1
|
Thimm C, Adjaye J. Untangling the Uncertain Role of Overactivation of the Renin-Angiotensin-Aldosterone System with the Aging Process Based on Sodium Wasting Human Models. Int J Mol Sci 2024; 25:9332. [PMID: 39273282 PMCID: PMC11394713 DOI: 10.3390/ijms25179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin-angiotensin-aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
2
|
Narayanaswamy R, Harika V, Prabhakaran VS. Human and Mouse Nephrin and Their Interactions With 13 Proteins: An In Silico Study. Cureus 2024; 16:e66332. [PMID: 39246878 PMCID: PMC11379415 DOI: 10.7759/cureus.66332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Human nephrin (hNeph) (podocyte protein) has been known to be involved in both the formation and maintenance of the slit diaphragm (SD) and also acts as a hub protein in the podocyte by modulating cell polarity, cell survival, cell adhesion, cytoskeletal organization, mechano-sensing, and SD turn-over. Methodology In the present investigation, we aimed to analyse the hNeph and mouse nephrin (mNeph) and their interactions with 13 proteins using the molecular docking method. The 13 selected human proteins which include matrix metalloproteinases (MMP 2 and 9), retinol-binding proteins (RBP 3 and 4), kallikrein 1 (KLK 1), uromodulin, insulin-like growth factor binding protein 7 (IGFBP7), cystatin C, podocin, beta arrestin 1, vang-like protein 2 (VANGL2), dynamin 1, and tensin-like C1 domain-containing phosphatase (TENC1) were studied on the docking analysis of hNeph and mNeph by using the HDOCK (protein-protein) docking method. In addition, the physicochemical (PC) properties of 15 proteins were performed using the ProtParam web server. Results In the present investigation, five chosen human proteins, namely, IGFBP7, cystatin C, podocin, VANGL2, and TENC1, have exhibited theoretical isoelectric point (PI) values greater than 7.0. The protein-protein docking analysis has shown that hKLK and hVANGL2 exhibited the maximum docking score of -206.39 kcal/mol and -329.28 (kcal/mol) with the target proteins mNeph and hNeph, respectively. Conclusions Thus, the current finding highlights the interactions of hNeph and mNeph with 13 chosen proteins, which may help in renal disease management.
Collapse
Affiliation(s)
- Radhakrishnan Narayanaswamy
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Vemugadda Harika
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| |
Collapse
|
3
|
Thimm C, Erichsen L, Wruck W, Adjaye J. Unveiling Angiotensin II and Losartan-Induced Gene Regulatory Networks Using Human Urine-Derived Podocytes. Int J Mol Sci 2023; 24:10551. [PMID: 37445727 DOI: 10.3390/ijms241310551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Podocytes are highly specialized cells that play a pivotal role in the blood filtration process in the glomeruli of the kidney, and their dysfunction leads to renal diseases. For this reason, the study and application of this cell type is of great importance in the field of regenerative medicine. Hypertension is mainly regulated by the renin-angiotensin-aldosterone system (RAAS), with its main mediator being angiotensin II (ANG II). Elevated ANG II levels lead to a pro-fibrotic, inflammatory, and hypertrophic milieu that induces apoptosis in podocytes. The activation of RAAS is critical for the pathogenesis of podocyte injury; as such, to prevent podocyte damage, patients with hypertension are administered drugs that modulate RAAS signaling. A prime example is the orally active, non-peptide, selective angiotensin-II-type I receptor (AGTR1) blocker losartan. Here, we demonstrate that SIX2-positive urine-derived renal progenitor cells (UdRPCs) and their immortalized counterpart (UM51-hTERT) can be directly differentiated into mature podocytes. These podocytes show activation of RAAS after stimulation with ANG II, resulting in ANG II-dependent upregulation of the expression of the angiotensin-II-type I receptor, AGTR1, and the downregulated expression of the angiotensin-II-type II receptor 2 (AGTR2). The stimulation of podocytes with losartan counteracts ANG II-dependent changes, resulting in a dependent favoring of the specific receptor from AGTR1 to AGTR2. Transcriptome analysis revealed 94 losartan-induced genes associated with diverse biological processes and pathways such as vascular smooth muscle contraction, the oxytocin signaling pathway, renin secretion, and ECM-receptor interaction. Co-stimulation with losartan and ANG II induced the exclusive expression of 106 genes associated with DNA methylation or demethylation, cell differentiation, the developmental process, response to muscle stretch, and calcium ion transmembrane transport. These findings highlight the usefulness of UdRPC-derived podocytes in studying the RAAS pathway and nephrotoxicity in various kidney diseases.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- EGA Institute for Women's Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
4
|
Wang H, Zaiser F, Eckert P, Ruf J, Kayser N, Veenstra AC, Müller M, Haas R, Walz G, Yakulov TA. Inversin (NPHP2) and Vangl2 are required for normal zebrafish cloaca formation. Biochem Biophys Res Commun 2023; 673:9-15. [PMID: 37352572 DOI: 10.1016/j.bbrc.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.
