1
|
Holuka C, Menta G, Caro JC, Vögele C, D'Ambrosio C, Turner JD. Developmental epigenomic effects of maternal financial problems. Dev Psychopathol 2025; 37:1004-1017. [PMID: 38654405 DOI: 10.1017/s095457942400083x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Early-life adversity as neglect or low socioeconomic status is associated with negative physical/mental health outcomes and plays an important role in health trajectories through life. The early-life environment has been shown to be encoded as changes in epigenetic markers that are retained for many years.We investigated the effect of maternal major financial problems (MFP) and material deprivation (MD) on their children's epigenome in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Epigenetic aging, measured with epigenetic clocks, was weakly accelerated with increased MFP. In subsequent EWAS, MFP, and MD showed strong, independent programing effects on children's genomes. MFP in the period from birth to age seven was associated with genome-wide epigenetic modifications on children's genome visible at age 7 and partially remaining at age 15.These results support the hypothesis that physiological processes at least partially explain associations between early-life adversity and health problems later in life. Both maternal stressors (MFP/MD) had similar effects on biological pathways, providing preliminary evidence for the mechanisms underlying the effects of low socioeconomic status in early life and disease outcomes later in life. Understanding these associations is essential to explain disease susceptibility, overall life trajectories and the transition from health to disease.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, Belval, Luxembourg
| | - Giorgia Menta
- Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg
| | - Juan Carlos Caro
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Industrial Engineering, Universidad de Concepcion, Talcahuano, Chile
| | - Claus Vögele
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Conchita D'Ambrosio
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Potente C. Proteomics sheds light on unequal aging. Nat Med 2025:10.1038/s41591-025-03657-z. [PMID: 40251272 DOI: 10.1038/s41591-025-03657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Affiliation(s)
- Cecilia Potente
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Zheng HT, Li DL, Lou MWC, Hodge AM, Southey MC, Giles GG, Milne RL, Lynch BM, Dugué PA. Physical activity and DNA methylation-based markers of ageing in 6208 middle-aged and older Australians: cross-sectional and longitudinal analyses. GeroScience 2025; 47:2263-2274. [PMID: 39508977 PMCID: PMC11979085 DOI: 10.1007/s11357-024-01408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Epigenetic age quantifies biological age using DNA methylation information and is a potential pathway by which physical activity benefits general health. We aimed to assess the cross-sectional and longitudinal associations between physical activity and epigenetic age in middle-aged and older Australians. Blood DNA methylation data for 6208 participants (40% female) in the Melbourne Collaborative Cohort Study (MCCS) were available at baseline (1990-1994, mean age, 59 years) and, of those, for 1009 at follow-up (2003-2007, mean age, 69 years). Physical activity measurements (weighted scores at baseline and follow-up and total MET hours per week at follow-up) were calculated from self-reported questionnaire data. Five blood methylation-based markers of ageing (PCGrimAge, PCPhenoAge, bAge, DNAmFitAge, and DunedinPACE) and four fitness-related markers (DNAmGaitspeed, DNAmGripmax, DNAmVO2max, and DNAmFEV1) were calculated and adjusted for age. Linear regression was used to examine the cross-sectional and longitudinal associations between physical activity and epigenetic age. Effect modification by age, sex, and BMI was assessed. At baseline, a standard deviation (SD) increment in physical activity was associated with 0.03-SD (DNAmFitAge, 95%CI = 0.01, 0.06, P = 0.02) to 0.07-SD (bAge, 95%CI = 0.04, 0.09, P = 2 × 10-8) lower epigenetic age. These associations were attenuated after adjustment for other lifestyle variables. Only weak evidence was found for the longitudinal association (N = 1009) of changes in physical activity and epigenetic age (e.g. DNAmFitAge: adjusted β = - 0.04, 95%CI = - 0.08, 0.01). The associations were not modified by age, sex, or BMI. In middle-aged and older Australians, higher levels of self-reported physical activity were associated with slightly lower epigenetic age.
