1
|
Yang B, Bi J, Zeng W, Chen M, Yao Z, Cheng S, Jiang Z, Zhang C, Liao H, Gu X, Xian Z, Yu Y. Causal effect between telomere length and thirteen types of cancer in Asian population: a bidirectional Mendelian randomization study. Aging Clin Exp Res 2025; 37:134. [PMID: 40299209 PMCID: PMC12041116 DOI: 10.1007/s40520-025-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The relationship between leukocyte telomere length (LTL) and the risk of developing various cancers has always been controversial and predominantly focused on European populations. Hence, Mendelian randomization (MR) was applied to the Asian population to explore the causal relationships between LTL and the risk of developing various cancers. METHODS We explored the causal connection between LTL and the risk of developing thirteen types of cancer in Asian populations using freely available genetic variation data. The primary analytical method employed was the inverse variance weighted (IVW) method, complemented by sensitivity and validation analyses. Following Bonferroni correction, P < 0.0038 was considered to indicate statistical significance, and P values ranging from 0.0038 to 0.05 were considered to indicate a nominally significant association. RESULTS The findings indicated significant positive associations between LTL and the risk of developing lung cancer [odds ratio (OR) = 1.6009, 95% confidence interval (CI) 1.3056-1.9629, P = 6.08 × 10-6] and prostate cancer (OR = 1.4200, 95% CI 1.1489-1.7550, P = 0.0012). Additionally, there was a nominally significant association between LTL and the risk of developing hematological malignancy (OR = 1.5119, 95% CI 1.0810-2.1146, P = 0.0157). No statistically significant relationships between LTL and the risk of developing the other ten kinds of cancer were detected. No causal link between the risk of developing various cancers and LTL was discovered. CONCLUSIONS Asians with longer telomeres are more prone to developing lung and prostate cancer. There is also a nominally significant association between longer telomeres and the risk of developing hematological malignancy.
Collapse
Affiliation(s)
- Bowen Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Junming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Weinan Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- Shantou University Medical College, Shantou, 515000, China
| | - Mingquan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhihao Yao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Zhaoqiang Jiang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Changzheng Zhang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Hangyu Liao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xiaokang Gu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhiyong Xian
- Department of Urology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
- Department of Urology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, 528200, China.
| | - Yuming Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China.
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Hong Y, Lee JM, Lee C, Na D, Jung J, Ahn A, Yoo JW, Lee JW, Chung NG, Kim M, Kim Y. Telomere Length and Genetic Variations in Acquired Pediatric Aplastic Anemia: A Flow-FISH Study in Korean Patients. Diagnostics (Basel) 2025; 15:931. [PMID: 40218281 PMCID: PMC11988933 DOI: 10.3390/diagnostics15070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Aplastic anemia (AA) is a rare bone marrow failure syndrome characterized by notably short telomere length, which is associated with treatment responses. In this study, we measured telomere lengths in Korean pediatric AA patients using flow-fluorescence in situ hybridization (Flow-FISH) and explored their shortening in relation to disease characteristics, genetic conditions and patient outcomes. Methods: We analyzed peripheral blood samples from 75 AA patients and 101 healthy controls. Telomere lengths were measured using Flow-FISH, and relative telomere length (RTL) and delta RTL assessments were conducted. Genetic evaluations included karyotyping, chromosome breakage tests and clinical exome sequencing (CES) to identify inherited bone marrow failure syndrome (IBMFS)-associated genetic variants. Results: Telomere lengths in AA patients were significantly lower than those of age-adjusted healthy controls. Patients receiving immunosuppressive therapy tended to have long telomeres, as indicated by high delta RTL values. Patients with genetic abnormalities, including karyotype abnormalities (n = 2) and genetic variants (n = 11) such as carrier genes of IBMFS or variants of unclear significance, showed significantly short telomere lengths. Conclusions: This study reinforces the importance of telomere length as a biomarker in acquired AA. Utilizing Flow-FISH, we were able to accurately measure telomere lengths and establish confidence in this method as an appropriate laboratory test. We found significant reduction in telomere lengths in AA patients, and importantly, longer telomeres were correlated with better outcomes in immunosuppressive therapy. Additionally, our genetic analysis underscored the relevance of variants in IBMFS-associated genes to the pathophysiology of short telomeres.
Collapse
Affiliation(s)
- Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Chaeyeon Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duyeon Na
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jae Won Yoo
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Jae Wook Lee
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Nack-Gyun Chung
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
3
|
Longo M, Greco E, Listorti I, Varricchio MT, Litwicka K, Arrivi C, Mencacci C, Greco P. Telomerase activity, telomere length, and the euploidy rate of human embryos. Gynecol Endocrinol 2024; 40:2373742. [PMID: 38946430 DOI: 10.1080/09513590.2024.2373742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Telomeres maintain chromosome stability, while telomerase counteracts their progressive shortening. Telomere length varies between cell types, with leukocyte telomere length (LTL) decreasing with age. Reduced telomerase activity has been linked to reproductive issues in females, such as low pregnancy rates and premature ovarian failure, with recent studies indicating correlations between telomere length in granulosa cells and IVF outcomes. OBJECTIVES The study aims to explore the relationship between telomere length, telomerase activity, and euploid blastocyst rate in infertile women undergoing IVF/ICSI PGT-A cycles. METHODS This prospective study involves 108 patients undergoing controlled ovarian stimulation and PGT-A. Telomere length and telomerase activity were measured in peripheral mononuclear cells and granulosa cells (GC), respectively. RESULTS The telomere repeat copy number to single gene copy number ratio (T/S) results respectively 0.6 ± 0.8 in leukocytes and 0.7 ± 0.9 in GC. An inverse relationship was found between LTL and the patient's age (p < .01). A higher aneuploid rate was noticed in patients with short LTL, with no differences in ovarian reserve markers (p = .15), number of oocytes retrieved (p = .33), and number of MII (p = 0.42). No significant association was noticed between telomere length in GC and patients' age (p = 0.95), in ovarian reserve markers (p = 0.32), number of oocytes retrieved (p = .58), number of MII (p = .74) and aneuploidy rate (p = .65). CONCLUSION LTL shows a significant inverse correlation with patient age and higher aneuploidy rates. Telomere length in GCs does not correlate with patient age or reproductive outcomes, indicating differential telomere dynamics between leukocytes and granulosa cells.
Collapse
Affiliation(s)
- Maria Longo
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ermanno Greco
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
- Department of Obstetrician and Gynecology, Saint Camillus International University of Health and Medical Sciences (Unicamillus), Rome, Italy
| | - Ilaria Listorti
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | | | - Katerina Litwicka
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Cristiana Arrivi
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Cecilia Mencacci
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Pierfrancesco Greco
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| |
Collapse
|
4
|
Chatterjee N, Sharma R, Kale PR, Trehanpati N, Ramakrishna G. Is the liver resilient to the process of ageing? Ann Hepatol 2024; 30:101580. [PMID: 39276981 DOI: 10.1016/j.aohep.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The liver's unique regenerative capacity, immunotolerant feature, and polyploidy status distinguish it as a metabolic organ unlike any other in the body. Despite aging, the liver generally exhibits fewer pathological abnormalities than other organs (such as the kidney), maintaining its functions near-normal balanced manner. Subtle changes in the liver, including reduced blood flow, detoxification alterations, pseudo-capillarization, and lipofuscin deposition, may occur with chronological age. Research indicates that carefully selected liver grafts from octogenarian donors can perform well post-transplant, emphasizing instances where age doesn't necessarily compromise liver function. Notably, a recent report suggests that the liver is a youthful organ, with hepatocytes averaging an age of only 3 years. Despite the liver's impressive regenerative capabilities and cellular reserve, a lingering question persists: how does the liver maintain its youthful characteristic amidst the chronological aging of the entire organism? The various adaptive mechanism possibly include:(a) cellular hypertrophy to maintain physiological capacity even before proliferation initiates, (b) the "ploidy conveyor" as a genetic adaptation to endure aging-related stress, (c) sustained telomere length indicative of youthfulness (d) active extracellular matrix remodelling for normal cellular functioning, (e) Mitochondria-Endoplasmic Reticulum based metabolic adaptation and (c) cellular plasticity as fitness mechanisms for healthy aging. However, it is crucial to note that aged livers may have compromised regenerative capacity and chronic liver disease is often associated with declining function due to premature hepatocyte senescence. This review delves into varied cellular adaptations sustaining liver homeostasis with chronological aging and briefly explores the role of accelerated hepatocyte aging as a precursor to chronic liver disease.
Collapse
Affiliation(s)
- Nirupama Chatterjee
- Artemis Education and Research Foundation, Artemis Health Institute, Sector 51 Gurugram, India
| | - Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana Amity Education Valley, Panchgaon, Manesar Gurugram, HR 122413, India
| | - Pratibha R Kale
- Department of Clinical Microbiology, Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India.
| |
Collapse
|
5
|
Rinne GR, Carroll JE, Guardino CM, Shalowitz MU, Ramey SL, Schetter CD. Parental Preconception Posttraumatic Stress Symptoms and Maternal Prenatal Inflammation Prospectively Predict Shorter Telomere Length in Children. Psychosom Med 2024; 86:410-421. [PMID: 37594236 PMCID: PMC10879462 DOI: 10.1097/psy.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Parental trauma exposure and trauma-related distress can increase the risk of adverse health outcomes in offspring, but the pathways implicated in intergenerational transmission are not fully explicated. Accelerated biological aging may be one mechanism underlying less favorable health in trauma-exposed individuals and their offspring. This study examines the associations of preconception maternal and paternal posttraumatic stress disorder (PTSD) symptoms with child telomere length, and maternal prenatal C-reactive protein (CRP) as a biological mechanism. METHODS Mothers ( n = 127) and a subset of the fathers ( n = 84) reported on PTSD symptoms before conception. Mothers provided blood spots in the second and third trimesters that were assayed for CRP. At age 4 years, children provided buccal cells for measurement of telomere length. Models adjusted for parental age, socioeconomic status, maternal prepregnancy body mass index, child biological sex, and child age. RESULTS Mothers' PTSD symptoms were significantly associated with shorter child telomere length ( β = -0.22, SE = 0.10, p = .023). Fathers' PTSD symptoms were also inversely associated with child telomere length ( β = -0.21, SE = 0.11), although nonsignificant ( p = .065). There was no significant indirect effect of mothers' PTSD symptoms on child telomere length through CRP in pregnancy, but higher second-trimester CRP was significantly associated with shorter child telomere length ( β = -0.35, SE = 0.18, p = .048). CONCLUSIONS Maternal symptoms of PTSD before conception and second-trimester inflammation were associated with shorter telomere length in offspring in early childhood, independent of covariates. Findings indicate that intergenerational transmission of parental trauma may occur in part through accelerated biological aging processes and provide further evidence that prenatal proinflammatory processes program child telomere length.Open Science Framework Preregistration:https://osf.io/7c2d5/?view_only=cd0fb81f48db4b8f9c59fc8bb7b0ef97 .
