1
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
2
|
Iguidbashian J, Zakrzewski J, Lu L, Garcia AM, Khailova L, Deng X, Plenter R, La Rosa FG, Nakano S, Lynch K, Jaggers J, Davidson J, Stone ML. Targeted immunotherapy with sphingosine-1-phosphate improves myocardial contractility and mitochondrial function in a novel murine ex vivo perfusion and transplantation model. J Thorac Cardiovasc Surg 2025:S0022-5223(25)00181-3. [PMID: 40043942 DOI: 10.1016/j.jtcvs.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVE To develop a reproducible ex vivo heart perfusion (EVHP) and murine heart transplantation model and to evaluate the efficacy of hypothermic, acellular ex vivo perfusion with sphingosine-1-phosphate (S1P) as a strategy to mitigate transplantation-associated ischemia-reperfusion injury (IRI). METHODS Donor hearts from wild-type mice were stratified by preservation technique. Group 1 hearts (n = 4) served as nontransplanted controls. Group 2 hearts (n = 10) underwent 90 minutes of cold static preservation (CSP) following cardioplegic arrest in donor mice. Group 3 to 5 hearts (n = 10/group) underwent EVHP with hypothermic acellular solution (Krebs-Henseleit buffer [KH]) alone (group 3), with KH plus S1P (FTY-720) (group 4), or with KH plus S1P plus S1P receptor subtype 2 antagonist (JTE-013) (group 5). Group 2 to 5 hearts were then transplanted into recipient mice with 120 minutes of reperfusion. Hearts were evaluated for function by echocardiography, for histopathologic injury by neutrophil infiltration, and for mitochondrial bioenergetics by Seahorse bioanalysis. RESULTS Functional assessment demonstrated comparable post-transplantation allograft function as defined by fractional shortening (FS) and fractional area change (FAC) for CSP and KH-only EVHP mice (P > .05). EVHP with S1P improved post-transplantation function by both FS and FAC (P < .05). Coadministration of S1P with S1PR2 antagonist abrogated the functional improvement of S1P alone (P < .05). EVHP with S1P also reduced injury severity scores based on neutrophil infiltration (P < .05). Finally, EVHP with S1P transplanted hearts demonstrated improved mitochondrial function compared to hearts transplanted after standard CSP (P < .05). CONCLUSIONS Donor hearts perfused with hypothermic acellular perfusate and S1P demonstrated improved post-transplantation heart function, decreased histologic injury, and increased mitochondrial performance compared to hearts preserved with cold-static CSP, representing a potential strategy to mitigate IRI occurring in heart transplantation.
Collapse
Affiliation(s)
- John Iguidbashian
- Division of General Surgery, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Jack Zakrzewski
- Division of General Surgery, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Li Lu
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Ludmila Khailova
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Xinsheng Deng
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Robert Plenter
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Francisco G La Rosa
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Stephanie Nakano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Kevin Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - James Jaggers
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Jesse Davidson
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo
| | - Matthew L Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Colorado, Anschutz Medical Campus, Aurora, Colo.
| |
Collapse
|
3
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
4
|
Xiong Y, Ye Q, Liu L, Lin W, Liao Y, Gao R, Xu J, Zhang X, Chen R, Chen S, Chen Q, Wei L. The compensatory enrichment of sphingosine-1-phosphate on HDL in FSGS enhances the protective function of glomerular endothelial cells compared to MCD. Sci Rep 2025; 15:1530. [PMID: 39789110 PMCID: PMC11718056 DOI: 10.1038/s41598-025-85865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production. Nevertheless, the abundance of S1P within HDL in individuals with FSGS and minimal change disease (MCD) is yet to be elucidated, and its defensive role in GECs necessitates empirical confirmation. A total of 14 FSGS patients, 16 MCD patients, and 16 healthy controls (NC) were included in the study, with FSGS and MCD confirmed by renal biopsy. After blood sample collection, HDL was isolated and categorized into intact HDL, phospholipid-depleted HDL(apo-HDL), phospholipid-remained HDL(phoHDL), and recombinant HDL (rHDL). Various HDL samples, comprising intact, apo-HDL, pho-HDL and rHDL, were co-cultivated with human renal glomerular endothelial cells (HRGECs). Western blotting was utilized to quantify p-eNOS levels and assess PI3K-AKT pathway activation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyzed S1P concentrations, while real-time quantitative PCR evaluated the expression of enzymes involved in S1P metabolism. Fluorescence labeling methods measured NO levels, and an immunofluorescence colocalization assay investigated Sphingosine-1-phosphate receptor 1 (S1PR1) expression in GECs across distinct kidney tissue groups. The HDL from FSGS patients demonstrated a significantly enhanced ability to promote p-eNOS expression and NO release in HRGECs compared to MCD patients and healthy controls. Additionally, the synthesis activity of S1P in renal tissues of FSGS patients was markedly higher than that observed in MCD patients and healthy controls, suggesting that S1P may play a crucial protective role in the progression of FSGS. Immunofluorescence staining showed that compared with MCD and NC, the expression of S1PR1 in GECs of FSGS patients was significantly decreased. Recombinant HDL with added S1P promoted the increase of p-eNOS in HRGECs. Knockdown of S1PR1 using siRNA reduced the expression of p-eNOS and NO release. The mechanism underlying the regulation of p-eNOS expression by rHDL was associated with the PI3K-AKT signaling pathway. The enhanced presence of S1P on HDL could serve as a diagnostic marker to differentiate FSGS from MCD. Incorporating S1P into HDL enhances glomerular endothelial cell function, suggesting that the S1P/S1PR pathway might offer a promising therapeutic avenue for FSGS.
Collapse
Affiliation(s)
- Yunfeng Xiong
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qiuping Ye
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China
| | - Lifang Liu
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China
| | - Wanjun Lin
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China
| | - Yonggen Liao
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China
| | - Ruiyu Gao
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jiaming Xu
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xinyu Zhang
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruoyan Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Sihui Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qiaoling Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China.