Collapse
Affiliation(s)
- Haoxin Tina Zheng
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Danmeng Lily Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Makayla W C Lou
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Perlstein TA, Jung J, Wagner AC, Reitz J, Wagner J, Rosoff DB, Lohoff FW. Alcohol and aging: Next-generation epigenetic clocks predict biological age acceleration in individuals with alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:829-842. [PMID: 40151157 PMCID: PMC12012873 DOI: 10.1111/acer.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Chronic heavy alcohol use is a major risk factor for premature aging and age-related diseases. DNA methylation (DNAm)-based epigenetic clocks are novel tools for predicting biological age. However, the newest configurations, causality-enriched epigenetic clocks, have not been assessed in the context of alcohol consumption and alcohol use disorder (AUD). METHODS Epigenetic aging was evaluated in a sample of 615 individuals (372 AUD patients and 243 healthy controls) by applying the GrimAge Version 1 (V1) and Version 2 (V2) clocks alongside three causality-enriched clocks (CausAge, DamAge, and AdaptAge). A linear model controlling for AUD diagnosis, sex, race, BMI, smoking status, and five blood cell types was leveraged to test associations between alcohol-related metrics and age-adjusted epigenetic clocks. RESULTS GrimAge V1 and V2 maintained significant associations with AUD and drinking behavior measures within the total sample and both the young (<40 years old) and old (≥40 years old) subgroups. Generally, GrimAge V2 slightly outperformed GrimAge V1, while none of the causality-enriched epigenetic clocks demonstrated significant associations with AUD. However, in the young subgroup, DamAge had a significant association with the total number of drinks. Across the total sample and age subgroups, with liver function enzymes, GrimAge V2 consistently sustained stronger associations compared with GrimAge V1. Among fourth-generation clocks, DamAge exhibited significant associations with gamma-glutamyl transferase (GGT) and aspartate aminotransferase in the total sample and young subgroup; CausAge displayed a significant association with GGT in the total sample. Examining clinical biomarkers, GrimAge V2 showed improved associations with C-reactive protein compared to GrimAge V1 in the total sample and age subgroups. CONCLUSIONS Overall, we observed moderately improved performance of GrimAge V2 compared with GrimAge V1 with the majority of the parameters tested. The causality-enriched epigenetic clocks lacked significant associations but demonstrate the complexities of aging and inspire further research of AUD and drinking dynamics.
Collapse
Affiliation(s)
- Tyler A. Perlstein
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Alexandra C. Wagner
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Joshua Reitz
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Daniel B. Rosoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
- NIH Oxford‐Cambridge Scholars Program, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
Guerra LHA, da Costa Castro NF, Jubilato FC, Marques LA, Leonel ECR, Junior SB, Campos SGP, Rahal P, Taboga SR, Calmon MF, Vilamaior PSL. Coconut Oil Mitigates the Effects of Aging on the Mongolian Gerbil Prostate. Prostate 2025; 85:395-406. [PMID: 39718211 DOI: 10.1002/pros.24842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a disease linked to the hormonal imbalance that occurs during aging and over the last decades, complementary and alternative medicines have come on the scene as a treatment option for BPH, such as herbal medicines. Coconut oil has been shown to be capable of interfering in testosterone-induced BPH. However, until now there is no study of the effect of coconut oil during aging. The present study evaluated the effect of the intake of coconut oil on the prostate of aging gerbils (Meriones unguiculatus). METHODS Two experimental groups were assigned: Gavage control (GC-animals subjected to gavage with water for 1 year, n = 11) and coconut oil (CO-animals subjected to gavage with coconut oil for 1 year, n = 11). Testosterone, and estradiol serum levels were determined by ELISA assay and histopathological analysis employed Hematoxylin-Eosin. Cell proliferation index was determined by PHH3 immunohistochemistry and TUNEL assay and receptors of androgen (AR) and estrogen (ERα and ERβ) were evaluated on the prostate. RESULTS The CO group exhibited a lower prostate weight (↓16.62%), decreased thickness of the prostate muscle stroma (↓18.27%), reduced expression of both AR (↓51.32) and ERα (↓14.26%) and reduced the percentage of BPH (↓1.53%) and intraepithelial neoplasms in the prostate (↓14.24%). Coconut oil intake mitigated age-related changes and increased the rate of apoptosis in prostatic cells (↑54.32). CONCLUSIONS Coconut oil treatment throughout aging helped counteract the negative effects of aging on prostate health.