Collapse
Affiliation(s)
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
- David Geffen School of Medicine, University of California, Los Angeles
| | | | | | - Sharon Landesman Ramey
- Fralin Biomedical Research Institute. Virginia Polytechnic Institute and State University
| | | |
Collapse
|
6
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
7
|
Han D, Zhu Y, Choudhry AA, Cheng J, Liang H, Lin F, Chang Q, Liu H, Pan P, Zhang Y. Association of telomere length with risk of lung cancer: A large prospective cohort study from the UK Biobank. Lung Cancer 2023; 184:107358. [PMID: 37696218 DOI: 10.1016/j.lungcan.2023.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES Leukocyte telomere length (LTL) is associated with a wide variety of diseases, including cancer. However, findings regarding the association between LTL and the risk for lung cancer have been inconclusive and inconsistent across previous observational studies. METHODS This prospective cohort study included data from 425,146 participants 37-73 years of age housed in the UK Biobank. Quantitative polymerase chain reaction (qPCR) was used to measure LTL in baseline DNA samples. A multivariate Cox proportional hazards model was used to evaluate the relationship between LTL and the risk for lung cancer. RESULTS An increase in LTL per interquartile range (IQR) was associated with a 9% increase in the risk for lung cancer (hazard ratio [HR] 1.09 [95% confidence interval (CI) 1.03-1.16]). Participants in the highest LTL quintile exhibited an approximately 25% elevated risk for developing lung cancer (HR 1.25 [95% CI 1.09-1.45]) compared with those in the lowest quintile. The relationship between per IQR increase in LTL and elevated risk for lung cancer was greater in the histological subtype of adenocarcinoma (HR 1.30 [95% CI 1.18-1.43]), female sex (HR 1.16 [95% CI 1.06-1.26]), non-smokers (HR 1.45 [95% CI 1.23-1.71]), and individuals with high genetic risk for lung cancer (HR 1.18 [95% CI 1.03-1.34]), respectively. Surprisingly, a per IQR increase in LTL was associated with increased risks for both lung adenocarcinoma (HR 1.56 [95% CI 1.24-1.96]) and squamous cell carcinoma (HR 2.01 [95% CI 1.13-3.56]) in never smokers. CONCLUSIONS Longer LTL was associated with an elevated risk for lung cancer, particularly for adenocarcinoma and squamous cell carcinoma in never smokers. The results suggest the potential of telomeres as non-invasive biomarkers for the early screening of lung cancer, particularly in non-smokers, who are typically overlooked.
Collapse
Affiliation(s)
- Duoduo Han
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Abira A Choudhry
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qinyu Chang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 41000, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China.
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China.
| |
Collapse
|
8
|
Teng Y, Huang DQ, Li RX, Yi C, Zhan YQ. Association Between Telomere Length and Risk of Lung Cancer in an Asian Population: A Mendelian Randomization Study. World J Oncol 2023; 14:277-284. [PMID: 37560336 PMCID: PMC10409562 DOI: 10.14740/wjon1624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Several traditional observational studies and Mendelian randomization (MR) studies have indicated an association between leukocyte telomere length (LTL) and the risk of lung cancer in the European population. However, the results in the Asian population are still unclear. The objective was to reveal the genetic causal association between LTL and the risk of lung cancer in the Asian population. METHODS We conducted a two-sample MR analysis using summary statistics. Instrumental variables (IVs) were obtained from the genome-wide association studies (GWAS) of LTL (n = 23,096) and lung cancer (n = 212,453) of Asian ancestry. We applied the random-effects inverse-variance weighted (IVW) model as the main method. As well, several other models were performed as complementary methods to assess the impact of potential MR assumption violations, including MR-Egger regression, weighted median, and weighted mode models. RESULTS We included eight single-nucleotide polymorphisms (SNPs) as IVs for LTL and found that LTL was significantly associated with the risk of lung cancer in the IVW model (odds ratio (OR): 1.60; 95% confidence interval (CI): 1.31 - 1.97; P = 5.96 × 10-6), which was in line with the results in the weighted median and weighted mode models. However, the relationship was not statistically significant in the MR-Egger regression model (OR: 1.44; 95% CI: 0.92 - 2.26; P = 0.160). Sensitivity analyses indicated the robustness of the results. CONCLUSIONS This two-sample MR study confirmed that longer telomere length significantly increased the risk of lung cancer in the Asian population, which was in accord with findings in the Western population.
Collapse
Affiliation(s)
- Yi Teng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this work
| | - Dan Qi Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- These authors contributed equally to this work
| | - Rui Xi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, China
- These authors contributed equally to this work
| | - Chao Yi
- Guangming Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Qiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Beijers R, Ten Thije I, Bolhuis E, O'Donnell KJ, Tollenaar MS, Shalev I, Hastings WJ, MacIsaac JL, Lin DTS, Meaney M, Kobor MS, Belsky J, de Weerth C. Cumulative risk exposure and child cellular aging in a Dutch low-risk community sample. Psychophysiology 2023; 60:e14205. [PMID: 36323627 DOI: 10.1111/psyp.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
One of the proposed mechanisms linking childhood stressor exposure to negative mental and physical health outcomes in later life is cellular aging. In this prospective, longitudinal, and pre-registered study, we examined the association between a cumulative pattern of childhood risk exposure from age 6 to age 10 (i.e., poor maternal mental health, parental relationship problems, family/friend death, bullying victimization, poor quality friendships) and change in two biomarkers of cellular aging (i.e., telomere length, epigenetic age) from age 6 to age 10 in a Dutch low-risk community sample (n = 193). We further examined the moderating effect of cortisol reactivity at age 6. Ordinary Least Squares regression analyses revealed no significant main effects of childhood risk exposure on change in cellular aging, nor a moderation effect of child cortisol reactivity. Secondary findings showed a positive correlation between telomere length and cortisol reactivity at age 6, warranting further investigation. More research in similar communities is needed before drawing strong conclusions based on the null results.
Collapse
Affiliation(s)
- Roseriet Beijers
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse Ten Thije
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma Bolhuis
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kieran J O'Donnell
- Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Marieke S Tollenaar
- Leiden Institute for Brain and Cognition and Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Michael Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jay Belsky
- Department of Human Ecology, University of California, California, Davis, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Park HS, Son BR, Kwon J. Usefulness of Genetic Aberration and Shorter Telomere Length in Myelodysplastic Syndrome: A Pilot Study. Lab Med 2023; 54:199-205. [PMID: 36125233 DOI: 10.1093/labmed/lmac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the clinical usefulness of genetic aberration and shorter telomere length (TL) in individuals with myelodysplastic syndrome (MDS). METHODS A targeted sequencing panel with 49 genes and TL measurement by quantitative real-time polymerase chain reaction were performed for 46 subjects. RESULTS According to the revised International Prognostic Scoring System (IPSS-R) subtypes, the mutation frequency was 33.3%, 57.9%, and 100% in the very low/low, intermediate, and very high/high risk groups, respectively. A shorter telomere was detected in 43.5%. We defined group 1 as IPSS-R-high or -very high risk, group 2 as having 1 or more genetic aberrations, group 3 as having a shorter TL, and group 4 as having a longer TL than the age-matched reference. Group 1 and group 2 showed an adverse prognosis. The TL was not strongly correlated with MDS prognosis. However, it may be related to a poor long-term prognosis. CONCLUSION Genetic variation and shorter TL may be helpful in reclassifying non-high-risk groups.
Collapse
Affiliation(s)
- Hee Sue Park
- Laboratory Medicine, Chungbuk National University Hospital, Cheongju, South Korea.,Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Bo Ra Son
- Laboratory Medicine, Chungbuk National University Hospital, Cheongju, South Korea.,Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jihyun Kwon
- Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea.,Internal Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
11
|
Cytogenetics in Fanconi Anemia: The Importance of Follow-Up and the Search for New Biomarkers of Genomic Instability. Int J Mol Sci 2022; 23:ijms232214119. [PMID: 36430597 PMCID: PMC9699043 DOI: 10.3390/ijms232214119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by genomic instability, increased sensitivity to DNA cross-linking agents, and the presence of clonal chromosomal abnormalities. This genomic instability can compromise the bone marrow (BM) and confer a high cancer risk to the patients, particularly in the development of Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). The diagnosis of FA patients is complex and cannot be based only on clinical features at presentation. The gold standard diagnostic assay for these patients is cytogenetic analysis, revealing chromosomal breaks induced by DNA cross-linking agents. Clonal chromosome abnormalities, such as the ones involving chromosomes 1q, 3q, and 7, are also common features in FA patients and are associated with progressive BM failure and/or a pre-leukemia condition. In this review, we discuss the cytogenetic methods and their application in diagnosis, stratification of the patients into distinct prognostic groups, and the clinical follow-up of FA patients. These methods have been invaluable for the understanding of FA pathogenesis and identifying novel disease biomarkers. Additional evidence is required to determine the association of these biomarkers with prognosis and cancer risk, and their potential as druggable targets for FA therapy.
