - Roberto Raso
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital—IRCCS, 00146 Rome, Italy; (E.D.L.); (R.R.)
| | - Silvia Russo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (S.R.)
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; (E.V.P.); (R.P.)
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital—IRCCS, 00165 Rome, Italy;
| | - Francesco Bellomo
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital—IRCCS, 00146 Rome, Italy; (E.D.L.); (R.R.)
- Correspondence: (D.D.R.); (F.B.); Tel.: +39-080-5448516 (D.D.R.); +39-06-68592997 (F.B)
| |
Collapse
|
34
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Janssens V, Gaide Chevronnay HP, Marie S, Vincent MF, Van Der Smissen P, Nevo N, Vainio S, Nielsen R, Christensen EI, Jouret F, Antignac C, Pierreux CE, Courtoy PJ. Protection of Cystinotic Mice by Kidney-Specific Megalin Ablation Supports an Endocytosis-Based Mechanism for Nephropathic Cystinosis Progression. J Am Soc Nephrol 2019; 30:2177-2190. [PMID: 31548351 DOI: 10.1681/asn.2019040371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deletions or inactivating mutations of the cystinosin gene CTNS lead to cystine accumulation and crystals at acidic pH in patients with nephropathic cystinosis, a rare lysosomal storage disease and the main cause of hereditary renal Fanconi syndrome. Early use of oral cysteamine to prevent cystine accumulation slows progression of nephropathic cystinosis but it is a demanding treatment and not a cure. The source of cystine accumulating in kidney proximal tubular cells and cystine's role in disease progression are unknown. METHODS To investigate whether receptor-mediated endocytosis by the megalin/LRP2 pathway of ultrafiltrated, disulfide-rich plasma proteins could be a source of cystine in proximal tubular cells, we used a mouse model of cystinosis in which conditional excision of floxed megalin/LRP2 alleles in proximal tubular cells of cystinotic mice was achieved by a Cre-LoxP strategy using Wnt4-CRE. We evaluated mice aged 6-9 months for kidney cystine levels and crystals; histopathology, with emphasis on swan-neck lesions and proximal-tubular-cell apoptosis and proliferation (turnover); and proximal-tubular-cell expression of the major apical transporters sodium-phosphate cotransporter 2A (NaPi-IIa) and sodium-glucose cotransporter-2 (SGLT-2). RESULTS Wnt4-CRE-driven megalin/LRP2 ablation in cystinotic mice efficiently blocked kidney cystine accumulation, thereby preventing lysosomal deformations and crystal deposition in proximal tubular cells. Swan-neck lesions were largely prevented and proximal-tubular-cell turnover was normalized. Apical expression of the two cotransporters was also preserved. CONCLUSIONS These observations support a key role of the megalin/LRP2 pathway in the progression of nephropathic cystinosis and provide a proof of concept for the pathway as a therapeutic target.
