1
|
Karacicek B, Katkat E, Binokay L, Ozhan G, Karakülah G, Genc S. The Role of tRNA Fragments on Neurogenesis Alteration by H₂O₂-induced Oxidative Stress. J Mol Neurosci 2025; 75:47. [PMID: 40216606 PMCID: PMC11991940 DOI: 10.1007/s12031-025-02330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNA molecules transcribed from tRNA genes. tRNAs cleaved into a diverse population tRNA fragments (tRFs) ranging in length from 18 to 40 nucleotides, they interact with RNA binding proteins and influence the stability and translation. Stress is one of the reasons for tRFs cleavage. In our study, we modeled oxidative stress conditions with hydrogen peroxide (H2O2) exposure and dealt with one of the frequently expressed tRF in the hippocampus region of the brain, which is tRF-Glu-CTC. For this purpose, neural stem cells (NSCs) were exposed to H2O2, and tRF-Glu-CTC levels were increased in various H2O2 concentrations. A decrease was seen in microtubule-associated protein 2 (MAP2) marker expression. To understand the H2O2 oxidative stress condition on the expression of tRNA fragments, 72 hpf zebrafish embryos exposed to different H2O2 concentrations, an increase in the level of tRF-Glu-CTC was observed in all concentrations of H2O2 compared to control. Subsequently, neurogenesis markers were figured out via Calb2a (calbindin 2a) in situ hybridization (ISH) and HuC/D immunofluorescence staining (IF) staining experiments. Under H2O2 exposure, a decline was observed in Calb2a and HuC/D markers. To understand the inhibitory role of tRF-Glu-CTC on neurogenesis, NSCs were transfected via tRF-Glu-CTC inhibitor, and neurogenesis markers (ßIII-tubulin, MAP2, and GFAP) were determined with qRT-PCR and IF staining. tRF-Glu-CTC inhibitor reversed the diminished neuronal markers expression under the exposure of H2O2. Gene Ontology (GO) enrichment analysis showed us that targets of tRF-Glu-CTC are generally related to neuronal function and synaptic processes.
Collapse
Affiliation(s)
| | - Esra Katkat
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
2
|
Nguyen NYT, Liu X, Dutta A, Su Z. The Secret Life of N 1-methyladenosine: A Review on its Regulatory Functions. J Mol Biol 2025:169099. [PMID: 40139310 DOI: 10.1016/j.jmb.2025.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
N1-methyladenosine (m1A) is a conserved modification on house-keeping RNAs, including tRNAs and rRNAs. With recent advancement on m1A detection and mapping, m1A is revealed to have a secret life with regulatory functions. This includes the regulation of its canonical substrate tRNAs, and expands into new territories such as tRNA fragments, mRNAs and repeat RNAs. The dynamic regulation of m1A has been shown in different biological contexts, including stress response, diet, T cell activation and aging. Interestingly, m1A can also be installed by non-enzymatic mechanisms. However, technical challenges remain in m1A site mapping; as a result, controversies have been observed across different labs or different methods. In this review we will summarize the recent development of m1A detection, its dynamic regulation, and its biological functions on diverse RNA substrates.
Collapse
Affiliation(s)
- Nhi Yen Tran Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Xisheng Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
3
|
Yin N, Xie X, Li D, Yang S, Liu Y, Tang Y, Zhang H, Zhang W. tRF-Val-TAC-004 protects against renal ischemia-reperfusion injury via attenuating Apaf1-mediated apoptosis. iScience 2025; 28:111954. [PMID: 40104049 PMCID: PMC11914182 DOI: 10.1016/j.isci.2025.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
tRNA-derived fragments (tRFs) play critical roles in cellular process, and we have previously reported that tRFs are involved in ischemia reperfusion injury induced acute kidney injury (IRI-AKI). However, the precise involvement of tRFs in IRI-AKI remains obscure. This study aims to elucidate the impact of tRF-Val-TAC-004 (tRF-Val) on IRI-AKI and uncover the underlying mechanisms. Our observations reveal a significant downregulation of tRF-Val in IRI-AKI mice and its overexpression mitigated renal dysfunction, morphological damage, and apoptosis in IRI-AKI mice, while its inhibition exacerbated these effects. Similar outcomes were replicated in CoCl2-treated BUMPT cells upon transfection with tRF-Val mimic or inhibitor. Mechanistically, dual-luciferase reporter assay and AGO-RIP qPCR analyses demonstrated that tRF-Val suppresses Apaf1 expression by targeting the 3'-UTR of Apaf1 mRNA. Furthermore, the protective efficacy of tRF-Val was notably weakened by Apaf1-overexpressing plasmids. In summary, these novel findings unveil the protective role of tRF-Val against IRI-AKI through inhibition of Apaf1-mediated apoptosis.
Collapse
Affiliation(s)
- Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Yongzhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| |
Collapse
|
4
|
Zhang Z, Qiao Y, Ji J, Huang C, Shi H, Gan W, Zhang A. The potential role of differentially expressed tRNA-derived fragments in high glucose-induced podocytes. Ren Fail 2024; 46:2318413. [PMID: 38369750 PMCID: PMC10878346 DOI: 10.1080/0886022x.2024.2318413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
The prevalence of diabetic kidney disease (DKD) is increasing annually. Damage to and loss of podocytes occur early in DKD. tRNA-derived fragments (tRFs), originating from tRNA precursors or mature tRNAs, are associated with various illnesses. In this study, tRFs were identified, and their roles in podocyte injury induced by high-glucose (HG) treatment were explored. High-throughput sequencing of podocytes treated with HG was performed to identify differentially expressed tRFs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression levels of nephrin, podocin, and desmin were measured in podocytes after overexpression of tRF-1:24-Glu-CTC-1-M2 (tRF-1:24) and concomitant HG treatment. A total of 647 tRFs were identified, and 89 differentially expressed tRFs (|log2FC| ≥ 0.585; p ≤ .05) were identified in the HG group, of which 53 tRFs were downregulated and 36 tRFs were upregulated. The 10 tRFs with the highest differential expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and these results were consistent with the sequencing results. GO analysis revealed that the biological process, cellular component, and molecular function terms in which the tRFs were the most enriched were cellular processes, cellular anatomical entities, and binding. KEGG pathway analysis revealed that tRFs may be involved in signaling pathways related to growth hormones, phospholipase D, the regulation of stem cell pluripotency, and T-/B-cell receptors. Overexpression of tRF-1:24, one of the most differentially expressed tRFs, attenuated podocyte injury induced by HG. Thus, tRFs might be potential biomarkers for podocyte injury in DKD.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunyang Qiao
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jialing Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chan Huang
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Shi
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiqing Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Gaylord A, Holzhausen EA, Chalifour B, Patterson WB, Tung PW, Baccarelli AA, Goran MI, Alderete TL, Kupsco A. tRNA-derived RNAs in human milk extracellular vesicles and associations with breastfeeding variables and maternal diet. Epigenomics 2024; 16:1429-1441. [PMID: 39580634 PMCID: PMC11622811 DOI: 10.1080/17501911.2024.2430943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS To describe tDRs in human milk EVs and their associations with maternal body mass index, age, dietary indices, breastfeeding frequency, season and time of milk collection in a Latina population. MATERIALS & METHODS We sequenced small RNAs from EVs from 109 mature human milk samples collected at 1 month after delivery in the Southern California Mother's Milk Study. We grouped tDRs using hierarchical clustering and clusters were compared across tDR characteristics. We analyzed associations of tDRs with intrinsic maternal variables (body mass index, age), maternal nutrition (caloric intake, Healthy Eating Index, Dietary Inflammatory Index), and variables related to feeding and milk collection (breastfeeding frequency, season and time of milk collection) using negative binomial models. RESULTS We identified 338 tDRs expressed in 90% or more of milk EV samples, of which 113 were identified in all samples. tDR-1:26-Gly-CCC-1-M4 accounted for most reads (79%). Pathway analysis revealed a wide array of biological processes and disease mechanisms across the four tDR clusters. tDRs were associated with season of collection, time of collection, breastfeeding frequency, and the dietary inflammatory index. CONCLUSIONS tDRs are abundant in milk EVs and may be sensitive to maternal diet, seasonality, time of day, and breastfeeding frequency.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Pei Wen Tung
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael I. Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
6
|
Wang M, Guo J, Chen W, Wang H, Hou X. Emerging roles of tRNA-derived small RNAs in injuries. PeerJ 2024; 12:e18348. [PMID: 39465146 PMCID: PMC11512806 DOI: 10.7717/peerj.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs, precisely cleaved from tRNA, functioning as regulatory molecules. The topic of tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are entering a new era. Here, we provide a fresh perspective on this topic. We systematically reviewed the classification, generation, and biological functions of tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic targets in various injuries, including lung injury, liver injury, renal injury, cardiac injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We also provided a fresh perspective on the association between stress-induced tsRNAs and organ injury from a clinical perspective.