Collapse
Affiliation(s)
- Hui Wang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Friedemann Zaiser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Johannes Ruf
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Kayser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anna C Veenstra
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Merle Müller
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Rebecca Haas
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
5
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
6
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
7
|
Mason WJ, Jafree DJ, Pomeranz G, Kolatsi-Joannou M, Rottner AK, Pacheco S, Moulding DA, Wolf A, Kupatt C, Peppiatt-Wildman C, Papakrivopoulou E, Riley PR, Long DA, Vasilopoulou E. Systemic gene therapy with thymosin β4 alleviates glomerular injury in mice. Sci Rep 2022; 12:12172. [PMID: 35842494 PMCID: PMC9288454 DOI: 10.1038/s41598-022-16287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin β4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.
Collapse
Affiliation(s)
- William J Mason
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK.,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,UCL MB/PhD Programme, Faculty of Medical Science, University College London, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Antje K Rottner
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sabrina Pacheco
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale A Moulding
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anja Wolf
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Kupatt
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elisavet Vasilopoulou
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK. .,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK. .,Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
8
|
Erichsen L, Thimm C, Bohndorf M, Rahman MS, Wruck W, Adjaye J. Activation of the Renin–Angiotensin System Disrupts the Cytoskeletal Architecture of Human Urine-Derived Podocytes. Cells 2022; 11:cells11071095. [PMID: 35406662 PMCID: PMC8997628 DOI: 10.3390/cells11071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin–angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin–angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.
Collapse
|
9
|
Jiang SH, Mercan S, Papa I, Moldovan M, Walters GD, Koina M, Fadia M, Stanley M, Lea-Henry T, Cook A, Ellyard J, McMorran B, Sundaram M, Thomson R, Canete PF, Hoy W, Hutton H, Srivastava M, McKeon K, de la Rúa Figueroa I, Cervera R, Faria R, D’Alfonso S, Gatto M, Athanasopoulos V, Field M, Mathews J, Cho E, Andrews TD, Kitching AR, Cook MC, Riquelme MA, Bahlo M, Vinuesa CG. Deletions in VANGL1 are a risk factor for antibody-mediated kidney disease. Cell Rep Med 2021; 2:100475. [PMID: 35028616 PMCID: PMC8714939 DOI: 10.1016/j.xcrm.2021.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We identify an intronic deletion in VANGL1 that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.1,2 We identify a large deletion in intron 7 of Van Gogh Like 1 (VANGL1), which associates with nephritis in SLE patients. The same deletion occurs at increased frequency in an indigenous population (Tiwi Islanders) with 10-fold higher rates of kidney disease compared with non-indigenous populations. Vangl1 hemizygosity in mice results in spontaneous IgA and IgG deposition within the glomerular mesangium in the absence of autoimmune nephritis. Serum transfer into B cell-deficient Vangl1+/- mice results in mesangial IgG deposition indicating that Ig deposits occur in a kidney-intrinsic fashion in the absence of Vangl1. These results suggest that Vangl1 acts in the kidney to prevent Ig deposits and its deficiency may trigger nephritis in individuals with SLE.