Collapse
Affiliation(s)
- Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Fernanda Costa Jubilato
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Letícia Aparecida Marques
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Ellen Cristina Rivas Leonel
- Animal Molecular and Celular Biology Unit, Ecole de médecine vétérinaire, Faculté des Sciences, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanislau Bogusz Junior
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Bischoff-Ferrari HA, Gängler S, Wieczorek M, Belsky DW, Ryan J, Kressig RW, Stähelin HB, Theiler R, Dawson-Hughes B, Rizzoli R, Vellas B, Rouch L, Guyonnet S, Egli A, Orav EJ, Willett W, Horvath S. Individual and additive effects of vitamin D, omega-3 and exercise on DNA methylation clocks of biological aging in older adults from the DO-HEALTH trial. NATURE AGING 2025; 5:376-385. [PMID: 39900648 PMCID: PMC11922767 DOI: 10.1038/s43587-024-00793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/04/2024] [Indexed: 02/05/2025]
Abstract
While observational studies and small pilot trials suggest that vitamin D, omega-3 and exercise may slow biological aging, larger clinical trials testing these treatments individually or in combination are lacking. Here, we report the results of a post hoc analysis among 777 participants of the DO-HEALTH trial on the effect of vitamin D (2,000 IU per day) and/or omega-3 (1 g per day) and/or a home exercise program on four next-generation DNA methylation (DNAm) measures of biological aging (PhenoAge, GrimAge, GrimAge2 and DunedinPACE) over 3 years. Omega-3 alone slowed the DNAm clocks PhenoAge, GrimAge2 and DunedinPACE, and all three treatments had additive benefits on PhenoAge. Overall, from baseline to year 3, standardized effects ranged from 0.16 to 0.32 units (2.9-3.8 months). In summary, our trial indicates a small protective effect of omega-3 treatment on slowing biological aging over 3 years across several clocks, with an additive protective effect of omega-3, vitamin D and exercise based on PhenoAge.
Collapse
Affiliation(s)
- Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland.
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland.
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland.
| | - Stephanie Gängler
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland
| | - Maud Wieczorek
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Reto W Kressig
- University Department of Geriatric Medicine Felix Platter, University of Basel, Basel, Switzerland
| | | | - Robert Theiler
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Bruno Vellas
- IHU HealthAge, Toulouse, France
- Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Laure Rouch
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
- University Paul Sabatier Toulouse III, Toulouse, France
- Department of Pharmacy, Toulouse University Hospitals, Purpan Hospital, Toulouse, France
| | - Sophie Guyonnet
- IHU HealthAge, Toulouse, France
- Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Andreas Egli
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - E John Orav
- Department of Health Policy and Management, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Walter Willett
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | | |
Collapse
|
7
|
Mozhui K, Starlard-Davenport A, Sun Y, Shadyab AH, Casanova R, Thomas F, Wallace RB, Fowke JH, Johnson KC. Epigenetic entropy, social disparity, and health and lifespan in the Women's Health Initiative. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.21.25322696. [PMID: 40061325 PMCID: PMC11888519 DOI: 10.1101/2025.02.21.25322696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The pace of aging varies between individuals and is marked by changes in DNA methylation (DNAm) including an increase in randomness or entropy. Here, we computed epigenetic scores of aging and entropy using DNAm datasets from the Women's Health Initiative (WHI). We investigated how different epigenetic aging metrics relate to demographic and health variables, and mortality risk. Income and education, two proxies of socioeconomics (SE), had consistent associations with epigenetic aging and entropy. Notably, stochastic increases in DNAm at sites targeted by the polycomb proteins were significantly related to both aging and SE. While higher income was associated with reduced age-related DNAm changes in White women, the protective effect of income was diminished in Black and Hispanic women, and on average, Black and Hispanic women had relatively more aged epigenomes. Faster pace of aging, as estimated by the DunedinPACE, predicted higher mortality risk, while the maintenance of methylation at enhancer regions was associated with improved survival. Our findings demonstrate close ties between social and economic factors and aspects of epigenetic aging, suggesting potential biological mechanisms through which societal disparities may contribute to differences in health outcomes and lifespan across demographic groups.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yangbo Sun
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science and Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fridtjof Thomas
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B Wallace
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jay H Fowke
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Karen C Johnson
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
8
|
Yin W, Li X, Chen R, Zhan Y, Jylhävä J, Fang F, Hägg S. Marital and living status and biological ageing trajectories: a longitudinal cohort study with a 20-year follow-up. Biogerontology 2025; 26:34. [PMID: 39775304 PMCID: PMC11711563 DOI: 10.1007/s10522-024-10171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Biomarkers of ageing (BA) can predict health risks beyond chronological age, but little is known about how marital/living status affects longitudinal changes in BA. We examined the association between marital/living status and BA over time using the-Swedish-Adoption/Twin-Study-of-Aging (SATSA) cohort. Four BAs were analyzed: telomere length (TL) (638 individuals; 1603 measurements), DNAmAge (535 individuals; 1392 measurements), cognition (823 individuals; 3218 measurements), and frailty index (FI) (1828 individuals; 9502 measurements). Individuals were born between 1900 and 1948, and data on marital/living status, BAs, and covariates were collected through nine waves of questionnaires and in-person testing from 1986 to 2014. Mixed linear regression with random effects at twin-pair and individual levels were used to assess BA changes for constant marital/living status. Conditional generalized estimating equation assessed within-individual BA changes for varying marital/living status. Results showed that individuals who were consistently unmarried/non-cohabiting (β = 0.291, 95%CI = 0.189-0.393) or living alone (β = 0.203, 95%CI = 0.090-0.316) were more frail, and experienced accelerated frailty (p-for-interaction with age < 0.001 for marital status; p-for-interaction = 0.002 for living status) and cognitive decline (p-for-interaction < 0.001), compared to those married/cohabiting or living with someone Among individuals whose marital/living status changed, frailty was higher when living alone (β = 0.089, 95%CI = 0.017-0.162) and frailty accelerated when they became unmarried/non-cohabiting or were living alone (p-for-interaction < 0.001). Cognitive decline also accelerated when living alone (p-for-interaction = 0.020). No associations were observed for TL and DNAmAge. In conclusion, being unmarried/non-cohabiting or living alone from mid-to-old age is linked to accelerated cognitive decline and frailty. These findings highlight the potential importance of social support networks and living arrangements for healthy ageing.