Collapse
Affiliation(s)
- Mengjun Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junfeng Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zheng K, Qian Y, Wang H, Song D, You H, Hou B, Han F, Zhu Y, Feng F, Lam SM, Shui G, Li X. Withdrawn: Combinatorial lipidomics and proteomics underscore erythrocyte lipid membrane aberrations in the development of adverse cardio-cerebrovascular complications in maintenance hemodialysis patients. Redox Biol 2024; 76:103295. [PMID: 39159596 PMCID: PMC11378344 DOI: 10.1016/j.redox.2024.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). The authors reached out to the Publisher to alert the Publisher to incorrect text published in the article. After investigating the situation, the journal came to the conclusion that the wrong version of the file was sent by the authors to the production team during the proof stage and the misplaced text was not noticed by the authors when they approved the final version. After consulting with the Editor-in-Chief of the journal, the decision was made to withdraw the current version of the article.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Qian
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Department of Nephrology, Jiangsu Province Hospital/The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyun Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Song
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Liang Y, Ji D, Ying X, Ma R, Ji W. tsRNA modifications: An emerging layer of biological regulation in disease. J Adv Res 2024:S2090-1232(24)00401-6. [PMID: 39260796 DOI: 10.1016/j.jare.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNA (tsRNA) represents an important and increasingly valued type of small non-coding RNA (sncRNA). The investigation of tRNA and tsRNA modification crosswalks has not only provided novel insights into the information and functions of tsRNA, but has also expanded the diversity and complexity of the tsRNA biological regulation network. AIM OF REVIEW Comparing with other sncRNAs, tsRNA biogenesis show obvious correlation with RNA modifications from mature tRNA and harbor various tRNA modifications. In this review, we aim to present the current aspect of tsRNA modifications and that modified tsRNA shape different regulatory mechanisms in physiological and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW Strategies for studying tsRNA mechanisms include its specific generation and functional effects induced by sequence/RNA modification/secondary structure. tsRNAs could harbor more than one tRNA modifications such as 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ) and N7-methylguanosine (m7G). This review consolidates the current knowledge of tRNA modification regulating tsRNA biogenesis, outlines the functional roles of various modified tsRNA and highlights their specific contributions in various disease pathogenesis. Therefore, the improvement of tsRNA modification detection technology and the introduction of experimental methods of tsRNA modification are conducive to further broadening the understanding of tsRNA function at the level of RNA modification.
Collapse
Affiliation(s)
- Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Ding Ji
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China
| | - Xiaoling Ying
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, PR China
| | - Renqiang Ma
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
9
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
10
|
Huang T, Zhao Y, Jiang G, Yang Z. tsRNA: A Promising Biomarker in Breast Cancer. J Cancer 2024; 15:2613-2626. [PMID: 38577588 PMCID: PMC10988313 DOI: 10.7150/jca.93531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guoqin Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixue Yang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
11
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
12
|
Wang L, Wen W, Yan J, Zhang R, Li C, Jiang H, Chen S, Pardo M, Zhu K, Jia B, Zhang W, Bai Z, Shi L, Cheng Y, Rudich Y, Morawska L, Chen J. Influence of Polycyclic Aromatic Compounds and Oxidation States of Soot Organics on the Metabolome of Human-Lung Cells (A549): Implications for Vehicle Fuel Selection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21593-21604. [PMID: 37955649 PMCID: PMC11441721 DOI: 10.1021/acs.est.3c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wen Wen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Runqi Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Hongxing Jiang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shaofeng Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ke Zhu
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Boyue Jia
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wei Zhang
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School
of Ecology and Environment, Inner Mongolia
University, Hohhot 010021, China
| | - Longbo Shi
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yingjun Cheng
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Lidia Morawska
- International
Laboratory for Air Quality and Health (ILAQH), School of Earth of
Atmospheric Sciences, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Jianmin Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- IRDR International
Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate
Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
Oshita T, Watanabe S, Toyohara T, Kujirai R, Kikuchi K, Suzuki T, Suzuki C, Matsumoto Y, Wada J, Tomioka Y, Tanaka T, Abe T. Urinary growth differentiation factor 15 predicts renal function decline in diabetic kidney disease. Sci Rep 2023; 13:12508. [PMID: 37532799 PMCID: PMC10397309 DOI: 10.1038/s41598-023-39657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
Sensitive biomarkers can enhance the diagnosis, prognosis, and surveillance of chronic kidney disease (CKD), such as diabetic kidney disease (DKD). Plasma growth differentiation factor 15 (GDF15) levels are a novel biomarker for mitochondria-associated diseases; however, it may not be a useful indicator for CKD as its levels increase with declining renal function. This study explores urinary GDF15's potential as a marker for CKD. The plasma and urinary GDF15 as well as 15 uremic toxins were measured in 103 patients with CKD. The relationship between the urinary GDF15-creatinine ratio and the uremic toxins and other clinical characteristics was investigated. Urinary GDF15-creatinine ratios were less related to renal function and uremic toxin levels compared to plasma GDF15. Additionally, the ratios were significantly higher in patients with CKD patients with diabetes (p = 0.0012) and reduced with statin treatment. In a different retrospective DKD cohort study (U-CARE, n = 342), multiple and logistic regression analyses revealed that the baseline urinary GDF15-creatinine ratios predicted a decline in estimated glomerular filtration rate (eGFR) over 2 years. Compared to the plasma GDF15 level, the urinary GDF15-creatinine ratio is less dependent on renal function and sensitively fluctuates with diabetes and statin treatment. It may serve as a good prognostic marker for renal function decline in patients with DKD similar to the urine albumin-creatinine ratio.
