1
|
Heestermans M, Arthaud CA, Prier A, Eyraud MA, Hamzeh-Cognasse H, Cognasse F, Duchez AC. Association of high mobility group box 1 (HMGB1) levels with donor's age, sex and ABO blood group in single-donor apheresis platelet concentrates. Vox Sang 2025. [PMID: 40263126 DOI: 10.1111/vox.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND AND OBJECTIVES High mobility group box 1 (HMGB1) is a nuclear protein expressed by various cell types and recognized as a damage-associated molecular pattern (DAMP). DAMPs play a pivotal role in driving inflammatory responses. Platelet-derived HMGB1 has been associated with severe adverse reactions following platelet concentrate transfusions, underscoring its clinical relevance. This study investigated whether HMGB1 levels in single-donor apheresis platelet concentrates (SDA-PCs) are influenced by routinely documented donor characteristics, such as age, sex and ABO blood group. MATERIALS AND METHODS We analysed HMGB1 levels in 190 unpaired SDA-PC units. Donor characteristics, that is, age, sex and ABO blood group were obtained from routine records and examined for associations with HMGB1 levels. RESULTS HMGB1 levels showed no significant correlation with donor age or ABO blood group. However, levels were modestly lower in SDA-PC units derived from female donors compared to male donors. CONCLUSION These findings reveal donor-specific variability in HMGB1 levels, particularly regarding donor sex, and underscore the need to systematically document donor demographic and biological characteristics during blood donation. Such data could enhance our understanding of donor-related factors influencing transfusion outcomes.
Collapse
Affiliation(s)
- Marco Heestermans
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, Saint-Étienne, France
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Charles-Antoine Arthaud
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Amelie Prier
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Marie-Ange Eyraud
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, Saint-Étienne, France
| | - Fabrice Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, Saint-Étienne, France
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Anne-Claire Duchez
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, Saint-Étienne, France
- Research Department, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
2
|
Horwitz N, Florea M, Medha KC, Liu T, Garcia V, Kim R, Lam A, Messemer K, Rios C, Almada AE, Wagers AJ. Soluble RAGE enhances muscle regeneration after cryoinjury in aged and diseased mice. PLoS One 2025; 20:e0318754. [PMID: 39999114 PMCID: PMC11856280 DOI: 10.1371/journal.pone.0318754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), classically considered a mediator of acute and chronic inflammatory responses, has recently been implicated by genetic knockout studies as a regulator of skeletal muscle physiology during development and following acute injury. Yet, the role of its soluble isoform, soluble RAGE (sRAGE), in muscle regeneration remains relatively unexplored. To address this knowledge gap, Adeno-Associated Virus (AAV) mediated and genetic knockin supplementation strategies were developed to specifically assess the effects of changing levels of sRAGE on muscle regeneration. We evaluated general muscle physiology and histology, including central nucleation, and myofiber size. We found that acute induction of sRAGE in aged and atherosclerotic animals accelerates muscle repair after cryoinjury. Similarly, genetic modification of the endogenous Ager gene locus to favor production of sRAGE over transmembrane RAGE accelerates repair of cryo-damaged skeletal muscle. However, increasing sRAGE via AAV delivery or using our transgenic mouse lines had no impact on muscle repair in aged or diseased mice after barium chloride (BaCl2) injury. Together, these studies identify a unique muscle regulatory activity of sRAGE that is variable across injury models and may be targeted in a context-specific manner to alter the skeletal muscle microenvironment and boost muscle regenerative output.
Collapse
Affiliation(s)
- Naftali Horwitz
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Chemical Biology Ph.D. Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Florea
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Ph.D. Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - K. C. Medha
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tina Liu
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vivian Garcia
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Ph.D. Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University, Boston, Massachusetts, United States of America
| | - Rebekah Kim
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Lam
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kathleen Messemer
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christopher Rios
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Albert E. Almada
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Orthopaedic Surgery and Department of Stem Cell Biology and Regenerative Medicine (SCRM), University of Southern California, Los Angeles, California, United States of America
| | - Amy J. Wagers
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, Massachusetts, United States of America
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Emami N, Moini A, Vesali S. Relation of Follicular Fluid Soluble Receptor for Advanced Glycation End-Products Concentration and Anti Mullerian Hormone in Polycystic Ovary Syndrome and Non-PCOS Women Referring to In Vitro Fertilization Center: Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:29-35. [PMID: 39827388 PMCID: PMC11744206 DOI: 10.22074/ijfs.2024.2015991.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Reproductive dysfunctions of polycystic ovary syndrome (PCOS) and blood anti-mullerian hormone (AMH) concentration are significantly influenced by the dietary advanced glycation end products (AGEs). The interplay between AGEs and their soluble form of receptor, might exert a protective role on the follicular environment and affect AMH concentration. This study investigated the relationship between soluble receptor for advanced glycation end-products (sRAGE) levels in follicular fluid (FF) and serum AMH levels in PCOS and non-PCOS women. MATERIALS AND METHODS Among 43 women of reproductive age who participated in this case-control study 26 non- PCOS women were assigned to the control group, while 17 participants were diagnosed with PCOS and allocated to the case group. Prior to the in vitro fertilization (IVF) procedure, fluid samples were collected and levels of FF sRAGEs and serum AMH were recorded through the use of commercially available ELISA kits. RESULTS Correlation analysis, without age adjusting, revealed a statistically considerable and positive association between FF sRAGE and serum AMH concentration in PCOS women (P=0.012, r=0.596). Moreover, after age stratification, the same pattern was observed in some age groups; in PCOS women aged 40 years or older (r=1, P<0.001), as well as those younger than 30 years (r=0.922, P=0.003), correlation analysis demonstrated a significant and positive relationship between FF sRAGE and serum AMH levels. CONCLUSION The association between sRAGE and AMH in women with PCOS is primarily affected by their age, whereas non-PCOS women showed no relationship. The results show that the levels of these receptors (sRAGE) show their specific effects in young women and women over 40 years old and not in middle age and target the ovarian reserve. It seems to act as a defensive shield in older women and increase fertility in young women.