Collapse
|
12
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
13
|
Zhang R, Du J, Xiao Z, Jiang Y, Jin L, Weng Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: a prospective case-control study. BMC Pregnancy Childbirth 2022; 22:483. [PMID: 35698093 PMCID: PMC9195426 DOI: 10.1186/s12884-022-04801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To explore changes in telomere length (TL) and mitochondrial copy number (mtDNA-CN) in preeclampsia (PE) and to evaluate the combined effect of maternal TL and mtDNA-CN on PE risk. Methods A case–control study of 471 subjects (130 PE cases and 341 age frequency matched controls with gestational age rank from 24 to 42 weeks) was conducted in Nanjing Drum Tower Hospital, Jiangsu Province of China. Relative telomere length (RTL) and mtDNA-CN were measured using quantitative polymerase chain reaction (qPCR), and PE risk was compared between groups by logistic regression analyses. Results PE patients displayed longer RTL (0.48 versus 0.30) and higher mtDNA-CN (3.02 versus 2.00) in maternal blood as well as longer RTL (0.61 versus 0.35) but lower mtDNA-CN (1.69 versus 5.49) in cord blood (all p < 0.001). Exercise during pregnancy exerted an obvious effect of maternal telomere length prolongation. Multiparous women with folic acid intake during early pregnancy and those who delivered vaginally showed longer telomere length, while those factors imposed no or opposite effect on RTL in PE cases. Furthermore, RTL and mtDNA-CN were positively correlated in controls (in maternal blood r = 0.18, p < 0.01; in cord blood r = 0.19, p < 0.001), but this correlation was disrupted in PE patients in both maternal blood and cord blood. Longer maternal RTL and higher mtDNA-CN were associated with a higher risk of PE, and the ROC curve of RTL and mtDNA-CN for predicting PE risk presented an AUC of 0.755 (95% CI: 0.698–0.812). Conclusions The interaction of TL and mtDNA-CN may play an important role in the pathogenesis of PE and could be a potential biomarker of PE risk. Supplementary information The online version contains supplementary material available at 10.1186/s12884-022-04801-0.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,StateKey Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhendong Xiao
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuan Jiang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Liang Jin
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
| |
Collapse
|
14
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
16
|
Machan M, Tabor JB, Wang M, Sutter B, Wiley JP, Mychasiuk R, Debert CT. The Impact of Concussion, Sport, and Time in Season on Saliva Telomere Length in Healthy Athletes. Front Sports Act Living 2022; 4:816607. [PMID: 35243342 PMCID: PMC8886719 DOI: 10.3389/fspor.2022.816607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, sport-related concussion diagnosis and management is primarily based on subjective clinical tests in the absence of validated biomarkers. A major obstacle to clinical validation and application is a lack of studies exploring potential biomarkers in non-injured populations. This cross-sectional study examined the associations between saliva telomere length (TL) and multiple confounding variables in a healthy university athlete population. One hundred eighty-three (108 male and 75 female) uninjured varsity athletes were recruited to the study and provided saliva samples at either pre- or mid-season, for TL analysis. Multiple linear regression was used to determine the associations between saliva TL and history of concussion, sport contact type, time in season (pre vs. mid-season collection), age, and sex. Results showed no significant associations between TL and history of concussion, age, or sport contact type. However, TL from samples collected mid-season were longer than those collected pre-season [β = 231.4, 95% CI (61.9, 401.0), p = 0.008], and males had longer TL than females [β = 284.8, 95% CI (111.5, 458.2), p = 0.001] when adjusting for all other variables in the model. These findings population suggest that multiple variables may influence TL. Future studies should consider these confounders when evaluating saliva TL as a plausible fluid biomarker for SRC.
Collapse
Affiliation(s)
- Matthew Machan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jason B. Tabor
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chantel T. Debert
| |
Collapse
|
17
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Comparison of Telomere Length in Young and Master Endurance Runners and Sprinters. J Aging Phys Act 2021; 30:510-516. [PMID: 34564066 DOI: 10.1123/japa.2021-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/18/2022]
Abstract
It is unclear how running modality influences telomere length (TL). This single laboratory visit study compared the TL of master sprinters and endurance runners with their young counterparts. The correlation between leukocyte and buccal cell TL in athletes was also explored. Participants consisted of 11 young controls, 11 young sprinters, 12 young endurance runners, 12 middle-aged controls, 11 master sprinters, and 12 master endurance runners. Blood and buccal samples were collected and randomized for analysis of TL by quantitative polymerase chain reaction. Young endurance runners displayed longer telomeres than master athletes (p < .05); however, these differences were not significant when controlled for covariates (p > .05). A positive correlation existed between leukocyte and buccal cell TL in athletes (r = .567, p < .001). In conclusion, young endurance runners possess longer telomeres than master endurance runners and sprinters, a consequence of lower body mass index and visceral fat.
Collapse
|
19
|
Yeap BB, Hui J, Knuiman MW, Flicker L, Divitini ML, Arscott GM, Twigg SM, Almeida OP, Hankey GJ, Golledge J, Norman PE, Beilby JP. U-Shaped Relationship of Leukocyte Telomere Length With All-Cause and Cancer-Related Mortality in Older Men. J Gerontol A Biol Sci Med Sci 2021; 76:164-171. [PMID: 32761187 DOI: 10.1093/gerona/glaa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomeres are essential DNA-protein complexes whose attrition results in cellular dysfunction and senescence. Leukocyte telomere length (LTL) correlates with tissue telomere length, representing a biomarker for biological age. However, its predictive value for mortality risk, and for cardiovascular versus cancer deaths, in older adults remains uncertain. METHOD We studied 3608 community-dwelling men aged 77.0 ± 3.6 years. Leukocyte telomere length was measured using multiplex quantitative PCR, expressed as amount of telomeric DNA relative to single-copy control gene (T/S ratio). Deaths from any cause, cardiovascular disease (CVD), and cancer were ascertained using data linkage. Curve fitting used restricted cubic splines and Cox regression analyses adjusted for age, cardiometabolic risk factors, and prevalent disease. RESULTS There was a U-shaped association of LTL with all-cause mortality. Men with T/S ratio in the middle quartiles had lower mortality (quartiles, Q2 vs Q1, hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.77-0.97, p = .012; Q3 vs Q1 HR = 0.88, CI 0.79-0.99, p = .032). There was no association of LTL with CVD mortality. There was a U-shaped association of LTL with cancer mortality. Men with LTL in the middle quartiles had lower risk of cancer death (Q2 vs Q1, HR = 0.73, CI 0.59-0.90, p = .004; Q3 vs Q1, HR = 0.75, CI 0.61-0.92, p = .007). CONCLUSIONS In older men, both shorter and longer LTL are associated with all-cause mortality. A similar U-shaped association was seen with cancer deaths, with no association found for cardiovascular deaths. Further research is warranted to explore the prognostic utility of LTL in ageing.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Stephen M Twigg
- Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia.,WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia
| | - Paul E Norman
- Medical School, University of Western Australia, Perth, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Serum gamma-glutamyl transferase, a marker of alcohol intake, is associated with telomere length and cardiometabolic risk in young adulthood. Sci Rep 2021; 11:12407. [PMID: 34117333 PMCID: PMC8196210 DOI: 10.1038/s41598-021-91987-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Studies based on self-reported alcohol consumption and telomere length show inconsistent results. Therefore, we studied the association between gamma-glutamyl transferase (GGT), a widely used biomarker of alcohol intake, and telomere length. The possible health relevance in young adulthood was explored by investigating cardiometabolic risk factors. Mixed modelling was performed to examine GGT and alcohol consumption in association with telomere length in buccal cells of 211 adults between 18 and 30 years old of the East Flanders Prospective Twin Survey. In addition, we investigated the association between GGT and cardiometabolic risk factors; waist circumference, systolic blood pressure, fasting glucose, HDL cholesterol, and triglycerides. Although we did not observe an association between self-reported alcohol consumption and telomere length, our results show that a doubling in serum GGT is associated with 7.80% (95% CI − 13.9 to − 1.2%; p = 0.02) shorter buccal telomeres, independently from sex, chronological age, educational level, zygosity and chorionicity, waist-to-hip ratio and smoking. The association between GGT was significant for all five cardiometabolic risk factors, while adjusting for age. We show that GGT, a widely used biomarker of alcohol consumption, is associated with telomere length and with risk factors of cardiometabolic syndrome, despite the young age of this study population.
Collapse
|
21
|
Impact of Snoring on Telomere Shortening in Adolescents with Atopic Diseases. Genes (Basel) 2021; 12:genes12050766. [PMID: 34069972 PMCID: PMC8157836 DOI: 10.3390/genes12050766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022] Open
Abstract
Atopic diseases can impose a significant burden on children and adolescents. Telomere length is a cellular marker of aging reflecting the impact of cumulative stress exposure on individual health. Since elevated oxidative stress and inflammation burden induced by chronic atopy and snoring may impact telomere length, this study aimed to investigate whether snoring would moderate the relationship between atopic diseases and telomere length in early adolescence. We surveyed 354 adolescents and their parents. Parents reported the adolescents' history of atopic diseases, recent snoring history as well as other family sociodemographic characteristics. Buccal swab samples were also collected from the adolescents for telomere length determination. Independent and combined effects of atopic diseases and snoring on telomere length were examined. Among the surveyed adolescents, 174 were reported by parents to have atopic diseases (20 had asthma, 145 had allergic rhinitis, 53 had eczema, and 25 had food allergy). Shorter TL was found in participants with a history of snoring and atopic diseases (β = -0.34, p = 0.002) particularly for asthma (β = -0.21, p = 0.007) and allergic rhinitis (β = -0.22, p = 0.023). Our findings suggest that snoring in atopic patients has important implications for accelerated telomere shortening. Proper management of atopic symptoms at an early age is important for the alleviation of long-term health consequences at the cellular level.
Collapse
|
22
|
Gasior Kabat M, Bueno D, Sisinni L, De Paz R, Mozo Y, Perona R, Arias-Salgado EG, Rosich B, Marcos A, Romero AB, Constanzo A, Jiménez-Yuste V, Pérez-Martínez A. Selective T-cell depletion targeting CD45RA as a novel approach for HLA-mismatched hematopoietic stem cell transplantation in pediatric nonmalignant hematological diseases. Int J Hematol 2021; 114:116-123. [PMID: 33772729 DOI: 10.1007/s12185-021-03138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
Severe aplastic anemia and congenital amegakaryocytic thrombocytopenia are rare bone marrow failure syndromes. Treatment for aplastic anemia consists of hematopoietic stem cell transplantation (HSCT) from a matched sibling donor or immunosuppressant drugs if there is no donor available. Congenital amegakaryocytic thrombocytopenia is a rare autosomal recessive disease that causes bone marrow failure and has limited treatment options, except for transfusion support and HSCT. In the absence of a suitable matched sibling donor, matched-unrelated, haploidentical, or mismatched donors may be considered. A 2-step partial T-cell-depletion strategy can remove CD45RA+ naïve T cells responsible for graft-versus-host disease (GvHD) while preserving memory T cells. Five patients underwent transplantation using this strategy with rapid neutrophil and platelet recovery. Acute and chronic GvHD ≥ grade 2 appeared in two and one patient, respectively. No severe infections were observed before day + 100. A high (60%) incidence of transplant-associated microangiopathy was observed. Three patients (60%) remain alive, with a median follow-up of 881 (range 323-1248) days. CD45RA-depleted HSCT is a novel approach for patients lacking a suitable matched donor; however, further improvements are needed.