Collapse
Grants
- 349335 the Academy of Finland
- 97:0147:1B, 2009-0795, 2013-2292 Forskningsrådet om Hälsa, Arbetsliv och Välfärd
- AG04563, AG10175, AG028555 NIH HHS
- R01 AG010175 NIA NIH HHS
- R01 AG028555 NIA NIH HHS
- 825-2007-7460, 825-2009- 6141, 521-2013-8689, 2015-03255, 2018-02077, 2017-00641 Vetenskapsrådet
- the Strategic Research Program in Epidemiology at Karolinska Institutet
- NIH
- the MacArthur Foundation Research Network on Successful Aging
- the Loo & Hans Osterman Foundation
- the Foundation for Geriatric Diseases
- the Magnus Bergwall Foundation
- the Sigrid Jusélius Foundation
- Yrjö Jahnsson Foundation and King Gustaf V:s and Queen Victorias Freemason Foundation
- Karolinska Institute
Collapse
Affiliation(s)
- Weiyao Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Xia Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ruoqing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
- Faculty of Medicine and Health Technology and Gerontology Research Center (GEREC), University of Tampere, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere, Finland
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| |
Collapse
|
9
|
Kiseleva OI, Arzumanian VA, Ikhalaynen YA, Kurbatov IY, Kryukova PA, Poverennaya EV. Multiomics of Aging and Aging-Related Diseases. Int J Mol Sci 2024; 25:13671. [PMID: 39769433 PMCID: PMC11677528 DOI: 10.3390/ijms252413671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite their astonishing biological diversity, surprisingly few shared traits connect all or nearly all living organisms. Aging, i.e., the progressive and irreversible decline in the function of multiple cells and tissues, is one of these fundamental features of all organisms, ranging from single-cell creatures to complex animals, alongside variability, adaptation, growth, healing, reproducibility, mobility, and, finally, death. Age is a key determinant for many pathologies, shaping the risks of incidence, severity, and treatment outcomes for cancer, neurodegeneration, heart failure, sarcopenia, atherosclerosis, osteoporosis, and many other diseases. In this review, we aim to systematically investigate the age-related features of the development of several diseases through the lens of multiomics: from genome instability and somatic mutations to pathway alterations and dysregulated metabolism.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Yuriy A. Ikhalaynen
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Polina A. Kryukova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| |
Collapse
|
10
|
Scholl JL, Pearson K, Fercho KA, Van Asselt AJ, Kallsen NA, Ehli EA, Potter KN, Brown-Rice KA, Forster GL, Baugh LA. Differing Effects of Alcohol Use on Epigenetic and Brain Age in Adult Children of Parents with Alcohol Use Disorder. Brain Sci 2024; 14:1263. [PMID: 39766462 PMCID: PMC11674551 DOI: 10.3390/brainsci14121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND It is known that being the adult child of a parent with an alcohol use disorder (ACoA) can confer a wide variety of increased health and psychological risks, including higher rates of anxiety, depression, and post-traumatic stress disorder symptoms. Additionally, ACoAs are at greater risk of developing alcohol/substance use disorders (AUDs/SUDs) than individuals from families without a history of AUDs. METHODS ACoA individuals with risky hazardous alcohol use (n = 14) and those not engaged in hazardous use (n = 14) were compared to a group of healthy controls. We examined structural brain differences and applied machine learning algorithms to predict biological brain and DNA methylation ages to investigate differences and determine any accelerated aging between these groups. RESULTS Hazardous and non-hazardous ACoA groups had lower predicted brain ages than the healthy control group (n = 100), which may result from neuro-developmental differences between ACoA groups and controls. Within specific brain regions, we observed decreased cortical volume within bilateral pars orbitalis and frontal poles, and the left middle temporal gyrus and entorhinal cortex within the hazardous alcohol ACoA group. When looking at the epigenetic aging data, the hazardous ACoA participants had increased predicted epigenetic age difference scores compared to the control group (n = 34) and the non-hazardous ACoA participant groups. CONCLUSIONS The results demonstrate a decreased brain age in the ACoAs compared to control, concurrent with increased epigenetic age specifically in the hazardous ACoA group, laying the foundation for future research to identify individuals with an increased susceptibility to developing hazardous alcohol use. Together, these results provide a better understanding of the associations between epigenetic factors, brain structure, and alcohol use disorders.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
| | - Kami Pearson
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
- Kansas City University Center for Research, KCU, Kansas City, MO 64106, USA
| | - Kelene A. Fercho
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
- FAA Civil Aerospace Medical Institute, Oklahoma City, OK 73169, USA
| | | | - Noah A. Kallsen
- Avera Institute for Human Genetics, Sioux Falls, SD 57105, USA (E.A.E.)
| | - Erik. A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD 57105, USA (E.A.E.)
| | - Kari N. Potter
- Medical Laboratory Science, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Kathleen A. Brown-Rice
- Department of Counselor Education, College of Education, Sam Houston State University, Huntsville, TX 77340, USA
| | - Gina L. