1
|
Qu H, Zhang S, Li X, Miao Y, Han Y, Ju R, Cui X, Li Y. A deep learning model based on self-supervised learning for identifying subtypes of proliferative hepatocellular carcinoma from dynamic contrast-enhanced MRI. Insights Imaging 2025; 16:89. [PMID: 40244356 PMCID: PMC12006648 DOI: 10.1186/s13244-025-01968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVES This study employs dynamic contrast-enhanced MRI (DCE-MRI) to noninvasively predict the proliferative subtype of hepatocellular carcinoma (HCC). This subtype is marked by high tumor proliferation and aggressive clinical behavior. We developed a deep learning prediction model that employs a dynamic radiomics workflow and self-supervised learning (SSL). The model analyzes temporal and spatial patterns in DCE-MRI data to identify the proliferative subtype efficiently and accurately. Our goal is to improve diagnostic precision and guide personalized treatment planning. METHODS This retrospective study included 381 HCC patiephonnts who underwent curative resection at two medical centers. The cohort was divided into the training (n = 220), internal (n = 93), and external (n = 68) test sets. A DL model was developed using DCE-MRI of the primary tumor. Class activation mapping was used to interpret HCC proliferation in HCC. RESULTS The pHCC-SSL model performed well in predicting HCC proliferation, with a training set AUC) of 1.00, an internal test set AUC of 0.91, and an external test set AUC of 0.94. Without SSL pre-training, the AUC for internal and external testing decreased to 0.81 and 0.80, respectively. The predictive performance of the derived model was superior to that of the current single-sequence model. CONCLUSIONS The pHCC-SSL model employs dynamic radiomics and a two-stage training approach to efficiently predict HCC proliferation from multi-sequence DCE-MRI, surpassing traditional single-stage models in accuracy and speed. CRITICAL RELEVANCE STATEMENT Our study introduces the pHCC-SSL model, a self-supervised deep learning approach using DCE-MRI that enhances the diagnostic accuracy of HCC subtypes, significantly advancing clinical radiology by enabling personalized treatment strategies. KEY POINTS The proposed model enables noninvasive identification of HCC with high proliferation and aggressive behavior. SSL improves lesion differentiation by reducing redundancy and enhancing feature diversity. Dynamic feature extraction captures vascular infiltration, aiding preoperative metastasis risk assessment.
Collapse
Affiliation(s)
- Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, PR China
| | - Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Xuedan Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, PR China
| | - Yuxi Han
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Ronghui Ju
- Department of Radiology, The People's Hospital of Liaoning Province, Shenyang, PR China.
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, PR China.
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
2
|
Szeto W, Mannan R. Other Primary Epithelial Neoplasms of the Liver. Adv Anat Pathol 2025:00125480-990000000-00146. [PMID: 40202295 DOI: 10.1097/pap.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Primary liver carcinoma (PLC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related mortalities. Hepatocellular carcinoma (HCC) is the most prevalent form of PLC, followed by intrahepatic cholangiocarcinoma (iCCA). In addition, there is a group of rarer PLCs that do not fit neatly into the HCC or iCCA categories. This review explores this heterogeneous group, including combined hepatocellular-cholangiocarcinoma (cHCC-CCA), intermediate cell carcinoma (ICC), mixed hepatocellular-neuroendocrine carcinoma, and undifferentiated primary liver carcinoma. cHCC-CCA is a rare subtype of PLC, characterized by both hepatocytic and cholangiocytic differentiation within the same tumor. The latest WHO classification (2019, fifth edition) redefined cHCC-CCA by eliminating the "stem cell subtypes" and emphasized that diagnosis should primarily rely on morphologic features, supported by immunohistochemical staining to better define subtypes. Intermediate cell carcinoma is a subtype of cHCC-CCA and is comprised of monomorphic tumor cells that exhibit characteristics intermediate between hepatocytes and cholangiocytes, with immunohistochemical expression of hepatocytic and cholangiocytic markers within the same cell. Another rare entity, combined HCC and neuroendocrine carcinoma (NEC), contains an admixture of HCC and NEC components within the same tumor. Undifferentiated primary liver carcinoma, on the other hand, lacks definitive lineage differentiation beyond an epithelial phenotype. These heterogeneous PLCs pose diagnostic challenges owing to their mixed/unusual histologic features and overlapping immunohistochemical markers. They tend to have poor prognoses, highlighting the critical importance of accurate and timely diagnosis.
Collapse
Affiliation(s)
- Wai Szeto
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | | |
Collapse
|
3
|
Tsuzaki J, Ueno A, Masugi Y, Tamura M, Yamazaki S, Matsuda K, Kurebayashi Y, Sakai H, Yokoyama Y, Abe Y, Hayashi K, Hasegawa Y, Yagi H, Kitago M, Jinzaki M, Sakamoto M. Chronological changes in etiology, pathological and imaging findings in primary liver cancer from 2001 to 2020. Jpn J Clin Oncol 2025; 55:362-371. [PMID: 39775861 PMCID: PMC11973632 DOI: 10.1093/jjco/hyae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE To achieve a historical perspective, the chronological changes in primary liver cancer over a 20-year period were investigated at a single institution, focusing on shifts in etiology and the impact on imaging and pathological findings using The Liver Imaging Reporting and Data System. MATERIALS AND METHODS A retrospective study of surgically resected primary liver cancer in 680 patients from 2001 to 2020 resulted in 434 patients with 482 nodules being analyzed. Dynamic contrast-enhanced computed tomography imaging and the Liver Imaging Reporting and Data System 2018 classification were employed. Two pathologists and two radiologists independently evaluated specimens and images. RESULTS This study highlighted a significant decline in cases of viral hepatitis and cirrhosis in primary liver cancer patients but an increase in intrahepatic cholangiocarcinoma and scirrhous hepatocellular carcinoma. Notably, there was a rise in non-viral hepatitis cases, potentially pointing toward an increase in steatohepatitic hepatocellular carcinoma cases in the future. Intrahepatic cholangiocarcinoma, scirrhous hepatocellular carcinoma and steatohepatitic hepatocellular carcinoma tumors exhibited slightly different distributions in the Liver Imaging Reporting and Data System classification compared with ordinary hepatocellular carcinoma, which may reflect the presence of fibrosis and lipid in tumor parenchyma. CONCLUSIONS Consistent with past reports, this study demonstrated the emergence of primary liver cancer against a backdrop of non-viral and non-cirrhotic liver. Liver Imaging Reporting and Data System has been consistently useful in diagnosing primary liver cancer; however, among the histological subtypes of hepatocellular carcinoma, an increase is anticipated in scirrhous hepatocellular carcinoma and steatohepatitic hepatocellular carcinoma, which may present imaging findings different from those of ordinary hepatocellular carcinoma. This development may necessitate a reevaluation of the current approach for diagnosing and treating hepatocellular carcinoma based solely on imaging.