Collapse
Affiliation(s)
- Mercedes Gasior Kabat
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain.
| | - David Bueno
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Raquel De Paz
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain
| | - Yasmina Mozo
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Rosario Perona
- Foundation for Biomedical Research CSIC/UAM, IDIPaz, CIBER on Rare Diseases, La Paz University Hospital, Madrid, Spain
| | - Elena G Arias-Salgado
- Foundation for Biomedical Research CSIC/UAM, IDIPaz, CIBER on Rare Diseases, La Paz University Hospital, Madrid, Spain
| | - Blanca Rosich
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Marcos
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain
| | - Ana Belén Romero
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain
| | - Aida Constanzo
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain
| | - Víctor Jiménez-Yuste
- Hematology Department, La Paz University Hospital, Paseo De La Castellana 261, 28046, Madrid, Spain
| | | |
Collapse
|
23
|
Merino A, Hoogduijn MJ, Molina-Molina M, Arias-Salgado EG, Korevaar SS, Baan CC, Montes-Worboys A. Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells. PLoS One 2021; 16:e0248415. [PMID: 33730089 PMCID: PMC7968667 DOI: 10.1371/journal.pone.0248415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. METHODS Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-β for 48h and gene expression of major pro-fibrotic markers were analyzed. RESULTS About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment. CONCLUSIONS MP conserve some of the properties attributed to the living MSC. This study shows that MP target lung cells, via which they may have a broad anti-fibrotic effect.
Collapse
Affiliation(s)
- Ana Merino
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria Molina-Molina
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES) Health Institute Carlos III, Madrid, Spain
| | | | - Sander S. Korevaar
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Montes-Worboys
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
24
|
Uppuluri L, Varapula D, Young E, Riethman H, Xiao M. Single-molecule telomere length characterization by optical mapping in nano-channel array: Perspective and review on telomere length measurement. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103562. [PMID: 33310082 PMCID: PMC8500550 DOI: 10.1016/j.etap.2020.103562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 05/11/2023]
Abstract
In humans, the telomere consists of tandem 5'TTAGGG3' DNA repeats on both ends of all 46 chromosomes. Telomere shortening has been linked to aging and age-related diseases. Similarly, telomere length changes have been associated with chemical exposure, molecular-level DNA damage, and tumor development. Telomere elongation has been associated to tumor development, caused due to chemical exposure and molecular-level DNA damage. The methods used to study these effects mostly rely on average telomere length as a biomarker. The mechanisms regulating subtelomere-specific and haplotype-specific telomere lengths in humans remain understudied and poorly understood, primarily because of technical limitations in obtaining these data for all chromosomes. Recent studies have shown that it is the short telomeres that are crucial in preserving chromosome stability. The identity and frequency of specific critically short telomeres potentially is a useful biomarker for studying aging, age-related diseases, and cancer. Here, we will briefly review the role of telomere length, its measurement, and our recent single-molecule telomere length measurement assay. With this assay, one can measure individual telomere lengths as well as identify their physically linked subtelomeric DNA. This assay can also positively detect telomere loss, characterize novel subtelomeric variants, haplotypes, and previously uncharacterized recombined subtelomeres. We will also discuss its applications in aging cells and cancer cells, highlighting the utility of the single molecule telomere length assay.
Collapse
Affiliation(s)
- Lahari Uppuluri
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Dharma Varapula
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eleanor Young
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Harold Riethman
- Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA, USA.
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; Institute of Molecular Medicine and Infectious Disease, School of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Hautekiet P, Nawrot TS, Janssen BG, Martens DS, De Clercq EM, Dadvand P, Plusquin M, Bijnens EM, Saenen ND. Child buccal telomere length and mitochondrial DNA content as biomolecular markers of ageing in association with air pollution. ENVIRONMENT INTERNATIONAL 2021; 147:106332. [PMID: 33388564 DOI: 10.1016/j.envint.2020.106332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pro-inflammatory conditions such as air pollution might induce biological ageing. However, the available evidence on such an impact in children is still very scarce. We studied in primary schoolchildren the association of ambient residential air pollution exposure with telomere length (TL) and mitochondrial DNA content (mtDNAc), two important targets of the core axis of ageing. METHODS Between 2012 and 2014, buccal TL and mtDNAc were repeatedly assessed using qPCR in 197 Belgian primary schoolchildren (mean age 10.3 years) as part of the COGNAC study. At the child's residence, recent (week), sub-chronic (month) and chronic (year) exposure to nitrogen dioxide (NO2), particulate matter ≤ 2.5 µm (PM2.5) and black carbon (BC) were estimated using a high resolution spatiotemporal model. A mixed-effects model with school and subject as random effect was used while adjusting for a priori chosen covariates. RESULTS An interquartile range (IQR) increment (1.9 µg/m3) in chronic PM2.5 exposure was associated with a 8.9% (95% CI: -15.4 to -1.9%) shorter TL. In contrast to PM2.5, chronic exposure to BC and NO2 was not associated with TL but recent exposure to BC and NO2 showed significant inverse associations with TL: an IQR increment in recent exposure to BC (0.9 µg/m3) and NO2 (10.2 µg/m3) was associated with a 6.2% (95% CI: -10.6 to -1.6%) and 6.4% (95% CI: -11.8 to -0.7%) shorter TL, respectively. Finally, an IQR increment in chronic PM2.5 exposure was associated with a 12.7% (95% CI: -21.7 to -2.6%) lower mtDNAc. However, no significant associations were seen for NO2 and BC or for other exposure windows. CONCLUSION Chronic exposure to PM2.5 below the EU threshold was associated with child's shorter buccal TL and lower mtDNAc, while traffic-related pollutants (BC and NO2) showed recent effects on telomere biology. Our data add to the literature on air pollution-induced effects of TL and mtDNAc, two measures part of the core axis of cellular ageing, from early life onwards.
Collapse
Affiliation(s)
- Pauline Hautekiet
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven (KU Leuven), O&N I Herestraat 49 - bus 706, BE-3000 Leuven, Belgium.
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| | - Payam Dadvand
- ISGlobal, Campus Mar, Dr Aiguader 88, ES-08003 Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 80, 08003 Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro 3-5, 28029 Madrid, Spain
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| |
Collapse
|
26
|
Elite swimmers possess shorter telomeres than recreationally active controls. Gene 2020; 769:145242. [PMID: 33068677 DOI: 10.1016/j.gene.2020.145242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Elite athletes are reported to possess longer telomeres than their less active counterparts. ACE gene (Insertion/Deletion) polymorphism has been previously associated with elite athletic performance, with the deletion (D) variant appearing more frequently in short distance swimmers. Additionally, the D allele has been reported to have a negative effect on telomere length. The aim of this study was to investigate the telomere length of elite swimmers and its potential association with ACE genotype. METHODS Telomere length was measured by real-time quantitative PCR and ACE I/D genotypes analysed by standard PCR and electrophoresis in 51 young elite swimmers and 56 controls. RESULTS Elite swimmers displayed shorter telomeres than controls (1.043 ± 0.127 vs 1.128 ± 0.177, p = 0.006). When split by sex, only elite female swimmers showed significantly shorter telomeres than their recreationally active counterparts (p = 0.019). ACE genotype distribution and allelic frequency did not differ between elite swimmers and controls, or by event distance among elite swimmers only. No association was observed between telomere length and ACE genotype in the whole cohort. CONCLUSIONS Elite swimmers possessed shorter telomeres than recreationally active controls. Our findings suggesting a negative effect of high-level swimming competition and/or training on telomere length and subsequent biological aging, particularly in females. However, this significant difference in telomere length does not appear to be attributed to the D allele as we report a lack of association between telomere length and ACE genotype frequency in elite swimmers and controls.
Collapse
|
27
|
Adams CD, Boutwell BB. A Mendelian randomization study of telomere length and blood-cell traits. Sci Rep 2020; 10:12223. [PMID: 32699327 PMCID: PMC7376238 DOI: 10.1038/s41598-020-68786-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Whether telomere attrition reducing proliferative reserve in blood-cell progenitors is causal has important public-health implications. Mendelian randomization (MR) is an analytic technique using germline genetic variants as instrumental variables. If certain assumptions are met, estimates from MR should be free from most environmental sources of confounding and reverse causation. Here, two-sample MR is performed to test whether longer telomeres cause changes to hematological traits. Summary statistics for genetic variants strongly associated with telomere length were extracted from a genome-wide association (GWA) study for telomere length in individuals of European ancestry (n = 9190) and from GWA studies of blood-cell traits, also in those of European ancestry (n ~ 173,000 participants). A standard deviation increase in genetically influenced telomere length increased red blood cell and white blood cell counts, decreased mean corpuscular hemoglobinand mean cell volume, and had no observable impact on mean corpuscular hemoglobin concentration, red cell distribution width, hematocrit, or hemoglobin. Sensitivity tests for pleiotropic distortion were mostly inconsistent with glaring violations to the MR assumptions. Similar to germline mutations in telomere biology genes leading to bone-marrow failure, these data provide evidence that genetically influenced common variation in telomere length impacts hematologic traits in the population.
Collapse
Affiliation(s)
- Charleen D Adams
- Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Brian B Boutwell
- School of Applied Science, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.,John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
28
|
Ineson KM, O’Shea TJ, Kilpatrick CW, Parise KL, Foster JT. Ambiguities in using telomere length for age determination in two North American bat species. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThe age of an animal, determined by time (chronological age) as well as genetic and environmental factors (biological age), influences the likelihood of mortality and reproduction and thus the animal’s contribution to population growth. For many long-lived species, such as bats, a lack of external and morphological indicators has made determining age a challenge, leading researchers to examine genetic markers of age for application to demographic studies. One widely studied biomarker of age is telomere length, which has been related both to chronological and biological age across taxa, but only recently has begun to be studied in bats. We assessed telomere length from the DNA of known-age and minimum known-age individuals of two bat species using a quantitative PCR assay. We determined that telomere length was quadratically related to chronological age in big brown bats (Eptesicus fuscus), although it had little predictive power for accurate age determination of unknown-age individuals. The relationship was different in little brown bats (Myotis lucifugus), where telomere length instead was correlated with biological age, apparently due to infection and wing damage associated with white-nose syndrome. Furthermore, we showed that wing biopsies currently are a better tissue source for studying telomere length in bats than guano and buccal swabs; the results from the latter group were more variable and potentially influenced by storage time. Refinement of collection and assessment methods for different non-lethally collected tissues will be important for longitudinal sampling to better understand telomere dynamics in these long-lived species. Although further work is needed to develop a biomarker capable of determining chronological age in bats, our results suggest that biological age, as reflected in telomere length, may be influenced by extrinsic stressors such as disease.