Collapse
Affiliation(s)
- Virginie Janssens
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | | | - Sandrine Marie
- Biochemical Genetics, Academic Hospital Saint-Luc, Brussels, Belgium
| | | | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie Nevo
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Laboratory of Developmental Biology, Oulu Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and
| | | | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Christophe E Pierreux
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium;
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
36
|
Brasell EJ, Chu L, El Kares R, Seo JH, Loesch R, Iglesias DM, Goodyer P. The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr Nephrol 2019; 34:873-881. [PMID: 30413946 DOI: 10.1007/s00467-018-4094-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cystinosis is an ultrarare disorder caused by mutations of the cystinosin (CTNS) gene, encoding a cystine-selective efflux channel in the lysosomes of all cells of the body. Oral therapy with cysteamine reduces intralysosomal cystine accumulation and slows organ deterioration but cannot reverse renal Fanconi syndrome nor prevent the eventual need for renal transplantation. A definitive therapeutic remains elusive. About 15% of cystinosis patients worldwide carry one or more nonsense mutations that halt translation of the CTNS protein. Aminoglycosides such as geneticin (G418) can bind to the mammalian ribosome, relax translational fidelity, and permit readthrough of premature termination codons to produce full-length protein. METHODS To ascertain whether aminoglycosides permit readthrough of the most common CTNS nonsense mutation, W138X, we studied the effect of G418 on patient fibroblasts. RESULTS G418 treatment induced translational readthrough of CTNSW138X constructs transfected into HEK293 cells and expression of full-length endogenous CTNS protein in homozygous W138X fibroblasts. CONCLUSIONS Reduction in intracellular cystine indicates that the CTNS protein produced is functional as a cystine transporter. Interestingly, similar effects were seen even in W138X compound heterozygotes. These studies establish proof-of-principle for the potential of aminoglycosides to treat cystinosis and possibly other monogenic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Emma J Brasell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - LeeLee Chu
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | - Reyhan El Kares
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | - Jung Hwa Seo
- The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada
| | | | | | - Paul Goodyer
- Department of Human Genetics, McGill University, Montreal, Québec, Canada. .,The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Québec, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
37
|
Zhang J, He J, Johnson JL, Rahman F, Gavathiotis E, Cuervo AM, Catz SD. Chaperone-Mediated Autophagy Upregulation Rescues Megalin Expression and Localization in Cystinotic Proximal Tubule Cells. Front Endocrinol (Lausanne) 2019; 10:21. [PMID: 30774622 PMCID: PMC6367655 DOI: 10.3389/fendo.2019.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 01/16/2023] Open
Abstract
Cystinosis is a lysosomal storage disorder caused by defects in CTNS, the gene that encodes the lysosomal cystine transporter cystinosin. Patients with nephropathic cystinosis are characterized by endocrine defects, defective proximal tubule cell (PTC) function, the development of Fanconi syndrome and, eventually, end-stage renal disease. Kidney disease is developed despite the use of cysteamine, a drug that decreases lysosomal cystine overload but fails to correct overload-independent defects. Chaperone-mediated autophagy (CMA), a selective form of autophagy, is defective in cystinotic mouse fibroblasts, and treatment with cysteamine is unable to correct CMA defects in vivo, but whether the vesicular trafficking mechanisms that lead to defective CMA in cystinosis are manifested in human PTCs is not currently known and whether PTC-specific mechanisms are corrected upon CMA upregulation remains to be elucidated. Here, using CRISPR-Cas9 technology, we develop a new human PTC line with defective cystinosin expression (CTNS-KO PTCs). We show that the expression and localization of the CMA receptor, LAMP2A, is defective in CTNS-KO PTCs. The expression of the lipidated form of LC3B, a marker for another form of autophagy (macroautophagy), is decreased in CTNS-KO PTCs indicating decreased autophagosome numbers under basal conditions. However, the autophagic flux is functional, as measured by induction by starvation or by blockage using the v-ATPase inhibitor bafilomycin A, and by degradation of the macroautophagy substrate SQSTM1 under starvation and proteasome-inhibited conditions. Previous studies showed that LAMP2A accumulates in Rab11-positive vesicles in cystinotic cells. Here, we show defective Rab11 expression, localization and trafficking in CTNS-KO PTCs as determined by confocal microscopy, immunoblotting and TIRFM. We also show that both Rab11 expression and trafficking in cystinotic PTCs are rescued by the upregulation of CMA using small-molecule CMA activators. Cystinotic PTCs are characterized by PTC de-differentiation accompanied by loss of the endocytic receptor megalin, and megalin recycling is regulated by Rab11. Here we show that megalin plasma membrane localization is defective in CTNS-KO PTCs and its expression is rescued by treatment with CMA activators. Altogether, our data support that CMA upregulation has the potential to improve PTC function in cystinosis.