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Clinical Immunology, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Sabapathy V, Price A, Cheru NT, Venkatadri R, Dogan M, Costlow G, Mohammad S, Sharma R. ST2 + T-Regulatory Cells in Renal Inflammation and Fibrosis after Ischemic Kidney Injury. J Am Soc Nephrol 2025; 36:73-86. [PMID: 39186386 PMCID: PMC11706559 DOI: 10.1681/asn.0000000000000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Key Points IL-33/ST2 alarmin pathway regulates inflammation, fibrosis, and resolution of ischemia-reperfusion injury of kidneys. ST2 regulates the transcriptome of T-regulatory cells related to suppressive and reparative functions. The secretome of ST2+ T-regulatory cells regulates hypoxic injury in an amphiregulin-dependent manner. Background Inflammation is a major cause of kidney injury. IL-1 family cytokine IL-33 is released from damaged cells and modulates the immune response through its receptor ST2 expressed on many cell types, including regulatory T cells (Tregs). Although a proinflammatory role of IL-33 has been proposed, exogenous IL-33 expanded Tregs and suppressed renal inflammation. However, the contribution of endogenous IL-33/ST2 for the role of Tregs in the resolution of kidney injury has not been investigated. Methods We used murine renal ischemia-reperfusion injury and kidney organoids (KDOs) to delineate the role of the ST2 and amphiregulin (AREG) specifically in Tregs using targeted deletion. Bulk and single-cell RNA sequencing were performed on flow-sorted Tregs from spleen and CD4 T cells from postischemic kidneys, respectively. The protective role of ST2-sufficient Tregs was analyzed using a novel coculture system of syngeneic KDOs and Tregs under hypoxic conditions. Results Bulk RNA sequencing of splenic and single-cell RNA sequencing of kidney CD4 T cells showed that ST2+ Tregs are enriched for genes related to Treg proliferation and function. Genes for reparative factors, such as Areg , were also enriched in ST2+ Tregs. Treg-specific deletion of ST2 or AREG exacerbated kidney injury and fibrosis in the unilateral ischemia-reperfusion injury model. In coculture studies, wild-type but not ST2-deficient Tregs preserved hypoxia-induced loss of kidney organoid viability, which was restored by AREG supplementation. Conclusions Our study identified the role of the IL-33/ST2 pathway in Tregs for resolution of kidney injury. The transcriptome of ST2+ Tregs was enriched for reparative factors including Areg . Lack of ST2 or AREG in Tregs worsened kidney injury. Tregs protected KDOs from hypoxia in a ST2- and AREG-dependent manner.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Airi Price
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of International Health, Georgetown University, Washington, DC
| | - Nardos Tesfaye Cheru
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Rajkumar Venkatadri
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Immunology Research Unit, GlaxoSmithKline (GSK), Collegeville, Pennsylvania
| | - Murat Dogan
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
- Department of Transplant Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabrielle Costlow
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Saleh Mohammad
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Potì F, Scalera E, Feuerborn R, Fischer J, Arndt L, Varga G, Pardali E, Seidl MD, Fobker M, Liebisch G, Hesse B, Lukasz AH, Rossaint J, Kehrel BE, Rosenbauer F, Renné T, Christoffersen C, Simoni M, Burkhardt R, Nofer JR. Sphingosine 1-phosphate receptor 1signaling in macrophages reduces atherosclerosis in LDL receptor-deficient mice. JCI Insight 2024; 9:e158127. [PMID: 39531328 PMCID: PMC11665566 DOI: 10.1172/jci.insight.158127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.
Collapse
Affiliation(s)
- Francesco Potì
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Enrica Scalera
- Department of Food and Drug, University of Parma, Parma, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Josephine Fischer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Lilli Arndt
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster, Germany
| | - Evangelia Pardali
- Department of Cardiology, University Hospital Münster, Münster, Germany
- Pharvaris GmbH, Zug, Switzerland
| | - Matthias D. Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Manfred Fobker
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Hesse
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Alexander H. Lukasz
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Laboratory Medicine, Marien-Hospital, Niels-Stensen-Kliniken, Osnabrück, Germany
| |
Collapse
|
7
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024; 476:1845-1861. [PMID: 39384640 PMCID: PMC11582123 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
9
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2024:10.1007/s00467-024-06595-z. [PMID: 39601825 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
10
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024; 120:1794-1810. [PMID: 39086170 PMCID: PMC11587562 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell-type-specific and relative deficiencies in S1P production to define ligand source and dose dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries, and a subset of high-endothelial venules (HEVs). Similar zonation was observed for albumin extravasation in EC S1PR1-deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic ECs, S1PR1 engagement was high in collecting vessels and lymph nodes and low in blind-ended capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signalling in lymphatics and HEV, haematopoietic cells provided ∼90% of plasma S1P and sustained signalling in resistance arteries and lung capillaries. S1PR1 signalling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSION This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Anja Nitzsche
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Kevin Boyé
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Philippe Bonnin
- Physiologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière, Paris, France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Toan Q Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Patrice Thérond
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- MitoVasc Department, Angers University, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
- Department of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, USA
| | - Eric Camerer
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| |
Collapse
|
11
|
de Assis JL, Grelle GMRS, Fernandes AM, da Silva Aniceto B, Pompeu P, de Mello FV, Garrett R, Valverde RHF, Einicker-Lamas M. Sphingosine 1-phosphate protective effect on human proximal tubule cells submitted to an in vitro ischemia model: the role of JAK2/STAT3. J Physiol Biochem 2024; 80:831-843. [PMID: 39155330 DOI: 10.1007/s13105-024-01038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.
Collapse
Affiliation(s)
- Juliane Lopes de Assis
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Maria Ramalho Soares Grelle
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Marie Fernandes
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara da Silva Aniceto
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Pompeu
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Vieira de Mello
- Serviço de Citometria do Instituto de Pediatria e Puericultura Martagão Gesteira (IPPMG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Hospodar Felippe Valverde
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Moore KH, Erman EN, Traylor AM, Esman SK, Jiang Y, LaFontaine JR, Zmijewska A, Lu Y, Soliman RH, Agarwal A, George JF. Cognate antigen-independent differentiation of resident memory T cells in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F839-F854. [PMID: 38450434 PMCID: PMC11386978 DOI: 10.1152/ajprenal.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elise N Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer R LaFontaine
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yan Lu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
13
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Wilkins GC, Gilmour J, Giannoudaki E, Kirby JA, Sheerin NS, Ali S. Dissecting the Therapeutic Mechanisms of Sphingosine-1-Phosphate Receptor Agonism during Ischaemia and Reperfusion. Int J Mol Sci 2023; 24:11192. [PMID: 37446370 PMCID: PMC10342646 DOI: 10.3390/ijms241311192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and S1P receptors (S1PR) regulate many cellular processes, including lymphocyte migration and endothelial barrier function. As neutrophils are major mediators of inflammation, their transendothelial migration may be the target of therapeutic approaches to inflammatory conditions such as ischaemia-reperfusion injury (IRI). The aim of this project was to assess whether these therapeutic effects are mediated by S1P acting on neutrophils directly or indirectly through the endothelial cells. First, our murine model of peritoneum cell recruitment demonstrated the ability of S1P to reduce CXCL8-mediated neutrophil recruitment. Mechanistic in vitro studies revealed that S1P signals in neutrophils mainly through the S1PR1 and 4 receptors and induces phosphorylation of ERK1/2; however, this had no effect on neutrophil transmigration and adhesion. S1P treatment of endothelial cells significantly reduced TNF-α-induced neutrophil adhesion under flow (p < 0.01) and transendothelial migration towards CXCL8 during in vitro chemotaxis assays (p < 0.05). S1PR1 agonist CYM5442 treatment of endothelial cells also reduced neutrophil transmigration (p < 0.01) and endothelial permeability (p < 0.005), as shown using in vitro permeability assays. S1PR3 agonist had no effects on chemotaxis or permeability. In an in vivo mouse model of renal IRI, S1PR agonism with CYM5442 reduced endothelial permeability as shown by reduced Evan's Blue dye extravasation. Western blot was used to assess phosphorylation at different sites on vascular endothelial (VE)-cadherin and showed that CYM5442 reduced VEGF-mediated phosphorylation. Taken together, the results of this study suggest that reductions in neutrophil infiltration during IRI in response to S1P are mediated primarily by S1PR1 signalling on endothelial cells, possibly by altering phosphorylation of VE-cadherin. The results also demonstrate the therapeutic potential of S1PR1 agonist during IRI.