Collapse
Affiliation(s)
- Katherine M Ineson
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Thomas J O’Shea
- United States Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | | | - Katy L Parise
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jeffrey T Foster
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
29
|
Lewis CR, Taguinod F, Jepsen WM, Cohen J, Agrawal K, Huentelman MJ, Smith CJ, Ringenbach SDR, Braden BB. Telomere Length and Autism Spectrum Disorder Within the Family: Relationships With Cognition and Sensory Symptoms. Autism Res 2020; 13:1094-1101. [PMID: 32323911 DOI: 10.1002/aur.2307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
Telomeres are repetitive noncoding deoxynucleotide sequences that cap chromosomes to protect DNA. Telomere length (TL) is affected by both genetic and environmental factors, and shortening of telomeres is associated with multiple neuropsychiatric disorders, early life stress, and age-related cognitive dysfunction. Two previous studies associated shorter TL with autism spectrum disorder (ASD). We aimed to replicate this finding, describe TL in unaffected siblings, and explore novel relationships with symptoms and cognitive function in families with ASD. Participants were 212 male children and adolescents ages 1-17 years (86 with ASD, 57 unaffected siblings, and 69 typically developing [TD]) and 64 parents. TL was measured from blood leukocytes with quantitative real-time polymerase chain reaction and results are expressed by relative ratios with a single copy gene. We replicated that children and adolescents with ASD have shorter TL, compared to TD, and show that unaffected siblings have TL in between those of TD and ASD. We present novel associations between TL and sensory symptoms in ASD. Finally, we demonstrate cognitive functions, but not autistic traits, are related to TL in parents of children with ASD. Cognitive function and TL were not related in children and adolescents. As the third replication, our results elicit confidence in the finding that ASD is associated with shorter TL. Our novel sensory investigation suggests that shortened TL may be a biological mechanism of sensory symptoms in ASD. Furthermore, results highlight the need to better understand relationships between cognition, aging, and TL in families with ASD. Autism Res 2020, 13: 1094-1101. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Telomeres cap chromosomes to protect DNA. They progressively shorten as people age and are related to health outcomes. We replicated previous findings that children and adolescents with autism spectrum disorder (ASD) have shorter telomeres, compared to typically developing (TD), and show that unaffected siblings have telomere length (TL) in between those of TD and ASD. We find shortened TL is related to more severe sensory symptoms. This may mean families with ASD, especially those with elevated sensory symptoms, are at risk for worse age-related health outcomes.
Collapse
Affiliation(s)
- Candace R Lewis
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Francis Taguinod
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Jorey Cohen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Komal Agrawal
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | | - B Blair Braden
- Arizona State University, College of Health Solutions, Tempe, Arizona, USA
| |
Collapse
|
30
|
Rej PH, Bondy MH, Lin J, Prather AA, Kohrt BA, Worthman CM, Eisenberg DTA. Telomere length analysis from minimally-invasively collected samples: Methods development and meta-analysis of the validity of different sampling techniques: American Journal of Human Biology. Am J Hum Biol 2020; 33:e23410. [PMID: 32189404 DOI: 10.1002/ajhb.23410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/07/2020] [Accepted: 02/29/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Telomeres are the protective caps of chromosomes. They shorten with cell replication, age, and possibly environmental stimuli (eg, infection and stress). Short telomere length (TL) predicts subsequent worse health. Although venous whole blood (VWB) is most commonly used for TL measurement, other, more minimally invasive, sampling techniques are becoming increasingly common due to their field-friendliness, allowing for feasible measurement in low-resource contexts. We conducted statistical validation work for measuring TL in dried blood spots (DBS) and incorporated our results into a meta-analysis evaluating minimally invasive sampling techniques to measure TL. METHODS We isolated DNA extracts from DBS using a modified extraction protocol and tested how they endured different shipping conditions and long-term cryostorage. We then included our in-house DBS TL validation statistics (correlation values with VWB TL and age) in a series of meta-analyses of results from 24 other studies that published similar associations for values between TL measured in DBS, saliva, and buccal cells. RESULTS Our modified DBS extraction technique produced DNA yields that were roughly twice as large as previously recorded. Partially extracted DBS DNA was stable for 7 days at room temperature, and still provided reliable TL measurements, as determined by external validation statistics. In our meta-analysis, DBS TL had the highest external validity, followed by saliva, and then buccal cells-possibly reflecting similarities/differences in cellular composition vs VWB. CONCLUSIONS DBS DNA is the best proxy for VWB from the three minimally-invasively specimen types evaluated and can be used to expand TL research to diverse settings and populations.
Collapse
Affiliation(s)
- Peter H Rej
- Department of Anthropology, University of Washington, Seattle, Washington, USA
| | - Madison H Bondy
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Aric A Prather
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - Brandon A Kohrt
- Department of Psychiatry and Behavioral Services, George Washington University, Washington, District of Columbia, USA
| | - Carol M Worthman
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, Seattle, Washington, USA.,Center for Studies in Demography and Ecology, Seattle, Washington, USA
| |
Collapse
|
31
|
Beijers R, Hartman S, Shalev I, Hastings W, Mattern BC, de Weerth C, Belsky J. Testing three hypotheses about effects of sensitive-insensitive parenting on telomeres. Dev Psychol 2020; 56:237-250. [PMID: 31961192 PMCID: PMC7391860 DOI: 10.1037/dev0000879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Telomeres are the protective DNA-protein sequences appearing at the ends of chromosomes; they shorten with each cell division and are considered a biomarker of aging. Shorter telomere length and greater erosion have been associated with compromised physical and mental health and are hypothesized to be affected by early life stress. In the latter case, most work has relied on retrospective measures of early life stressors. The Dutch research (n = 193) presented herein tested 3 hypotheses prospectively regarding effects of sensitive-insensitive parenting during the first 2.5 years on telomere length at age 6, when first measured, and change over the following 4 years. It was predicted that (1) less sensitive parenting would predict shorter telomeres and greater erosion and that such effects would be most pronounced in children (2) exposed to prenatal stress and/or (3) who were highly negatively emotional as infants. Results revealed, only, that prenatal stress amplified parenting effects on telomere change-in a differential-susceptibility-related manner: Prenatally stressed children displayed more erosion when they experienced insensitive parenting and less erosion when they experienced sensitive parenting. Mechanisms that might initiate greater postnatal plasticity as a result of prenatal stress are highlighted and future work outlined. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jay Belsky
- Department of Human Development and Family Studies
| |
Collapse
|
32
|
Cumulus cells have longer telomeres than leukocytes in reproductive-age women. Fertil Steril 2020; 113:217-223. [DOI: 10.1016/j.fertnstert.2019.08.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
|
33
|
Yang L, Kost SEF, Beiggi S, Zhang Y, Schmidt R, Nugent Z, Marshall A, Banerji V, Gibson SB, Johnston JB. Buccal cell telomere length is not a useful marker for comorbidities in chronic lymphocytic leukemia. Leuk Res 2019; 86:106220. [PMID: 31499418 DOI: 10.1016/j.leukres.2019.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Lin Yang
- Section of Hematology/Medical Oncology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Sara E F Kost
- Research Institute of Oncology and Hematology (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, MB, Canada
| | - Sara Beiggi
- Research Institute of Oncology and Hematology (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, MB, Canada
| | - Yunli Zhang
- Research Institute of Oncology and Hematology (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, MB, Canada
| | - Robert Schmidt
- Research Institute of Oncology and Hematology (formerly, Manitoba Institute of Cell Biology), University of Manitoba, Winnipeg, MB, Canada
| | - Zoann Nugent
- Department of Epidemiology and Cancer Registry, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Aaron Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Versha Banerji
- Section of Hematology/Medical Oncology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Spencer B Gibson
- Research Institute of Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - James B Johnston
- Section of Hematology/Medical Oncology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Luu HN, Huang JY, Wang R, Adams-Haduch J, Jin A, Koh WP, Yuan JM. Association between leukocyte telomere length and the risk of pancreatic cancer: Findings from a prospective study. PLoS One 2019; 14:e0221697. [PMID: 31465482 PMCID: PMC6715276 DOI: 10.1371/journal.pone.0221697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Telomeres and telomerase play important role in maintaining chromosome integrity and genomic stability. Recent epidemiologic data showed inconsistent findings which suggested that both short and long leukocyte telomeres could be associated with increased risk of pancreatic cancer. We prospectively examined the association between telomere length and pancreatic cancer risk in a population-based cohort study. METHODS The Singapore Chinese Health Study recruited 63,257 Chinese aged 45 to 74 years from 1993 to 1998 in Singapore. Relative telomere length in peripheral blood leukocytes was quantified using a validated monochrome multiplex quantitative polymerase chain reaction method in 26,540 participants, including 116 participants who later developed pancreatic cancer after an average of 13 years of follow-up. Cox proportional hazard regression method was used to calculate hazard ratio (HR) and its 95% confidence interval (CI) of pancreatic cancer risk associated with telomere length, with adjustment for confounding factors. RESULTS Longer telomeres were significantly associated with higher risk of pancreatic cancer (Ptrend = 0.02). Compared with lowest quartile, subjects with highest quartile of telomere length had an HR of 2.18 (95% CI: 1.25-3.80) for developing pancreatic cancer. In stratified analysis, this association remained among pancreatic adenocarcinoma patients but not among pancreatic non-adenocarcinoma patients. In continuous scale, the HRs and 95% CIs were 3.08 (1.17-8.11) for adenocarcinoma patients and 1.47 (0.43-5.06) for non-adenocarcinoma patients. The HRs and 95% CIs of the highest quartile of telomere length, compared with the lowest quartile, for adenocarcinoma and non-adenocarcinoma were 2.50 (1.22-5.13) and 1.63 (0.66-4.03), respectively. The length of follow-up from the collection of blood for the measurement of telomere length to the diagnosis of cancer (median = 8.0, range: from 5.0 months to 16.2 years) had no significant impact on the association between telomere length and pancreatic cancer risk. CONCLUSIONS The present study demonstrates that longer telomeres are associated with increased risk of overall pancreatic cancer.