Collapse
Affiliation(s)
- Simon H. Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Sevcan Mercan
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Department of Bioengineering, Kafkas University, Kars 36100, Turkey
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Max Moldovan
- Centre for Population Health Research, University of South Australia, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney 2109, Australia
| | - Giles D. Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Mark Koina
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Mitali Fadia
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Tom Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Brendan McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Madhivanan Sundaram
- Department of Renal Medicine, Royal Darwin Hospital, Northern Territory 0811, Australia
| | - Russell Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta 2150, NSW, Australia
| | - Pablo F. Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane 4029, QLD, Australia
| | - Holly Hutton
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona 08036, Spain
| | - Raquel Faria
- Unidade de Imunologia Clinica, Centro Hospitalar Unisersitario do Porto, Porto 4099-001, Portugal
| | | | - Mariele Gatto
- Department of Rheumatology, University of Padova, Italy
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Matthew Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4870, QLD, Australia
| | - John Mathews
- School of Population and Global Health, University of Melbourne, Melbourne 3053, Australia
| | - Eun Cho
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Thomas D. Andrews
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
- Departments Nephrology and Paediatric Nephrology. Monash Health, Melbourne 3168, Australia
| | - Matthew C. Cook
- Department of Immunology, The Canberra Hospital, Canberra 2605, Australia
| | - Marta Alarcon Riquelme
- Department of Medical Genomics, GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010 VIC, Australia
| | - Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai 200001, China
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
10
|
Chavkin NW, Sano S, Wang Y, Oshima K, Ogawa H, Horitani K, Sano M, MacLauchlan S, Nelson A, Setia K, Vippa T, Watanabe Y, Saucerman JJ, Hirschi KK, Gokce N, Walsh K. The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. J Am Heart Assoc 2021; 10:e019904. [PMID: 34155901 PMCID: PMC8403294 DOI: 10.1161/jaha.120.019904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Background A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early proinflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase-like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after transverse aortic constriction surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2 knockout mice displayed a proinflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, transverse aortic constriction surgery led to the death of all mice by day 6 that was associated with myocardial hyperinflammation and vascular leakage. Conclusions Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.
Collapse
Affiliation(s)
- Nicholas W. Chavkin
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Soichi Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Ying Wang
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Kosei Oshima
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Hayato Ogawa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Keita Horitani
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Miho Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Susan MacLauchlan
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Anders Nelson
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVA
| | - Karishma Setia
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Tanvi Vippa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Yosuke Watanabe
- Vascular Biology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Jeffrey J. Saucerman
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA
| | - Karen K. Hirschi
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Cardiovascular Research CenterSchool of MedicineYale UniversityNew HavenCT
| | - Noyan Gokce
- Boston University School of MedicineBostonMA
| | - Kenneth Walsh
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| |
Collapse
|
11
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
12
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
13
|
Papakrivopoulou E, Jafree DJ, Dean CH, Long DA. The Biological Significance and Implications of Planar Cell Polarity for Nephrology. Front Physiol 2021; 12:599529. [PMID: 33716764 PMCID: PMC7952641 DOI: 10.3389/fphys.2021.599529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The orientation of cells in two-dimensional and three-dimensional space underpins how the kidney develops and responds to disease. The process by which cells orientate themselves within the plane of a tissue is termed planar cell polarity. In this Review, we discuss how planar cell polarity and the proteins that underpin it govern kidney organogenesis and pathology. The importance of planar cell polarity and its constituent proteins in multiple facets of kidney development is emphasised, including ureteric bud branching, tubular morphogenesis and nephron maturation. An overview is given of the relevance of planar cell polarity and its proteins for inherited human renal diseases, including congenital malformations with unknown aetiology and polycystic kidney disease. Finally, recent work is described outlining the influence of planar cell polarity proteins on glomerular diseases and highlight how this fundamental pathway could yield a new treatment paradigm for nephrology.