Collapse
Grants
- 18H02822 National Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K20604 National Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 21H02932 National Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 21K08245 National Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20ek0210133h0001 Japan Agency for Medical Research and Development (AMED)
- 20ak0101127h0001 Japan Agency for Medical Research and Development (AMED)
- 23ek0210168h0001 Japan Agency for Medical Research and Development (AMED)
- 22zf0127001h0002 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Toma Oshita
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Watanabe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Ryota Kujirai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Koichi Kikuchi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| |
Collapse
|
15
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
16
|
Alata Jimenez N, Castellano M, Santillan EM, Boulias K, Boan A, Arias Padilla LF, Fernandino JI, Greer EL, Tosar JP, Cochella L, Strobl-Mazzulla PH. Paternal methotrexate exposure affects sperm small RNA content and causes craniofacial defects in the offspring. Nat Commun 2023; 14:1617. [PMID: 36959185 PMCID: PMC10036556 DOI: 10.1038/s41467-023-37427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Mauricio Castellano
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Emilio M Santillan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Agustín Boan
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Luisa F Arias Padilla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Eric L Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Juan P Tosar
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
17
|
Burton JB, Silva-Barbosa A, Bons J, Rose J, Pfister K, Simona F, Gandhi T, Reiter L, Bernhardt O, Hunter CL, Goetzman ES, Sims-Lucas S, Schilling B. Substantial Downregulation of Mitochondrial and Peroxisomal Proteins during Acute Kidney Injury revealed by Data-Independent Acquisition Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530107. [PMID: 36865241 PMCID: PMC9980295 DOI: 10.1101/2023.02.26.530107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A fast-acquisition rate ZenoTOF 7600 mass spectrometer was introduced for data-independent acquisition (DIA) for comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3,945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured mice exhibited severely declined health. The comprehensive and sensitive kidney-specific DIA assays highlighted here feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome and will serve as useful tools for developing novel therapeutics to remediate kidney function.
Collapse
|
18
|
Gao Z, Jijiwa M, Nasu M, Borgard H, Gong T, Xu J, Chen S, Fu Y, Chen Y, Hu X, Huang G, Deng Y. Comprehensive landscape of tRNA-derived fragments in lung cancer. Mol Ther Oncolytics 2022; 26:207-225. [PMID: 35892120 PMCID: PMC9307607 DOI: 10.1016/j.omto.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022] Open
Abstract
Transfer RNA (tRNA)-derived fragment (tRDF) is a novel small non-coding RNA that presents in different types of cancer. The comprehensive understanding of tRDFs in non-small cell lung cancer remains largely unknown. In this study, 1,550 patient samples of non-small cell lung cancer (NSCLC) were included, and 52 tRDFs with four subtypes were identified. Six tRDFs were picked as diagnostic signatures based on the tRDFs expression patterns, and area under the curve (AUC) in independent validations is up to 0.90. Two signatures were validated successfully in plasma samples, and six signatures confirmed the consistency of distinguished expression in NSCLC cell lines. Ten tRDFs along with independent risk scores can be used to predict survival outcomes by stages; 5a_tRF-Ile-AAT/GAT can be a prognosis biomarker for early stage. Association analysis of tRDFs-signatures-correlated mRNAs and microRNA (miRNA) were targeted to the cell cycle and oocyte meiosis signaling pathways. Five tRDFs were assessed to associate with PD-L1 immune checkpoint and correlated with the genes that target in PD-L1 checkpoint signaling pathway. Our study is the first to provide a comprehensive analysis of tRDFs in lung cancer, including four subtypes of tRDFs, investigating the diagnostic and prognostic values, and demonstrated their biological function and transcriptional role as well as potential immune therapeutic value.
Collapse
Affiliation(s)
- Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jinwen Xu
- School of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
19
|
Plasma tRNA derivatives concentrations for detecting early brain damage in patients with acute large vessel occlusion and predicting clinical outcomes after endovascular thrombectomy. Clin Neurol Neurosurg 2022; 220:107358. [DOI: 10.1016/j.clineuro.2022.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
|
20
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Soelter TM, Whitlock JH, Williams AS, Hardigan AA, Lasseigne BN. Nucleic acid liquid biopsies in Alzheimer's disease: current state, challenges, and opportunities. Heliyon 2022; 8:e09239. [PMID: 35469332 PMCID: PMC9034064 DOI: 10.1016/j.heliyon.2022.e09239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Andrew A. Hardigan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
23
|
Hu Y, Cai A, Xu J, Feng W, Wu A, Liu R, Cai W, Chen L, Wang F. An emerging role of the 5' termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166314. [PMID: 34863896 DOI: 10.1016/j.bbadis.2021.166314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5' tiRNAs into the same category: 5'-tRFs and review the biological functions and regulatory mechanisms of 5'-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jing Xu
- Department of Laboratory Medicine, School of public health, Nantong University, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China.
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
24
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
25
|
Lee HK, Lee BR, Lee TJ, Lee CM, Li C, O'Connor PM, Dong Z, Kwon SH. Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys. Sci Rep 2022; 12:1646. [PMID: 35102218 PMCID: PMC8803936 DOI: 10.1038/s41598-022-05648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
While urine-based liquid biopsy has expanded to the analyses of extracellular nucleic acids, the potential of transfer RNA (tRNA) encapsulated within extracellular vesicles has not been explored as a new class of urine biomarkers for kidney injury. Using rat kidney and mouse tubular cell injury models, we tested if extracellular vesicle-loaded tRNA and their m1A (N1-methyladenosine) modification reflect oxidative stress of kidney injury and determined the mechanism of tRNA packaging into extracellular vesicles. We determined a set of extracellular vesicle-loaded, isoaccepting tRNAs differentially released after ischemia-reperfusion injury and oxidative stress. Next, we found that m1A modification of extracellular vesicle tRNAs, despite an increase of the methylated tRNAs in intracellular vesicles, showed little or no change under oxidative stress. Mechanistically, oxidative stress decreases tRNA loading into intracellular vesicles while the tRNA-loaded vesicles are accumulated due to decreased release of the vesicles from the cell surface. Furthermore, Maf1-mediated transcriptional repression of the tRNAs decreases the cargo availability for extracellular vesicle release in response to oxidative stress. Taken together, our data support that release of extracellular vesicle tRNAs reflects oxidative stress of kidney tubules which might be useful to detect ischemic kidney injury and could lead to rebalance protein translation under oxidative stress.