Collapse
Affiliation(s)
- Hung N. Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh PA, United States of America
- * E-mail: ,
| | - Joyce Y. Huang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Aizhen Jin
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh PA, United States of America
| |
Collapse
|
35
|
Wang Y, McReynolds LJ, Dagnall C, Katki HA, Spellman SR, Wang T, Hicks B, Freedman ND, Jones K, Lee SJ, Savage SA, Gadalla SM. Pre-transplant short telomeres are associated with high mortality risk after unrelated donor haematopoietic cell transplant for severe aplastic anaemia. Br J Haematol 2019; 188:309-316. [PMID: 31426123 DOI: 10.1111/bjh.16153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosomal stability and markers of biological age. We evaluated the effect of pre-transplant short (<10th percentile-for-age) or very short (<5th or <1st percentile-for-age) leucocyte telomere length on survival after unrelated donor haematopoietic cell transplantation (HCT) for acquired severe aplastic anaemia (SAA). Patient pre-transplant blood samples and clinical data were available at the Center for International Blood and Marrow Transplant Research. We used quantitative real time polymerase chain reaction to measure relative telomere length (RTL) in 490 SAA patients who received HCT between 1990 and 2013 (median age = 20 years). One hundred and twelve patients (22·86%) had pre-HCT RTL <10th percentile-for-age, with the majority below the 5th percentile (N = 80, 71·43%). RTL <10th percentile-for-age was associated with a higher risk of post-HCT mortality (hazard ratio [HR] = 1·78, 95% confidence interval [CI]=1·18-2·69, P = 0·006) compared with RTL ≥50th percentile; no survival differences were noted in longer RTL categories (P > 0·10). Time-dependent effects for post-HCT mortality were only observed in relation to very short RTL; HR comparing RTL <5th versus ≥5th percentile = 1·38, P = 0·15 for the first 12 months after HCT, and HR = 3·91, P < 0·0001, thereafter, P-heterogeneity = 0·008; the corresponding HRs for RTL <1st versus ≥1st percentile = 1·29, P = 0·41, and HR = 5·18, P < 0·0001, P-heterogeneity = 0·005. The study suggests a potential role for telomere length in risk stratification of SAA patients in regard to their HCT survival.
Collapse
Affiliation(s)
- Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hormuzd A Katki
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
36
|
Li S, Yang M, Carter E, Schauer JJ, Yang X, Ezzati M, Goldberg MS, Baumgartner J. Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87004. [PMID: 31393791 PMCID: PMC6792380 DOI: 10.1289/ehp4041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Telomere shortening is associated with early mortality and chronic disease. Recent studies indicate that environmental exposures, including urban and traffic-related air pollution, may shorten telomeres. Associations between exposure to household air pollution from solid fuel stoves and telomere length have not been evaluated. METHODS Among 137 rural Chinese women using biomass stoves ([Formula: see text] of age), we measured 48-h personal exposures to fine particulate matter [PM [Formula: see text] in aerodynamic diameter ([Formula: see text])] and black carbon and collected oral DNA on up to three occasions over a period of 2.5 y. Relative telomere length (RTL) was quantified using a modified real-time polymerase chain reaction protocol. Mixed effects regression models were used to investigate the exposure–response associations between household air pollution and RTL, adjusting for key sociodemographic, behavioral, and environmental covariates. RESULTS Women's daily exposures to air pollution ranged from [Formula: see text] for [Formula: see text] ([Formula: see text]) and [Formula: see text] for black carbon ([Formula: see text]). Natural cubic spline models indicated a mostly linear association between increased exposure to air pollution and shorter RTL, except at very high concentrations where there were few observations. We thus modeled the linear associations with all observations, excluding the highest 3% and 5% of exposures. In covariate-adjusted models, an interquartile range (IQR) increase in exposure to black carbon ([Formula: see text]) was associated with shorter RTL [all observations: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Further adjustment for outdoor temperature brought the estimates closer to zero [all observations: [Formula: see text] (95% CI: [Formula: see text], 0.06); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Models with [Formula: see text] as the exposure metric followed a similar pattern. CONCLUSION Telomere shortening, which is a biomarker of biological aging and chronic disease, may be associated with exposure to air pollution in settings where household biomass stoves are commonly used. https://doi.org/10.1289/EHP4041.
Collapse
Affiliation(s)
- Sabrina Li
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
| | - Ming Yang
- Cancer Research Center, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
| | - James J. Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Majid Ezzati
- School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council and Health Protection Agency (MRC-PHE) Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Mark S. Goldberg
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute, Centre for Outcomes Research and Evaluation, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Abstract
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Samavat H, Xun X, Jin A, Wang R, Koh WP, Yuan JM. Association between prediagnostic leukocyte telomere length and breast cancer risk: the Singapore Chinese Health Study. Breast Cancer Res 2019; 21:50. [PMID: 30995937 PMCID: PMC6471852 DOI: 10.1186/s13058-019-1133-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Telomeres and telomerase play key roles in the chromosomal maintenance and stability. Recent epidemiological studies have shown that longer telomeres are associated with increased risk of several cancer types. However, epidemiological data for telomere length and risk of breast cancer are sparse. METHODS We prospectively studied the association between telomere length and risk of breast cancer in 14,305 middle-aged or older Chinese women of the Singapore Chinese Health Study including 442 incident breast cancer cases after 12.3 years of follow-up. Relative telomere length in peripheral blood leukocytes was quantified using a validated monochrome multiple quantitative polymerase chain reaction method. The Cox proportional hazard regression method was used to estimate hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) for breast cancer associated with longer telomeres after adjustment for potential confounders. RESULTS Longer telomeres were significantly associated with higher risk of breast cancer in a dose-dependent manner (Ptrend = 0.006); the highest quartile of telomere length was associated with a statistically significant 47% higher risk of breast cancer compared with the lowest quartile of telomere length after the adjustment for age and other known risk factors for breast cancer (HRQ4 vs Q1 = 1.47, 95% CI = 1.11, 1.94). CONCLUSIONS The findings of the present study support the hypothesis that longer telomeres may be a risk factor for breast cancer. Telomere length in peripheral blood leukocytes may be developed as a biomarker for breast cancer risk prediction.
Collapse
Affiliation(s)
- Hamed Samavat
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Cancer Pavilion, Suite 4C, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA. .,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aizhen Jin
- Heath Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Renwei Wang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Heath Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Cancer Pavilion, Suite 4C, 5150 Centre Avenue, Pittsburgh, PA, 15232, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Arias-Salgado EG, Galvez E, Planas-Cerezales L, Pintado-Berninches L, Vallespin E, Martinez P, Carrillo J, Iarriccio L, Ruiz-Llobet A, Catalá A, Badell-Serra I, Gonzalez-Granado LI, Martín-Nalda A, Martínez-Gallo M, Galera-Miñarro A, Rodríguez-Vigil C, Bastos-Oreiro M, Perez de Nanclares G, Leiro-Fernández V, Uria ML, Diaz-Heredia C, Valenzuela C, Martín S, López-Muñiz B, Lapunzina P, Sevilla J, Molina-Molina M, Perona R, Sastre L. Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes. Orphanet J Rare Dis 2019; 14:82. [PMID: 30995915 PMCID: PMC6471801 DOI: 10.1186/s13023-019-1046-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/12/2019] [Indexed: 01/19/2023] Open
Abstract
Background Telomeres are nucleoprotein structures present at the terminal region of the chromosomes. Mutations in genes coding for proteins involved in telomere maintenance are causative of a number of disorders known as telomeropathies. The genetic origin of these diseases is heterogeneous and has not been determined for a significant proportion of patients. Methods This article describes the genetic characterization of a cohort of patients. Telomere length was determined by Southern blot and quantitative PCR. Nucleotide variants were analyzed either by high-resolution melting analysis and Sanger sequencing of selected exons or by massive sequencing of a panel of genes. Results Forty-seven patients with telomere length below the 10% of normal population, affected with three telomeropathies: dyskeratosis congenita (4), aplastic anemia (22) or pulmonary fibrosis (21) were analyzed. Eighteen of these patients presented known pathogenic or novel possibly pathogenic variants in the telomere-related genes TERT, TERC, RTEL1, CTC1 and ACD. In addition, the analyses of a panel of 188 genes related to haematological disorders indicated that a relevant proportion of the patients (up to 35%) presented rare variants in genes related to DNA repair or in genes coding for proteins involved in the resolution of complex DNA structures, that participate in telomere replication. Mutations in some of these genes are causative of several syndromes previously associated to telomere shortening. Conclusion Novel variants in telomere, DNA repair and replication genes are described that might indicate the contribution of variants in these genes to the development of telomeropathies. Patients carrying variants in telomere-related genes presented worse evolution after diagnosis than the rest of patients analyzed. Electronic supplementary material The online version of this article (10.1186/s13023-019-1046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena G Arias-Salgado
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Eva Galvez
- Hospital Niño Jesús, Hematología y Hemoterapia, Madrid, Spain
| | - Lurdes Planas-Cerezales
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Laura Pintado-Berninches
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Elena Vallespin
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Pilar Martinez
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Carrillo
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,Advanced Medical Projects, Madrid, Spain
| | - Anna Ruiz-Llobet
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Albert Catalá
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | | | | | - Andrea Martín-Nalda
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | | | | | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Virginia Leiro-Fernández
- Pneumology Department, Hospital Álvaro Cunqueiro, Complexo Hospitalario Universitario de Vigo, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Barcelona, Spain
| | - Maria-Luz Uria
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Cristina Diaz-Heredia
- Immunology Division, Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Sara Martín
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - Julian Sevilla
- Hospital Niño Jesús, Hematología y Hemoterapia, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - María Molina-Molina
- ILD Unit Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Barcelona, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain.,CIBER de enfermedades raras (CIBERER), Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas CSIC/UAM, IDIPaz, Arturo Duperier, 4, 28029, Madrid, Spain. .,CIBER de enfermedades raras (CIBERER), Madrid, Spain.