Collapse
Affiliation(s)
- Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,UCL MB/Ph.D. Programme, Faculty of Medical Science, University College London, London, United Kingdom
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
14
|
Zeng Y, Zhang B, Liu X, He L, Wang T, Yu X, Kang Y, Li S. Astragaloside IV alleviates puromycin aminonucleoside-induced podocyte cytoskeleton injury through the Wnt/PCP pathway. Am J Transl Res 2020; 12:3512-3521. [PMID: 32774716 PMCID: PMC7407721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Podocyte injury is a common cause of massive proteinuria. Astragaloside IV (AS-IV) has been reported to protect podocytes in diabetic models. However, the effects and potential mechanism of AS-IV on puromycin aminonucleoside (PAN)-induced podocyte injury remains unclear. The aim of the present study was to investigate the protective effect of AS-IV on PAN-induced podocyte injury both in vivo and in vitro. In vivo, we induced a podocytic-injury model in rats via a single tail vein injection of PAN. The rats in the treatment group received AS-IV intragastrically (i.g.) at a dose of 40 mg/kg/day for 10 days. At the end of the experiment, 24 h urine, serum and kidney samples were collected for examination. In vitro, we injured podocytes with 30 μg/ml PAN and treated them with AS-IV at concentrations of 5, 25 and 50 μg/ml. Next, we analyzed podocyte protein expression and the Wnt/planar-cell polarity (PCP) pathway using western blot and immunofluorescence (IF). Our results showed that AS-IV decreased proteinuria in PAN-injured rats, and restored specific protein expression in podocytes. In PAN-induced injuries to human podocytes, AS-IV restored the expression and distribution of F-actin and synaptopodin, and repaired the morphology of the actin-based cytoskeleton. Notably, AS-IV could activate the Wnt/PCP pathway by promoting expression of Wnt5a, protein tyrosine kinase 7 (PTK7), Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), Ras-related C3 botulinum toxin substrate 1 (Rac1) and phospho-SAPK/JNK (Thr183/Tyr185) (p-JNK) in vivo and in vitro. In conclusion, we demonstrated that AS-IV alleviated PAN-induced injury to the podocyte cytoskeleton, partially by activating the Wnt/PCP pathway.
Collapse
Affiliation(s)
- Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Bing Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese MedicineShenzhen 518033, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Liangping He
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District in ChongqingChongqing 400000, China
| | - Taifen Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Xuewen Yu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Yuqi Kang
- The Fourth Clinical Medical College, Guangzhou University of Chinese MedicineShenzhen 518033, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| |
Collapse
|
15
|
Derish I, Lee JKH, Wong-King-Cheong M, Babayeva S, Caplan J, Leung V, Shahinian C, Gravel M, Deans MR, Gros P, Torban E. Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys. PLoS One 2020; 15:e0230586. [PMID: 32203543 PMCID: PMC7089571 DOI: 10.1371/journal.pone.0230586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Planar cell polarity (PCP) pathway is crucial for tissue morphogenesis. Mutations in PCP genes cause multi-organ anomalies including dysplastic kidneys. Defective PCP signaling was postulated to contribute to cystogenesis in polycystic kidney disease. This work was undertaken to elucidate the role of the key PCP gene, Vangl2, in embryonic and postnatal renal tubules and ascertain whether its loss contributes to cyst formation and defective tubular function in mature animals. We generated mice with ubiquitous and collecting duct-restricted excision of Vangl2. We analyzed renal tubules in mutant and control mice at embryonic day E17.5 and postnatal days P1, P7, P30, P90, 6- and 9-month old animals. The collecting duct functions were analyzed in young and adult mutant and control mice. Loss of Vangl2 leads to profound tubular dilatation and microcysts in embryonic kidneys. Mechanistically, these abnormalities are caused by defective convergent extension (larger tubular cross-sectional area) and apical constriction (cuboidal cell shape and a reduction of activated actomyosin at the luminal surface). However, the embryonic tubule defects were rapidly resolved by Vangl2-independent mechanisms after birth. Normal collecting duct architecture and functions were found in young and mature animals. During embryogenesis, Vangl2 controls tubular size via convergent extension and apical constriction. However, rapidly after birth, PCP-dependent control of tubular size is switched to a PCP-independent regulatory mechanism. We conclude that loss of the Vangl2 gene is dispensable for tubular elongation and maintenance postnatally. It does not lead to cyst formation and is unlikely to contribute to polycystic kidney disease.