Collapse
Affiliation(s)
- Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Jing He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Jennifer L. Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Sergio D. Catz
| |
Collapse
|
38
|
Schuh CD, Polesel M, Platonova E, Haenni D, Gassama A, Tokonami N, Ghazi S, Bugarski M, Devuyst O, Ziegler U, Hall AM. Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis. J Am Soc Nephrol 2018; 29:2696-2712. [PMID: 30301861 DOI: 10.1681/asn.2018050522] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.
Collapse
Affiliation(s)
| | | | | | - Dominik Haenni
- Institute of Anatomy.,Center for Microscopy and Image Analysis, and
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Natsuko Tokonami
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, and
| | - Andrew M Hall
- Institute of Anatomy, .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018; 8:14133. [PMID: 30237523 PMCID: PMC6148293 DOI: 10.1038/s41598-018-32389-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Collapse
|
40
|
Courtoy PJ, Henriet P. GATM Mutations Cause a Dominant Fibrillar Conformational Disease in Mitochondria-When Eternity Kills. J Am Soc Nephrol 2018; 29:1787-1789. [PMID: 29789432 DOI: 10.1681/asn.2018040450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat Commun 2018; 9:161. [PMID: 29323117 PMCID: PMC5765140 DOI: 10.1038/s41467-017-02536-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
Abstract
The endolysosomal system sustains the reabsorptive activity of specialized epithelial cells. Lysosomal storage diseases such as nephropathic cystinosis cause a major dysfunction of epithelial cells lining the kidney tubule, resulting in massive losses of vital solutes in the urine. The mechanisms linking lysosomal defects and epithelial dysfunction remain unknown, preventing the development of disease-modifying therapies. Here we demonstrate, by combining genetic and pharmacologic approaches, that lysosomal dysfunction in cystinosis results in defective autophagy-mediated clearance of damaged mitochondria. This promotes the generation of oxidative stress that stimulates Gα12/Src-mediated phosphorylation of tight junction ZO-1 and triggers a signaling cascade involving ZO-1-associated Y-box factor ZONAB, which leads to cell proliferation and transport defects. Correction of the primary lysosomal defect, neutralization of mitochondrial oxidative stress, and blockage of tight junction-associated ZONAB signaling rescue the epithelial function. We suggest a link between defective lysosome-autophagy degradation pathways and epithelial dysfunction, providing new therapeutic perspectives for lysosomal storage disorders.
Collapse
|
42
|
Wang J, Wen Y, Zhou M, Shi X, Jiang L, Li M, Yu Y, Li X, Li X, Zhang W, Lundquist AL, Chen L. Ectopic germinal center and megalin defect in primary Sjogren syndrome with renal Fanconi syndrome. Arthritis Res Ther 2017; 19:120. [PMID: 28577559 PMCID: PMC5455124 DOI: 10.1186/s13075-017-1317-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/02/2017] [Indexed: 01/15/2023] Open
Abstract
Background This study reports the clinical and pathological features of 12 cases of primary Sjogren syndrome (pSS) with renal involvement presenting with proximal tubular dysfunction in a single center, and investigates the possible correlation of ectopic germinal center formation and megalin/cubilin down-expression. Method Clinical and pathological records were reviewed. Immunohistochemistry was carried out to detect megalin, cubilin, CD21 and IL-17 expression. Results Patients presented with different degrees of proximal renal tubule lesion and decreased estimated glomerular filtration rate (eGFR). Renal biopsy revealed tubulointerstitial nephritis, with tubular epithelial cell degeneration, tubular atrophy, interstitial inflammation and focal fibrosis. Immunohistochemistry revealed decreased expression of megalin and cubilin, two important multiligand protein receptors on the brush border of proximal tubular epithelial cells. IL-17 secreted by Th17 subtype effector T cells was diffusely detected in the renal proximal tubule, with a negative correlation of IL-17 and megalin expression. In addition, ectopic germinal centers characterized by CD21+ follicular dendritic cells were present in the renal interstitium. In patients with a decreased eGFR, treatment with 4 weeks of glucocorticoid therapy resulted in an improved eGFR in 75% of patients. Conclusion We report 12 cases of pSS characterized by Fanconi syndrome. The decreased megalin and cubilin expression may contribute to the proximal tubular reabsorption defect, possibly secondary to Th17 infiltration and formation of ectopic germinal centers.