| |
Collapse
|
40
|
Yeap BB, Hui J, Knuiman MW, Handelsman DJ, Flicker L, Divitini ML, Arscott GM, McLennan SV, Twigg SM, Almeida OP, Hankey GJ, Golledge J, Norman PE, Beilby JP. Cross-sectional associations of sex hormones with leucocyte telomere length, a marker of biological age, in a community-based cohort of older men. Clin Endocrinol (Oxf) 2019; 90:562-569. [PMID: 30561819 DOI: 10.1111/cen.13918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023]
Abstract
CONTEXT Telomeres protect chromosomes from damage, and shorter leucocyte telomere length (LTL) is a marker of advancing biological age. The association between testosterone (T) and its bioactive metabolites, dihydrotestosterone (DHT) and oestradiol (E2) with telomere length, particularly in older men, is uncertain. The study aimed to clarify associations of sex hormones with LTL in older men. PARTICIPANTS AND METHODS We used cross-sectional data from 2913 men aged 76.7 ± 3.2 years with morning blood samples assayed for T, DHT, E2 (mass spectrometry), and sex hormone-binding globulin (SHBG, immunoassay), to correlate sex hormones with LTL measured using PCR and expressed as T/S ratio in multivariable linear regression models adjusted for age, cardiometabolic risk factors and cardiovascular disease history. RESULTS Average difference per decade of age was T -0.46 nmol/L, DHT -0.11 nmol/L, E2 -7.5 pmol/L, SHBG +10.2 nmol/L and LTL (T/S ratio) -0.065. E2 correlated with T/S ratio (r = 0.038, P = 0.039) and SHBG was inversely correlated (r = -0.053, P = 0.004). After multivariable adjustment, E2 was associated with T/S ratio (per 1 SD increase E2: coefficient 0.011, P = 0.043), T and DHT were not associated. When E2 and SHBG were simultaneously included, E2 remained positively (coefficient 0.014, P = 0.014) and SHBG inversely (coefficient -0.013, P = 0.037) associated with T/S ratio. CONCLUSIONS In older men, neither T nor DHT is associated with LTL while E2 is independently associated with LTL and SHBG is inversely associated, thus relating sex hormone exposure to lower biological age. Further research is needed to determine causality and clarify the role of sex hormones in male ageing.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- WA Centre for Health & Ageing, University of Western Australia, Perth, Western Australia, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Susan V McLennan
- Department of Endocrinology, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Department of Endocrinology, University of Sydney, Sydney, New South Wales, Australia
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- WA Centre for Health & Ageing, University of Western Australia, Perth, Western Australia, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, Townsville Hospital, Townsville, Queensland, Australia
| | - Paul E Norman
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Chang WF, Wu YH, Xu J, Sung LY. Compromised Chondrocyte Differentiation Capacity in TERC Knockout Mouse Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Int J Mol Sci 2019; 20:ijms20051236. [PMID: 30870992 PMCID: PMC6429130 DOI: 10.3390/ijms20051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian telomere lengths are primarily regulated by telomerase, consisting of a reverse transcriptase protein (TERT) and an RNA subunit (TERC). We previously reported the generation of mouse Terc+/- and Terc-/- embryonic stem cells (ntESCs) by somatic cell nuclear transfer. In the present work, we investigated the germ layer development competence of Terc-/-, Terc+/- and wild-type (Terc+/+) ntESCs. The telomere lengths are longest in wild-type but shortest in Terc-/- ntESCs, and correlate reversely with the population doubling time. Interestingly, while in vitro embryoid body (EB) differentiation assay reveals EB size difference among ntESCs of different genotypes, the more stringent in vivo teratoma assay demonstrates that Terc-/- ntESCs are severely defective in differentiating into the mesodermal lineage cartilage. Consistently, in a directed in vitro chondrocyte differentiation assay, the Terc-/- cells failed in forming Collagen II expressing cells. These findings underscore the significance in maintaining proper telomere lengths in stem cells and their derivatives for regenerative medicine.
Collapse
Affiliation(s)
- Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Yun-Hsin Wu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
- Animal Resource Center, National Taiwan University, Taipei 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
42
|
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Adv Clin Chem 2019; 90:81-132. [PMID: 31122612 DOI: 10.1016/bs.acc.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ever since their discovery, the telomeres and the telomerase have been topics of intensive research, first as a mechanism of cellular aging and later as an indicator of health and diseases in humans. By protecting the chromosome ends, the telomeres play a vital role in preserving the information in our genome. Telomeres shorten with age and the rate of telomere erosion provides insight into the proliferation history of cells. The pace of telomere attrition is known to increase at the onset of several pathological conditions. Telomere shortening has been emerging as a potential contributor in the pathogenesis of several neurological disorders including autism spectrum disorders (ASD), schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD) and depression. The rate of telomere attrition in the brain is slower than that of other tissues owing to the low rate of cell proliferation in brain. Telomere maintenance is crucial for the functioning of stem cells in brain. Taking together the studies on telomere attrition in various neurological disorders, an association between telomere shortening and disease status has been demonstrated in schizophrenia, AD and depression, in spite of a few negative reports. But, studies in ASD and PD have failed to produce conclusive results. The cause-effect relationship between TL and neurological disorders is yet to be elucidated. The factors responsible for telomere erosion, which have also been implicated in the pathogenesis of neurological disorders, need to be explored in detail. Telomerase activation is now being considered as a potential therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Ismail Thanseem
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mahesh Mundalil Vasu
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Vijitha Viswambharan
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Suresh A Poovathinal
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| |
Collapse
|
43
|
de Punder K, Heim C, Przesdzing I, Wadhwa PD, Entringer S. Characterization in humans of in vitro leucocyte maximal telomerase activity capacity and association with stress. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0441. [PMID: 29335365 DOI: 10.1098/rstb.2016.0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to develop and validate a measure of maximal telomerase activity capacity (mTAC) for use in human studies of telomere biology, and to determine its association with measures of stress and stress responsivity. The study was conducted in a population of 28 healthy young women and men who were assessed serially across two separate days, at multiple time points, and in response to a standardized laboratory stressor. Venous blood was collected at each of these multiple assessments, and an in vitro mitogen challenge (phytohaemagglutinin supplemented with interleukin-2) was used to stimulate telomerase activity in leucocytes. After first establishing the optimal post-stimulation time course to characterize mTAC, we determined the within-subject stability and the between-subject variability of mTAC. The major findings of our study are as follows: (i) the optimal time point to quantify human leucocyte mTAC appears to be at 72 h after mitogen stimulation; (ii) mTAC exhibits substantial within-subject stability (correlations were in the range of r 0.68-0.82) and between-subject variability, with a high intra-class coefficient (0.70), indicating greater between-subject relative to within-subject variability; (iii) mTAC is not influenced by situational factors including time of day, cortisol, acute stress exposure and immune cell distribution in the pre-stimulation blood sample; and (iv) a significant proportion of the between-subject variability in mTAC is associated with measures of stress and stress responsivity (mTAC is lower in subjects reporting higher levels of perceived (chronic) stress and exhibiting higher psychophysiological stress reactivity). Based collectively on these findings, it appears that mTAC, as proposed and operationalized, empirically meets the key criteria to represent a potentially useful individual difference measure of telomerase activity capacity of human leucocytes.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Karin de Punder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Christine Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.,Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, Pennsylvania, PA, USA
| | - Ingo Przesdzing
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Experimental Neurology and Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Pathik D Wadhwa
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA .,Department of Obstetrics and Gynecology, University of California, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, CA, USA.,Department of Epidemiology, University of California, Irvine, CA, USA.,Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, CA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany .,Department of Pediatrics, University of California, Irvine, CA, USA.,Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
44
|
Planas-Cerezales L, Arias-Salgado EG, Buendia-Roldán I, Montes-Worboys A, López CE, Vicens-Zygmunt V, Hernaiz PL, Sanuy RL, Leiro-Fernandez V, Vilarnau EB, Llinás ES, Sargatal JD, Abellón RP, Selman M, Molina-Molina M. Predictive factors and prognostic effect of telomere shortening in pulmonary fibrosis. Respirology 2018; 24:146-153. [PMID: 30320420 DOI: 10.1111/resp.13423] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The abnormal shortening of telomeres is a mechanism linking ageing to idiopathic pulmonary fibrosis (IPF) that could be useful in the clinical setting. The objective of this study was to identify the IPF patients with higher risk for telomere shortening and to investigate the outcome implications. METHODS Consecutive Spanish patients were included at diagnosis and followed up for 3 years. DNA blood samples from a Mexican cohort were used to validate the results found in Spanish sporadic IPF. Prior to treatment, telomere length was measured through quantitative polymerase chain reaction (qPCR) and Southern blot. Outcome was assessed according to mortality or need for lung transplantation. A multivariate regression logistic model was used for statistical analysis. RESULTS Family aggregation, age of <60 years and the presence of non-specific immunological or haematological abnormalities were associated with a higher probability of telomere shortening. Overall, 66.6% of patients younger than 60 years with telomere shortening died or required lung transplantation, independent of functional impairment at diagnosis. By contrast, in patients older than 60 years with telomere shortening, the negative impact of telomere shortening in outcome was not significant. CONCLUSION Our data indicate that young sporadic IPF patients (<60 years) with some non-specific immunological or haematological abnormalities had higher risk of telomere shortening, and furthermore, they presented a poorer prognosis.
Collapse
Affiliation(s)
- Lurdes Planas-Cerezales
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Funcional de Intersticio Pulmonar, Servicio Neumología, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elena G Arias-Salgado
- Advanced Medical Projects, Madrid, Spain.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ivette Buendia-Roldán
- Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", México City, Mexico
| | - Ana Montes-Worboys
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Funcional de Intersticio Pulmonar, Servicio Neumología, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Esquinas López
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servicio de Neumología, Hospital Vall d'Hebron, Barcelona, Spain
| | - Vanesa Vicens-Zygmunt
- Unidad Funcional de Intersticio Pulmonar, Servicio Neumología, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Patricio Luburich Hernaiz
- Unidad Funcional de Intersticio Pulmonar. Servicio Radiodiagnóstico, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Roger Llatjós Sanuy
- Unidad Funcional de Intersticio Pulmonar, Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Virginia Leiro-Fernandez
- Servicio de Neumología, Complexo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain.,Grupo de Investigación en Respiratorio, Instituto de Investigación Biomédica de Vigo, Vigo, Spain
| | - Eva Balcells Vilarnau
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servicio de Neumología, Hospital del Mar, Instituto Hospital del Mar de Investigaciones Médicas (IMIM), Universidad Pompeu Fabra (UPF), Barcelona, Spain
| | - Ernest Sala Llinás
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servicio de Neumología, Hospital Son Espases, Instituto de Investigación Sanitaria Islas Baleares (IdISBa), Palma de Mallorca, Spain
| | - Jordi Dorca Sargatal
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Funcional de Intersticio Pulmonar, Servicio Neumología, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Rosario Perona Abellón
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", México City, Mexico
| | - Maria Molina-Molina
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Funcional de Intersticio Pulmonar, Servicio Neumología, Hospital Universitario de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
45
|
Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, Li-Harms X, Zhang J, Tchkonia T, Pluijm SMF, Armstrong GT. Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. J Clin Oncol 2018; 36:2206-2215. [PMID: 29874132 DOI: 10.1200/jco.2017.76.7467] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The improvement in survival of childhood cancer observed across the past 50 years has resulted in a growing acknowledgment that simply extending the lifespan of survivors is not enough. It is incumbent on both the cancer research and the clinical care communities to also improve the health span of survivors. It is well established that aging adult survivors of childhood cancer are at increased risk of chronic health conditions, relative to the general population. However, as the first generation of survivors age into their 50s and 60s, it has become increasingly evident that this population is also at risk of early onset of physiologic aging. Geriatric measures have uncovered evidence of reduced strength and speed and increased fatigue, all components of frailty, among survivors with a median age of 33 years, which is similar to adults older than 65 years of age in the general population. Furthermore, frailty in survivors independently increased the risk of morbidity and mortality. Although there has been a paucity of research investigating the underlying biologic mechanisms for advanced physiologic age in survivors, results from geriatric populations suggest five biologically plausible mechanisms that may be potentiated by exposure to cancer therapies: increased cellular senescence, reduced telomere length, epigenetic modifications, somatic mutations, and mitochondrial DNA infidelity. There is now a critical need for research to elucidate the biologic mechanisms of premature aging in survivors of childhood cancer. This research could pave the way for new frontiers in the prevention of these life-changing outcomes.