Collapse
Affiliation(s)
- Neda Emami
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Vesali
- Department of Basic and Population-Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
6
|
Kanikowska D, Kanikowska A, Strojny Z, Kawka E, Zawada A, Rutkowski R, Litwinowicz M, Sato M, Grzymisławski M, Bręborowicz A, Witowski J, Korybalska K. Assessment of EN-RAGE, sRAGE, and its isoforms: cRAGE, esRAGE in obese patients treated by moderate caloric restriction combined with physical activity conducted in hospital condition. Cytokine 2024; 180:156665. [PMID: 38823153 DOI: 10.1016/j.cyto.2024.156665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AGEs, their receptor (RAGE), and the extracellular newly identified receptor for AGEs product-binding protein (EN-RAGE) are implicated in the pathogenesis of inflammation. AIM We analyzed serum EN-RAGE, soluble RAGE (sRAGE), and their isoforms: endogenous secretory - esRAGE and cleaved - cRAGE concentrations in lean controls (n = 74) and in patients with obesity (n = 71) treated for three weeks with moderate calorie restriction (CR) combined with physical activity in a hospital condition. METHODS Using the ELISA method, serum sRAGE, esRAGE, and EN-RAGE were measured before and after CR. RESULTS The serum level of sRAGE and esRAGE in patients with obesity was lower than that in non-obese individuals, contrary to cRAGE. EN-RAGE concentration was about three times higher in obese patients. Gradually, a rise in BMI resulted in sRAGE, esRAGE reduction, and EN-RAGE increase. The sRAGE concentration was sex-dependent, indicating a higher value in lean men. A moderate negative correlation was observed between BMI and all RAGE isoforms, whereas EN-RAGE displays a positive correlation. CR resulted in an expected decrease in anthropometric, metabolic, and proinflammatory parameters and EN-RAGE, but no RAGE isoforms. The ratio EN-RAGE/sRAGE was higher in obese humans than in control and was not modified by CR. CONCLUSION Obesity decreases sRAGE and esRAGE and increases EN-RAGE concentration. Moderate CR and physical activity by decreasing inflammation reduces EN-RAGE but is insufficient to increase sRAGE and esRAGE to the extent observed in lean patients. EN-RAGE instead of sRAGE could be helpful to indicate a better outcome of moderate dietary intervention in obese subjects.
Collapse
Affiliation(s)
- Dominika Kanikowska
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland.
| | - Alina Kanikowska
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, Poznań, Poland
| | - Zofia Strojny
- Department of Conservative Dentistry and Endodontics, Poznań University of Medical Sciences, Poznań, Poland
| | - Edyta Kawka
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Agnieszka Zawada
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, Poznań, Poland
| | - Rafał Rutkowski
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Monika Litwinowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Maki Sato
- Institutional Research, Aichi Medical University School of Medicine, Aichi, Japan
| | - Marian Grzymisławski
- Department of Internal Diseases, Metabolism and Nutrition, Poznań University of Medical Science, Poznań, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland; Collegium Medicum, Zielona Góra University, Zielona Góra, Poland
| | - Janusz Witowski
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
7
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Hou X, Ling Z, Guo Y, Su Y, Wang H, Li H, Lu Y, Chen X, Ji C, Shen R. Peptide derived from RAGE efficiently improves oocyte development through attenuating oxidative stress in oocytes of mice with polycystic ovary syndrome. FASEB J 2024; 38:e23553. [PMID: 38470398 DOI: 10.1096/fj.202302038rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.
Collapse
Affiliation(s)
- Xiaojing Hou
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghui Ling
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Guo
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Su
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanbin Wang
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hang Li
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxia Lu
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojiao Chen
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Shen
- Nanjing Women and Children's HealthCare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
10
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
11
|
Apte M, Khan MS, Bangar N, Gvalani A, Naz H, Tupe RS. Crosstalk between Aldosterone and Glycation through Rac-1 Induces Diabetic Nephropathy. ACS OMEGA 2023; 8:37264-37273. [PMID: 37841153 PMCID: PMC10568578 DOI: 10.1021/acsomega.3c05085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Background: Advanced glycation end products (AGEs) interaction with its receptor (RAGE) and aldosterone (Aldo) through the mineralocorticoid receptor (MR) activates Rac-1 and NF-κB independently in diabetic nephropathy (DN). However, the crosstalk of Aldo with AGEs-RAGE is still unresolved. Our study examined the impact of the AGEs-Aldo complex on renal cells and its effect on the RAGE-MR interaction. Methods and results: Glycation of human serum albumin (HSA) (40 mg/mL) with methylglyoxal (10 mM) in the presence of Aldo (100 nM) and aminoguanidine (AG) (100 nM) was performed. Glycation markers such as fructosamine and carbonyl groups and fluorescence of AGEs, pentosidine, and tryptophan followed by protein modification were measured. Renal (HEK-293T) cells were treated with the glycated HSA-Aldo (200 μg/mL) along with FPS-ZM1 and spironolactone antagonists for RAGE and Aldo, respectively, for 24 h. Glycation markers and esRAGE levels were measured. Protein and mRNA levels of RAGE, MR, Rac-1, and NF-κB were estimated. Glycation markers were enhanced with Aldo when albumin was only 14-16% glycated. AGEs-Aldo complex upregulated RAGE, MR, Rac-1 and NF-κB expressions. However, FPS-ZM1 action might have activated the RAGE-independent pathway, further elevating MR, Rac-1, and NF-κB levels. Conclusion: Our study concluded that the presence of Aldo has a significant impact on glycation. In the presence of AGEs-Aldo, RAGE-MR crosstalk exerts inflammatory responses through Rac-1 in DN. Insights into this molecular interplay are crucial for developing novel therapeutic strategies to alleviate DN in the future.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Armaan Gvalani
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Huma Naz
- Department
of Internal Medicine, University of Missouri, Mizzou, Columbia, Missouri65211, United States
| | - Rashmi S. Tupe
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| |
Collapse
|
12
|
Schwertner K, Gelles K, Leitner J, Steinberger P, Gundacker C, Vrticka R, Hoffmann-Sommergruber K, Ellinger I, Geiselhart S. Human intestine and placenta exhibit tissue-specific expression of RAGE isoforms. Heliyon 2023; 9:e18247. [PMID: 37533998 PMCID: PMC10391957 DOI: 10.1016/j.heliyon.2023.e18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is encoded by AGER, a gene that is subjected to tissue-specific alternative splicing. Splice variants of RAGE in intestine and placenta are unknown and contradictory data concerning RAGE protein expression in these tissues have been published. As a basis for future functional studies, we examined RAGE expression in small intestine, colon and placentas. PCR cloning revealed that full-length RAGE is the only RAGE transcript isoform expressed in placenta. In the small intestine, the major transcript isoform detected was RAGE_v1 encoding the C-terminally truncated soluble receptor. In the colon, both full-length RAGE as well as several splice variants were identified. Four antibodies were used to study protein expression by immunoblotting and were carefully validated. Appropriate controls were essential to avoid misinterpretation of bands caused by non-specific reactivity of antibodies. Only one of four antibodies tested detected full-length RAGE in placenta, whereas no RAGE-specific band was detected in intestinal tissues despite loading >30-fold more intestinal tissue than the positive control, human lung. RAGE expression levels in the placenta were 100-fold lower compared with human lung when analyzed by ELISA, and no significant differences in RAGE expression were detected between healthy placentas and placentas from women with preeclampsia, gestational diabetes mellitus, or fetal growth restriction. We conclude that healthy placental chorionic tissue expresses low levels of full-length RAGE, whereas expression of the tissue-specific intestinal isoforms is below the limit of detection. Low RAGE expression levels in combination with a lack of antibody validation may explain the conflicting published results on RAGE protein expression in intestine and placenta.