Collapse
Affiliation(s)
- Hee Kyung Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Byung Rho Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chenglong Li
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
26
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Zeng L, Peng H, Yu H, Wang W, Duan C, Fang C, Wu Y. Expression profiles of tRNA-derived small RNA and their potential roles in oral submucous fibrosis. J Oral Pathol Med 2021; 50:1057-1066. [PMID: 34558114 DOI: 10.1111/jop.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although transfer RNA (tRNA) has been found to be the main source of a rich class of noncoding RNA, the tRNA-derived small RNA (tsRNA) has been proved to play an irreplaceable role in the human body, and its dynamic imbalance could affect the progress of the disease. However, the research on tsRNA in oral submucous fibrosis (OSF) is still scarce. METHODS We sequenced the OSF and validated it by PCR. We found that there were significant differences in their expression levels in OSF. Furthermore, bioinformatic analysis was performed to explore the roles of these fragments in oral submucous fibrosis. RESULTS Of 126 tsRNAs in OSF were dysregulated, including 73 upregulated tsRNAs and 53 downregulated tsRNAs. The downregulated tiRNA-Val-CAC-002, tRF-Asn-GTT-005, tRF-Trp-CCA-007 and upregulated tRF-Gly-TCC-016, tRF-Pro-TGG-009 showed significant differences by qRT-PCR validation, which were consistent with the results of RNA sequencing. Gene ontology and pathway analysis revealed that tRF-Gly-TCC-016 would possibly promote the formation and progress of OSF through cytokine-cytokine receptor interaction and cAMP signal pathway, while tiRNA-Val-CAC-002 could be primarily concerned with the transition from OSF to oral squamous cell carcinoma (OSCC). CONCLUSION tRNA-derived fragments are dysregulated and could be involved in the pathogenesis of oral submucous fibrosis. tRF-Gly-TCC-016 and tiRNA-Val-CAC-002 may be new regulatory molecules that could affect the process of OSF by regulating signal pathways through interacting with multiple genes.
Collapse
Affiliation(s)
- Liujun Zeng
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University
| | - Hui Peng
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University
| | - Huiqiao Yu
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University
| | - Weiming Wang
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Changyun Fang
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University
| | - Yingfang Wu
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University
| |
Collapse
|
28
|
Abstract
tRNA-derived small RNA (tsRNA) is a novel class of non-coding RNA that is usually produced from tRNA following endonuclease cleavage which occurs under stress conditions. There are two types of tsRNAs: tRNA-derived fragments (tRFs) and stress-induced tRNA halves (tiRNAs), which differ in their cleavage position. Many studies have demonstrated that tsRNAs are involved in various physiological and pathological processes apart from cancer and gene expression. In this review, we briefly described the biogenesis, classification, and characteristics of tsRNAs and summarized the current research progress of tsRNAs in metabolic diseases, senescence, reproduction, stress, and organ injury, and finally put forward some problems to be solved.
Collapse
Affiliation(s)
- Qiyu Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Tingting Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, NationalCenter of Gerontology, National Health Commission; Institute of Geriatric Medicine, ChineseAcademy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
29
|
Pan X, Geng X, Liu Y, Yu M, Mishra MK, Xu X, Ding X, Liu P, Liang M. Transfer RNA Fragments in the Kidney in Hypertension. Hypertension 2021; 77:1627-1637. [PMID: 33775129 DOI: 10.1161/hypertensionaha.121.16994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, China (X.P.).,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.)
| | - Xuemei Geng
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.).,Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, China (X.G., X.X., X.D.)
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.)
| | - Mengqian Yu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China (M.Y., P.L.)
| | - Manoj K Mishra
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.)
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, China (X.G., X.X., X.D.)
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, China (X.G., X.X., X.D.)
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.).,Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China (M.Y., P.L.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee (X.P., X.G., Y.L., M.K.M., P.L., M.L.)
| |
Collapse
|
30
|
Northern Blotting Technique for Detection and Expression Analysis of mRNAs and Small RNAs. Methods Mol Biol 2021; 2170:155-183. [PMID: 32797458 DOI: 10.1007/978-1-0716-0743-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Northern analysis is a conventional but gold standard method for detection and quantification of gene expression changes. It not only detects the presence of a transcript but also indicates size and relative comparison of transcript abundance on a single membrane. In recent years it has been aptly adapted to validate and study the size and expression of small noncoding RNAs. Here, we describe protocols employed in our laboratory for conventional northern analysis with total RNA/mRNA to study gene expression and validation of small noncoding RNAs using low molecular weight fraction of RNAs. A brief account on the recent advancements for improving the sensitivity and efficiency of northern blot detection is also included in this chapter.
Collapse
|
31
|
Zhu XL, Li T, Cao Y, Yao QP, Liu X, Li Y, Guan YY, Deng JJ, Jiang R, Jiang J. tRNA-derived fragments tRF GlnCTG induced by arterial injury promote vascular smooth muscle cell proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:603-613. [PMID: 33552681 PMCID: PMC7819823 DOI: 10.1016/j.omtn.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023]
Abstract
tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are originated from the specific cleavage of endogenous tRNAs or their precursors and regulate gene expression when the cells are in stressful circumstances. Here, we replicated the rat common carotid artery (CCA) intimal hyperplasia model and investigated the expression of tRFs/tiRNAs in the artery. The normal and the balloon-injured rat CCAs were subjected to small RNA sequencing, and then the differentially expressed tRFs/tiRNAs were identified and analyzed. The expression profiles of tRFs/tiRNAs in the healthy and injured CCAs were remarkably different. tRNAGlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed with a high abundance in the injured CCA. In in vitro experiments, the synthetic tRFGlnCTG mimetics elevated the proliferation and migration of rat vascular smooth muscle cells (VSMCs). Through bioinformatics analysis and an overexpression experiment, tRFGlnCTG was found to negatively regulate the expression of FAS cell surface death receptor (FAS). This study revealed that tRFGlnCTG is a crucial regulator in promoting VSMC proliferation. The investigation of the roles of tRFs/tiRNAs is of significance for understanding the mechanism, diagnosis, and treatment of intimal hyperplasia.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yu Cao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang-Yang Guan
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ji-Jun Deng
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Corresponding author: Rui Jiang, Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Corresponding author: Jun Jiang, Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| |
Collapse
|
32
|
Ishida T, Inoue T, Niizuma K, Konno N, Suzuki C, Inoue T, Ezura M, Uenohara H, Abe T, Tominaga T. Prediction of Functional Outcome in Patients with Acute Stroke by Measuring tRNA Derivatives. Cerebrovasc Dis 2020; 49:639-646. [PMID: 33207351 DOI: 10.1159/000511627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Transfer RNA (tRNA) is a noncoding RNA that delivers amino acids to ribosomes for protein synthesis. tRNA is also involved in cell stress response programs. Oxidative stress induces direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation. Using an antibody against tRNA-specific modified nucleoside 1-methyladenosine (m1A), we can detect tRNA derivatives such as conformationally changed tRNA, tRNA-derived fragments, and mononucleotide-free m1A. Based on these findings, tRNA derivatives may have potential as an early tissue damage marker. The purpose of this study was to investigate the plasma tRNA derivatives in stroke patients to clarify whether tRNA derivatives in the acute phase can detect early brain damage and then predict the functional outcome. METHODS Patients (75 patients with ischemic and 66 with hemorrhagic stroke) and 22 healthy volunteers were prospectively enrolled for this study between November 2016 and February 2019. Plasma samples were collected within 24 h and at 1 day, 7 days, and 30 days from the onset. Plasma tRNA derivative concentrations were measured by ELISA kit using the anti-m1A antibody. RESULTS The plasma tRNA derivative level on admission was significantly increased in both ischemic (mean ± standard error, 232.2 ± 33.1 ng/mL) and hemorrhagic stroke patients (212 ± 23.4 ng/mL) compared to the healthy volunteers (86.0 ± 7.9 ng/mL) (p = 0.00042 and p = 0.00018, respectively). The infarction size (r = 0.445, p = 0.00018) and hematoma volumes (r = 0.33, p = 0.0072) were also significantly correlated with tRNA derivatives. The concentrations of tRNA derivatives were associated with poor functional outcome (Modified Rankin Scale score 3-6 at 30 days from the onset) in patients with ischemic stroke at 7 days after onset (p = 0.020). CONCLUSIONS Stress-induced tRNA derivatives can detect brain tissue damage, predicting functional outcome in patients with ischemic stroke.