Collapse
Affiliation(s)
- Kirsten K Ness
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - James L Kirkland
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maria Monica Gramatges
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Zhaoming Wang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mondira Kundu
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kelly McCastlain
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Xiujie Li-Harms
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jinghui Zhang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tamar Tchkonia
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Saskia Martine Francesca Pluijm
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gregory T Armstrong
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
46
|
Yuan JM, Beckman KB, Wang R, Bull C, Adams-Haduch J, Huang JY, Jin A, Opresko P, Newman AB, Zheng YL, Fenech M, Koh WP. Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: Findings from the Singapore Chinese Health Study. Int J Cancer 2018; 142:2234-2243. [PMID: 29318605 DOI: 10.1002/ijc.31251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
Telomeres are crucial in the maintenance of chromosome integrity and genomic stability. Critically short telomeres can trigger programed cell death while cells with longer telomeres may have increased likelihood of replicative errors, resulting in genetic mutations and chromosomal alterations, and ultimately promoting oncogenesis. Data on telomere length and lung cancer risk from large prospective cohort studies are spare. Relative telomere length in peripheral blood leukocytes was quantified using a validated monochrome multiplex quantitative polymerase chain reaction (qPCR) method in 26,540 participants of the Singapore Chinese Health Study. After a follow-up of 12 years, 654 participants developed lung cancer including 288 adenocarcinoma, 113 squamous cell carcinoma and 253 other/unknown histological type. The Cox proportional hazard regression was used to estimate hazard ratio (HR) and 95% confidence interval (CI). HR of lung adenocarcinoma for individuals in the highest comparing the lowest 20 percentile of telomere length was 2.84 (95% CI 1.94-4.14, ptrend < 0.0001). This positive association was present in never smokers (ptrend < 0.0001), ever smokers (ptrend = 0.0010), men (ptrend = 0.0003), women (ptrend < 0.0001), and in shorter (ptrend = 0.0002) and longer (ptrend = 0.0001) duration of follow-up. There was no association between telomere length and risk of squamous cell carcinoma or other histological type of lung cancer in all or subgroups of individuals. The agreement of results from this prospective cohort study with those of previous prospective studies and Mendelian randomization studies suggest a possible etiological role of telomere length in the development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Caroline Bull
- Genome Health and Personalised Nutrition Laboratory, The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Joyce Y Huang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aizhen Jin
- National Registry of Diseases Office, Health Promotion Board, Singapore, Singapore
| | - Patricia Opresko
- Department of Environmental and Occupational Health, Graduate School of Public Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA.,Graduate School of Public Health, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA
| | - Yun-Ling Zheng
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC
| | - Michael Fenech
- Genome Health and Personalised Nutrition Laboratory, The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia
| | - Woon-Puay Koh
- Duke-NUS Medical School Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Gurung RL, M Y, Liu S, Liu JJ, Lim SC. Short Leukocyte Telomere Length Predicts Albuminuria Progression in Individuals With Type 2 Diabetes. Kidney Int Rep 2017; 3:592-601. [PMID: 29854966 PMCID: PMC5976822 DOI: 10.1016/j.ekir.2017.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction Telomere length, a marker for biological aging, is implicated with diabetic kidney disease (DKD); however, the association between telomere length and albuminuria progression among Asian patients with type 2 diabetes (T2D) is not well understood. Here, we aim to study whether leukocyte telomere length (LTL) may independently predict albuminuria progression in patients with T2D with preserved renal filtration function (estimated GFR >60 ml/min per 1.73 m2 and urine albumin-to-creatinine ratio [uACR] <300 mg/g). Methods The baseline LTL was measured by real-time polymerase chain reaction in the SMART2D cohort (n = 691) with a median follow-up of 3 years. Albuminuria progression was defined as a change in albuminuria category to a higher category and at least 30% increase in uACR from baseline in 3 years. Results Progressors (n = 123) had significantly shorter median LTL compared with nonprogressors (n = 568) (0.58 [0.38–0.79] vs. 0.62 [0.45–0.88], P = 0.039). Compared with subjects with longer LTL (fourth quartile), subjects with shorter LTL (first quartile) had 1.93-fold (1.04–3.60, P = 0.038) increased risk for albuminuria progression after adjustment for traditional risk factors. The association of LTL with microalbuminuria to macroalbuminuria progression was stronger than its association with normoalbuminuria to microalbuminuria (odds ratio [OR]: 1.54; 95% confidence interval [CI]: 1.02–2.32; P = 0.042 vs. OR: 1.13; 95% CI: 0.91–1.40; P = 0.263 per 1-SD decrement in natural log-transformed LTL). Conclusion Therefore, our results demonstrated that in patients with T2D with preserved renal filtration function, LTL predicts albuminuria progression beyond traditional risk factors, suggesting LTL may be novel biomarker for DKD progression.
Collapse
Affiliation(s)
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore
- Correspondence: Su Chi Lim, Clinical Research Unit, Khoo Teck Puat Hospital, 90 Yishun Central, Republic of Singapore 768828.
| |
Collapse
|
48
|
Attachment security moderates the link between adverse childhood experiences and cellular aging. Dev Psychopathol 2017; 30:1211-1223. [DOI: 10.1017/s0954579417001705] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractExposure to childhood adversity has been linked to accelerated telomere shortening, a marker of cellular aging and an indicator of physical health risk. In the current study, we examined whether adult attachment representation moderated the association between childhood adversity and telomere length. Participants included 78 young adults (M age = 20.46, SD = 1.57), who reported on their exposure to adverse childhood experiences (ACE) and were administered the Adult Attachment Interview, which was coded for attachment state of mind. Relative telomere length was assayed from buccal cells. Multiple regression analyses revealed a significant interaction between attachment state of mind and ACE in predicting telomere length. Whereas the association between number of ACE and telomere length was nonsignificant for secure–autonomous, r (50) = –.15, p = .31, and insecure–preoccupied young adults, r (9) = –.15, p = .71, there was a strong negative association between number of ACE and telomere length for insecure–dismissing young adults, r (19) = –.59, p = .007. This study is novel in demonstrating that attachment may affect biological resilience following childhood adversity, contributing to the growing literature about the role of the quality of early caregiving experiences and their representations in shaping biological processes and physical health.
Collapse
|
49
|
Bijnens EM, Zeegers MP, Derom C, Martens DS, Gielen M, Hageman GJ, Plusquin M, Thiery E, Vlietinck R, Nawrot TS. Telomere tracking from birth to adulthood and residential traffic exposure. BMC Med 2017; 15:205. [PMID: 29157235 PMCID: PMC5697215 DOI: 10.1186/s12916-017-0964-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length. METHODS Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined. RESULTS We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P < 0.0001). Persons with higher placental telomere length at birth were more likely to have a stronger downward shift in telomere ranking over life (P < 0.0001). Maternal residential traffic exposure correlated inversely with telomere length at birth. Independent of birth placental telomere length, telomere ranking between birth and young adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length. CONCLUSIONS Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life.
Collapse
Affiliation(s)
- Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.,Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Catherine Derom
- Department of Obstetrics and Gynecology, Ghent University Hospitals, Ghent, Belgium.,Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marij Gielen
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Geja J Hageman
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Evert Thiery
- Department of Neurology, Ghent University Hospitals, Ghent, Belgium
| | - Robert Vlietinck
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium.
| |
Collapse
|
50
|
Peng H, Zhu Y, Yeh F, Cole SA, Best LG, Lin J, Blackburn E, Devereux RB, Roman MJ, Lee ET, Howard BV, Zhao J. Impact of biological aging on arterial aging in American Indians: findings from the Strong Heart Family Study. Aging (Albany NY) 2017; 8:1583-92. [PMID: 27540694 PMCID: PMC5032684 DOI: 10.18632/aging.101013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022]
Abstract
Telomere length, a marker of biological aging, has been associated with cardiovascular disease (CVD). Increased arterial stiffness, an indicator of arterial aging, predicts adverse CVD outcomes. However, the relationship between telomere length and arterial stiffness is less well studied. Here we examined the cross-sectional association between leukocyte telomere length (LTL) and arterial stiffness in 2,165 American Indians in the Strong Heart Family Study (SHFS). LTL was measured by qPCR. Arterial stiffness was assessed by stiffness index β. The association between LTL and arterial stiffness was assessed by generalized estimating equation model, adjusting for sociodemographics (age, sex, education level), study site, metabolic factors (fasting glucose, lipids, systolic blood pressure, and kidney function), lifestyle (BMI, smoking, drinking, and physical activity), and prevalent CVD. Results showed that longer LTL was significantly associated with a decreased arterial stiffness (β=-0.070, P=0.007). This association did not attenuate after further adjustment for hsCRP (β=-0.071, P=0.005) or excluding participants with overt CVD (β=-0.068, P=0.012), diabetes (β=-0.070, P=0.005), or chronic kidney disease (β=-0.090, P=0.001). In summary, shorter LTL was significantly associated with an increased arterial stiffness, independent of known risk factors. This finding may shed light on the potential role of biological aging in arterial aging in American Indians.
Collapse
Affiliation(s)
- Hao Peng
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA 70112, USA
| | - Yun Zhu
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA 70112, USA
| | - Fawn Yeh
- Center for American Indian Health Research, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc, Timber Lake, SD 57656, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics at the University of California, San Francisco, CA 94143, USA
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics at the University of California, San Francisco, CA 94143, USA
| | - Richard B Devereux
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary J Roman
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisa T Lee
- Center for American Indian Health Research, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | | | - Jinying Zhao
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA 70112, USA
| |
Collapse
|