1
|
Wang Z, Shi Z, Liao X, Quan G, Dong H, Zhao P, Zhou Y, Shi N, Wang J, Wu Y, Qiao C, Li XY, Zhang R, Wang Z, Wang T, Gao X, Feng J, Luo L. Broad-Spectrum Engineered Multivalent Nanobodies Against SARS-CoV-1/2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402975. [PMID: 39373693 PMCID: PMC11615778 DOI: 10.1002/advs.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 Omicron sublineages escape most preclinical/clinical neutralizing antibodies in development, suggesting that previously employed antibody screening strategies are not well suited to counteract the rapid mutation of SARS-CoV-2. Therefore, there is an urgent need to screen better broad-spectrum neutralizing antibody. In this study, a comprehensive approach to design broad-spectrum inhibitors against both SARS-CoV-1 and SARS-CoV-2 by leveraging the structural diversity of nanobodies is proposed. This includes the de novo design of a fully human nanobody library and the camel immunization-based nanobody library, both targeting conserved epitopes, as well as the development of multivalent nanobodies that bind nonoverlapping epitopes. The results show that trivale B11-E8-F3, three nanobodies joined tandemly in trivalent form, have the broadest spectrum and efficient neutralization activity, which spans from SARS-CoV-1 to SARS-CoV-2 variants. It is also demonstrated that B11-E8-F3 has a very prominent preventive and some therapeutic effect in animal models of three authentic viruses. Therefore, B11-E8-F3 has an outstanding advantage in preventing SARS-CoV-1/SARS-CoV-2 infections, especially in immunocompromised populations or elderly people with high-risk comorbidities.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhuangzhuang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Guiqi Quan
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Hui Dong
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yangyihua Zhou
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jie Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yahui Wu
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xin ying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ran Zhang
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
2
|
Keaney D, Whelan S, Finn K, Lucey B. Misdiagnosis of SARS-CoV-2: A Critical Review of the Influence of Sampling and Clinical Detection Methods. Med Sci (Basel) 2021; 9:36. [PMID: 34070530 PMCID: PMC8162574 DOI: 10.3390/medsci9020036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection has generated the biggest pandemic since the influenza outbreak of 1918-1919. One clear difference between these pandemics has been the ability to test for the presence of the virus or for evidence of infection. This review examined the performance characteristics of sample types via PCR detection of the virus, of antibody testing, of rapid viral antigen detection kits and computerised tomography (CT) scanning. It was found that combined detection approaches, such as the incorporation of CT scans, may reduce the levels of false negatives obtained by PCR detection in both symptomatic and asymptomatic patients, while sputum and oral throat washing sample types should take precedence over swabbing when available. Rt-PCR assays for detection of the virus remain the gold-standard method for SARS-CoV-2 diagnosis and can be used effectively on pooled samples for widespread screening. The novel Oxford antibody assay was found to have the highest sensitivity and specificity of four currently available commercial antibody kits but should only be used during a specific timeframe post-symptom onset. Further research into transmission modes between symptomatic and asymptomatic patients is needed. Analysis of the performance characteristics of different sampling and detection methods for SARS-CoV-2 showed that timing of sampling and testing methods used can greatly influence the rate of false-positive and false-negative test results, thereby influencing viral spread.
Collapse
Affiliation(s)
- Daniel Keaney
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| | - Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| | - Karen Finn
- Department of Biopharmaceutical and Medical Science, Galway-Mayo Institute of Technology, Old Dublin Road, H91 DCH9 Galway, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland; (D.K.); (S.W.); (B.L.)