Collapse
Affiliation(s)
- Junya Tsuzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Pathology, Tokai University, School of Medicine, Kanagawa, Japan
| | - Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Seiichiro Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Matsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroto Sakai
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koki Hayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
4
|
Saler CHA, Shuai S, Beckervordersandforth JC, Rennspiess D, Roemen G, Gevers T, Stoehr‐Kleinegris MCF, Bouwense SAW, Dewulf MJL, Coolsen MME, Bemelmans MHA, Damink SWO, Winnepenninckx V, zur Hausen A, Kramer M, Samarska IV. Clinicopathological Study on Morphological Subtypes of Hepatocellular Carcinoma: A Single Tertiary Referral Center Experience. Cancer Rep (Hoboken) 2025; 8:e70127. [PMID: 39953652 PMCID: PMC11828739 DOI: 10.1002/cnr2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
AIM We aimed to analyze hepatocellular carcinoma (HCC) morphological subtypes characterized according to the WHO classification and the International Collaboration on Cancer Reporting (ICCR) recommendations, and their prognostic features in a Dutch population. METHODS AND RESULTS This retrospective study in a tertiary referral center included the histopathological revision of 62 HCC resection specimens, obtained from 22 female and 40 male patients (median age: 67 years), in a period between 2011 and 2021 at the Maastricht University Medical Center +. Clinical data, morphological subtypes, growth pattern (GP), tumor grade, tumor extension, margins, and vascular and perineural invasion were collected. Eighteen cases were assigned a specific morphologic subtype and steatohepatic HCC was the most common in our cohort. Twenty-one tumors classified as conventional type HCC (HCC-NOS), commonly exhibiting two concurrent GPs. Twenty-three cases revealed a heterogeneous morphologic differentiation, compromising the combination of HCC-NOS with another morphologic subtype, most frequently a steatohepatitic component. Comparison of HCC-NOS and HCC with heterogeneous morphology did not show significant differences in the main clinicopathological characteristics and survival. CONCLUSION Although the most common morphologic subtype was steatohepatitic HCC, the majority of cases demonstrated multiple morphologic patterns. In case of HCC-NOS, heterogeneous GPs were often observed. Therefore, a histomorphological diagnosis based on a single tumor biopsy specimen may lead to incorrect classification of HCC. Sufficient tumor sampling of HCC resection specimens is required for the complete evaluation of all histomorphological features followed by correct subclassification in order to meet the clinical needs regarding prognostic relevance and patient follow-up.
Collapse
Affiliation(s)
- C. H. A. Saler
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - S. Shuai
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - J. C. Beckervordersandforth
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - D. Rennspiess
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - G. Roemen
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - T. Gevers
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - M. C. F. Stoehr‐Kleinegris
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - S. A. W. Bouwense
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. J. L. Dewulf
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. M. E. Coolsen
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. H. A. Bemelmans
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - S. W. Olde Damink
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - V. Winnepenninckx
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - A. zur Hausen
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - M. Kramer
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - I. V. Samarska
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| |
Collapse
|
5
|
Yan Z, Liu Z, Zhu G, Lu M, Zhang J, Liu M, Jiang J, Gu C, Wu X, Zhang T, Zhang X. Gadoxetic Acid-Enhanced MRI-Based Radiomic Models for Preoperative Risk Prediction and Prognostic Assessment of Proliferative Hepatocellular Carcinoma. Acad Radiol 2025; 32:157-169. [PMID: 39181825 DOI: 10.1016/j.acra.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE AND OBJECTIVES Proliferative hepatocellular carcinoma (HCC) is associated with high invasiveness and poor prognosis. This study aimed to investigate the preoperative risk prediction and prognostic value of different radiomics models and a nomogram for proliferative HCC. MATERIALS AND METHODS Patients were randomly divided into a training cohort (n = 156) and a validation cohort (n = 66) in a 7:3 ratio. Original and delta (the different value between imaging features extracted from two different phases) radiomics features were extracted from T1-weighted imaging (T1WI), arterial, and hepatobiliary phases to construct models using different machine learning algorithms. Logistic regression was used to select clinical independent risk factors. A nomogram was constructed by integrating the optimal radiomics model score with independent risk factors. The diagnostic efficacy and clinical utility of the models were assessed. Subsequently, patients were stratified into high-risk and low-risk subgroups based on radiomics model scores and nomogram scores, and both recurrence-free survival (RFS) and overall survival (OS) were evaluated. RESULTS Multivariate logistic regression analysis showed that BCLC stage and combined radscore were independent predictors of proliferative HCC. The area under the curve (AUC) of the nomogram incorporating these factors was 0.838 and 0.801 in the training and validation cohorts, respectively, with good predictive performance. Multivariate Cox regression analysis shows that the delta radiomics model (DR)-predicted proliferative HCC can independently predict RFS and OS, with scores from the delta radiomics model performing best in prognostic risk stratification. CONCLUSION The nomogram can effectively predict proliferative HCC, while different radiomics models and the nomogram can offer varying prognostic stratification values.
Collapse
Affiliation(s)
- Zuyi Yan
- Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L.); Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Zixin Liu
- Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L.); Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Guodong Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (G.Z.)
| | - Mengtian Lu
- Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L.); Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Jiyun Zhang
- Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Maotong Liu
- Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Jifeng Jiang
- Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (C.G.)
| | - Xiaomeng Wu
- Clinical Science, Philips Healthcare, Shanghai 200000, China (X.W.)
| | - Tao Zhang
- Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.)
| | - Xueqin Zhang
- Department of Radiology, Nantong Third People's Hospital, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.); Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China (Z.Y., Z.L., M.L., J.Z., M.L., J.J., T.Z., X.Z.).
| |
Collapse
|
6
|
Lu M, Yan Z, Qu Q, Zhu G, Xu L, Liu M, Jiang J, Gu C, Chen Y, Zhang T, Zhang X. Diagnostic Model for Proliferative HCC Using LI-RADS: Assessing Therapeutic Outcomes in Hepatectomy and TKI-ICI Combination. J Magn Reson Imaging 2025; 61:134-147. [PMID: 38647041 DOI: 10.1002/jmri.29400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Proliferative hepatocellular carcinoma (HCC), aggressive with poor prognosis, and lacks reliable MRI diagnosis. PURPOSE To develop a diagnostic model for proliferative HCC using liver imaging reporting and data system (LI-RADS) and assess its prognostic value. STUDY TYPE Retrospective. POPULATION 241 HCC patients underwent hepatectomy (90 proliferative HCCs: 151 nonproliferative HCCs), divided into the training (N = 167) and validation (N = 74) sets. 57 HCC patients received combination therapy with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). FIELD STRENGTH/SEQUENCE 3.0 T, T1- and T2-weighted, diffusion-weighted, in- and out-phase, T1 high resolution isotropic volume excitation and dynamic gadoxetic acid-enhanced imaging. ASSESSMENT LI-RADS v2018 and other MRI features (intratumoral artery, substantial hypoenhancing component, hepatobiliary phase peritumoral hypointensity, and irregular tumor margin) were assessed. A diagnostic model for proliferative HCC was established, stratifying patients into high- and low-risk groups. Follow-up occurred every 3-6 months, and recurrence-free survival (RFS), progression-free survival (PFS) and overall survival (OS) in different groups were compared. STATISTICAL TESTS Fisher's test or chi-square test, t-test or Mann-Whitney test, logistic regression, Harrell's concordance index (C-index), Kaplan-Meier curves, and Cox proportional hazards. Significance level: P < 0.05. RESULTS The diagnostic model, incorporating corona enhancement, rim arterial phase hyperenhancement, infiltrative appearance, intratumoral artery, and substantial hypoenhancing component, achieved a C-index of 0.823 (training set) and 0.804 (validation set). Median follow-up was 32.5 months (interquartile range [IQR], 25.1 months) for postsurgery patients, and 16.8 months (IQR: 13.2 months) for combination-treated patients. 99 patients experienced recurrence, and 30 demonstrated tumor nonresponse. Differences were significant in RFS and OS rates between high-risk and low-risk groups post-surgery (40.3% vs. 65.8%, 62.3% vs. 90.1%, at 5 years). In combination-treated patients, PFS rates differed significantly (80.6% vs. 7.7% at 2 years). DATA CONCLUSION The MR-based model could pre-treatment identify proliferative HCC and assist in prognosis evaluation. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Mengtian Lu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Zuyi Yan