Collapse
Affiliation(s)
- Katharina Schwertner
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia Gundacker
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruben Vrticka
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
14
|
Deo P, Dhillon VS, Thomas P, Fenech M. Oleic Acid Status Positively Correlates with the Soluble Receptor for Advanced Glycation End-Products (sRAGE) in Healthy Adults Who Are Homozygous for G Allele of RAGE G82S Polymorphism. Cells 2023; 12:1662. [PMID: 37371132 DOI: 10.3390/cells12121662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (β = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
| |
Collapse
|
15
|
Kamel AA, Hashem MK, AbdulKareem ES, Ali AH, Mahmoud EAR, Abd-Elkader AS, Abdellatif H, Abdelbadea A, Abdel-Rady NM, Al Anany MGE, Dahpy MA. Significant Interrelations among Serum Annexin A1, Soluble Receptor for Advanced Glycation End Products (sRAGE) and rs2070600 in Chronic Obstructive Pulmonary Disease. BIOLOGY 2022; 11:biology11121707. [PMID: 36552217 PMCID: PMC9774799 DOI: 10.3390/biology11121707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and morbidity; it may be accompanied by oxidative stress and inflammation with or without underlying genetic etiology. Finding circulating biomarkers for COPD that can help early diagnosis and predict exacerbation and association with respiratory functions has been challenging. There were 40 healthy participants and 60 COPD patients in this research. The rs2070600 gene variant was examined by PCR-RFLP. Circulating sRAGE and annexin A1 levels were determined by ELISA. GSH and MDA were determined by spectrophotometry. In COPD patients, sRAGE serum levels were substantially lower, but conversely, annexin A1 levels were much greater than in controls. The rs2070600 gene polymorphism's strong association with COPD was demonstrated by genotyping and allelic frequency distribution. The GA genotype was most distributed in COPD, and it was strongly linked to lower serum sRAGE levels. The interrelation between annexin A1, sRAGE, and COPD could be explained through effects on inflammatory mediators' pathways. The rs2070600 gene polymorphism was found to significantly enhance the risk of COPD. Serum sRAGE and annexin A1 may be considered potential diagnostic tools for COPD. Through impacts on GSH and MDA levels that alter the release of inflammatory factors and, therefore, lung damage, it is possible to explain the relationship between annexin A1, sRAGE, and COPD.
Collapse
Affiliation(s)
- Amira A. Kamel
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Maiada K. Hashem
- Chest Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | | | - Amal H. Ali
- Microbiology and Immunology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | | | - Alaa S. Abd-Elkader
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Hebatallah Abdellatif
- Clinical Pathology Department, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Alzahra Abdelbadea
- Medical Biochemistry, and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Nessren M. Abdel-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
- Medical Physiology Department, Sphinx University, New-Assiut 71515, Egypt
| | - Mona Gamal E. Al Anany
- Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa A. Dahpy
- Department of Medical Biochemistry, and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Medical Biochemistry and Molecular Biology, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt
- Correspondence:
| |
Collapse
|
16
|
Scavello F, Piacentini L, Castiglione S, Zeni F, Macrì F, Casaburo M, Vinci MC, Colombo GI, Raucci A. Effects of RAGE Deletion on the Cardiac Transcriptome during Aging. Int J Mol Sci 2022; 23:ijms231911130. [PMID: 36232442 PMCID: PMC9569842 DOI: 10.3390/ijms231911130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac aging is characterized by increased cardiomyocyte hypertrophy, myocardial stiffness, and fibrosis, which enhance cardiovascular risk. The receptor for advanced glycation end-products (RAGE) is involved in several age-related diseases. RAGE knockout (Rage−/−) mice show an acceleration of cardiac dimension changes and interstitial fibrosis with aging. This study identifies the age-associated cardiac gene expression signature induced by RAGE deletion. We analyzed the left ventricle transcriptome of 2.5-(Young), 12-(Middle age, MA), and 21-(Old) months-old female Rage−/− and C57BL/6N (WT) mice. By comparing Young, MA, and Old Rage−/− versus age-matched WT mice, we identified 122, 192, and 12 differently expressed genes, respectively. Functional inference analysis showed that RAGE deletion is associated with: (i) down-regulation of genes involved in antigen processing and presentation of exogenous antigen, adaptive immune response, and cellular responses to interferon beta and gamma in Young animals; (ii) up-regulation of genes related to fatty acid oxidation, cardiac structure remodeling and cellular response to hypoxia in MA mice; (iii) up-regulation of few genes belonging to complement activation and triglyceride biosynthetic process in Old animals. Our findings show that the age-dependent cardiac phenotype of Rage−/− mice is associated with alterations of genes related to adaptive immunity and cardiac stress pathways.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Animal Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Correspondence: (G.I.C.); (A.R.); Tel.: +39-025-800-2464 (G.I.C.); +39-025-800-2802 (A.R.); Fax: +39-025-800-2342 (G.I.C. & A.R.)