Collapse
Affiliation(s)
- Tomohisa Ishida
- Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Inoue
- Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan,
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Natsumi Konno
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoo Inoue
- Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Masayuki Ezura
- Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Hiroshi Uenohara
- Department of Neurosurgery, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
34
|
Dong X, Fan X, He X, Chen S, Huang W, Gao J, Huang Y, Wang H. Comprehensively Identifying the Key tRNA-Derived Fragments and Investigating Their Function in Gastric Cancer Processes. Onco Targets Ther 2020; 13:10931-10943. [PMID: 33149609 PMCID: PMC7605384 DOI: 10.2147/ott.s266130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose Gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. tRNA-derived fragments (tRFs) have been identified as potential biomarkers and cancer therapeutic targets. However, the influence of tRFs on GC remains unknown. The key tRFs were researched in vitro function and mechanism. Patients and Methods Here, differentially expressed tRFs between GC and paracancerous tissues were identified by small RNA sequencing, and the role of key tRF was evaluated in vitro. Results Eight tRFs were significantly differentially expressed between GC tissues and adjacent tissues: five were significantly upregulated and three were downregulated in GC tissues. The results of target gene prediction and functional enrichment analysis showed that tRFs with different expressions were mainly involved in cell adhesion and connection, cell migration, wingless-type (Wnt), mitogen-activated protein kinase (MAPK), and cancer signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) indicated that the expression of tRF-24-V29K9UV3IU and its target genes (CCND2, FZD3, and VANGL1) in GC tissues and cells was decreased compared with those in the control group. Importantly, overexpression of tRF-24-V29K9UV3IU inhibited cell proliferation, migration and invasion, while promoted cell apoptosis of GC cells. Conclusion This study suggests that tRF-24-V29K9UV3IU may hinder GC tumor progression by inhibiting cell proliferation, migration, invasion, while promoting cell apoptosis by regulating the Wnt signaling pathways.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, People's Republic of China
| | - Xirui Fan
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Xiaoxue He
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Sijin Chen
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Weikang Huang
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Jianpeng Gao
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, People's Republic of China.,Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Yun Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, People's Republic of China.,Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Hui Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, People's Republic of China.,Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| |
Collapse
|
35
|
Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, Kusuhara H. Identification of Appropriate Endogenous Biomarker for Risk Assessment of Multidrug and Toxin Extrusion Protein-Mediated Drug-Drug Interactions in Healthy Volunteers. Clin Pharmacol Ther 2020; 109:507-516. [PMID: 32866300 PMCID: PMC7891601 DOI: 10.1002/cpt.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
Endogenous biomarkers are emerging to advance clinical drug‐drug interaction (DDI) risk assessment in drug development. Twelve healthy subjects received a multidrug and toxin exclusion protein (MATE) inhibitor (pyrimethamine, 10, 25, and 75 mg) in a crossover fashion to identify an appropriate endogenous biomarker to assess MATE1/2‐K‐mediated DDI in the kidneys. Metformin (500 mg) was also given as reference probe drug for MATE1/2‐K. In addition to the previously reported endogenous biomarker candidates (creatinine and N1‐methylnicotinamide (1‐NMN)), N1‐methyladenosine (m1A) was included as novel biomarkers. 1‐NMN and m1A presented as superior MATE1/2‐K biomarkers since changes in their renal clearance (CLr) along with pyrimethamine dose were well‐correlated with metformin CLr changes. The CLr of creatinine was reduced by pyrimethamine, however, its changes poorly correlated with metformin CLr changes. Nonlinear regression analysis (CLr vs. mean total concentration of pyrimethamine in plasma) yielded an estimate of the inhibition constant (Ki) of pyrimethamine and the fraction of the clearance pathway sensitive to pyrimethamine. The in vivoKi value thus obtained was further converted to unbound Ki using plasma unbound fraction of pyrimethamine, which was comparable to the in vitroKi for MATE1 (1‐NMN) and MATE2‐K (1‐NMN and m1A). It is concluded that 1‐NMN and m1A CLr can be leveraged as quantitative MATE1/2‐K biomarkers for DDI risk assessment in healthy volunteers.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Lina Luo
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | | | | | - Ragu Ramanathan
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Linda S Wood
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Jillian G Johnson
- Clinical Pharmacogenomics Laboratory, Early Clinical Development, Pfizer Inc, Groton, Connecticut, USA
| | - Vu H Le
- Biostatics, Pfizer Inc., Collegeville, Pennsylvania, USA
| | | | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Chieko Muto
- Clinical Pharmacology, Pfizer R&D Japan, Tokyo, Japan
| | | | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Green JA, Ansari MY, Ball H, Haqqi TM. tRNA-derived fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1β stimulated chondrocytes. Osteoarthritis Cartilage 2020; 28:1102-1110. [PMID: 32407895 PMCID: PMC8418333 DOI: 10.1016/j.joca.2020.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Recent studies have shown that tRNA-derived RNA fragments (tRFs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocytes is unknown. Here, we determined tRFs expression profile and explored tRF-3003a role in post-transcriptional gene regulation in IL-1β stimulated chondrocytes. METHODS We used qPCR arrays to determine tRNAs and tRFs expression in age- and sex-matched primary human OA chondrocytes and TC28/I2 cells stimulated with IL-1β. Chondrocytes were transfected with tRNA-CysGCA overexpression plasmid or tRF-3003a mimic and 3'UTR luciferase reporter plasmids of mRNAs harboring predicted tRF target "seed sequence". The AGO-RNA-induced silencing complex (AGO-RISC)-dependent repressive activity of tRF-3003a was determined by siRNA-mediated knockdown of AGO2. RESULTS IL-1β increased the expression levels of specific tRNAs and of tRF-3003a, a type 3 tRF produced by the cleavage of tRNA-CysGCA. tRF-3003a "seed sequence" was identified in the 3'UTR of JAK3 mRNA and tRNA-CysGCA overexpression or transfection of a tRF-3003a mimic in chondrocytes downregulated JAK3 expression and significantly reduced the activity of the 3'UTR reporter. RIP assay showed enrichment of tRF-3003a into AGO2/RISC in IL-1β treated chondrocytes. The suppressive effect of tRF-3003a on JAK3 3'UTR reporter was abrogated with siRNA-mediated depletion of AGO2. CONCLUSIONS We demonstrate that under pathological conditions chondrocytes display perturbations in the expression profile of specific tRNAs and tRFs. Furthermore, a specific tRF namely tRF-3003a can post-transcriptionally regulate JAK3 expression via AGO/RISC formation in chondrocytes. Identification of this novel mechanism may be of value in the design of precision therapies for OA.