Collapse
Affiliation(s)
- Jing Wang
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Yubing Wen
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Mengyu Zhou
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Xiaoxiao Shi
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Lanping Jiang
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Mingxi Li
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Yang Yu
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China. .,Department of Nephrology, Chinese Academy of Medical Science, Peking Union Medical College Hospital, No 1, Shuaifuyan, Wangfujing St, Beijing, 100730, China.
| | - Xuemei Li
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Xuewang Li
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Wen Zhang
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China
| | - Andrew L Lundquist
- Division of Nephrology, Massachussetts General Hospital, Boston, MA, USA
| | - Limeng Chen
- Nephrology Department, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Tsing Hua University, Beijing, China.
| |
Collapse
|
43
|
Cases O, Obry A, Ben-Yacoub S, Augustin S, Joseph A, Toutirais G, Simonutti M, Christ A, Cosette P, Kozyraki R. Impaired vitreous composition and retinal pigment epithelium function in the FoxG1::LRP2 myopic mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1242-1254. [DOI: 10.1016/j.bbadis.2017.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
|
44
|
Elmonem MA, Khalil R, Khodaparast L, Khodaparast L, Arcolino FO, Morgan J, Pastore A, Tylzanowski P, Ny A, Lowe M, de Witte PA, Baelde HJ, van den Heuvel LP, Levtchenko E. Cystinosis (ctns) zebrafish mutant shows pronephric glomerular and tubular dysfunction. Sci Rep 2017; 7:42583. [PMID: 28198397 PMCID: PMC5309805 DOI: 10.1038/srep42583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023] Open
Abstract
The human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction. Animal models of cystinosis are limited, with only a Ctns knockout mouse reported, showing cystine accumulation and late signs of tubular dysfunction but lacking the glomerular phenotype. We established and characterized a mutant zebrafish model with a homozygous nonsense mutation (c.706 C > T; p.Q236X) in exon 8 of ctns. Cystinotic mutant larvae showed cystine accumulation, delayed development, and signs of pronephric glomerular and tubular dysfunction mimicking the early phenotype of human cystinotic patients. Furthermore, cystinotic larvae showed a significantly increased rate of apoptosis that could be ameliorated with cysteamine, the human cystine depleting therapy. Our data demonstrate that, ctns gene is essential for zebrafish pronephric podocyte and proximal tubular function and that the ctns-mutant can be used for studying the disease pathogenic mechanisms and for testing novel therapies for cystinosis.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Paediatric Nephrology &Growth and Regeneration, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ramzi Khalil
- Department of Pathology, Leiden University Medical Centre, The Netherlands
| | - Ladan Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium
| | - Laleh Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium
| | - Fanny O Arcolino
- Department of Paediatric Nephrology &Growth and Regeneration, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium
| | - Joseph Morgan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Children's Hospital and Research Institute "Bambino Gesù" IRCCS, Rome, Italy
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
| | - Annelii Ny
- Laboratory for Molecular Bio-discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter A de Witte
- Laboratory for Molecular Bio-discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Centre, The Netherlands
| | - Lambertus P van den Heuvel
- Department of Paediatric Nephrology &Growth and Regeneration, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium.,Department of Paediatric Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Paediatric Nephrology &Growth and Regeneration, University Hospitals Leuven KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Rega LR, Polishchuk E, Montefusco S, Napolitano G, Tozzi G, Zhang J, Bellomo F, Taranta A, Pastore A, Polishchuk R, Piemonte F, Medina DL, Catz SD, Ballabio A, Emma F. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int 2017; 89:862-73. [PMID: 26994576 DOI: 10.1016/j.kint.2015.12.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis.