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Qi Qu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Guodong Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Elkhadragy L, Carlino MJ, Jordan LR, Pennix T, Ismail N, Guzman G, Samuelson JP, Schook LB, Schachtschneider KM, Gaba RC. Development of a genetically tailored implantation hepatocellular carcinoma model in Oncopigs by somatic cell CRISPR editing. Dis Model Mech 2025; 18:dmm052079. [PMID: 39780710 PMCID: PMC11810043 DOI: 10.1242/dmm.052079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large-animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large-animal HCC model with tailored tumor mutations. The Oncopig, a genetically engineered pig with inducible TP53R167H and KRASG12D, was used in the study. Hepatocytes were isolated from Oncopigs and exposed to Cre recombinase in vitro to create HCC cells, and additional mutations were introduced by CRISPR/Cas9 knockout of PTEN and CDKN2A. These edits increased Oncopig HCC cell proliferation and migration. Autologous HCC cells with these CRISPR edits were implanted into Oncopigs using two approaches: ultrasound-guided percutaneous liver injections, which resulted in the development of localized intrahepatic masses, and portal vein injections, which led to multifocal tumors that regressed over time. Tumors developed by both approaches harbored PTEN and CDKN2A knockout mutations. This study demonstrates the feasibility of developing genetically tailored HCC tumors in Oncopigs using somatic cell CRISPR editing and autologous implantation, providing a valuable large-animal model for in vivo therapeutic assessment.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Luke R. Jordan
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Thomas Pennix
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jonathan P. Samuelson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61802, USA
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | | | - Ron C. Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Zheng W, Chen X, Xiong M, Zhang Y, Song Y, Cao D. Clinical-Radiologic Morphology-Radiomics Model on Gadobenate Dimeglumine-Enhanced MRI for Identification of Highly Aggressive Hepatocellular Carcinoma: Temporal Validation and Multiscanner Validation. J Magn Reson Imaging 2024; 60:2643-2654. [PMID: 38375988 DOI: 10.1002/jmri.29293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Highly aggressive hepatocellular carcinoma (HCC) is characterized by high tumor recurrence and poor outcomes, but its definition and imaging characteristics have not been clearly described. PURPOSE To develop and validate a fusion model on gadobenate dimeglumine-enhanced MRI for identifying highly aggressive HCC. STUDY TYPE Retrospective. POPULATION 341 patients (M/F = 294/47) with surgically resected HCC, divided into a training cohort (n = 177), temporal validation cohort (n = 77), and multiscanner validation cohort (n = 87). FIELD STRENGTH/SEQUENCE 3T, dynamic contrast-enhanced MRI with T1-weighted volumetric interpolated breath-hold examination gradient-echo sequences, especially arterial phase (AP) and hepatobiliary phase (HBP, 80-100 min). ASSESSMENT Clinical factors and diagnosis assessment based on radiologic morphology characteristics associated with highly aggressive HCCs were evaluated. The radiomics signatures were extracted from AP and HBP. Multivariable logistic regression was performed to construct clinical-radiologic morphology (CR) model and clinical-radiologic morphology-radiomics (CRR) model. A nomogram based on the optimal model was established. Early recurrence-free survival (RFS) was evaluated in actual groups and risk groups calculated by the nomogram. STATISTICAL TESTS The performance was evaluated by receiver operating characteristic curve (ROC) analysis, calibration curves analysis, and decision curves. Early RFS was evaluated by using Kaplan-Meier analysis. A P value <0.05 was considered statistically significant. RESULTS The CRR model incorporating corona enhancement, cloud-like hyperintensity on HBP, and radiomics signatures showed the highest diagnostic performance. The area under the curves (AUCs) of CRR were significantly higher than those of the CR model (AUC = 0.883 vs. 0.815, respectively, for the training cohort), 0.874 vs. 0.769 for temporal validation, and 0.892 vs. 0.792 for multiscanner validation. In both actual and risk groups, highly and low aggressive HCCs showed statistically significant differences in early recurrence. DATA CONCLUSION The clinical-radiologic morphology-radiomics model on gadobenate dimeglumine-enhanced MRI has potential to identify highly aggressive HCCs and non-invasively obtain prognostic information. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Meilian Xiong
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Eftimie Spitz R, Manole S, Surdea-Blaga T, Caraiani C, Burz C. Macrotrabecular-Massive Hepatocellular Carcinoma: A Case Report. Cureus 2024; 16:e75989. [PMID: 39835031 PMCID: PMC11743052 DOI: 10.7759/cureus.75989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is a rare and aggressive molecular subtype of hepatocellular carcinoma (HCC) associated with a poor prognosis. Unlike typical HCC, which commonly arises in the context of cirrhosis, MTM-HCC can develop in non-cirrhotic livers, presenting unique diagnostic and therapeutic challenges. This case report describes a 35-year-old male who presented with persistent epigastric pain, fatigue, and loss of appetite. Clinical examination revealed hepatomegaly, prompting advanced imaging and laboratory investigations. Imaging studies identified a large hepatic mass with portal vein thrombosis and metastatic lesions, while histopathological analysis confirmed the diagnosis of MTM-HCC. The patient initiated treatment with a combination of immune checkpoint inhibitors and anti-angiogenic agents, which represent the current standard for advanced HCC. Despite initial adherence, disease progression was observed after four cycles of therapy. The patient passed away less than two months after his last consultation. This clinical course highlights the aggressive nature of MTM-HCC and its limited responsiveness to existing therapeutic protocols. MTM-HCC is characterized by distinctive histological and molecular features that differentiate it from other HCC subtypes. These include specific genetic mutations and protein expression patterns that contribute to its aggressive behavior and poor prognosis. Advanced imaging modalities combined with histopathological analysis remain crucial for accurate diagnosis and classification. This case emphasizes the critical need for heightened clinical vigilance, particularly in younger patients with atypical presentations of liver disease. It also underscores the importance of developing more effective, tailored therapeutic strategies for MTM-HCC. Further research into its molecular characteristics and inclusion in clinical trials is essential to improving outcomes for patients with this challenging and understudied subtype of liver cancer.
Collapse
Affiliation(s)
- Raphaël Eftimie Spitz
- Department of Clinical Immunology and Allergology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj, Cluj-Napoca, ROU
| | - Simona Manole
- Department of Radiology and Imaging, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj, Cluj-Napoca, ROU
| | - Teodora Surdea-Blaga
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj, Cluj-Napoca, ROU
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj, Cluj-Napoca, ROU
| | - Claudia Burz
- Department of Clinical Immunology and Allergology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj, Cluj-Napoca, ROU
- Department of Medical Oncology, Oncology Institute "Prof. Dr. Ion Chiricuţă" Cluj-Napoca, Cluj-Napoca, ROU
| |
Collapse
|
10
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
11
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
12
|
Wang G, Ding F, Chen K, Liang Z, Han P, Wang L, Cui F, Zhu Q, Cheng Z, Chen X, Huang C, Cheng H, Wang X, Zhao X. CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment. J Transl Med 2024; 22:683. [PMID: 39218938 PMCID: PMC11367757 DOI: 10.1186/s12967-024-05393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Proliferative hepatocellular carcinomas (HCCs) is a class of aggressive tumors with poor prognosis. We aimed to construct a computed tomography (CT)-based radiomics nomogram to predict proliferative HCC, stratify clinical outcomes and explore the tumor microenvironment. METHODS Patients with pathologically diagnosed HCC following a hepatectomy were retrospectively collected from two medical centers. A CT-based radiomics nomogram incorporating radiomics model and clinicoradiological features to predict proliferative HCC was constructed using the training cohort (n = 184), and validated using an internal test cohort (n = 80) and an external test cohort (n = 89). The predictive performance of the nomogram for clinical outcomes was evaluated for HCC patients who underwent surgery (n = 201) or received transarterial chemoembolization (TACE, n = 104). RNA sequencing data and histological tissue slides from The Cancer Imaging Archive database were used to perform transcriptomics and pathomics analysis. RESULTS The areas under the receiver operating characteristic curve of the radiomics nomogram to predict proliferative HCC were 0.84, 0.87, and 0.85 in the training, internal test, and external test cohorts, respectively. The radiomics nomogram could stratify early recurrence-free survivals in the surgery outcome cohort (hazard ratio [HR] = 2.25; P < 0.001) and progression-free survivals in the TACE outcome cohort (HR = 2.21; P = 0.03). Transcriptomics and pathomics analysis indicated that the radiomics nomogram was associated with carbon metabolism, immune cells infiltration, TP53 mutation, and heterogeneity of tumor cells. CONCLUSION The CT-based radiomics nomogram could predict proliferative HCC, stratify clinical outcomes, and measure a pro-tumor microenvironment.