Collapse
Affiliation(s)
| | | | | | | | - Neil S. Sheerin
- Immunity and Inflammation, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.C.W.); (J.G.); (E.G.); (J.A.K.)
| | - Simi Ali
- Immunity and Inflammation, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.C.W.); (J.G.); (E.G.); (J.A.K.)
| |
Collapse
|
15
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Xiong W, Chen S, Xiang H, Zhao S, Xiao J, Li J, Liu Y, Shu Z, Ouyang J, Zhang J, Liu H, Wang X, Zou H, Chen Y, Chen A, Lu H. S1PR1 attenuates pulmonary fibrosis by inhibiting EndMT and improving endothelial barrier function. Pulm Pharmacol Ther 2023:102228. [PMID: 37295666 DOI: 10.1016/j.pupt.2023.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease of unknown etiology. Its pathological manifestations include excessive proliferation and activation of fibroblasts and deposition of extracellular matrix. Endothelial cell-mesenchymal transformation (EndMT), a novel mechanism that generates fibroblast during IPF, is responsible for fibroblast-like phenotypic changes and activation of fibroblasts into hypersecretory cells. However, the exact mechanism behind EndMT-derived fibroblasts and activation is uncertain. Here, we investigated the role of sphingosine 1-phosphate receptor 1 (S1PR1) in EndMT-driven pulmonary fibrosis. METHODS We treated C57BL/6 mice with bleomycin (BLM) in vivo and pulmonary microvascular endothelial cells with TGF-β1 in vitro. Western blot,flow cytometry, and immunofluorescence were used to detect the expression of S1PR1 in endothelial cells. To evaluate the effect of S1PR1 on EndMT and endothelial barrier and its role in lung fibrosis and related signaling pathways, S1PR1 agonist and antagonist were used in vitro and in vivo. RESULTS Endothelial S1PR1 protein expression was downregulated in both in vitro and in vivo models of pulmonary fibrosis induced by TGF-β1 and BLM, respectively. Downregulation of S1PR1 resulted in EndMT, indicated by decreased expression of endothelial markers CD31 and VE-cadherin, increased expression of mesenchymal markers α-SMA and nuclear transcription factor Snail, and disruption of the endothelial barrier. Further mechanistic studies found that stimulation of S1PR1 inhibited TGF-β1-mediated activation of the Smad2/3 and RhoA/ROCK1 pathways. Moreover, stimulation of S1PR1 attenuated Smad2/3 and RhoA/ROCK1 pathway-mediated damage to endothelial barrier function. CONCLUSIONS Endothelial S1PR1 provides protection against pulmonary fibrosis by inhibiting EndMT and attenuating endothelial barrier damage. Accordingly, S1PR1 may be a potential therapeutic target in progressive IPF.
Collapse
Affiliation(s)
- Wenfang Xiong
- Health Management Center, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China; Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Hong Xiang
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Shaoli Zhao
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jie Xiao
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jialing Li
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Yulan Liu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jie Ouyang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jing Zhang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Huiqin Liu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Xuewen Wang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Hang Zou
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Ying Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Alex Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hongwei Lu
- Health Management Center, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China; Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
17
|
Ciarambino T, Crispino P, Giordano M. Gender and Renal Insufficiency: Opportunities for Their Therapeutic Management? Cells 2022; 11:cells11233820. [PMID: 36497080 PMCID: PMC9740491 DOI: 10.3390/cells11233820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem associated with increased morbidity and mortality. Despite intensive research, the clinical outcome remains poor, and apart from supportive therapy, no other specific therapy exists. Furthermore, acute kidney injury increases the risk of developing chronic kidney disease (CKD) and end-stage renal disease. Acute tubular injury accounts for the most common intrinsic cause of AKI. The main site of injury is the proximal tubule due to its high workload and energy demand. Upon injury, an intratubular subpopulation of proximal epithelial cells proliferates and restores the tubular integrity. Nevertheless, despite its strong regenerative capacity, the kidney does not always achieve its former integrity and function and incomplete recovery leads to persistent and progressive CKD. Clinical and experimental data demonstrate sexual differences in renal anatomy, physiology, and susceptibility to renal diseases including but not limited to ischemia-reperfusion injury. Some data suggest the protective role of female sex hormones, whereas others highlight the detrimental effect of male hormones in renal ischemia-reperfusion injury. Although the important role of sex hormones is evident, the exact underlying mechanisms remain to be elucidated. This review focuses on collecting the current knowledge about sexual dimorphism in renal injury and opportunities for therapeutic manipulation, with a focus on resident renal progenitor stem cells as potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81031 Caserta, Italy
- Correspondence: (T.C.); (M.G.)
| | - Pietro Crispino
- Emergency Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Science, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
- Correspondence: (T.C.); (M.G.)
| |
Collapse
|
18
|
Inoue T, Nakamura Y, Tanaka S, Kohro T, Li LX, Huang L, Yao J, Kawamura S, Inoue R, Nishi H, Fukaya D, Uni R, Hasegawa S, Inagi R, Umene R, Wu CH, Ye H, Bajwa A, Rosin DL, Ishihara K, Nangaku M, Wada Y, Okusa MD. Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis. Front Med (Lausanne) 2022; 9:993698. [PMID: 36267620 PMCID: PMC9576863 DOI: 10.3389/fmed.2022.993698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Takahide Kohro
- Department of Clinical Informatics/Cardiology, Jichi Medical University, Tochigi, Japan
| | - Lisa X. Li
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suzuka Kawamura
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Reiko Inoue
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Fukaya
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Uni
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Mark D. Okusa,
| |
Collapse
|
19
|
Idowu TO, Parikh SM. A new chapter in lipid signaling and kidney fibrosis. Sci Transl Med 2022; 14:eadd2826. [PMID: 35976995 DOI: 10.1126/scitranslmed.add2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The perivascular sphingosine 1-phosphate signaling axis may be an emerging therapeutic target for treating chronic kidney disease (Tanaka et al.).
Collapse
Affiliation(s)
- Temitayo O Idowu
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
20
|
Tanaka S, Zheng S, Kharel Y, Fritzemeier RG, Huang T, Foster D, Poudel N, Goggins E, Yamaoka Y, Rudnicka KP, Lipsey JE, Radel HV, Ryuh SM, Inoue T, Yao J, Rosin DL, Schwab SR, Santos WL, Lynch KR, Okusa MD. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci Transl Med 2022; 14:eabj2681. [PMID: 35976996 PMCID: PMC9873476 DOI: 10.1126/scitranslmed.abj2681] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Russell G. Fritzemeier
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Daniel Foster
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yusuke Yamaoka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kinga P. Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jonathan E. Lipsey
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hope V. Radel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Sophia M. Ryuh
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, NY, New York 10016, USA
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Corresponding author.
| |
Collapse
|
21
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
22
|
Thompson ER, Sewpaul A, Figuereido R, Bates L, Tingle SJ, Ferdinand JR, Situmorang GR, Ladak SS, Connelly CM, Hosgood SA, Nicholson ML, Clatworthy MR, Ali S, Wilson CH, Sheerin NS. MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am J Transplant 2022; 22:1088-1100. [PMID: 34932895 DOI: 10.1111/ajt.16929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023]
Abstract
Normothermic machine perfusion (NMP) is a novel clinical approach to overcome the limitations of traditional hypothermic organ preservation. NMP can be used to assess and recondition organs prior to transplant and is the subject of clinical trials in solid organ transplantation. In addition, NMP provides an opportunity to deliver therapeutic agents directly to the organ, thus avoiding many limitations associated with systemic treatment of the recipient. We report the delivery of oligonucleotide-based therapy to human kidneys during NMP, in this case to target microRNA function (antagomir). An antagomir targeting mir-24-3p localized to the endothelium and proximal tubular epithelium. Endosomal uptake during NMP conditions facilitated antagomir co-localization with proteins involved in the RNA-induced silencing complex (RISC) and demonstrated engagement of the miRNA target. This pattern of uptake was not seen during cold perfusion. Targeting mir-24-3p action increased expression of genes controlled by this microRNA, including heme oxygenase-1 and sphingosine-1-phosphate receptor 1. The expression of genes not under the control of mir-24-3p was unchanged, indicating specificity of the antagomir effect. In summary, this is the first report of ex vivo gymnotic delivery of oligonucleotide to the human kidney and demonstrates that NMP provides the platform to bind and block detrimental microRNAs in donor kidneys prior to transplantation.
Collapse
Affiliation(s)
- Emily R Thompson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Avinash Sewpaul
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Rodrigo Figuereido
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Lucy Bates
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Samuel J Tingle
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - John R Ferdinand
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gerhard R Situmorang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shameem S Ladak
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chloe M Connelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah A Hosgood
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Menna R Clatworthy
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Colin H Wilson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK.,NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Sears SM, Dupre TV, Shah PP, Davis DL, Doll MA, Sharp CN, Vega AA, Megyesi J, Beverly LJ, Snider AJ, Obeid LM, Hannun YA, Siskind LJ. Neutral ceramidase deficiency protects against cisplatin-induced acute kidney injury. J Lipid Res 2022; 63:100179. [PMID: 35151662 PMCID: PMC8953688 DOI: 10.1016/j.jlr.2022.100179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase-/-) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation-induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase-/- mice are resistant to cisplatin-induced AKI. nCDase-/- mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase-/- mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Tess V Dupre
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Deanna L Davis
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Cierra N Sharp
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Alexis A Vega
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Judit Megyesi
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas, Veterans Healthcare System, Little Rock, AR, USA
| | - Levi J Beverly
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Leah J Siskind
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
24
|
Evaristi MF, Poirier B, Chénedé X, Lefebvre AM, Roccon A, Gillot F, Beeské S, Corbier A, Pruniaux-Harnist MP, Janiak P, Parkar AA. A G-protein-biased S1P1 agonist, SAR247799, improved LVH and diastolic function in a rat model of metabolic syndrome. PLoS One 2022; 17:e0257929. [PMID: 35030174 PMCID: PMC8759645 DOI: 10.1371/journal.pone.0257929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
AIM Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function. METHODS 31- and 65-week-old obese ZSF1 (Ob-ZSF1) rats, representing adult and aged animals with LVH and diastolic dysfunction, were randomized to a chow diet containing 0.025% (w/w) of SAR247799, or control (CTRL) chow for 4 weeks. Age-matched lean ZSF1 (Le-ZSF1) rats were fed control chow. Echocardiography, telemetry, biochemical and histological analysis were performed to evaluate the effect of SAR247799. RESULTS Echocardiography revealed that Ob-ZSF1 rats, in contrast to Le-ZSF1 rats, developed progressive diastolic dysfunction and cardiac hypertrophy with age. SAR247799 blunted the progression of diastolic dysfunction in adult and aged animals: in adult animals E/e' was evaluated at 21.8 ± 1.4 for Ob-ZSF1-CTRL, 19.5 ± 1.2 for Ob-ZSF1-SAR247799 p<0.01, and 19.5 ± 2.3 for Le-ZSF1-CTRL (median ± IQR). In aged animals E/e' was evaluated at 23.15 ± 4.45 for Ob-ZSF1-CTRL, 19.5 ± 5 for Ob-ZSF1-SAR247799 p<0.01, and 16.69 ± 1.7 for Le-ZSF1-CTRL, p<0.01 (median ± IQR). In aged animals, SAR247799 reduced cardiac hypertrophy (g/mm mean ± SEM of heart weight/tibia length 0.053 ± 0.001 for Ob-ZSF1-CTRL vs 0.046 ± 0.002 for Ob-ZSF1-SAR247799 p<0.01, Le-ZSF1-CTRL 0.035 ± 0.001) and myocardial perivascular collagen content (p<0.001), independently of any changes in microvascular density. In adult animals, SAR247799 improved endothelial function as assessed by the very low frequency bands of systolic blood pressure variability (mean ± SEM 67.8 ± 3.41 for Ob-ZSF1-CTRL 55.8 ± 4.27 or Ob-ZSF1-SAR247799, p<0.05 and 57.3 ± 1.82 Le-ZSF1-CTRL), independently of any modification of arterial blood pressure. In aged animals, SAR247799 reduced urinary protein/creatinine ratio, an index of glomerular injury, (10.3 ± 0.621 vs 8.17 ± 0.231 for Ob-ZSF1-CTRL vs Ob-ZSF1-SAR247799, respectively, p<0.05 and 0.294 ± 0.029 for Le-ZSF1-CTRL, mean ± SEM) and the fractional excretion of electrolytes. Circulating lymphocytes were not decreased by SAR247799, confirming lack of S1P1 desensitization. CONCLUSIONS These experimental findings suggest that S1P1 activation with SAR247799 may be considered as a new therapeutic approach for LVH and diastolic dysfunction, major components of HFpEF.
Collapse
Affiliation(s)
| | - Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Xavier Chénedé
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Anne-Marie Lefebvre
- Molecular Histology and Bioimaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Roccon
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Montpellier, France
| | - Florence Gillot
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Sandra Beeské
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Corbier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | | | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Ashfaq A. Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, Bridgewater, NJ, United States of America
| |
Collapse
|
25
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Rapamycin Alternatively Modifies Mitochondrial Dynamics in Dendritic Cells to Reduce Kidney Ischemic Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22105386. [PMID: 34065421 PMCID: PMC8160749 DOI: 10.3390/ijms22105386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.
Collapse
|
27
|
Kuang Y, Li X, Liu X, Wei L, Chen X, Liu J, Zhuang T, Pi J, Wang Y, Zhu C, Gong X, Hu H, Yu Z, Li J, Yu P, Fan H, Zhang Y, Liu Z, Zhang L. Vascular endothelial S1pr1 ameliorates adverse cardiac remodelling via stimulating reparative macrophage proliferation after myocardial infarction. Cardiovasc Res 2021; 117:585-599. [PMID: 32091582 DOI: 10.1093/cvr/cvaa046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Endothelial cell (EC) homoeostasis plays an important role in normal physiological cardiac functions, and its dysfunction significantly influences pathological cardiac remodelling after myocardial infarction (MI). It has been shown that the sphingosine 1-phosphate receptor 1 (S1pr1) was highly expressed in ECs and played an important role in maintaining endothelial functions. We thus hypothesized that the endothelial S1pr1 might be involved in post-MI cardiac remodelling. METHODS AND RESULTS Our study showed that the specific loss of endothelial S1pr1 exacerbated post-MI cardiac remodelling and worsened cardiac dysfunction. We found that the loss of endothelial S1pr1 significantly reduced Ly6clow macrophage accumulation, which is critical for the resolution of inflammation and cardiac healing following MI. The reduced reparative macrophages in post-MI myocardium contributed to the detrimental effects of endothelial S1pr1 deficiency on post-MI cardiac remodelling. Further investigations showed that the loss of endothelial S1pr1-reduced Ly6clow macrophage proliferation, while the pharmacological activation of S1pr1-enhanced Ly6clow macrophage proliferation, thereby ameliorated cardiac remodelling after MI. A mechanism study showed that S1P/S1pr1 activated the ERK signalling pathway and enhanced colony-stimulating factor 1 (CSF1) expression, which promoted Ly6clow macrophage proliferation in a cell-contact manner. The blockade of CSF1 signalling reversed the enhancing effect of S1pr1 activation on Ly6clow macrophage proliferation and worsened post-MI cardiac remodelling. CONCLUSION This study reveals that cardiac microvascular endothelium promotes reparative macrophage proliferation in injured hearts via the S1P/S1PR1/ERK/CSF1 pathway and thus ameliorates post-MI adverse cardiac remodelling.
Collapse
Affiliation(s)
- Yashu Kuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Xiaolin Li
- Medical School, Internal Medicine Department, Jinggangshan University, Ji'an 343009, China
| | - Xiuxiang Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Lu Wei
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Xiaoli Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jie Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jingjiang Pi
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Yanfang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Chenying Zhu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Gong
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Jiming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Ping Yu
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huimin Fan
- Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China
| |
Collapse
|
28
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
29
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
30
|
Kidney inflammaging is promoted by CCR2 + macrophages and tissue-derived micro-environmental factors. Cell Mol Life Sci 2020; 78:3485-3501. [PMID: 33313981 PMCID: PMC8038964 DOI: 10.1007/s00018-020-03719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The incidence of disorders associated with low inflammatory state, such as chronic kidney disease, increases in the elderly. The accumulation of senescent cells during aging and the senescence-associated secretory phenotype, which leads to inflammaging, is known to be deleterious and account for progressive organ dysfunction. To date, the cellular actors implicated in chronic inflammation in the kidney during aging are still not well characterized. Using the DECyt method, based on hierarchical clustering of flow cytometry data, we showed that aging was associated with significant changes in stromal cell diversity in the kidney. In particular, we identified two cell populations up-regulated with aging, the mesenchymal stromal cell subset (kMSC) expressing CD73 and the monocyte-derived Ly6C+ CCR2+ macrophage subset expressing pro-inflammatory cytokines. Aged CD73+ kMSCs depicted senescence associated features with low proliferation rate, increased DNA damage foci and Ccl2 expression. Using co-cultures experiments, we showed that aged CD73+ kMSC promoted monocyte activation and secretion of inflammatory cytokines albeit less efficiently than young CD73+ kMSCs. In the context of ageing, increased frequency of CD73+ kMSC subpopulations could provide additional niche factors to newly recruited monocytes favoring a positive regulatory loop in response to local inflammation. Interfering with such partnership during aging could be a valuable approach to regulate kidney inflammaging and to limit the risk of developing chronic kidney disease in the elderly.
Collapse
|
31
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2020; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
32
|
Sphingosine-1-phosphate receptor modulator FTY720 attenuates experimental myeloperoxidase-ANCA vasculitis in a T cell-dependent manner. Clin Sci (Lond) 2020; 134:1475-1489. [PMID: 32538435 DOI: 10.1042/cs20200497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lysosphingolipid derived from the metabolism of plasma membrane lipids. The interaction between S1P and its ubiquitously expressed G-protein-coupled receptors (S1PR1-5) is crucial in many pathophysiological processes. Emerging evidence suggested a potential role for S1P receptors in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). In the present study, we investigated the effects of three different S1P receptors modulators (FTY720, SEW2871 and TY52156) in a recognized rat model of experimental autoimmune vasculitis (EAV). The effects of treatments were evaluated with clinico-pathological parameters including hematuria, proteinuria, crescent formation, pulmonary hemorrhage, etc. In vitro functional studies were performed in a Jurkat T-cell line following stimulations of serum from myeloperoxidase-AAV patients. We found that only the FTY720 treatment significantly alleviated hematuria and proteinuria, and diminished glomerular crescent formation, renal tubulointerstitial lesions and pulmonary hemorrhage in EAV. The attenuation was accompanied by less renal T-cell infiltration, up-regulated mRNA of S1PR1 and down-regulated IL-1β in kidneys, but not altered circulating ANCA levels, suggesting that the therapeutic effects of FTY720 were B-cell independent. Further in vitro studies demonstrated that FTY720 incubation could significantly inhibit the proliferation, adhesion, and migration, and increase apoptosis of T cells. In conclusion, the S1P modulator FTY720 could attenuate EAV through the reduction and inhibition of T cells, which might become a novel treatment of ANCA-associated vasculitis.