Collapse
Affiliation(s)
- Ida Derish
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Jeremy K. H. Lee
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Melanie Wong-King-Cheong
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Jillian Caplan
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Vicki Leung
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Chloe Shahinian
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Michel Gravel
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Michael R. Deans
- Division of Otolaryngology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Elena Torban
- Department of Medicine, McGill University and McGill University Health Center Research Institute, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
16
|
VANGL2 regulates luminal epithelial organization and cell turnover in the mammary gland. Sci Rep 2019; 9:7079. [PMID: 31068622 PMCID: PMC6506599 DOI: 10.1038/s41598-019-43444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023] Open
Abstract
The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.
Collapse
|
17
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
18
|
Papakrivopoulou E, Vasilopoulou E, Lindenmeyer MT, Pacheco S, Brzóska HŁ, Price KL, Kolatsi‐Joannou M, White KE, Henderson DJ, Dean CH, Cohen CD, Salama AD, Woolf AS, Long DA. Vangl2, a planar cell polarity molecule, is implicated in irreversible and reversible kidney glomerular injury. J Pathol 2018; 246:485-496. [PMID: 30125361 PMCID: PMC6282744 DOI: 10.1002/path.5158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adult
- Animals
- Case-Control Studies
- Cell Polarity
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Female
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Kidney Glomerulus/physiopathology
- Male
- Matrix Metalloproteinase 9/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Nephrosis, Lipoid/genetics
- Nephrosis, Lipoid/metabolism
- Nephrosis, Lipoid/pathology
- Nephrosis, Lipoid/physiopathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Podocytes/metabolism
- Podocytes/pathology
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- Eugenia Papakrivopoulou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Elisavet Vasilopoulou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
- Medway School of PharmacyUniversity of KentChatham MaritimeUK
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IVUniversity of MunichMunichGermany
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sabrina Pacheco
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Hortensja Ł Brzóska
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Karen L Price
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Maria Kolatsi‐Joannou
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Kathryn E White
- Electron Microscopy Research ServicesNewcastle UniversityNewcastle upon TyneUK
| | - Deborah J Henderson
- Cardiovascular Research CentreInstitute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK
| | - Charlotte H Dean
- Inflammation Repair and Development SectionNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IVUniversity of MunichMunichGermany
| | - Alan D Salama
- University College London Centre for Nephrology, Royal Free HospitalLondonUK
| | - Adrian S Woolf
- Faculty of Biology Medicine and HealthSchool of Biological Sciences, University of ManchesterManchesterUK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - David A Long
- Developmental Biology and Cancer ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
19
|
Yang JW, Dettmar AK, Kronbichler A, Gee HY, Saleem M, Kim SH, Shin JI. Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephrol 2018; 22:752-763. [PMID: 29556761 DOI: 10.1007/s10157-018-1552-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
In the last decade, great advances have been made in understanding the genetic basis for focal segmental glomerulosclerosis (FSGS). Animal models using specific gene disruption of the slit diaphragm and cytoskeleton of the foot process mirror the etiology of the human disease. Many animal models have been developed to understand the complex pathophysiology of FSGS. Therefore, we need to know the usefulness and exact methodology of creating animal models. Here, we review classic animal models and newly developed genetic animal models. Classic animal models of FSGS involve direct podocyte injury and indirect podocyte injury due to adaptive responses. However, the phenotype depends on the animal background. Renal ablation and direct podocyte toxin (PAN, adriamycin) models are leading animal models for FSGS, which have some limitations depending on mice background. A second group of animal models were developed using combinations of genetic mutation and toxin, such as NEP25, diphtheria toxin, and Thy1.1 models, which specifically injure podocytes. A third group of animal models involves genetic engineering techniques targeting podocyte expression molecules, such as podocin, CD2-associated protein, and TRPC6 channels. More detailed information about podocytopathy and FSGS can be expected in the coming decade. Different animal models should be used to study FSGS depending on the specific aim and sometimes should be used in combination.