Collapse
Affiliation(s)
- Gongzheng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Feier Ding
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Kaige Chen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Pengxi Han
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Linxiang Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Fengyun Cui
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, People's Republic of China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, 100080, People's Republic of China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
13
|
Oh JH, Sinn DH. Exploring the role of liver resection as a first-line treatment option for multinodular BCLC-A hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2024; 24:126-128. [PMID: 39188209 PMCID: PMC11449570 DOI: 10.17998/jlc.2024.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Joo Hyun Oh
- Division of Gastroenterology, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
15
|
Yalcin S, Lacin S, Kaseb AO, Peynircioğlu B, Cantasdemir M, Çil BE, Hurmuz P, Doğrul AB, Bozkurt MF, Abali H, Akhan O, Şimşek H, Sahin B, Aykan FN, Yücel İ, Tellioğlu G, Selçukbiricik F, Philip PA. A Post-International Gastrointestinal Cancers' Conference (IGICC) Position Statements. J Hepatocell Carcinoma 2024; 11:953-974. [PMID: 38832120 PMCID: PMC11144653 DOI: 10.2147/jhc.s449540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent liver tumor, is usually linked with chronic liver diseases, particularly cirrhosis. As per the 2020 statistics, this cancer ranks 6th in the list of most common cancers worldwide and is the third primary source of cancer-related deaths. Asia holds the record for the highest occurrence of HCC. HCC is found three times more frequently in men than in women. The primary risk factors for HCC include chronic viral infections, excessive alcohol intake, steatotic liver disease conditions, as well as genetic and family predispositions. Roughly 40-50% of patients are identified in the late stages of the disease. Recently, there have been significant advancements in the treatment methods for advanced HCC. The selection of treatment for HCC hinges on the stage of the disease and the patient's medical status. Factors such as pre-existing liver conditions, etiology, portal hypertension, and portal vein thrombosis need critical evaluation, monitoring, and appropriate treatment. Depending on the patient and the characteristics of the disease, liver resection, ablation, or transplantation may be deemed potentially curative. For inoperable lesions, arterially directed therapy might be an option, or systemic treatment might be deemed more suitable. In specific cases, the recommendation might extend to external beam radiation therapy. For all individuals, a comprehensive, multidisciplinary approach should be adopted when considering HCC treatment options. The main treatment strategies for advanced HCC patients are typically combination treatments such as immunotherapy and anti-VEGFR inhibitor, or a combination of immunotherapy and immunotherapy where appropriate, as a first-line treatment. Furthermore, some TKIs and immune checkpoint inhibitors may be used as single agents in cases where patients are not fit for the combination therapies. As second-line treatments, some treatment agents have been reported and can be considered.
Collapse
Affiliation(s)
- Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sahin Lacin
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Peynircioğlu
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Barbaros Erhan Çil
- Department of Radiology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Bülent Doğrul
- Department of General Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Fani Bozkurt
- Department of Nuclear Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hüseyin Abali
- Department of Medical Oncology, Bahrain Oncology Center, Muharraq, Bahrain
| | - Okan Akhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Halis Şimşek
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Berksoy Sahin
- Department of Medical Oncology, Cukurova University Faculty of Medicine, Adana, Türkiye
| | - Faruk N Aykan
- Department of Medical Oncology, Istinye University Faculty of Medicine Bahçeşehir Liv Hospital, İstanbul, Turkey
| | - İdris Yücel
- Medicana International Hospital Samsun, Department of Medical Oncology, Samsun, Turkey
| | - Gürkan Tellioğlu
- Department of General Surgery, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Fatih Selçukbiricik
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Philip A Philip
- Department of Medicine, Division of Hematology-Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Heo S, Kang HJ, Choi SH, Kim S, Yoo Y, Choi WM, Kim SY, Lee SS. Proliferative hepatocellular carcinomas in cirrhosis: patient outcomes of LI-RADS category 4/5 and category M. Eur Radiol 2024; 34:2974-2985. [PMID: 37848775 DOI: 10.1007/s00330-023-10305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES We aimed to compare Liver Imaging Reporting and Data System (LI-RADS) category 4/5 and category M (LR-M) of proliferative hepatocellular carcinomas (HCCs) in cirrhotic patients and evaluate their impacts on prognosis. METHODS This retrospective multi-reader study included cirrhotic patients with single treatment-naïve HCC ≤ 5.0 cm who underwent contrast-enhanced CT, MRI, and subsequent hepatic resection within 2 months. The percentages of CT/MRI LR-4/5 and LR-M in proliferative and non-proliferative HCCs were compared. Univariable and multivariable Cox proportional hazards regression analyses were performed to assess the association of LI-RADS categories (LR-4/5 vs. LR-M) and pathologic classification (proliferative vs. non-proliferative) with overall survival (OS) and recurrence-free survival (RFS). Subgroups of patients with proliferative and non-proliferative HCCs were analyzed to compare OS and RFS between LR-4/5 and LR-M. RESULTS Of the 204 included patients, 38 were classified as having proliferative HCC. The percentages of LR-M were higher in proliferative than non-proliferative HCC on both CT (15.8% vs. 3.0%, p = 0.007) and MRI (26.3% vs. 9.6%, p = 0.016). Independent of pathologic classification, CT and MRI LR-M were significantly associated with poorer OS (hazard ratio (HR) = 4.58, p = 0.013, and HR = 6.45, p < 0.001) and RFS (HR = 3.66, p = 0.005, and HR = 6.44, p < 0.001) than LR-4/5. MRI LR-M was associated with significantly poorer OS (p ≤ 0.003) and RFS (p < 0.001) than MRI LR-4/5 in both proliferative and non-proliferative HCCs. CONCLUSIONS This multi-reader study showed that the percentages of LR-M were significantly higher in proliferative than non-proliferative HCCs. CT/MRI LR-M was significantly associated with poor OS and RFS, independent of the pathologic classification of proliferative versus non-proliferative HCCs. CLINICAL RELEVANCE STATEMENT CT and MRI LI-RADS category M can be clinically useful in predicting poor outcomes in patients with proliferative and non-proliferative hepatocellular carcinomas. KEY POINTS • The percentages of LR-M tumors on both CT and MRI were significantly higher in proliferative than non-proliferative hepatocellular carcinomas. • Independent of pathologic classification, CT/MRI LR-M categories were correlated with poor overall survival and recurrence-free survival. • Patients with both proliferative and non-proliferative hepatocellular carcinomas categorized as MRI LR-M had significantly poorer overall survival and recurrence-free survival than those categorized as MRI LR-4/5.
Collapse
Affiliation(s)
- Subin Heo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Hyo Jeong Kang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Youngeun Yoo
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Won-Mook Choi
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
17
|
Ahn B, Ahn HS, Shin J, Jun E, Koh EY, Ryu YM, Kim SY, Sung CO, Shim JH, Hong J, Kim K, Kang HJ. Characterization of lymphocyte-rich hepatocellular carcinoma and the prognostic role of tertiary lymphoid structures. Liver Int 2024; 44:1202-1218. [PMID: 38363048 DOI: 10.1111/liv.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND & AIMS Lymphocyte-rich hepatocellular carcinoma (LR-HCC) is largely unknown and a rare subtype of HCC with immune-rich stroma. Tertiary lymphoid structures (TLS), frequently observed in LR-HCC, are known to be prognostically significant in various malignancies; however, their significance in HCC remains unevaluated. METHODS Clinicopathologic data of 191 cases of surgically resected conventional HCC (C-HCC, n = 160) and LR-HCC (n = 31) were retrieved. Immunohistochemistry, multiplex immunofluorescence staining, RNA sequencing and proteomic analysis were conducted. Differences between the subtypes were statistically evaluated. RESULTS LR-HCC was significantly correlated to larger tumour size, higher Edmondson-Steiner grade, presence of TLS and higher CD3-, CD8- and FOXP3-positive T cell, high PD-1 and PD-L1 expression (p < .001 for all) compared to C-HCC. Patients with LR-HCC exhibited significantly better overall survival (OS) (p = .044) and recurrence-free survival (RFS) (p = .025) than C-HCC. LR-HCC demonstrated TLS signatures with significantly higher proteomic-based immune scores in 14 of 17 types of tumour-infiltrating immune cells. Furthermore, C-HCC with secondary follicles, the most mature form of TLS, exhibited significantly better OS (p = .031) and RFS (p = .033) than those without. Across the global proteome, LR-HCC was well-differentiated from C-HCC and a map of protein-protein interactions between tumour-infiltrating lymphocytes and HCC in tumour microenvironment was completed. CONCLUSION LR-HCC is clinicopathologically and molecularly distinct and shows better prognosis compared to C-HCC. Also, the presence of secondary follicle can be an important prognostic marker for better prognosis in both LR-HCC and C-HCC.