Collapse
|
33
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
34
|
Poirier B, Briand V, Kadereit D, Schäfer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP, Trellu M, Muslin AJ, Janiak P, Parkar AA. A G protein-biased S1P 1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 2020; 13:13/634/eaax8050. [PMID: 32487716 DOI: 10.1126/scisignal.aax8050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than β-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.
Collapse
Affiliation(s)
- Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Veronique Briand
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dieter Kadereit
- Medicinal Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main,, Germany
| | - Matthias Schäfer
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Paulus Wohlfart
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marie-Claire Philippo
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dominique Caillaud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Laurent Gouraud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Patrick Grailhe
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Jean-Pierre Bidouard
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Marc Trellu
- Drug Metabolism and Pharmacokinetics, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Anthony J Muslin
- Diabetes and Cardiovascular Research, Sanofi US Services, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Ashfaq A Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, 55 Corporate Drive, Bridgewater, NJ 08807, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The goal of this review is to review the role that renal parenchymal lipid accumulation plays in contributing to diabetic kidney disease (DKD), specifically contributing to the mitochondrial dysfunction observed in glomerular renal cells in the context of DKD development and progression. RECENT FINDINGS Mitochondrial dysfunction has been observed in experimental and clinical DKD. Recently, Ayanga et al. demonstrate that podocyte-specific deletion of a protein involved in mitochondrial dynamics protects from DKD progression. Furthermore, our group has recently shown that ATP-binding cassette A1 (a protein involved in cholesterol and phospholipid efflux) is significantly reduced in clinical and experimental DKD and that genetic or pharmacological induction of ABCA1 is sufficient to protect from DKD. ABCA1 deficiency in podocytes leads to mitochondrial dysfunction observed with alterations of mitochondrial lipids, in particular, cardiolipin (a mitochondrial-specific phospholipid). However, through pharmacological reduction of cardiolipin peroxidation DKD progression is reverted. Lipid metabolism is significantly altered in the diabetic kidney and renders cellular components, such as the podocyte, susceptible to injury leading to worsened DKD progression. Dysfunction of the lipid metabolism pathway can also lead to mitochondrial dysfunction and mitochondrial lipid alteration. Future research aimed at targeting mitochondrial lipids content and function could prove to be beneficial for the treatment of DKD.
Collapse
Affiliation(s)
- G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Mitrofanova A, Sosa MA, Fornoni A. Lipid mediators of insulin signaling in diabetic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1241-F1252. [PMID: 31545927 PMCID: PMC6879940 DOI: 10.1152/ajprenal.00379.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) affects ∼40% of patients with diabetes and is associated with high mortality rates. Among different cellular targets in DKD, podocytes, highly specialized epithelial cells of the glomerular filtration barrier, are injured in the early stages of DKD. Both clinical and experimental data support the role of preserved insulin signaling as a major contributor to podocyte function and survival. However, little is known about the key modulators of podocyte insulin signaling. This review summarizes the novel knowledge that intracellular lipids such as cholesterol and sphingolipids are major determinants of podocyte insulin signaling. In particular, the implications of these lipids on DKD development, progression, and treatment will be addressed.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marie Anne Sosa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
37
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
38
|
Perry HM, Görldt N, Sung SSJ, Huang L, Rudnicka KP, Encarnacion IM, Bajwa A, Tanaka S, Poudel N, Yao J, Rosin DL, Schrader J, Okusa MD. Perivascular CD73 + cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment. Am J Physiol Renal Physiol 2019; 317:F658-F669. [PMID: 31364375 PMCID: PMC6766625 DOI: 10.1152/ajprenal.00243.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-β immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.
Collapse
MESH Headings
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/metabolism
- Actins/metabolism
- Animals
- Cell Proliferation
- Cells, Cultured
- Cellular Microenvironment
- Collagen/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Inflammation Mediators/metabolism
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/immunology
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Pericytes/metabolism
- Pericytes/pathology
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Wound Healing
Collapse
Affiliation(s)
- Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nicole Görldt
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sun-Sang J Sung
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Kinga P Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Iain M Encarnacion
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jürgen Schrader
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
39
|
Black LM, Lever JM, Agarwal A. Renal Inflammation and Fibrosis: A Double-edged Sword. J Histochem Cytochem 2019; 67:663-681. [PMID: 31116067 PMCID: PMC6713973 DOI: 10.1369/0022155419852932] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Renal tissue injury initiates inflammatory and fibrotic processes that occur to promote regeneration and repair. After renal injury, damaged tissue releases cytokines and chemokines, which stimulate activation and infiltration of inflammatory cells to the kidney. Normal tissue repair processes occur simultaneously with activation of myofibroblasts, collagen deposition, and wound healing responses; however, prolonged activation of pro-inflammatory and pro-fibrotic cell types causes excess extracellular matrix deposition. This review focuses on the physiological and pathophysiological roles of specialized cell types, cytokines/chemokines, and growth factors, and their implications in recovery or exacerbation of acute kidney injury.
Collapse
Affiliation(s)
- Laurence M Black
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
- Department of Veterans Affairs, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
40
|
Abstract
The liver is the central organ involved in lipid metabolism and the gastrointestinal (GI) tract is responsible for nutrient absorption and partitioning. Obesity, dyslipidemia and metabolic disorders are of increasing public health concern worldwide, and novel therapeutics that target both the liver and the GI tract (gut-liver axis) are much needed. In addition to aiding fat digestion, bile acids act as important signaling molecules that regulate lipid, glucose and energy metabolism via activating nuclear receptor, G protein-coupled receptors (GPCRs), Takeda G protein receptor 5 (TGR5) and sphingosine-1-phosphate receptor 2 (S1PR2). Sphingosine-1-phosphate (S1P) is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver, inflammatory bowel disease (IBD) and colorectal cancer. In this review, we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.
Collapse
Affiliation(s)
- Eric K. Kwong
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA,Corresponding author. Department of Microbiology and Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, VA, USA. (H. Zhou)
| |
Collapse
|
41
|
The role of sphingolipids in acute kidney injury. Adv Biol Regul 2018; 70:31-39. [PMID: 30455062 DOI: 10.1016/j.jbior.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is most simply defined as the rapid loss of kidney function in a matter of hours to days. AKI can manifest in a number of ways including pre-renal, post-renal, or intrinsic AKI. During acute kidney injury, multiple pathogenic processes are activated including inflammation, cell death, and the generation of reactive oxygen species, just to name a few. Sphingolipids are known to play a role in a number of the pathogenic pathways involved in the pathogenesis of many types of AKI, which suggests a role for sphingolipids in AKI. This short review will discuss the evidence for a role for sphingolipids in AKI.
Collapse
|
42
|
Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, Lynch KR, Kron IL, Sharma AK. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2018; 156:910-917. [PMID: 29609890 PMCID: PMC6056006 DOI: 10.1016/j.jtcvs.2018.02.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate regulates endothelial barrier integrity and promotes cell survival and proliferation. We hypothesized that upregulation of sphingosine-1-phosphate during ex vivo lung perfusion would attenuate acute lung injury and improve graft function. METHODS C57BL/6 mice (n = 4-8/group) were euthanized, followed by 1 hour of warm ischemia and 1 hour of cold preservation in a model of donation after cardiac death. Subsequently, mice underwent 1 hour of ex vivo lung perfusion with 1 of 4 different perfusion solutions: Steen solution (Steen, control arm), Steen with added sphingosine-1-phosphate (Steen + sphingosine-1-phosphate), Steen plus a selective sphingosine kinase 2 inhibitor (Steen + sphingosine kinase inhibitor), or Steen plus both additives (Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor). During ex vivo lung perfusion, lung compliance and pulmonary artery pressure were continuously measured. Pulmonary vascular permeability was assessed with injection of Evans Blue dye. RESULTS The combination of 1 hour of warm ischemia, followed by 1 hour of cold ischemia created significant lung injury compared with lungs that were immediately harvested after circulatory death and put on ex vivo lung perfusion. Addition of sphingosine-1-phosphate or sphingosine kinase inhibitor alone did not significantly improve lung function during ex vivo lung perfusion compared with Steen without additives. However, group Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor resulted in significantly increased compliance (110% ± 13.9% vs 57.7% ± 6.6%, P < .0001) and decreased pulmonary vascular permeability (33.1 ± 11.9 μg/g vs 75.8 ± 11.4 μg/g tissue, P = .04) compared with Steen alone. CONCLUSIONS Targeted drug therapy with a combination of sphingosine-1-phosphate + sphingosine kinase inhibitor during ex vivo lung perfusion improves lung function in a murine donation after cardiac death model. Elevation of circulating sphingosine-1-phosphate via specific pharmacologic modalities during ex vivo lung perfusion may provide endothelial protection in marginal donor lungs leading to successful lung rehabilitation for transplantation.
Collapse
Affiliation(s)
- J Hunter Mehaffey
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Adishesh K Narahari
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Sarah Schubert
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Nicholas R Teman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
43
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|
44
|
Jankowski J, Perry HM, Medina CB, Huang L, Yao J, Bajwa A, Lorenz UM, Rosin DL, Ravichandran KS, Isakson BE, Okusa MD. Epithelial and Endothelial Pannexin1 Channels Mediate AKI. J Am Soc Nephrol 2018; 29:1887-1899. [PMID: 29866797 DOI: 10.1681/asn.2017121306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background Pannexin1 (Panx1), an ATP release channel, is present in most mammalian tissues, but the role of Panx1 in health and disease is not fully understood. Panx1 may serve to modulate AKI; ATP is a precursor to adenosine and may function to block inflammation, or ATP may act as a danger-associated molecular pattern and initiate inflammation.Methods We used pharmacologic and genetic approaches to evaluate the effect of Panx1 on kidney ischemia-reperfusion injury (IRI), a mouse model of AKI.Results Pharmacologic inhibition of gap junctions, including Panx1, by administration of carbenoxolone protected mice from IRI. Furthermore, global deletion of Panx1 preserved kidney function and morphology and diminished the expression of proinflammatory molecules after IRI. Analysis of bone marrow chimeric mice revealed that Panx1 expressed on parenchymal cells is necessary for ischemic injury, and both proximal tubule and vascular endothelial Panx1 tissue-specific knockout mice were protected from IRI. In vitro, Panx1-deficient proximal tubule cells released less and retained more ATP under hypoxic stress.Conclusions Panx1 is involved in regulating ATP release from hypoxic cells, and reducing this ATP release may protect kidneys from AKI.
Collapse
Affiliation(s)
- Jakub Jankowski
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Christopher B Medina
- Pharmacology.,Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Ulrike M Lorenz
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology
| | | | - Kodi S Ravichandran
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Brant E Isakson
- Molecular Physiology and Biological Physics.,Robert M. Berne Cardiovascular Research Center, and
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| |
Collapse
|
45
|
Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 2018; 93:27-40. [PMID: 29291820 DOI: 10.1016/j.kint.2017.07.030] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
The acutely injured mammalian kidney mounts a cellular and molecular response to repair itself. However, in patchy regions such intrinsic processes are impaired and dysregulated leading to chronic kidney disease. Currently, no therapy exists to treat established acute kidney injury per se. Strategies to augment human endogenous repair processes and retard associated profibrotic responses are urgently required. Recent studies have identified injury-induced activation of the intrinsic molecular driver of epithelial regeneration and induction of partial epithelial to the mesenchymal state, respectively. Activation of key developmental transcription factors drive such processes; however, whether these recruit comparable gene regulatory networks with target genes similar to those in nephrogenesis is unclear. Extensive complex molecular cross-talk between the nephron epithelia and immune, interstitial, and endothelial cells regulate renal recovery. In vitro-based M1/M2 macrophage subtypes have been increasingly linked to renal repair; however, the precise contribution of in vivo macrophage plasticity to repair responses is poorly understood. Endothelial cell-pericyte intimacy, balance of the angiocrine/antiangiocrine system, and endothelial cell-regulated inflammatory processes have an impact on renal recovery and fibrosis. Close scrutiny of cellular and molecular pathways in repairing human kidneys is imperative for the identification of promising therapeutic targets and biomarker of human renal repair processes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
46
|
Perry HM, Huang L, Wilson RJ, Bajwa A, Sesaki H, Yan Z, Rosin DL, Kashatus DF, Okusa MD. Dynamin-Related Protein 1 Deficiency Promotes Recovery from AKI. J Am Soc Nephrol 2018; 29:194-206. [PMID: 29084809 PMCID: PMC5748924 DOI: 10.1681/asn.2017060659] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The proximal tubule epithelium relies on mitochondrial function for energy, rendering the kidney highly susceptible to ischemic AKI. Dynamin-related protein 1 (DRP1), a mediator of mitochondrial fission, regulates mitochondrial function; however, the cell-specific and temporal role of DRP1 in AKI in vivo is unknown. Using genetic murine models, we found that proximal tubule-specific deletion of Drp1 prevented the renal ischemia-reperfusion-induced kidney injury, inflammation, and programmed cell death observed in wild-type mice and promoted epithelial recovery, which associated with activation of the renoprotective β-hydroxybutyrate signaling pathway. Loss of DRP1 preserved mitochondrial structure and reduced oxidative stress in injured kidneys. Lastly, proximal tubule deletion of DRP1 after ischemia-reperfusion injury attenuated progressive kidney injury and fibrosis. These results implicate DRP1 and mitochondrial dynamics as an important mediator of AKI and progression to fibrosis and suggest that DRP1 may serve as a therapeutic target for AKI.
Collapse
Affiliation(s)
- Heather M Perry
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Liping Huang
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Rebecca J Wilson
- Department of Medicine, Division of Cardiovascular Medicine and Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, and
| | - Amandeep Bajwa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhen Yan
- Department of Medicine, Division of Cardiovascular Medicine and Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, and
| | | | - David F Kashatus
- Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia; and
| | - Mark D Okusa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine,
| |
Collapse
|
47
|
Okusa MD, Rosin DL, Tracey KJ. Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 2017; 13:669-680. [PMID: 28970585 PMCID: PMC6049817 DOI: 10.1038/nrneph.2017.132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural pathways regulate immunity and inflammation via the inflammatory reflex and specific molecular targets can be modulated by stimulating neurons. Neuroimmunomodulation by nonpharmacological methods is emerging as a novel therapeutic strategy for inflammatory diseases, including kidney diseases and hypertension. Electrical stimulation of vagus neurons or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway (CAP) and protects mice from acute kidney injury (AKI). Direct innervation of the kidney, by afferent and efferent neurons, might have a role in modulating and responding to inflammation in various diseases, either locally or by providing feedback to regions of the central nervous system that are important in the inflammatory reflex pathway. Increased sympathetic drive to the kidney has a role in the pathogenesis of hypertension, and selective modulation of neuroimmune interactions in the kidney could potentially be more effective for lowering blood pressure and treating inflammatory kidney diseases than renal denervation. Use of optogenetic tools for selective stimulation of specific neurons has enabled the identification of neural circuits in the brain that modulate kidney function via activation of the CAP. In this Review we discuss evidence for a role of neural circuits in the control of renal inflammation as well as the therapeutic potential of targeting these circuits in the settings of AKI, kidney fibrosis and hypertension.
Collapse
Affiliation(s)
- Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, PO Box 800133, 1300 Jefferson Park Avenue - West Complex, 5 th floor, Charlottesville, Virginia 22908-0133, USA
| | - Diane L Rosin
- Department of Pharmacology, PO Box 800735, 1304 Jefferson Park Avenue, University of Virginia, Charlottesville, Virginia 22908-0735, USA
| | - Kevin J Tracey
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York 11030, USA
| |
Collapse
|
48
|
Göcze I, Wiesner C, Schlitt HJ, Bergler T. Renal recovery. Best Pract Res Clin Anaesthesiol 2017; 31:403-414. [PMID: 29248146 DOI: 10.1016/j.bpa.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Recovery patterns after acute kidney injury (AKI) have increasingly become the focus of research, because currently available preventive measures and specific therapeutic intervention are limited. Moreover, changes in renal functional reserve are recognized as a "hidden" indicator of kidney susceptibility to either acute kidney injury or chronic kidney disease. Understanding these phenomena and their association with outcome may enable the initiation of strategies that facilitate fast and sustained recovery during the time course of AKI and limit AKI progression towards chronic kidney disease. Different interventions may be required during various phases of AKI continuum. Early recognition and prevention of second hit by kidney stress, treatment of cause and prevention of aggravation in the early phase of AKI and facilitation of recovery in the phase of acute kidney disease may together represent the key aspects of modern AKI management.
Collapse
Affiliation(s)
- Ivan Göcze
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| | - Christina Wiesner
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
49
|
Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettilä V, Prowle JR, Schetz M, Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med 2017; 43:855-866. [PMID: 28466146 PMCID: PMC5487594 DOI: 10.1007/s00134-017-4809-x] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality, chronic kidney disease (CKD) and cardiovascular events. The degree of renal recovery from AKI may substantially affect these long-term endpoints. Therefore maximising recovery of renal function should be the goal of any AKI prevention and treatment strategy. Defining renal recovery is far from straightforward due in part to the limitations of the tests available to assess renal function. Here, we discuss common pitfalls in the evaluation of renal recovery and provide suggestions for improved assessment in the future. We review the epidemiology of renal recovery and of the association between AKI and the development of CKD. Finally, we stress the importance of post-discharge follow-up of AKI patients and make suggestions for its incorporation into clinical practice. Summary key points are that risk factors for non-recovery of AKI are age, CKD, comorbidity, higher severity of AKI and acute disease scores. Second, AKI and CKD are mutually related and seem to have a common denominator. Third, despite its limitations full recovery of AKI may best be defined as the absence of AKI criteria, and partial recovery as a fall in AKI stage. Fourth, after an episode of AKI, serial follow-up measurements of serum creatinine and proteinuria are warranted to diagnose renal impairment and prevent further progression. Measures to promote recovery are similar to those preventing renal harm. Specific interventions promoting repair are still experimental.
Collapse
Affiliation(s)
- L G Forni
- Intensive Care Unit and Surrey Perioperative Anaesthesia and Critical Care Collaborative Research Group, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.,Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - M Darmon
- Medical-Surgical ICU, Hopital Nord, CHU Saint-Etienne, Ave. Albert Raimon, 42270 Saint-Prient-en-Jarez, EA3065, Saint-Etienne, France
| | - M Ostermann
- Department of Critical Care and Nephrology, Guy's and St Thomas' Hospital, London, SE1 9RT, UK
| | - H M Oudemans-van Straaten
- Department of Intensive Care Medicine, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - V Pettilä
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J R Prowle
- William Harvey Research Institute, Queen Mary University of London and Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London, E1 1BB, UK
| | - M Schetz
- Division of Cellular and Molecular Medicine, Clinical Department and Laboratory of Intensive Care Medicine, KU Leuven University, Herestraat 49, 3000, Louvain, Belgium
| | - M Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
50
|
Wu B, Sun J, Liu S, Yu X, Zhu Y, Mao H, Xing C. Relationship among Mortality of Patients with Acute Kidney Injury after Cardiac Surgery, Fluid Balance and Ultrafiltration of Renal Replacement Therapy: An Observational Study. Blood Purif 2017; 44:32-39. [DOI: 10.1159/000455063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
Background/Aims: The study aimed to investigate the relationship among mortality of patients with cardiac surgery-associated acute kidney injury (CSA-AKI), fluid balance, and ultrafiltration of renal replacement therapy (RRT). Methods: From January 2009 to October 2015, hospitalized patients with CSA-AKI receiving continuous or prolonged intermittent RRT were screened. The effects of fluid balance and ultrafiltration of RRT on clinical outcome were analyzed. Results: The 30-day mortality of all the 63 patients in the study was 58.6%. Compared with the death group, the survival group had a significantly lower fluid balance, larger ultrafiltration volume, and similar ultrafiltration rate during the first 3 days of RRT. Multivariate Cox regression analysis revealed that positive fluid balance during the first day of RRT, cardiac function of grade IV, and higher Sequential Organ Failure Assessment score were independent risk factors of 30-day mortality. Conclusion: Fluid balance was more relevant to short-term prognosis of CSA-AKI-RRT patients than ultrafiltration volume or ultrafiltration rate.
Collapse
|