Collapse
Affiliation(s)
- Laura R Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Giulia Tozzi
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Francesco Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Taranta
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Fiorella Piemonte
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| |
Collapse
|
46
|
Cystinosin-LKG rescues cystine accumulation and decreases apoptosis rate in cystinotic proximal tubular epithelial cells. Pediatr Res 2017; 81:113-119. [PMID: 27656773 DOI: 10.1038/pr.2016.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nephropathic cystinosis is a lysosomal storage disease that is caused by mutations in the CTNS gene encoding a cystine/proton symporter cystinosin and an isoform cystinosin-LKG which is generated by an alternative splicing of exon 12. We have investigated the physiological role of the cystinosin-LKG that is widely expressed in epithelial tissues. METHODS We have analyzed the intracellular localization and the function of the cystinosin-LKG conjugated with DsRed (cystinosin-LKG-RFP) in Madin-Darby canine kidney cells (MDCK II) and in proximal tubular epithelial cells carrying a deletion of the CTNS gene (cystinotic PTEC), respectively. RESULTS Cystinosin-LKG-RFP colocalized with markers of lysosomes, late endosomes and was also expressed on the apical surface of polarized MDCK II cells. Moreover, immune-electron microscopy images of MDCK II cells overexpressing cystinosin-LKG-RFP showed stacked lamellar membranes inside perinuclear lysosomal structures. To study the role of LKG-isoform, we have investigated cystine accumulation and apoptosis that have been described in cystinotic cells. Cystinosin-LKG decreased cystine levels by approximately 10-fold similarly to cystinosin-RFP. The levels of TNFα- and actinomycin D-inducted apoptosis dropped in cystinotic cells expressing LKG-isoform. This effect was also similar to the main isoform. CONCLUSION Our results suggest that cystinosin-LKG and cystinosin move similar functional activities in cells.
Collapse
|
47
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
48
|
Klootwijk E, Dufek S, Issler N, Bockenhauer D, Kleta R. Pathophysiology, current treatments and future targets in hereditary forms of renal Fanconi syndrome. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1259560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Stephanie Dufek
- Centre for Nephrology, University College London, London, UK
| | - Naomi Issler
- Centre for Nephrology, University College London, London, UK
| | | | - Robert Kleta
- Centre for Nephrology, University College London, London, UK
| |
Collapse
|
49
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
50
|
Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 2016; 311:F145-61. [PMID: 27194714 PMCID: PMC4967168 DOI: 10.1152/ajprenal.00164.2016] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
There is an alarming global increase in the incidence of end-stage kidney disease, for which early biomarkers and effective treatment options are lacking. Largely based on the histology of the end-stage kidney and on the model of unilateral ureteral obstruction, current investigation is focused on the pathogenesis of renal interstitial fibrosis as a central mechanism in the progression of chronic kidney disease (CKD). It is now recognized that cumulative episodes of acute kidney injury (AKI) can lead to CKD, and, conversely, CKD is a risk factor for AKI. Based on recent and historic studies, this review shifts attention from the glomerulus and interstitium to the proximal tubule as the primary sensor and effector in the progression of CKD as well as AKI. Packed with mitochondria and dependent on oxidative phosphorylation, the proximal tubule is particularly vulnerable to injury (obstructive, ischemic, hypoxic, oxidative, metabolic), resulting in cell death and ultimately in the formation of atubular glomeruli. Animal models of human glomerular and tubular disorders have provided evidence for a broad repertoire of morphological and functional responses of the proximal tubule, revealing processes of degeneration and repair that may lead to new therapeutic strategies. Most promising are studies that encompass the entire life cycle from fetus to senescence, recognizing epigenetic factors. The application of techniques in molecular characterization of tubule segments and the development of human kidney organoids may provide new insights into the mammalian kidney subjected to stress or injury, leading to biomarkers of early CKD and new therapies.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|