| |
Collapse
|
3
|
Suresha PG, Akhil C, Anjali A, Giselle DR, Revti B, Arunkumar G. Human coronaviruses in severe acute respiratory infection (SARI) cases in southwest India. J Med Virol 2016; 88:163-5. [PMID: 26512711 PMCID: PMC7166866 DOI: 10.1002/jmv.24296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 11/09/2022]
Abstract
Acute viral respiratory infections (AVRI) are a leading cause of morbidity and mortality among all age groups globally. Except for Influenza virus and Respiratory Syncytial virus, mostly viral aetiology of AVRI remains undiagnosed. Lately, human coronaviruses (HCoVs) have emerged as an important aetiology of AVRI. A laboratory based retrospective cross sectional study was conducted in which respiratory samples (throat swabs) of patients (n = 864), with Influenza negative SARI, of all age groups between Jan 2011–Dec 2012 were tested for HCoVs including MERS‐CoV using Conventional and real time PCR assays. The prevalence of HCoV among SARI cases was 1.04% (9/864) [95% CI: 0.36–1.72]. Of these four (44.44%) were identified as HCoV OC43, three (33.33%) as HCoV NL63 and two (22.22%) as HCoV 229E. No HCoV HKU1 was detected. The samples were also negative for SARS‐CoV and MERS‐CoV. The results of this study documents low prevalence of human coronaviruses in SARI cases in south western India and the absence of highly pathogenic human coronaviruses. As the study included only SARI cases the prevalence reported could be an under estimate when it is extrapolated to community. J. Med. Virol. 88:163–165, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prabhu G Suresha
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Chameettachal Akhil
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Aithal Anjali
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Dsouza R Giselle
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | - Bhaskar Revti
- Manipal Centre for Virus Research, Manipal University, Karnataka, Manipal, India
| | | |
Collapse
|
4
|
A Computationally Designed Serological Assay for Porcine Epidemic Diarrhea Virus. J Clin Microbiol 2016; 54:2039-46. [PMID: 27225413 DOI: 10.1128/jcm.00460-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
The periodic emergence of new infectious agents and the genetic and antigenic evolution of existing agents necessitate the improvement of technology for the rapid development of diagnostic assays. The porcine epidemic diarrhea virus (PEDV) emerged in the United States in 2013, causing severe economic damage to the pork industry. The primary goal of this study was to develop methods to reduce the lead time for serological assay development. An approach involving the computational prediction of diagnostic targets, followed by a rapid synthesis of antigens, was adopted to achieve this objective. To avoid cross-reactivity with other closely related swine coronaviruses, the N protein sequences of PEDV were analyzed to identify sequences unique to PEDV. The potential antigenicity of the identified sequence was predicted computationally using the Jameson-Wolf method. A sequence with a high antigenic index was rapidly synthesized using an in vitro transcription and translation system to yield the diagnostic antigen. The computationally designed enzyme-linked immunosorbent assay (ELISA) was validated using 169 field sera, whose statuses were determined by a PEDV-specific immunofluorescence assay. Comparison of the computationally designed ELISA to a conventionally developed ELISA, using bacterially expressed N protein, and to the immunofluorescence assay showed a high degree of agreement among the three tests (mean kappa statistic, 0.842). The sensitivity and specificity, compared to the conventionally developed assay, were 90.62 and 95.18, respectively. Therefore, the described approach is useful in reducing the development time for serological assays in the face of an infectious disease outbreak.
Collapse
|
5
|
Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PKS, Di Bonito P, Franconi R. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS. FRONTIERS IN PLANT SCIENCE 2016; 7:54. [PMID: 26904039 PMCID: PMC4742786 DOI: 10.3389/fpls.2016.00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/13/2016] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV), crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N) and the membrane protein (M) using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Silvia Massa
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Elena Illiano
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di MilanoMilan, Italy
| | - Domenico De Martinis
- International Relations Office, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
- Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Paola Di Bonito
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated DiseasesRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| | - Rosella Franconi
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| |
Collapse
|
6
|
Abstract
Pulmonary infections by viruses may result in serious diseases of public health importance. The problems of the infections are exacerbated by rapid transmission of the pathogenic agents, which occur through inhalation and direct contact with contaminated surfaces. Moreover, cross-species transmission resulting from changes to viral genetic makeup poses a risk for emergence of pathogens with new characteristics, which in some cases may be responsible for causing different diseases. With the advent of efficient sequencing and nucleic acid-based virus-disabling technologies, gene therapy is well placed to advance new treatments to counter respiratory infections. Most studies aimed at using nucleic acids to treat respiratory viral infections have used RNA interference (RNAi) to silence viral gene targets. A few studies have used silencing of host factors required by the viruses as a means of inhibiting viral replication and preventing emergence of escape mutants. By administering antivirals to the airways, studies performed in vivo have taken advantage of the anatomy of the respiratory system to deliver therapeutic nucleic acids. Reported data have shown proof of principle of efficacy of gene therapy in models of respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus, influenza virus A, and measles virus, among others. RNAi-based gene therapy has been advanced to clinical trial for treatment of RSV infection. Although the primary endpoint was not met in an intent-to-treat analysis, the investigation has provided useful information for the advancement of gene therapy for current and emergent respiratory infections.