Collapse
Affiliation(s)
- Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jinho Shin
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eunsung Jun
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Young Koh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - JeongYeon Hong
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Department of Digital Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Department of Digital Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Ye J, Huang P, Ma K, Zhao Z, Hua T, Zai W, Chen J, Fu X. Genome-Wide Extrachromosomal Circular DNA Profiling of Paired Hepatocellular Carcinoma and Adjacent Liver Tissues. Cancers (Basel) 2023; 15:5309. [PMID: 38001569 PMCID: PMC10670553 DOI: 10.3390/cancers15225309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) develops through multiple mechanisms. While recent studies have shown the presence of extrachromosomal circular DNA (eccDNA) in most cancer types, the eccDNA expression pattern and its association with HCC remain obscure. We aimed to investigate this problem. The genome-wide eccDNA profiles of eight paired HCC and adjacent non-tumor tissue samples were comprehensively elucidated based on Circle-seq, and they were further cross-analyzed with the RNA sequencing data to determine the association between eccDNA expression and transcriptome dysregulation. A total of 60,423 unique eccDNA types were identified. Most of the detected eccDNAs were smaller than 1 kb, with a length up to 182,363 bp and a mean sizes of 674 bp (non-tumor) and 813 bp (tumor), showing a greater association with gene-rich rather than with gene-poor regions. Although there was no statistical difference in length and chromosome distribution, the eccDNA patterns between HCC and adjacent non-tumor tissues showed significant differences at both the chromosomal and single gene levels. Five of the eight HCC tissues showed significantly higher amounts of chromosome 22-derived eccDNA expression compared to the non-tumor tissue. Furthermore, two genes, SLC16A3 and BAIAP2L2, with a higher transcription level in tumor tissues, were related to eccDNAs exclusively detected in three HCC samples and were negatively associated with survival rates in HCC cohorts from public databases. These results indicate the existence and massive heterogeneity of eccDNAs in HCC and adjacent liver tissues, and suggest their potential association with dysregulated gene expression.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Peixin Huang
- Liver Cancer Institute, Fudan University, Shanghai 200032, China;
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kewei Ma
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Zixin Zhao
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China; (J.Y.); (K.M.); (Z.Z.); (T.H.); (W.Z.)
| | - Xiutao Fu
- Liver Cancer Institute, Fudan University, Shanghai 200032, China;
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Shanghai 200032, China
| |
Collapse
|
19
|
Wang PY, Kuo YH, Sheu MJ, Kuo HT, Lee WY, Kuo YT, Wang SH. Lymphocyte-Rich Hepatocellular Carcinoma with Multiple Lymphadenopathy and Positive Epstein-Barr Virus Encoding Region. Case Reports Hepatol 2023; 2023:4797233. [PMID: 37583793 PMCID: PMC10425252 DOI: 10.1155/2023/4797233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Lymphocyte-rich hepatocellular carcinoma (HCC) represents the rarest subtype among the various subgroups of HCC, and limited clinical data are available for this particular subtype. It is commonly observed as a solitary lesion and tends to present at an early stage. Histopathological examination typically reveals tumor cells infiltrated by a lymphocyte-rich background, leading to its designation as lymphoepithelioma-like HCC. Unlike other lymphoepithelioma-like tumors associated with the Epstein-Barr virus (EBV), lymphocyte-rich HCC is predominantly negative for EBV. This subtype is characterized by more favorable clinical outcomes and prognosis compared to conventional HCC. Here, we present a case of lymphocyte-rich hepatocellular carcinoma (HCC) characterized by the presence of bilateral hepatic tumors and concurrent multiple lymphadenopathy. Interestingly, contrary to previous literature, the examination for the Epstein-Barr virus (EBV) revealed a positive result in this particular case.
Collapse
Affiliation(s)
- Pin-Yi Wang
- Division of Hepatogastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Jen Sheu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsing-Tao Kuo
- Division of Hepatogastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Ying Lee
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Ting Kuo
- Department of Radiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Su-Hung Wang
- Division of Hepatogastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
20
|
Liu G, Ma D, Wang H, Zhou J, Shen Z, Yang Y, Chen Y, Sack I, Guo J, Li R, Yan F. Three-dimensional multifrequency magnetic resonance elastography improves preoperative assessment of proliferative hepatocellular carcinoma. Insights Imaging 2023; 14:89. [PMID: 37198348 PMCID: PMC10192481 DOI: 10.1186/s13244-023-01427-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND To investigate the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE). METHODS This prospective study included 121 patients with 124 HCCs as training cohort, and validation cohort included 33 HCCs. They all underwent preoperative conventional magnetic resonance imaging (MRI) and tomoelastography based on 3D multifrequency MRE. Viscoelastic parameters of the tumor and liver were quantified as shear wave speed (c, m/s) and loss angle (φ, rad), representing stiffness and fluidity, respectively. Five MRI features were evaluated. Multivariate logistic regression analyses were used to determine predictors of proliferative HCC to construct corresponding nomograms. RESULTS In training cohort, model 1 (Combining cirrhosis, hepatitis virus, rim APHE, peritumoral enhancement, and tumor margin) yielded an area under the curve (AUC), sensitivity, specificity, accuracy of 0.72, 58.73%,78.69%, 67.74%, respectively. When adding MRE properties (tumor c and tumor φ), established model 2, the AUC increased to 0.81 (95% CI 0.72-0.87), with sensitivity, specificity, accuracy of 71.43%, 81.97%, 75%, respectively. The C-index of nomogram of model 2 was 0.81, showing good performance for proliferative HCC. Therefore, integrating tumor c and tumor φ can significantly improve the performance of preoperative diagnosis of proliferative HCC (AUC increased from 0.72 to 0.81, p = 0.012). The same finding was observed in the validation cohort, with AUC increasing from 0.62 to 0.77 (p = 0.021). CONCLUSIONS Proliferative HCC exhibits low stiffness and high fluidity. Adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC. CRITICAL RELEVANCE STATEMENT We investigated the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE), and find that adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC.
Collapse
Affiliation(s)
- Guixue Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafeng Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
21
|
Giovannini C, Suzzi F, Tovoli F, Bruccoleri M, Marseglia M, Alimenti E, Fornari F, Iavarone M, Piscaglia F, Gramantieri L. Low-Baseline PD1+ Granulocytes Predict Responses to Atezolizumab-Bevacizumab in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:1661. [PMID: 36980547 PMCID: PMC10045974 DOI: 10.3390/cancers15061661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Immune check point inhibitors have recently entered the armamentarium of advanced hepatocellular carcinoma (HCC) treatment. Among them, the combination of atezolizumab plus bevacizumab has pushed it a step forward; however, a number of patients still present primary non-responses without any biomarker to predict responses to different options. Here, we aimed to identify a putative baseline biomarker to predict the response to atezolizumab-bevacizumab, by investigating whether baseline PD1+ and PD-L1+ peripheral granulocyte percentages might offer a non-invasive, cheap, and easily feasible assay. METHODS A prospective Italian cohort of 34 patients treated by atezolizumab-bevacizumab was tested to assay the baseline percentage of peripheral granulocytes and their PD1 and PD-L1 expression. The neutrophil to lymphocyte ratio (NLR) was also considered, and all data were compared with the clinical course of patients. RESULTS A low-baseline PD1+ peripheral granulocyte percentage turned out to predict responder patients (mean ±SD of PD1+ granulocyte percentage in responders versus non-responders: 9.9 ± 9.1 vs. 29.2 ± 17.6; student's t-test, p < 0.01). In line, patients identified by a low PD1+ granulocyte percentage displayed a longer TTP (log-rank test, p < 0.0001). A lower granulocyte percentage on total white blood cells, irrespective of PD1 or PD-L1 expression, is also associated with responses to atezolizumab-bevacizumab (log-rank test, p < 0.05). No predictive value was observed for either the PD-L1+ granulocyte percentage or NLR. CONCLUSIONS A low-baseline PD1+ peripheral granulocyte percentage is associated with responses to atezolizumab-bevacizumab treatment in advanced HCC. These findings encourage evaluating this minimally invasive, cheap, and easy test in further independent cohorts and outlining the relevance of innate immunity in the response to immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Catia Giovannini
- Center for Applied Biomedical Research-CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Center for Applied Biomedical Research-CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Mariangela Bruccoleri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, 20122 Milan, Italy
| | - Mariarosaria Marseglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Eleonora Alimenti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, 20122 Milan, Italy
| | - Francesca Fornari
- Center for Applied Biomedical Research-CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Massimo Iavarone
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, 20122 Milan, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Center for Applied Biomedical Research-CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
22
|
Korean Liver Cancer Association (KLCA) and National Cancer Center (NCC) Korea. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:1-120. [PMID: 37384024 PMCID: PMC10202234 DOI: 10.17998/jlc.2022.11.07] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Korean Liver Cancer Association (KLCA) and National Cancer Center (NCC) Korea
- Corresponding author: KLCA-NCC Korea Practice Guideline Revision Committee (KPGRC) (Committee Chair: Joong-Won Park) Center for Liver and Pancreatobiliary Cancer, Division of Gastroenterology, Department of Internal Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Korea Tel. +82-31-920-1605, Fax: +82-31-920-1520, E-mail:
| |
Collapse
|
23
|
Leow WQ, Chan AWH, Mendoza PGL, Lo R, Yap K, Kim H. Non-alcoholic fatty liver disease: the pathologist's perspective. Clin Mol Hepatol 2023; 29:S302-S318. [PMID: 36384146 PMCID: PMC10029955 DOI: 10.3350/cmh.2022.0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases characterized by fatty accumulation in hepatocytes, ranging from steatosis, non-alcoholic steatohepatitis, to cirrhosis. While histopathological evaluation of liver biopsies plays a central role in the diagnosis of NAFLD, limitations such as the problem of interobserver variability still exist and active research is underway to improve the diagnostic utility of liver biopsies. In this article, we provide a comprehensive overview of the histopathological features of NAFLD, the current grading and staging systems, and discuss the present and future roles of liver biopsies in the diagnosis and prognostication of NAFLD.
Collapse
Affiliation(s)
- Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Regina Lo
- Department of Pathology and State Key Laboratory of Liver Research (HKU), The University of Hong Kong, Hong Kong, China
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
2022 KLCA-NCC Korea Practice Guidelines for the Management of Hepatocellular Carcinoma. Korean J Radiol 2022; 23:1126-1240. [PMID: 36447411 PMCID: PMC9747269 DOI: 10.3348/kjr.2022.0822] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
|
25
|
2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. Clin Mol Hepatol 2022; 28:583-705. [PMID: 36263666 PMCID: PMC9597235 DOI: 10.3350/cmh.2022.0294] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the fourth most common cancer among men in South Korea, where the prevalence of chronic hepatitis B infection is high in middle and old age. The current practice guidelines will provide useful and sensible advice for the clinical management of patients with HCC. A total of 49 experts in the fields of hepatology, oncology, surgery, radiology, and radiation oncology from the Korean Liver Cancer Association-National Cancer Center Korea Practice Guideline Revision Committee revised the 2018 Korean guidelines and developed new recommendations that integrate the most up-to-date research findings and expert opinions. These guidelines provide useful information and direction for all clinicians, trainees, and researchers in the diagnosis and treatment of HCC.
Collapse
|
26
|
Loy LM, Low HM, Choi JY, Rhee H, Wong CF, Tan CH. Variant Hepatocellular Carcinoma Subtypes According to the 2019 WHO Classification: An Imaging-Focused Review. AJR Am J Roentgenol 2022; 219:212-223. [PMID: 35170359 DOI: 10.2214/ajr.21.26982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2019 5th edition of the WHO classification of digestive system tumors estimates that up to 35% of hepatocellular carcinomas (HCCs) can be classified as one of eight subtypes defined by molecular characteristics: steatohepatitic, clear cell, macrotrabecular-massive, scirrhous, chromophobe, fibrolamellar, neutrophil-rich, and lymphocyte-rich HCCs. Due to their distinct cellular and architectural characteristics, these subtypes may not display arterial phase hyperenhancement and washout appearance, which are the classic MRI features of HCC, creating challenges in noninvasively diagnosing such lesions as HCC. Moreover, certain subtypes with atypical imaging features have a worse prognosis than other HCCs. A range of distinguishing imaging features may help raise suspicion that a liver lesion represents one of these HCC subtypes. In this review, we describe the MRI features that have been reported in association with various HCC subtypes according to the 2019 WHO classification, with attention given to the current understanding of these subtypes' pathologic and molecular bases and relevance to clinical practice. Imaging findings that differentiate the subtypes from benign liver lesions and non-HCC malignancies are highlighted. Familiarity with these sub-types and their imaging features may allow the radiologist to suggest their presence, though histologic analysis remains needed to establish the diagnosis.
Collapse
Affiliation(s)
- Liang Meng Loy
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hsien Min Low
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Jin-Young Choi
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Fong Wong
- Department of Pathology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 2022; 32:5119-5133. [PMID: 35258675 DOI: 10.1007/s00330-022-08643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression. Advancements in imaging techniques have allowed imaging diagnosis to become a critical part of managing HCC in the clinical setting, even without pathologic diagnosis. With the identification of many HCC subtypes, there is increasing correlative evidence between imaging phenotypes and histologic, molecular, and genetic characteristics of various HCC subtypes. In this review, current knowledge of histologic heterogeneity of HCC correlated to features on gadolinium-enhanced dynamic liver MRI will be discussed. In addition, HCC subtype classification according to transcriptomic profiles will be outlined with descriptions of histologic, genetic, and molecular characteristics of some relatively well-established morphologic subtypes, namely the low proliferation class (steatohepatitic HCC and CTNNB1-mutated HCC) and the high proliferation class (macrotrabecular-massive HCC (MTM-HCC), scirrhous HCC, and CK19-positive HCC). Characteristics of sarcomatoid HCC and fibrolamellar HCC will also be discussed. Further research on radiological characteristics of HCC subtypes may ultimately enable non-invasive diagnosis and serve as a biomarker in predicting prognosis, molecular characteristics, and therapeutic response. In the era of precision medicine, a multidisciplinary effort to develop an integrated radiologic and clinical diagnostic system of various HCC subtypes is necessary. KEY POINTS: • HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression, which can be divided into many subtypes according to transcriptome profiles. • There is increasing evidence of a correlation between imaging phenotypes and histologic, genetic, and molecular biologic characteristics of various HCC subtypes. • Imaging characteristics may ultimately enable non-invasive diagnosis and subtype characterization, serving as a biomarker for predicting prognosis, molecular characteristics, and therapeutic response.