| |
Collapse
|
17
|
Zhang SY, Liang JJ, Liu YQ. Excessive Zinc Ion Caused PC12 Cell Death Correlating with Inhibition of NOS and Increase of RAGE in Cells. Cell Biochem Biophys 2022; 80:755-761. [PMID: 36068383 DOI: 10.1007/s12013-022-01093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Zinc ion (Zn2+) is an important functional factor; however, excessive Zn2+ can be toxic. To understand the neurotoxicity of excessive Zn2+ and the underlying mechanism, PC12 cells were treated with excessive Zn2+ and Zn2+ plus N, N, N', N'-Tetrakisethylenediamine (TPEN), a zinc ion chelator agent. Trypan blue and 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide (MTT) assays were used to test cell viability; the relative kits were used to detect the activity of NOS synthase and the content of the receptor for advanced glycation end product (RAGE) in cells. We observed that excessive zinc caused PC12 cell damage and that TPEN partially reversed cell damage caused by excessive zinc. In addition, excessive zinc decreased total nitric oxide synthase (TNOS) activity in cells, in which constitutive nitric oxide synthase (cNOS) activity was significantly reduced; however, inducible nitric oxide synthase (iNOS) activity was extremely promoted. Moreover, excessive zinc upregulated the expression of RAGE, and TPEN effectively reversed the increase in RAGE induced by excessive zinc ions. Therefore, we concluded that excessive zinc caused PC12 cell damage, correlating with the inhibition of NOS and increase of RAGE induced in cells.
Collapse
Affiliation(s)
- Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing-Jing Liang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Sabbatinelli J, Castiglione S, Macrì F, Giuliani A, Ramini D, Vinci MC, Tortato E, Bonfigli AR, Olivieri F, Raucci A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: a retrospective cohort study. Cardiovasc Diabetol 2022; 21:95. [PMID: 35668468 PMCID: PMC9169316 DOI: 10.1186/s12933-022-01535-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advanced glycation end-products (AGEs) and their interaction with the receptor for advanced glycation end-products (RAGE) play a pivotal role in the development and progression of type 2 diabetes. In this retrospective cohort study, we explored the association of circulating levels of soluble RAGE (sRAGE) isoforms, i.e., endogenous secretory esRAGE and cleaved cRAGE, AGEs and their respective ratios with 15-year all-cause mortality in type 2 diabetes. METHODS Baseline AGEs and sRAGE isoforms concentration were measured by ELISA in 362 patients with type 2 diabetes and in 125 age- and gender-matched healthy control subjects (CTR). Independent predictors of mortality were determined using Cox proportional-hazards models and used to build and validate a nomogram for all-cause mortality prediction in type 2 diabetes. RESULTS AGEs, total sRAGE, cRAGE and the AGEs/sRAGE and AGEs/esRAGE ratios were significantly increased in patients with type 2 diabetes compared to CTR (p < 0.001). In CTR subjects, but not in type 2 diabetes patients, a significant negative correlation between cRAGE and age was confirmed (p = 0.003), whereas the AGEs/sRAGE (p = 0.032) and AGEs/cRAGE (p = 0.006) ratios were positively associated with age. At an average follow-up of 15 years (4,982 person-years), 130 deaths were observed. The increase in the AGEs/cRAGE ratio was accompanied by a higher risk of all-cause mortality in patients with type 2 diabetes (HR per each SD increment = 1.30, 95% CI 1.15-1.47; p < 0.001). Moreover, sRAGE was associated with the development of major adverse cardiovascular events (MACE) in type 2 diabetes patients without previous MACE (OR for each SD increase: 1.48, 95% CI 1.11-1.89). A nomogram based on age, sex, HbA1c, systolic blood pressure, and the AGEs/cRAGE ratio was built to predict 5-, 10- and 15-year survival in type 2 diabetes. Patients were categorized into quartiles of the monogram scores and Kaplan-Meier survival curves confirmed the prognostic accuracy of the model (log-rank p = 6.5 × 10- 13). CONCLUSIONS The ratio between AGEs and the cRAGE isoform is predictive of 15-year survival in patients with type 2 diabetes. Our data support the assessment of circulating AGEs and soluble RAGE isoforms in patients with type 2 diabetes as predictors of MACE and all-cause mortality.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Stefania Castiglione
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Deborah Ramini
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Tortato
- Metabolic Diseases and Diabetology Department, IRCCS INRCA, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Angela Raucci
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
19
|
Lim MJ, Zinter MS, Chen L, Wong KMY, Bhalla A, Gala K, Guglielmo M, Alkhouli M, Huard LL, Hanudel MR, Vangala S, Schwingshackl A, Matthay M, Sapru A. Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:837-847. [PMID: 34678846 PMCID: PMC9035468 DOI: 10.1097/ccm.0000000000005373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Soluble receptor for advanced glycation end products is a known plasma marker of alveolar epithelial injury. However, RAGE is also expressed on cell types beyond the lung, and its activation leads to up-regulation of pro-inflammatory mediators. We sought to examine the relationship between plasma soluble receptor for advanced glycation end products and primary pulmonary dysfunction, extrapulmonary organ dysfunction, and mortality in pediatric acute respiratory distress syndrome patients at two early time points following acute respiratory distress syndrome diagnosis and compare these results to plasma surfactant protein-D, a marker of pure alveolar epithelial injury. DESIGN Prospective observational study. SETTING Five academic PICUs. PATIENTS Two hundred fifty-eight pediatric patients 30 days to 18 years old meeting Berlin Criteria for acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma was collected for soluble receptor for advanced glycation end