Collapse
Affiliation(s)
- J. A. Green
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - M. Y. Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - H.C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272
| | - T. M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272,Corresponding author: Prof. Dr. Tariq M. Haqqi; Department of Anatomy & Neurobiology, Northeast Ohio Medical University, 4209 St Rt 44, Rootstown, OH 44272
| |
Collapse
|
37
|
Rashad S, Han X, Sato K, Mishima E, Abe T, Tominaga T, Niizuma K. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol 2020; 17:1092-1103. [PMID: 32521209 PMCID: PMC7549645 DOI: 10.1080/15476286.2020.1779492] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022] Open
Abstract
tiRNAs are small non-coding RNAs produced when tRNA is cleaved under stress. tRNA methylation modifications has emerged in recent years as important regulators for tRNA structural stability and sensitivity to cleavage and tiRNA generation during stress, however, the specificity and higher regulation of such a process is not fully understood. Alkbh1 is a m1A demethylase that leads to destabilization of tRNA and enhanced tRNA cleavage. We examined the impact of Alkbh1 targeting via gene knockdown or overexpression on B35 rat neuroblastoma cell line fate following stresses and on tRNA cleavage. We show that Alkbh1 impact on cell fate and tRNA cleavage is a stress specific process that is impacted by the demethylating capacity of the cellular stress in question. We also show that not all tRNAs are cleaved equally following Alkbh1 manipulation and stress, and that Alkbh1 KD fails to rescue tRNAs from cleavage following demethylating stresses. These findings shed a light on the specificity and higher regulation of tRNA cleavage and should act as a guide for future work exploring the utility of Alkbh1 as a therapeutic target for cancers or ischaemic insult.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xiaobo Han
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kanako Sato
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Role of RNA Oxidation in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21145022. [PMID: 32708667 PMCID: PMC7403986 DOI: 10.3390/ijms21145022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the history of nucleic acid research, DNA has always been the main research focus. After the sketch of the human genome was completed in 2000, RNA has been started to gain more attention due to its abundancies in the cell and its essential role in cellular physiology and pathologies. Recent studies have shown that RNAs are susceptible to oxidative damage and oxidized RNA is able to break the RNA strand, and affect the protein synthesis, which can lead to cell degradation and cell death. Studies have shown that RNA oxidation is one of the early events in the formation and development of neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, its molecular mechanism, as well as its impact on these diseases, are still unclear. In this article, we review the different types of RNA oxidative damage and the neurodegenerative diseases that are reported to be associated with RNA oxidative damage. In addition, we discuss recent findings on the association between RNA oxidative damage and the development of neurodegenerative diseases, which will have great significance for the development of novel strategies for the prevention and treatment of these diseases.
Collapse
|
39
|
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109. [PMID: 32606362 PMCID: PMC7326991 DOI: 10.1038/s41392-020-00217-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are small regulatory RNAs processed from mature tRNAs or precursor tRNAs. tRFs and tiRNAs play biological roles through a variety of mechanisms by interacting with proteins or mRNA, inhibiting translation, and regulating gene expression, the cell cycle, and chromatin and epigenetic modifications. The establishment and application of research technologies are important in understanding the biological roles of tRFs and tiRNAs. To study the molecular mechanisms of tRFs and tiRNAs, researchers have used a variety of bioinformatics and molecular biology methods, such as microarray analysis, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR); Northern blotting; RNA sequencing (RNA-seq); cross-linking, ligation and sequencing of hybrids (CLASH); and photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). This paper summarizes the classification, action mechanisms, and roles of tRFs and tiRNAs in human diseases and the related signal transduction pathways, targeted therapies, databases, and research methods associated with them.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
40
|
He Q, Yang L, Gao K, Ding P, Chen Q, Xiong J, Yang W, Song Y, Wang L, Wang Y, Ling L, Wu W, Yan J, Zou P, Chen Y, Zhai R. FTSJ1 regulates tRNA 2'-O-methyladenosine modification and suppresses the malignancy of NSCLC via inhibiting DRAM1 expression. Cell Death Dis 2020; 11:348. [PMID: 32393790 PMCID: PMC7214438 DOI: 10.1038/s41419-020-2525-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. The mechanisms underlying NSCLC tumorigenesis are incompletely understood. Transfer RNA (tRNA) modification is emerging as a novel regulatory mechanism for carcinogenesis. However, the role of tRNA modification in NSCLC remains obscure. In this study, HPLC/MS assay was used to quantify tRNA modification levels in NSCLC tissues and cells. tRNA-modifying enzyme genes were identified by comparative genomics and validated by qRT-PCR analysis. The biological functions of tRNA-modifying gene in NSCLC were investigated in vitro and in vivo. The mechanisms of tRNA-modifying gene in NSCLC were explored by RNA-seq, qRT-PCR, and rescue assays. The results showed that a total of 18 types of tRNA modifications and up to seven tRNA-modifying genes were significantly downregulated in NSCLC tumor tissues compared with that in normal tissues, with the 2'-O-methyladenosine (Am) modification displaying the lowest level in tumor tissues. Loss- and gain-of-function assays revealed that the amount of Am in tRNAs was significantly associated with expression levels of FTSJ1, which was also downregulated in NSCLC tissues and cells. Upregulation of FTSJ1 inhibited proliferation, migration, and promoted apoptosis of NSCLC cells in vitro. Silencing of FTSJ1 resulted in the opposite effects. In vivo assay confirmed that overexpression of FTSJ1 significantly suppressed the growth of NSCLC cells. Mechanistically, overexpression of FTSJ1 led to a decreased expression of DRAM1. Whereas knockdown of FTSJ1 resulted in an increased expression of DRAM1. Furthermore, silencing of DRAM1 substantially augmented the antitumor effect of FTSJ1 on NSCLC cells. Our findings suggested an important mechanism of tRNA modifications in NSCLC and demonstrated novel roles of FTSJ1 as both tRNA Am modifier and tumor suppressor in NSCLC.
Collapse
Affiliation(s)
- Qihan He
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Kaiping Gao
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Peikun Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Qianqian Chen
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Juan Xiong
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Wenhan Yang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Yi Song
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Liang Wang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Yejun Wang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Lijuan Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Weiming Wu
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Jisong Yan
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Peng Zou
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Yuchen Chen
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Rihong Zhai
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China.
| |
Collapse
|
41
|
Sato K, Rashad S, Niizuma K, Tominaga T. Stress Induced tRNA Halves (tiRNAs) as Biomarkers for Stroke and Stroke Therapy; Pre-clinical Study. Neuroscience 2020; 434:44-54. [DOI: 10.1016/j.neuroscience.2020.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
|
42
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics Chromatin 2020; 13:19. [PMID: 32228651 PMCID: PMC7106649 DOI: 10.1186/s13072-020-00340-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mature sperm carry thousands of RNAs, including mRNAs, lncRNAs, tRNAs, rRNAs and sncRNAs, though their functional significance is still a matter of debate. Growing evidence suggests that sperm RNAs, especially sncRNAs, are selectively retained during spermiogenesis or specifically transferred during epididymis maturation, and are thus delivered to the oocyte at fertilization, providing resources for embryo development. However , a deep characterization of the sncRNA content of bull sperm and its expression profile across breeds is currently lacking. To fill this gap, we optimized a guanidinium–Trizol total RNA extraction protocol to prepare high-quality RNA from frozen bull sperm collected from 40 representative bulls from six breeds. Deep sequencing was performed (40 M single 50-bp reads per sample) to establish a comprehensive repertoire of cattle sperm sncRNA. Results Our study showed that it comprises mostly piRNAs (26%), rRNA fragments (25%), miRNAs (20%) and tRNA fragments (tsRNA, 14%). We identified 5p-halves as the predominant tsRNA subgroup in bull sperm, originating mostly from Gly and Glu isoacceptors. Our study also increased by ~ 50% the sperm repertoire of known miRNAs and identified 2022 predicted miRNAs. About 20% of sperm miRNAs were located within genomic clusters, expanding the list of known polycistronic pri-miRNA clusters and defining several networks of co-expressed miRNAs. Strikingly, our study highlighted the great diversity of isomiRs, resulting mainly from deletions and non-templated additions (A and U) at the 3p end. Substitutions within miRNA sequence accounted for 40% of isomiRs, with G>A, U>C and C>U substitutions being the most frequent variations. In addition, many sncRNAs were found to be differentially expressed across breeds. Conclusions Our study provides a comprehensive overview of cattle sperm sncRNA, and these findings will pave the way for future work on the role of sncRNAs in embryo development and their relevance as biomarkers of semen fertility.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
43
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Abstract
Over the past decades, tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others, holding more than half of all modifications occurring in RNA molecules. Moreover, tRNA was discovered to be a source of various small noncoding RNA species, such as the stress induced angiogenin cleaved tRNA halves (tiRNA) or the miRNA like tRNA derived fragments. tRNA cleavage under stress was fist discovered in bacteria and later was found to be conserved across different species, including mammals. Under cellular stress conditions, tRNA undergoes conformational changes and angiogenin cleaves it into 3' and 5' halves. 5'tiRNA halves were shown to repress protein translations. tRNA cleavage is thought of to be a cytoprotective mechanism by which cells evade apoptosis, however some data hints to the opposite; that tiRNA are cytotoxic or at least related to apoptosis initiation. tRNA cleavage also was shown to be affected by tRNA modifications via different enzymes in the cytosol and mitochondria. In this review, we will highlight the biology of tRNA cleavage, show the evidence of it being cytoprotective or a marker of cell death and shed a light on its role in disease models and human diseases as well as possible future directions in this field of RNA research.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
45
|
Qin C, Xu PP, Zhang X, Zhang C, Liu CB, Yang DG, Gao F, Yang ML, Du LJ, Li JJ. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 2020; 15:212-221. [PMID: 31552886 PMCID: PMC6905339 DOI: 10.4103/1673-5374.265560] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs (tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs (tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points: (1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes. (2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. (3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma. (4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
Collapse
Affiliation(s)
- Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
46
|
Mishima E, Sato E, Ito J, Yamada KI, Suzuki C, Oikawa Y, Matsuhashi T, Kikuchi K, Toyohara T, Suzuki T, Ito S, Nakagawa K, Abe T. Drugs Repurposed as Antiferroptosis Agents Suppress Organ Damage, Including AKI, by Functioning as Lipid Peroxyl Radical Scavengers. J Am Soc Nephrol 2019; 31:280-296. [PMID: 31767624 DOI: 10.1681/asn.2019060570] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ferroptosis, nonapoptotic cell death mediated by free radical reactions and driven by the oxidative degradation of lipids, is a therapeutic target because of its role in organ damage, including AKI. Ferroptosis-causing radicals that are targeted by ferroptosis suppressors have not been unequivocally identified. Because certain cytochrome P450 substrate drugs can prevent lipid peroxidation via obscure mechanisms, we evaluated their antiferroptotic potential and used them to identify ferroptosis-causing radicals. METHODS Using a cell-based assay, we screened cytochrome P450 substrate compounds to identify drugs with antiferroptotic activity and investigated the underlying mechanism. To evaluate radical-scavenging activity, we used electron paramagnetic resonance-spin trapping methods and a fluorescence probe for lipid radicals, NBD-Pen, that we had developed. We then assessed the therapeutic potency of these drugs in mouse models of cisplatin-induced AKI and LPS/galactosamine-induced liver injury. RESULTS We identified various US Food and Drug Administration-approved drugs and hormones that have antiferroptotic properties, including rifampicin, promethazine, omeprazole, indole-3-carbinol, carvedilol, propranolol, estradiol, and thyroid hormones. The antiferroptotic drug effects were closely associated with the scavenging of lipid peroxyl radicals but not significantly related to interactions with other radicals. The elevated lipid peroxyl radical levels were associated with ferroptosis onset, and known ferroptosis suppressors, such as ferrostatin-1, also functioned as lipid peroxyl radical scavengers. The drugs exerted antiferroptotic activities in various cell types, including tubules, podocytes, and renal fibroblasts. Moreover, in mice, the drugs ameliorated AKI and liver injury, with suppression of tissue lipid peroxidation and decreased cell death. CONCLUSIONS Although elevated lipid peroxyl radical levels can trigger ferroptosis onset, some drugs that scavenge lipid peroxyl radicals can help control ferroptosis-related disorders, including AKI.
Collapse
Affiliation(s)
- Eikan Mishima
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and
| | - Emiko Sato
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and.,Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chitose Suzuki
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and
| | | | | | - Koichi Kikuchi
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and
| | | | - Takehiro Suzuki
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and
| | - Sadayoshi Ito
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and.,Katta Public General Hospital, Shiroishi, Japan; and
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Divisions of Nephrology, Endocrinology, and Vascular Medicine and.,Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
47
|
Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019; 7:e8046. [PMID: 31741796 PMCID: PMC6858818 DOI: 10.7717/peerj.8046] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) is a major problem for health systems being directly related to short and long-term morbidity and mortality. In the last years, the incidence of AKI has been increasing. AKI and chronic kidney disease (CKD) are closely interconnected, with a growing rate of CKD linked to repeated and severe episodes of AKI. AKI and CKD can occur also secondary to imbalanced oxidative stress (OS) reactions, inflammation, and apoptosis. The kidney is particularly sensitive to OS. OS is known as a crucial pathogenetic factor in cellular damage, with a direct role in initiation, development, and progression of AKI. The aim of this review is to focus on the pathogenetic role of OS in AKI in order to gain a better understanding. We exposed the potential relationships between OS and the perturbation of renal function and we also presented the redox-dependent factors that can contribute to early kidney injury. In the last decades, promising advances have been made in understanding the pathophysiology of AKI and its consequences, but more studies are needed in order to develop new therapies that can address OS and oxidative damage in early stages of AKI. Methods We searched PubMed for relevant articles published up to May 2019. In this review we incorporated data from different types of studies, including observational and experimental, both in vivo and in vitro, studies that provided information about OS in the pathophysiology of AKI. Results The results show that OS plays a major key role in the initiation and development of AKI, providing the chance to find new targets that can be therapeutically addressed. Discussion Acute kidney injury represents a major health issue that is still not fully understood. Research in this area still provides new useful data that can help obtain a better management of the patient. OS represents a major focus point in many studies, and a better understanding of its implications in AKI might offer the chance to fight new therapeutic strategies.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomsa
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Lia Junie
- Department of Microbiology, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Liana Rachisan
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lorena Ciumarnean
- Department of Internal Medicine IV, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Miyake T, Mizuno T, Takehara I, Mochizuki T, Kimura M, Matsuki S, Irie S, Watanabe N, Kato Y, Ieiri I, Maeda K, Ando O, Kusuhara H. Elucidation of N 1-methyladenosine as a Potential Surrogate Biomarker for Drug Interaction Studies Involving Renal Organic Cation Transporters. Drug Metab Dispos 2019; 47:1270-1280. [PMID: 31511257 DOI: 10.1124/dmd.119.087262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/07/2019] [Indexed: 11/22/2022] Open
Abstract
Endogenous substrates are emerging biomarkers for drug transporters, which serve as surrogate probes in drug-drug interaction (DDI) studies. In this study, the results of metabolome analysis using wild-type and Oct1/2 double knockout mice suggested that N 1-methyladenosine (m1A) was a novel organic cation transporter (OCT) 2 substrate. An in vitro transport study revealed that m1A is a substrate of mouse Oct1, Oct2, Mate1, human OCT1, OCT2, and multidrug and toxin exclusion protein (MATE) 2-K, but not human MATE1. Urinary excretion accounted for 77% of the systemic elimination of m1A in mice. The renal clearance (46.9 ± 4.9 ml/min per kilogram) of exogenously given m1A was decreased to near the glomerular filtration rates by Oct1/2 double knockout or Mate1 inhibition by pyrimethamine (16.6 ± 2.6 and 24.3 ± 0.6 ml/min per kilogram, respectively), accompanied by significantly higher plasma concentrations. In vivo inhibition of OCT2/MATE2-K by a single dose of 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid in cynomolgus monkeys resulted in the elevation of the area under the curve of m1A (1.72-fold) as well as metformin (2.18-fold). The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. The renal clearance of m1A in younger (21-45 year old) and older (65-79 year old) volunteers (244 ± 58 and 169 ± 22 ml/min per kilogram, respectively) was about 2-fold higher than the creatinine clearance. The renal clearances of m1A and creatinine were 31% and 17% smaller in older than in younger volunteers. Thus, m1A could be a surrogate probe for the evaluation of DDIs involving OCT2/MATE2-K. SIGNIFICANCE STATEMENT: Endogenous substrates can serve as surrogate probes for clinical drug-drug interaction studies involving drug transporters or enzymes. In this study, m1A was found to be a novel substrate of renal cationic drug transporters OCT2 and MATE2-K. N 1-methyladenosine was revealed to have some advantages compared to other OCT2/MATE substrates (creatinine and N 1-methylnicotinamide). The genetic or chemical impairment of OCT2 or MATE2-K caused a significant increase in the plasma m1A concentration in mice and cynomolgus monkeys due to the high contribution of tubular secretion to the net elimination of m1A. The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. Thus, m1A could be a better biomarker of variations in OCT2/MATE2-K activity caused by inhibitory drugs.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Issey Takehara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Miyuki Kimura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Shunji Matsuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Shin Irie
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Nobuaki Watanabe
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Yukio Kato
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Ichiro Ieiri
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Osamu Ando
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (Tak.M., Tad.M., Tat.M., K.M., H.K.); Biomarker Department (I.T.) and Drug Metabolism & Pharmacokinetics Research Laboratories (N.W., O.A.), Daiichi-Sankyo Co., Ltd., Tokyo, Japan; Fukuoka Mirai Hospital Clinical Research Center, Fukuoka, Japan (M.K., S.M., S.I.); Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (Y.K.); and Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.)
| |
Collapse
|
49
|
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol 2019; 16:1764-1774. [PMID: 31432767 DOI: 10.1080/15476286.2019.1657743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kevin Gley
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
50
|
Jin L, Zhu C, Qin X. Expression profile of tRNA-derived fragments in pancreatic cancer. Oncol Lett 2019; 18:3104-3114. [PMID: 31452788 PMCID: PMC6676665 DOI: 10.3892/ol.2019.10601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is a deadly disease, the deadliest of all the solid tumors; the 5-year survival rate of patients with this disease is ~8%. Previously, high-throughput sequencing has led to the discovery of novel small non-coding RNAs, also known as transfer RNA-derived fragments (tRFs). Studies have suggested that tRFs may be novel biomarkers for certain diseases. However, the expression of tRFs in pancreatic cancer has yet to be characterized. In the present study, the expression levels of tRFs observed in clinical pancreatic cancer samples were analyzed, quantitative PCR (qPCR) was performed to validate the tRFs expression levels and bioinformatics predictions were analyzed. The results revealed that the pancreatic cancer samples screened out a total of 48 tRFs and transfer RNA halves (tiRNAs). There were four tRFs and tiRNAs selected for qPCR validation; the findings were consistent with the sequencing results. Bioinformatic predictions revealed that AS-tDR-000064 was predicted to have 2,450 target genes; AS-tDR-000069 was predicted 445 target genes; AS-tDR-000102 was predicted 746 target genes; and AS-tDR-001391 was predicted 216 target genes. Gene Ontology (GO) analyses demonstrated that the target genes of AS-tDR-000064 were mostly enriched in 'the regulation of cellular processes' (Biological Process), 'the synapses' (Cellular Component) and 'enzyme binding' (Molecular Function). The target genes of AS-tDR-000069 were mostly enriched in 'signaling' (Biological Process), 'the plasma membrane' (Cellular Component) and 'phosphatidylinositol 3-kinase (PI3K) binding'(Molecular Function), the target genes of AS-tDR-000102 were mostly enriched in 'axon development' (Biological Process), 'the synapse' (Cellular Component) and 'sequence-specific DNA binding' (Molecular Function) and the target genes of AS-tDR-001391 were mostly enriched in 'the neuromuscular processes' (Biological Process), the neurons' (Cellular Component) and 'PDZ domain binding' (Molecular Function). The Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the target genes of AS-tDR-000064 were mostly enriched in 'the Ras signaling pathway', the target genes of AS-tDR-000069 were mostly enriched in 'the cancer pathways', the target genes of AS-tDR-000102 were mostly enriched in 'axon guidance' and the target genes of AS-tDR-001391 were mostly enriched in 'the PI3K/protein kinase-B signaling pathway'.
Collapse
Affiliation(s)
- Lei Jin
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China.,Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213002, P.R. China
| | - Chunfu Zhu
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xihu Qin
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|