Collapse
|
28
|
Katabathina VS, Khanna L, Surabhi VR, Minervini M, Shanbhogue K, Dasyam AK, Prasad SR. Morphomolecular Classification Update on Hepatocellular Adenoma, Hepatocellular Carcinoma, and Intrahepatic Cholangiocarcinoma. Radiographics 2022; 42:1338-1357. [PMID: 35776676 DOI: 10.1148/rg.210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hepatocellular adenomas (HCAs), hepatocellular carcinomas (HCCs), and intrahepatic cholangiocarcinomas (iCCAs) are a highly heterogeneous group of liver tumors with diverse pathomolecular features and prognoses. High-throughput gene sequencing techniques have allowed discovery of distinct genetic and molecular underpinnings of these tumors and identified distinct subtypes that demonstrate varied clinicobiologic behaviors, imaging findings, and complications. The combination of histopathologic findings and molecular profiling form the basis for the morphomolecular classification of liver tumors. Distinct HCA subtypes with characteristic imaging findings and complications include HNF1A-inactivated, inflammatory, β-catenin-activated, β-catenin-activated inflammatory, and sonic hedgehog HCAs. HCCs can be grouped into proliferative and nonproliferative subtypes. Proliferative HCCs include macrotrabecular-massive, TP53-mutated, scirrhous, clear cell, fibrolamellar, and sarcomatoid HCCs and combined HCC-cholangiocarcinoma. Steatohepatitic and β-catenin-mutated HCCs constitute the nonproliferative subtypes. iCCAs are classified as small-duct and large-duct types on the basis of the level of bile duct involvement, with significant differences in pathogenesis, molecular signatures, imaging findings, and biologic behaviors. Cross-sectional imaging modalities, including multiphase CT and multiparametric MRI, play an essential role in diagnosis, staging, treatment response assessment, and surveillance. Select imaging phenotypes can be correlated with genetic abnormalities, and identification of surrogate imaging markers may help avoid genetic testing. Improved understanding of morphomolecular features of liver tumors has opened new areas of research in the targeted therapeutics and management guidelines. The purpose of this article is to review imaging findings of select morphomolecular subtypes of HCAs, HCCs, and iCCAs and discuss therapeutic and prognostic implications. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Lokesh Khanna
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Venkateswar R Surabhi
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Marta Minervini
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Krishna Shanbhogue
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Anil K Dasyam
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| | - Srinivasa R Prasad
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., L.K.); Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (V.R.S., S.R.P.); Departments of Pathology (M.M.) and Radiology (A.K.D.), University of Pittsburgh Medical Center, Pittsburgh, Pa; and Department of Radiology, NYU Medical Center, New York, NY (K.S.)
| |
Collapse
|
29
|
Ong Y, Huey CWT, Shelat VG. Paraneoplastic syndromes in hepatocellular carcinoma: a review. Expert Rev Gastroenterol Hepatol 2022; 16:449-471. [PMID: 35649187 DOI: 10.1080/17474124.2022.2085556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and a significant proportion (20-40%) of patients with HCC develop paraneoplastic syndromes (PNS). Despite this, there is a paucity of clinical evidence regarding PNS in HCC. AREAS COVERED A systematic search was performed to identify relevant case studies regarding PNS in HCC. Another search was conducted to identify studies that evaluated the impact of PNS on survival outcomes in HCC. Since there are currently no international guidelines for PNS in HCC, this review aims to provide comprehensive summaries and recommendations of PNS in HCC, including the pathophysiology, clinical features, diagnostic approach, and management, so that clinicians remain guided in caring for HCC patients with PNS. In general, PNS are associated with poorer survival outcomes and negative prognostic markers of HCC. EXPERT OPINION The presence of PNS has a significant influence on survival rates and clinical outcomes of patients with HCC. They contribute to significant morbidity, influencing patients' quality of life and fitness for curative and palliative therapies. Therefore, it is paramount for PNS to be integrated into routine investigations after diagnosing HCC to guide further management and prognostication of the disease.
Collapse
Affiliation(s)
- Yuki Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheong Wei Terence Huey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Hepato-Pancreatico-Biliary Surgery, Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Vishalkumar Girishchandra Shelat
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Hepato-Pancreatico-Biliary Surgery, Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
30
|
Jeong WK. [Radiologic Diagnosis of Hepatocellular Carcinoma]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:261-267. [PMID: 34824184 DOI: 10.4166/kjg.2021.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/03/2022]
Abstract
There are various causes of hepatocellular carcinoma, including viral hepatitis, and treatment strategies are often established based on the radiology diagnosis, unlike other carcinomas. The liver imaging reporting and data system (LI-RADS) is a diagnostic system developed by the American College of Radiologists for clear communication and standardized reports of the liver imaging findings. It was recently included in the clinical guidance of the American Association for the Study of Liver Diseases. In addition, the radiologic findings of hepatocellular carcinoma (HCC) enable a prediction of the prognosis after treatment and a diagnosis of diseases because the use of gadoxetic acid MRI has become more common. Thus, the role of radiology for the diagnosis and treatment of HCC is expected to be developed further.
Collapse
Affiliation(s)
- Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
31
|
HCC: role of pre- and post-treatment tumor biology in driving adverse outcomes and rare responses to therapy. Abdom Radiol (NY) 2021; 46:3686-3697. [PMID: 34195886 DOI: 10.1007/s00261-021-03192-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fastest-growing cause of cancer deaths in the United States and is a complex disease. The response of hepatocellular carcinoma (HCC) to treatment can be variable. Predicting response to determine the most effective therapy is an active area of research. Our understanding of underlying factors which drive response to therapy is continually increasing. As more therapies for the treatment of this disease evolve, it is crucial to identify and match the ideal therapy for a particular tumor and patient. The potential predicative imaging features of tumor behavior, while of research interest, have not been validated for clinical use and do not currently inform treatment planning. If further validated though, prognostic features may be used in the future to personalize treatment plans according to individual patients and tumors. Unexpected post-treatment responses such as potential tumor biology changes and abscopal effect which are important to be aware of. This review is intended for radiologists who routinely interpret post treatment HCC imaging and is designed to increase their cognizance about how HCC tumor biology drives response to therapy and explore rare responses to therapy.
Collapse
|
32
|
Kang HJ, Kim H, Lee DH, Hur BY, Hwang YJ, Suh KS, Han JK. Gadoxetate-enhanced MRI Features of Proliferative Hepatocellular Carcinoma Are Prognostic after Surgery. Radiology 2021; 300:572-582. [PMID: 34227881 DOI: 10.1148/radiol.2021204352] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Hepatocellular carcinomas (HCCs) are heterogeneous neoplasms, and the prognosis varies based on the subtype. Two broad molecular classes of HCC have been proposed: a proliferative and a nonproliferative class. Purpose To evaluate the gadoxetate-enhanced MRI findings of the proliferative class HCC and its prognostic significance after surgery. Materials and Methods This retrospective cohort study evaluated patients with surgically resected treatment-naive single HCC (≤5 cm) who underwent hepatic resection from January 2010 through February 2013 and preoperative gadoxetate-enhanced MRI. A Cox proportional hazards model was used to determine the predictive factors for overall survival (OS), intrahepatic distant recurrence, and extrahepatic metastasis (EM). The mean follow-up period was 75.5 months ± 30.2 (standard deviation). Multivariable logistic regression was performed to determine factors associated with proliferative class HCC. Results A total of 158 patients (mean age, 57 years ± 11; 128 men and 30 women) were evaluated. Forty-two of the 158 HCCs (26.6%) were proliferative class HCCs (17 macrotrabecular-massive HCCs, 14 keratin 19-positive HCCs, 10 scirrhous HCCs, and one sarcomatoid HCC). The proliferative class was associated with worse OS (hazard ratio [HR], 3.1; 95% CI: 1.5, 6.0; P = .01) and higher rates of intrahepatic distant recurrence (HR, 1.83; 95% CI: 1.1, 2.9; P = .01) and EM (HR, 9.97; 95% CI: 3.2, 31.4; P < .001). Rim arterial phase hyperenhancement (APHE) at gadoxetate-enhanced MRI (odds ratio [OR], 6.35; 95% CI: 1.9, 21.7; P = .01) and high serum α-fetoprotein (>100 ng/mL) (OR, 4.18; 95% CI: 1.64, 10.7; P = .01) were independent predictors for proliferative HCC. The presence of rim APHE was associated with poor OS (HR, 2.4; 95% CI: 1.2, 4.9; P = .02) and higher rates of EM (HR, 7.4; 95% CI: 2.5, 21.7; P < .01). Conclusion The proliferative class of hepatocellular carcinoma (HCC) is an independent factor for poor overall survival with increased rates of intrahepatic and extrahepatic metastasis. Rim arterial phase hyperenhancement at gadoxetate-enhanced MRI may help to identify proliferative class HCC and predict poor overall survival and an increased incidence of extrahepatic metastasis. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Krinsky and Shanbhogue in this issue.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Haeryoung Kim
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Dong Ho Lee
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Bo Yun Hur
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Yoon Jung Hwang
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Kyung-Suk Suh
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| | - Joon Koo Han
- From the Departments of Radiology (H.J.K., D.H.L., J.K.H.) and Pathology (H.K., Y.J.H.), Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 03080, Korea; Departments of Radiology (H.J.K., D.H.L., J.K.H.), Pathology (H.K., Y.J.H.), and Surgery (K.S.S.), Seoul National University College of Medicine, Seoul, Korea; and Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea (B.Y.H.)