products and surfactant protein-D measurements within 24 hours (day 1) and 48 to 72 hours (day 3) after acute respiratory distress syndrome diagnosis. Similar to surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with a higher oxygenation index (p < 0.01) and worse lung injury score (p < 0.001) at the time of acute respiratory distress syndrome diagnosis. However, unlike surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with worse extrapulmonary Pediatric Logistic Organ Dysfunction score during ICU stay (day 3; p < 0.01) and positively correlated with plasma levels of interleukin-6 (p < 0.01), tumor necrosis factor-α (p < 0.01), and angiopoietin-2 (p < 0.01). Among children with indirect lung injury, plasma soluble receptor for advanced glycation end products was associated with mortality independent of age, sex, race, cancer/bone marrow transplant, and Pediatric Risk of Mortality score (day 3; odds ratio, 3.14; 95% CI, 1.46-6.75; p < 0.01). CONCLUSIONS Unlike surfactant protein-D, which is primarily localized to the alveolar epithelium plasma soluble receptor for advanced glycation end products is systemically expressed and correlates with markers of inflammation, extrapulmonary multiple organ dysfunction, and death in pediatric acute respiratory distress syndrome with indirect lung injury. This suggests that unlike surfactant protein-D, soluble receptor for advanced glycation end products is a multifaceted marker of alveolar injury and increased inflammation and that receptor for advanced glycation end products activation may contribute to the pathogenesis of multiple organ failure among children with indirect acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Michelle J. Lim
- UC Davis School of Medicine, UC Davis Children’s Hospital, Department of Pediatrics, Division of Critical Care, Sacramento, CA, USA
| | - Matt S. Zinter
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Lucia Chen
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Kayley Man Yee Wong
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- USC Keck School of Medicine, Children’s Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine, Los Angeles, CA, USA
| | - Kinisha Gala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mona Guglielmo
- Loma Linda University School of Medicine, Loma Linda University Children’s Hospital, Department of Pediatrics, Division of Critical Care, Loma Linda, CA, USA
| | - Mustafa Alkhouli
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Leanna L. Huard
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mark R. Hanudel
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Nephrology, Los Angeles, CA, USA
| | - Sitaram Vangala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Andreas Schwingshackl
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Michael Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Anil Sapru
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| |
Collapse
|
20
|
Helou C, Nogueira Silva Lima MT, Niquet-Leridon C, Jacolot P, Boulanger E, Delguste F, Guilbaud A, Genin M, Anton PM, Delayre-Orthez C, Papazian T, Howsam M, Tessier FJ. Plasma Levels of Free NƐ-Carboxymethyllysine (CML) after Different Oral Doses of CML in Rats and after the Intake of Different Breakfasts in Humans: Postprandial Plasma Level of sRAGE in Humans. Nutrients 2022; 14:nu14091890. [PMID: 35565855 PMCID: PMC9101122 DOI: 10.3390/nu14091890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
N-carboxymethyl-lysine (CML) and other dietary advanced glycation end-products (AGEs) are chemically modified amino acids with potential toxicological effects putatively related to their affinity with the receptor for AGEs (RAGE). The goal of this study was to determine the postprandial kinetics of CML in both rodents and humans and, in the latter, to evaluate their relationship with the soluble RAGE isoforms (sRAGE). Four gavage solutions containing different forms of CML were given to rats, and blood was collected over 8 h. Three different breakfasts containing dietary CML (dCML) were administered to 20 healthy volunteers, and blood was collected over 2 h. Concentrations of CML, CEL, and lysine were quantified in plasma and human meals by LC-MS/MS, and sRAGE was determined in human plasma by ELISA. The results showed that dCML did not affect the concentrations of circulating protein-bound CML and that only free CML increased in plasma, with a postprandial peak at 90 to 120 min. In humans, the postprandial plasmatic sRAGE concentration decreased independently of the dAGE content of the breakfasts. This study confirms reports of the inverse postprandial relationship between plasmatic free CML and sRAGE, though this requires further investigation for causality to be established.
Collapse
Affiliation(s)
- Cynthia Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut 1004 2020, Lebanon; (C.H.); (T.P.)
| | - Matheus Thomaz Nogueira Silva Lima
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Céline Niquet-Leridon
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Philippe Jacolot
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Eric Boulanger
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Florian Delguste
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Axel Guilbaud
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Michael Genin
- ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, University Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Pauline M. Anton
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Carine Delayre-Orthez
- ULR 7519, Equipe PETALES, Institut Polytechnique UniLaSalle, Université d’Artois, F-60026 Beauvais, France; (C.N.-L.); (P.J.); (P.M.A.); (C.D.-O.)
| | - Tatiana Papazian
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut 1004 2020, Lebanon; (C.H.); (T.P.)
| | - Michael Howsam
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
| | - Frédéric J. Tessier
- U1167—RID—AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; (M.T.N.S.L.); (E.B.); (F.D.); (A.G.); (M.H.)
- Correspondence: ; Tel.: +33-(0)3-2062-3561
| |
Collapse
|
21
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
22
|
Baek CH, Kim H, Moon SY, Yang WS. Liraglutide, a glucagon-like peptide-1 receptor agonist, induces ADAM10-dependent ectodomain shedding of RAGE via AMPK activation in human aortic endothelial cells. Life Sci 2022; 292:120331. [PMID: 35041837 DOI: 10.1016/j.lfs.2022.120331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
AIMS Glucagon-like peptide-1 alleviates the deleterious effects of advanced glycation end products (AGEs), but the underlying mechanisms are not fully understood. In this study, we investigated the protective mechanism using liraglutide, a glucagon-like peptide-1 receptor agonist, in cultured human aortic endothelial cells (HAECs). MAIN METHODS Following liraglutide treatment in HAECs, the receptor for AGEs (RAGE) was measured in both cell lysate and culture supernatant, the cytosolic free Ca2+ level was monitored using Fluo-4 AM, the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was analyzed, and immunofluorescence staining was used to visualize a disintegrin and metalloprotease 10 (ADAM10) on the cell surface. KEY FINDINGS Liraglutide (100 nM) induced ectodomain shedding of RAGE within 30 min and inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by AGEs of bovine serum albumin (AGE-BSA). Further experiments revealed that liraglutide rapidly increased extracellular Ca2+ influx through L-type calcium channels and activated AMPK, resulting in translocation of ADAM10 to the cell surface, whereas siRNA-mediated ADAM10 depletion prevented liraglutide-induced ectodomain shedding of RAGE and eliminated liraglutide's inhibitory effect on AGE-BSA-induced ICAM-1 expression. Moreover, compound C-mediated AMPK inhibition and siRNA-mediated AMPK depletion both prevented ADAM10 translocation to the cell surface and ADAM10-mediated ectodomain shedding of RAGE. SIGNIFICANCE Liraglutide reduces the number of intact RAGE on the cell surface by inducing ADAM10-mediated ectodomain shedding, which decreases the inflammatory effects of AGEs. AMPK activated by extracellular Ca2+ influx is critically involved in the translocation of ADAM10 to the cell surface, where it cleaves RAGE.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
24
|
Scavello F, Tedesco CC, Castiglione S, Maciag A, Sangalli E, Veglia F, Spinetti G, Puca AA, Raucci A. Modulation of soluble receptor for advanced glycation end products isoforms and advanced glycation end products in long-living individuals. Biomark Med 2021; 15:785-796. [PMID: 34236256 DOI: 10.2217/bmm-2020-0856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Circulating levels of soluble receptor for advanced glycation end products (sRAGE) and advanced glycation end products (AGEs) correlate with aging/cardiovascular risk, which is delayed in long-living individuals (LLIs). AGEs/sRAGE isoforms (cleaved RAGE [cRAGE] and secretory RAGE [esRAGE]) ratio is a valuable marker for disease risk. Results: We evaluated circulating sRAGE isoforms, and AGEs in LLIs (n = 95; 90-105 years) and controls (n = 94; 11-89 years). cRAGE decreased with age in controls and further declined in LLIs. esRAGE increased in LLIs. AGEs rose with age in controls and decreased in LLIs that were characterized by a lower AGEs/sRAGE ratio. Notably, cRAGE and AGE/esRAGE ratio better discriminated controls from LLIs. Conclusion: circulating cRAGE could be considered a reliable marker of chronological age while esRAGE a protective factor for longevity.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology & Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, 20138, Italy
| | - Calogero C Tedesco
- Unit of Biostatistics, Centro Cardiologico Monzino-IRCCS, Milan, 20138, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology & Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, 20138, Italy
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, 20138, Italy
| | - Elena Sangalli
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, 20138, Italy
| | - Fabrizio Veglia
- Unit of Biostatistics, Centro Cardiologico Monzino-IRCCS, Milan, 20138, Italy
| | - Gaia Spinetti
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, 20138, Italy
| | - Annibale A Puca
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, 20138, Italy
- Department of Medicine, Surgery & Dentistry, 'Scuola Medica Salernitana', University of Salerno, Baronissi, 84081, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology & Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, 20138, Italy
| |
Collapse
|
25
|
Pentoxifylline Enhances Antioxidative Capability and Promotes Mitochondrial Biogenesis in D-Galactose-Induced Aging Mice by Increasing Nrf2 and PGC-1 α through the cAMP-CREB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6695613. [PMID: 34257818 PMCID: PMC8245236 DOI: 10.1155/2021/6695613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Aging is a complex phenomenon associated with oxidative stress and mitochondrial dysfunction. The objective of this study was to investigate the potential ameliorative effects of the phosphodiesterase inhibitor pentoxifylline (PTX) on the aging process and its underlying mechanisms. We treated D-galactose- (D-gal-) induced aging mice with PTX and measured the changes in behavior, degree of oxidative damage, and mitochondrial ultrastructure and content as well as the expression of nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated antioxidant genes and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha- (PGC-1α-) dependent mitochondrial biogenesis genes. The results demonstrated that PTX improved cognitive deficits, reduced oxidative damage, ameliorated abnormal mitochondrial ultrastructure, increased mitochondrial content and Nrf2 activation, and upregulated antioxidant and mitochondrial biogenesis gene expression in the hippocampus of wild-type aging mice. However, the above antiaging effects of PTX were obviously decreased in the brains of Nrf2-deficient D-gal-induced aging mice. Moreover, in hydrogen peroxide-treated SH-SY5Y cells, we found that cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and Nrf2/PGC-1α act in a linear way by CREB siRNA transfection. Thus, PTX administration improved the aging-related decline in brain function by enhancing antioxidative capability and promoting mitochondrial biogenesis, which might depend on increasing Nrf2 and PGC-1α by activating the cAMP-CREB pathway.
Collapse
|
26
|
Scavello F, Zeni F, Milano G, Macrì F, Castiglione S, Zuccolo E, Scopece A, Pezone G, Tedesco CC, Nigro P, Degani G, Gambini E, Veglia F, Popolo L, Pompilio G, Colombo GI, Bianchi ME, Raucci A. Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis. Int J Biol Sci 2021; 17:2399-2416. [PMID: 34326683 PMCID: PMC8315019 DOI: 10.7150/ijbs.56379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial aging increases the cardiovascular risk in the elderly. The Receptor for Advanced Glycation End-products (RAGE) is involved in age-related disorders. The soluble isoform (sRAGE) acts as a scavenger blocking the membrane-bound receptor activation. This study aims at investigating RAGE contribution to age-related cardiac remodeling. We analyzed the cardiac function of three different age groups of female Rage-/- and C57BL/6N (WT) mice: 2.5- (Young), 12- (Middle-age, MA) and 21-months (Old) old. While aging, Rage-/- mice displayed an increase in left ventricle (LV) dimensions compared to age-matched WT animals, with the main differences observed in the MA groups. Rage-/- mice showed higher fibrosis and a larger number of α-Smooth Muscle Actin (SMA)+ cells with age, along with increased expression of pro-fibrotic Transforming Growth Factor (TGF)-β1 pathway components. RAGE isoforms were undetectable in LV of WT mice, nevertheless, circulating sRAGE declined with aging and inversely associated with LV diastolic dimensions. Human cardiac fibroblasts stimulated with sRAGE exhibited a reduction in proliferation, pro-fibrotic proteins and TGF-beta Receptor 1 (TGFbR1) expression and Smad2-3 activation. Finally, sRAGE administration to MA WT animals reduced cardiac fibrosis. Hence, our work shows that RAGE associates with age-dependent myocardial changes and indicates sRAGE as an inhibitor of cardiac fibroblasts differentiation and age-dependent cardiac fibrosis.
Collapse
Affiliation(s)
- Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Filippo Zeni
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giuseppina Milano
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Estella Zuccolo
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giovanni Pezone
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | - Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Fabrizio Veglia
- Unit of Biostatistics, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Gualtiero I. Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Marco E. Bianchi
- Chromatin Dynamics Unit, San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
27
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
28
|
Shan L, Bai S, Zhao M. Early diagnosis of serum sICAM-1 and sRAGE in severe acute pancreatitis, and efficacy and prognosis prediction of glutamine combined with ulinastatin. Exp Ther Med 2021; 21:324. [PMID: 33732297 PMCID: PMC7903449 DOI: 10.3892/etm.2021.9755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease that can become severe, so that intensive care may be required. This study was to examine serum soluble intercellular adhesion molecule-1 (sICAM-1), and soluble receptor for advanced glycation end products (sRAGE) for efficacy and prognosis prediction of glutamine (Glu) combined with ulinastatin (UTI) on severe acute pancreatitis (SAP). Fifty-four mild acute pancreatitis (MAP) patients admitted to Yidu Central Hospital of Weifang were selected as the MAP group (MAPG), 80 with SAP were divided as the SAP group (SAPG), and 60 healthy individuals who came to Yidu Central Hospital of Weifang for physical examination during the same period were included to the normal group (NG). Serum sICAM-1 and sRAGE were measured and their predictive value of efficacy and prognosis were analyzed. In view of the treatment effectiveness and prognosis, the patients were divided into effective group (EG) and ineffective group (IG), good prognosis group (GPG) and poor prognosis group (PPG). The levels of D-lactate, diamine oxidase (DAO), endotoxin and T-lymphocyte subsets (CD3+, CD4+, CD8+ and CD4+/CD8+) were measured and the changes before and after treatment were analyzed. The AUC values of NG and MAPG, NG and SAPG, MAPG and SAPG were 0.857, 0.939 and 0.856, respectively, those of predicting efficacy were 0.920 and 0.874, respectively, and those of poor prognosis in the SAPG were 0.914 and 0.879, respectively. In the SAPG, D-lactate, DAO, endotoxin and CD8+ decreased markedly after treatment, but CD3+, CD4+, and CD4+/CD8+ were opposite. SICAM-1 and sRAGE were also independent risk factors for poor prognosis in the SAPG. Serum sICAM-1 and sRAGE have high predictive value for early diagnosis, efficacy and prognosis of Glu combined with UTI.
Collapse
Affiliation(s)
- Lini Shan
- Department of Pharmacy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Shixian Bai
- Intensive Care Unit, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Min Zhao
- Department of Pharmacy, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| |
Collapse
|
29
|
Nadali M, Lyngfelt L, Erlandsson MC, Silfverswärd ST, Andersson KME, Bokarewa MI, Pullerits R. Low Soluble Receptor for Advanced Glycation End Products Precedes and Predicts Cardiometabolic Events in Women With Rheumatoid Arthritis. Front Med (Lausanne) 2021; 7:594622. [PMID: 33585503 PMCID: PMC7876441 DOI: 10.3389/fmed.2020.594622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Cardiovascular disease (CVD) causes premature mortality in rheumatoid arthritis (RA). Levels of soluble (s)RAGE change with aging, hypertension and hypercholesterolemia. We assessed whether sRAGE was associated with increased risk of CVD in RA patients. Methods: Serum sRAGE was measured in 184 female RA patients and analyzed with respect to CVD risk estimated by the Framingham algorithm (eCVR), metabolic profile and inflammation. Levels of sRAGE in 13 patients with known cardio-metabolic morbidity defined the cut-off for low sRAGE. Prospective 5-year follow-up of new CV and metabolic events was completed. Results: Low sRAGE was significantly associated with previous history and with new imminent cardiometabolic events in the prospective follow-up of RA patients. In both cases, low sRAGE reflected higher estimation of CVR in those patients. Low sRAGE was attributed to adverse metabolic parameters including high fasting plasma glucose and body fat content rather than inflammation. The association of sRAGE and poor metabolic profile was prominent in patients younger than 50 years. Conclusions: This study points at low sRAGE as a marker of metabolic failure developed during chronic inflammation. It highlights the importance for monitoring metabolic health in female RA patients for timely prevention of CVD. Trial registration: ClinicalTrials.gov with ID NCT03449589. Registered 28, February 2018.
Collapse
Affiliation(s)
- Mitra Nadali
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lyngfelt
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institution of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Analytical Profile and Antioxidant and Anti-Inflammatory Activities of the Enriched Polyphenol Fractions Isolated from Bergamot Fruit and Leave. Antioxidants (Basel) 2021; 10:antiox10020141. [PMID: 33498213 PMCID: PMC7908980 DOI: 10.3390/antiox10020141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of the study is to compare the qualitative and semi-quantitative profile of the polyphenol fraction purified from the leaf (BLPF) and fruit (BFPF) of bergamot (Citrus bergamia), and to evaluate their antioxidant and anti-inflammatory activity. The analytical qualitative profile was carried out by LC-ESI/MS using three different approaches: targeted (searching analytes already reported in bergamot extract), semi-targeted (a selective search of 3-hydroxy-3-methylglutarate [HMG] derivatives involved in the cholesterol reducing activity of BPF) and untargeted. A total number of 108 compounds were identified by using the three approaches, 100 of which are present in both the extracts thus demonstrating a good qualitative overlapping of polyphenols between the two extracts. The antioxidant activity was higher for BLPF in respect to BFPF but when normalized in respect to the polyphenol content they were almost overlapping. Both the extracts were found to dose dependently inhibit cell inflammation stimulated with IL-1α. In conclusion, the comparison of the qualitative and quantitative profile of polyphenols as well as of the antioxidant and anti-inflammatory activity of bergamot leaf and fruit well indicates that leaf is a valid source of bergamot polyphenol extraction and an even richer source of polyphenol in respect to the fruit.