Collapse
Affiliation(s)
- Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea
| | - Anne Katrin Dettmar
- Pediatric Nephrology, Department of Pediatrics, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Universitätskliniken Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moin Saleem
- Paediatric Renal Medicine, University of Bristol, Bristol, UK.,Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
20
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
21
|
Martin CE, Jones N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Front Endocrinol (Lausanne) 2018; 9:302. [PMID: 29922234 PMCID: PMC5996060 DOI: 10.3389/fendo.2018.00302] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Podocytes are a major component of the glomerular blood filtration barrier, and alterations to the morphology of their unique actin-based foot processes (FP) are a common feature of kidney disease. Adjacent FP are connected by a specialized intercellular junction known as the slit diaphragm (SD), which serves as the ultimate barrier to regulate passage of macromolecules from the blood. While the link between SD dysfunction and reduced filtration selectivity has been recognized for nearly 50 years, our understanding of the underlying molecular circuitry began only 20 years ago, sparked by the identification of NPHS1, encoding the transmembrane protein nephrin. Nephrin not only functions as the core component of the extracellular SD filtration network but also as a signaling scaffold via interactions at its short intracellular region. Phospho-regulation of several conserved tyrosine residues in this region influences signal transduction pathways which control podocyte cell adhesion, shape, and survival, and emerging studies highlight roles for nephrin phospho-dynamics in mechanotransduction and endocytosis. The following review aims to summarize the last 5 years of advancement in our knowledge of how signaling centered at nephrin directs SD barrier formation and function. We further provide insight on promising frontiers in podocyte biology, which have implications for SD signaling in the healthy and diseased kidney.
Collapse
|
22
|
Bailly E, Walton A, Borg JP. The planar cell polarity Vangl2 protein: From genetics to cellular and molecular functions. Semin Cell Dev Biol 2017; 81:62-70. [PMID: 29111415 DOI: 10.1016/j.semcdb.2017.10.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Planar cell polarity (PCP) refers to the capacity of a tissue, typically, but not exclusively, an epithelium, to transmit directional information across the tissue plane such that its cellular constituents can differentiate, divide or move in a coordinated manner and along a common axis, generally orthogonal to the apical-basal axis. PCP relies on a core module of highly conserved proteins originally identified in Drosophila which can act intra- and extracellularly. In this review, we focus on the vertebrate ortholog of one of these core PCP components, namely the Vangl2 protein. After a brief historical perspective, we discuss novel cellular settings for which a cellular Vangl2 requirement has been recently documented, with a particular emphasis on adult tissues that rely on Vangl2 for the maintenance of their regenerative capacity or their physiological functions. Finally we compile the most recent data about Vangl2 interacting proteins.
Collapse
Affiliation(s)
- Eric Bailly
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| | - Alexandra Walton
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| |
Collapse
|
23
|
Poobalasingam T, Yates LL, Walker SA, Pereira M, Gross NY, Ali A, Kolatsi-Joannou M, Jarvelin MR, Pekkanen J, Papakrivopoulou E, Long DA, Griffiths M, Wagner D, Königshoff M, Hind M, Minelli C, Lloyd CM, Dean CH. Heterozygous Vangl2Looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair. Dis Model Mech 2017; 10:409-423. [PMID: 28237967 PMCID: PMC5399569 DOI: 10.1242/dmm.028175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema. Summary: Manipulating the PCP pathway may provide new approaches to treat damaged lung tissue.
Collapse
Affiliation(s)
- Thanushiyan Poobalasingam
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Laura L Yates
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Miguel Pereira
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Nina Y Gross
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Akmol Ali
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK.,Center for Life Course Epidemiology, Faculty of Medicine, P.O. Box 5000, University of Oulu, Oulu FI-90014 Finland.,Biocenter Oulu, P.O. Box 5000, Aapistie 5A, University of Oulu, Oulu FI-90014, Finland.,Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, Oulu FI-90220, Finland
| | - Juha Pekkanen
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio FI-70701, Finland.,University of Helsinki, Department of Public Health, Helsinki FI-00014, Finland
| | | | - David A Long
- Developmental Biology and Cancer Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Mark Griffiths
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London SW3 6NP, UK
| | - Darcy Wagner
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, Munich 81377, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, Munich 81377, Germany
| | - Matthew Hind
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London SW3 6NP, UK.,Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Cosetta Minelli
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Clare M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Charlotte H Dean
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK .,Mammalian Genetics Unit, MRC Harwell Institute, Didcot OX11 0RD, UK
| |
Collapse
|
24
|
Chen H, Cheng CY. Planar cell polarity (PCP) proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:99-109. [PMID: 27108805 PMCID: PMC5071175 DOI: 10.1016/j.semcdb.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
25
|
Brzóska HŁ, d'Esposito AM, Kolatsi-Joannou M, Patel V, Igarashi P, Lei Y, Finnell RH, Lythgoe MF, Woolf AS, Papakrivopoulou E, Long DA. Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int 2016; 90:1274-1284. [PMID: 27597235 PMCID: PMC5126096 DOI: 10.1016/j.kint.2016.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
The mammalian kidney contains nephrons comprising glomeruli and tubules joined to ureteric bud-derived collecting ducts. It has a characteristic bean-like shape, with near-complete rostrocaudal symmetry around the hilum. Here we show that Celsr1, a planar cell polarity (PCP) gene implicated in neural tube morphogenesis, is required for ureteric tree growth in early development and later in gestation prevents tubule overgrowth. We also found an interaction between Celsr1 and Vangl2 (another PCP gene) in ureteric tree growth, most marked in the caudal compartment of the kidneys from compound heterozygous mutant mice with a stunted rump. Furthermore, these genes together are required for the maturation of glomeruli. Interestingly, we demonstrated patients with CELSR1 mutations and spina bifida can have significant renal malformations. Thus, PCP genes are important in mammalian kidney development and have an unexpected role in rostrocaudal patterning during organogenesis.
Collapse
Affiliation(s)
- Hortensja Ł Brzóska
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Angela M d'Esposito
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yunping Lei
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
26
|
Chen H, Mruk DD, Lee WM, Cheng CY. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology 2016; 157:2140-59. [PMID: 26990065 PMCID: PMC4870864 DOI: 10.1210/en.2015-1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
27
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
28
|
Inoue K, Ishibe S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 2015; 309:F398-405. [PMID: 26084928 DOI: 10.1152/ajprenal.00136.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Severe defects in the glomerular filtration barrier result in nephrotic syndrome, which is characterized by massive proteinuria. The podocyte, a specialized epithelial cell with interdigitating foot processes separated by a slit diaphragm, plays a vital role in regulating the passage of proteins from the capillary lumen to Bowman's space. Recent findings suggest a critical role for endocytosis in podocyte biology as highlighted by genetic mouse models of disease and human genetic mutations that result in the loss of the integrity of the glomerular filtration barrier. In vitro podocyte studies have also unraveled a plethora of constituents that are differentially internalized to maintain homeostasis. These observations provide a framework and impetus for understanding the precise regulation of podocyte endocytic machinery in both health and disease.
Collapse
Affiliation(s)
- Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|