| |
Collapse
|
33
|
Boppana V, Sahni S, Glass J, Chang C, McCarthy DM. HCC You Cannot See. Dig Dis Sci 2021; 66:2185-2189. [PMID: 34089136 DOI: 10.1007/s10620-021-07070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/09/2022]
Affiliation(s)
- Vaishnavi Boppana
- Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico, MSC10-5550, Albuquerque, NM, 87131, USA.
| | - Sakshi Sahni
- Division of Gastroenterology and Hepatology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Joseph Glass
- Pathology Service, Raymond G. Murphy VA Medical Center, Albuquerque, NM, USA
| | - Christopher Chang
- Division of Gastroenterology and Hepatology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Denis M McCarthy
- Division of Gastroenterology and Hepatology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
34
|
Karadag Soylu N. Update on Hepatocellular Carcinoma: a Brief Review from Pathologist Standpoint. J Gastrointest Cancer 2021; 51:1176-1186. [PMID: 32844348 DOI: 10.1007/s12029-020-00499-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most common cancers and an important health problem all over the world. Its prognosis is poor. For better patient care, early diagnosis is essential. Although new imaging techniques have a big impact on hepatocellular carcinoma diagnosis, histopathological examination is still the gold standard for precise diagnosis. Histopathological evaluation gives exact diagnosis in the meaning of tumor size, histological subtypes, grading, and differential diagnosis from metastasis and other tumors. Immunohistochemistry as a part of diagnostic histopathological technique plays an important role in routine practice. Immunohistochemistry is useful for confirming of hepatocytic origin, supporting hepatocellular malignancy, and differential diagnosis. It also gives prognostic information. There are growing attempts to classify tumors by their molecular genetic signatures. This is also actual for hepatocellular carcinoma. This mini review focuses on the histopathology of hepatocellular carcinoma including subtypes; differential diagnosis and immunohistochemistry as an ancillary diagnostic tool, updated or added entities, i.e., combined hepatocellular-cholangiocarcinoma; small hepatocellular carcinoma; correlation with molecular studies; and future perspectives.
Collapse
Affiliation(s)
- Nese Karadag Soylu
- Department of Pathology, Faculty of Medicine, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey.
| |
Collapse
|
35
|
Song JW, Chun HS, Lee JS, Lee HW, Kim BK, Kim SU, Park JY, Ahn SH, Park YN, Han DH, Kim DY. A Case of Lymphocyte-Rich Hepatocellular Carcinoma in a Patient Who Was Treated for Colon Cancer. JOURNAL OF LIVER CANCER 2021; 21:69-75. [PMID: 37384276 PMCID: PMC10035728 DOI: 10.17998/jlc.21.1.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) primarily originates in the liver with hepatic differentiation. However, HCCs are not homogenous, and approximately 35% of HCC cases are classified as histopathological variants that present distinct pathologic characteristics. In particular, the lymphocyte-rich variant is the rarest subtype accounting for less than 1% of HCCs, which is not well known to date about molecular features and pathophysiology. Herein, we present a case of a patient who was suspected of metastatic liver cancer and confirmed as lymphocyte-rich HCC pathologically. A 78-year-old woman who underwent a right hemicolectomy for colon cancer was referred to our hospital for a newly detected liver mass. We could not make a decision because of insufficient evidence for diagnosis from imaging studies. After resection, we found that it was a lymphocyte-rich HCC. The pathologic features and prognostic trends of this subtype are also discussed.
Collapse
Affiliation(s)
- Jae Won Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Ho Soo Chun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
| | - Jae Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul,
Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul,
Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul,
Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul,
Korea
- Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
36
|
Chan LK, Tsui YM, Ho DWH, Ng IOL. Cellular heterogeneity and plasticity in liver cancer. Semin Cancer Biol 2021; 82:134-149. [PMID: 33647386 DOI: 10.1016/j.semcancer.2021.02.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Hepatocarcinogenesis involves complex genetic and cellular dysregulations which drive the formation of hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, with extensive heterogeneity. In contrast to the broad spectrum of molecularly driven therapies available for defined patient groups in certain cancer types, unfortunately the treatment options for HCC are highly limited. The lack of representative molecular and cellular signatures in the heterogeneous HCC tumors that can effectively guide the choice of the most appropriate treatment among the patients unavoidably limits the treatment outcome. Advancement and wide availability of the next-generation sequencing technologies have empowered us to examine and capture not only the detailed genetic alterations of the HCC cells but also the precise composition of different cell types within the tumor microenvironment and their interactions with the HCC cells at an unprecedented level. The information generated has provided new insight and better defined the inter-patient intertumoral heterogeneity, intra-patient intratumoral heterogeneity as well as the plasticity of HCC cells. These collectively provide a robust scientific basis in guiding the development and use of targeted therapy and immunotherapy. To complement, liquid biopsy coupled with high-sensitivity sequencing could potentially be adopted as a more practical and safer approach to detect and reflect the tumor heterogeneity in HCC patients in guiding the choice of treatment and monitoring disease progression.
Collapse
Affiliation(s)
- Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Lucas B, Ravishankar S, Pateva I. Pediatric Primary Hepatic Tumors: Diagnostic Considerations. Diagnostics (Basel) 2021; 11:333. [PMID: 33670452 PMCID: PMC7922091 DOI: 10.3390/diagnostics11020333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is the third most common site of abdominal tumors in children. This review article aims to summarize current evidence surrounding identification and diagnosis of primary hepatic tumors in the pediatric population based upon clinical presentation, epidemiology, and risk factors as well as classical imaging, histopathological, and molecular diagnostic findings. Readers will be able to recognize the features and distinguish between benign and malignant hepatic tumors within different age groups.
Collapse
Affiliation(s)
- Bryony Lucas
- Rainbow Babies and Children’s Hospital—Department of Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjita Ravishankar
- Rainbow Babies and Children’s Hospital—Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Irina Pateva
- Rainbow Babies and Children’s Hospital—Department of Pediatric Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
38
|
Vyas M, Jain D. An update on subtypes of hepatocellular carcinoma: From morphology to molecular. INDIAN J PATHOL MICR 2021; 64:S112-S120. [PMID: 34135152 DOI: 10.4103/ijpm.ijpm_751_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The morphologic spectrum of hepatocellular carcinoma (HCC) is quite broad. While in about one-third of cases, the neoplasms can be categorized into meaningful subtypes based on morphology, a vast majority of these neoplasms are morphologically heterogeneous. With extensive tumor profiling, data has begun to emerge which can correlate specific morphologic features with underlying molecular signatures. A true morphologic subtype not only has reproducible H & E features, further supported by specific immunohistochemical or molecular signatures, but also has specific clinical implications and prognostic associations. Eight such morphologic subtypes are recognized by the 2019 WHO classification of tumors with a few more additional subtypes described in the literature. The goal of this review is to familiarize the reader with the morphologic subtypes and elaborate on the clinical and molecular associations of these neoplasms.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|