Collapse
|
31
|
Effects of the age/rage axis in the platelet activation. Int J Biol Macromol 2020; 166:1149-1161. [PMID: 33161078 DOI: 10.1016/j.ijbiomac.2020.10.270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Platelet activity is essential in cardiovascular diseases. Therefore our objective was to evaluate the main effects of activating RAGE in platelets which are still unknown. A search for RAGE expression in different databases showed poor or a nonexistent presence in platelets. We confirmed the expression in platelets and secreted variable of RAGE (sRAGE). Platelets from elderly adults expressed in resting showed 3.2 fold more RAGE from young individuals (p < 0.01) and 3.3 fold with TRAP-6 (p < 0.001). These results could indicate that the expression of RAGE is more inducible in older adults. Then we found that activating RAGE with AGE-BSA-derived from methylglyoxal and subthreshold TRAP-6, showed a considerable increase with respect to the control in platelet aggregation and expression of P-selectin (respectively, p < 0.01). This effect was almost completely blocked by using a specific RAGE inhibitor (FSP-ZM1), confirming that RAGE is important for the function and activation platelet. Finally, we predict the region stimulated by AGE-BSA is located in region V of RAGE and 13 amino acids are critical for its binding. In conclusion, the activation of RAGE affects platelet activation and 13 amino acids are critical for its stimulation, this information is crucial for future possible treatments for CVD.
Collapse
|
32
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
33
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
34
|
The microRNA-34a-Induced Senescence-Associated Secretory Phenotype (SASP) Favors Vascular Smooth Muscle Cells Calcification. Int J Mol Sci 2020; 21:ijms21124454. [PMID: 32585876 PMCID: PMC7352675 DOI: 10.3390/ijms21124454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
The senescence of vascular smooth muscle cells (VSMCs), characterized by the acquisition of senescence-associated secretory phenotype (SASP), is relevant for VSMCs osteoblastic differentiation and vascular calcification (VC). MicroRNA-34a (miR-34a) is a driver of such phenomena and could play a role in vascular inflammaging. Herein, we analyzed the relationship between miR-34a and the prototypical SASP component IL6 in in vitro and in vivo models. miR-34a and IL6 levels increased and positively correlated in aortas of 21 months-old male C57BL/6J mice and in human aortic smooth muscle cells (HASMCs) isolated from donors of different age and undergone senescence. Lentiviral overexpression of miR-34a in HASMCs enhanced IL6 secretion. HASMCs senescence and calcification accelerated after exposure to conditioned medium of miR-34a-overexpressing cells. Analysis of miR-34a-induced secretome revealed enhancement of several pro-inflammatory cytokines and chemokines, including IL6, pro-senescent growth factors and matrix-degrading molecules. Moreover, induction of aortas medial calcification and concomitant IL6 expression, with an overdose of vitamin D, was reduced in male C57BL/6J Mir34a-/- mice. Finally, a positive correlation was observed between circulating miR-34a and IL6 in healthy subjects of 20-90 years. Hence, the vascular age-associated miR-34a promotes VSMCs SASP activation and contributes to arterial inflammation and dysfunctions such as VC.
Collapse
|
35
|
Niu H, Niu W, Yu T, Dong F, Huang K, Duan R, Qumu S, Lu M, Li Y, Yang T, Wang C. Association of RAGE gene multiple variants with the risk for COPD and asthma in northern Han Chinese. Aging (Albany NY) 2020; 11:3220-3237. [PMID: 31141790 PMCID: PMC6555453 DOI: 10.18632/aging.101975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Clinical and experimental data have shown that the receptor for advanced glycation end products (RAGE) is implicated in the pathogenesis of respiratory disorders. In this study, we genotyped five widely-evaluated variants in RAGE gene, aiming to assess their association with the risk for chronic obstructive pulmonary disease (COPD) and asthma in northern Han Chinese. Genotypes were determined in 105 COPD patients, 242 asthma patients and 527 controls. In single-locus analysis, there was significant difference in the genotype distributions of rs1800624 between COPD patients and controls (p=0.022), and the genotype and allele distributions of rs1800625 differed significantly (p=0.040 and 0.016) between asthma patients and controls. Haplotype analysis revealed that haplotype T-A-G-T (allele order: rs1800625, rs1800624, rs2070600, rs184003) was significantly associated with a reduced COPD risk (OR=0.32, 95% CI: 0.06-0.60), and haplotype T-A-A-G was significantly associated with a reduced asthma risk (OR=0.19, 95% CI: 0.04-0.96). Further haplotype-phenotype analysis showed that high- and low-density lipoprotein cholesterol and blood urea nitrogen were significant mediators for COPD (psim=0.041, 0.043 and 0.030, respectively), and total cholesterol was a significant mediator for asthma (psim=0.009). Taken together, our findings indicate that RAGE gene is a promising candidate for COPD and asthma, and importantly both disorders are genetically heterogeneous.
Collapse
Affiliation(s)
- Hongtao Niu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Feng Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Minya Lu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yong Li
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.,Clinical Diagnosis Department of Respiratory Diseases Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.,Clinical Diagnosis Department of Respiratory Diseases Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
36
|
Frimat M, Teissier T, Boulanger E. Is RAGE the receptor for inflammaging? Aging (Albany NY) 2019; 11:6620-6621. [PMID: 31494645 PMCID: PMC6756912 DOI: 10.18632/aging.102256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Marie Frimat
- University of Lille, INSERM, CHU Lille, U995 - Lille Inflammation Research International Center, F-59000 Lille, France.,CHU Lille, Department of Nephrology, F-59000 Lille, France
| | - Thibault Teissier
- University of Lille, INSERM, CHU Lille, U995 - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Eric Boulanger
- University of Lille, INSERM, CHU Lille, U995 - Lille Inflammation Research International Center, F-59000 Lille, France.,CHU Lille, Department of Geriatrics, F-59000 Lille, France
| |
Collapse
|