Collapse
|
7
|
Pang XL. Face up to challenge of virology world. World J Virol 2012; 1:1-3. [PMID: 24175205 PMCID: PMC3782262 DOI: 10.5501/wjv.v1.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 02/05/2023] Open
Abstract
Welcome to the World Journal of Virology (WJV), a new member of the World Journal Series. The World Journal Series was first launched as a peer-reviewed scientific journal covering aspects of research, diagnostics and clinical practice in biomedicine in 1995. WJV is an online and open-access peer-reviewed periodical focusing on virology. WJV covers a variety of topics in different areas of virology, including advances in basic research, updates in nomenclature, the development of novel diagnostic assays, the epidemiology of viral disorders and, new developments in the clinical management of viral diseases, including new vaccines and antiviral therapeutics. The purpose in launching the WJV is to promote knowledge exchange related to the classic human viruses as well as newly emerging viruses and their associated clinical disorders. Continually updating knowledge in a timely manner in this field where information related to the unceasing evolution of viruses is becoming available at a rapid pace is challenging. Thanks to the World-Wide-Web we are able to provide a podium for all authors and readers of WJV to address this challenge. I would like to acknowledge the Baishideng publisher, the members of the editorial board, and all contributing authors involved in this inaugural issue of the WJV. I sincerely hope all readers, i.e. future contributing authors, will like WJV and we look forward to your input in assisting WJV to grow and mature.
Collapse
Affiliation(s)
- Xiaoli Lilly Pang
- Xiaoli Lilly Pang, Department of Laboratory Medicine and Pathology, University of Alberta, and Alberta Provincial Laboratory for Public Health (Microbiology), WMC 2B4.58, 8440-112 Street, Edmonton, Alberta T6G 1B1, Canada
| |
Collapse
|
8
|
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6:615-631. [PMID: 21765859 DOI: 10.2217/fvl.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in early 2003 to cause a very severe acute respiratory syndrome, which eventually resulted in a 10% case-fatality rate. Owing to excellent public health measures that isolated focus cases and their contacts, and the use of supportive therapies, the epidemic was suppressed to the point that further cases have not appeared since 2005. However, despite intensive research since then (over 3500 publications), it remains an untreatable disease. The potential for re-emergence of the SARS-CoV or a similar virus with unknown but potentially serious consequences remains high. This is due in part to the extreme genetic variability of RNA viruses such as the coronaviruses, the many animal reservoirs that seem to be able host the SARS-CoV in which reassortment or recombination events could occur and the ability coronaviruses have to transmit relatively rapidly from species to species in a short period of time. Thus, it seems prudent to continue to explore and develop antiviral chemotherapies to treat SARS-CoV infections. To this end, the various efficacious anti-SARS-CoV therapies recently published from 2007 to 2010 are reviewed in this article. In addition, compounds that have been tested in various animal models and were found to reduce virus lung titers and/or were protective against death in lethal models of disease, or otherwise have been shown to ameliorate the effects of viral infection, are also reported.
Collapse
Affiliation(s)
- Dale L Barnard
- Utah State University, Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Science, 5600 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
9
|
Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses. Arch Virol 2011; 156:671-80. [PMID: 21221674 PMCID: PMC7087183 DOI: 10.1007/s00705-010-0906-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/06/2010] [Indexed: 01/14/2023]
Abstract
Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.
Collapse
|
10
|
Bispecific Antibodies for Diagnostic Applications. BISPECIFIC ANTIBODIES 2011. [PMCID: PMC7123020 DOI: 10.1007/978-3-642-20910-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bispecific monoclonal antibodies (BsMAb) are unique engineered macromolecules that have two different pre-determined binding specificities. Their ability to simultaneously bind to a specific antigen and a given detection moiety enables them to function as excellent bifunctional immunoprobes in diagnostic assays. BsMAb are being exploited for the development of simple, rapid, and highly sensitive immunoassays for diagnosis of bacterial and viral infectious diseases. This chapter describes the use of BsMAb for the detection of Mycobacterium tuberculosis, Escherichia coli O157:H7, Bordetella pertussis, Severe Acute Respiratory Syndrome coronavirus, and Dengue virus. Further, BsMAb have been utilized for diagnosis of various types of cancers. The use of BsMAb in detection of prostate cancer and in cancer diagnostic imaging is also discussed.
Collapse
|
11
|
Development, characterization, and application of monoclonal antibodies against severe acute respiratory syndrome coronavirus nucleocapsid protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:2033-6. [PMID: 20926700 DOI: 10.1128/cvi.00293-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Five monoclonal antibodies (MAbs) against recombinant nucleocapsid protein (NP) of severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) were developed by hybridoma technology. Epitope mapping by Western blotting showed that these anti-SARS-CoV NP MAbs bind to distinct domains of NP. These anti-SARS-CoV NP MAbs, with their high specificity, are potentially ideal candidates for developing early and sensitive diagnostic assays for SARS-CoV.
Collapse
|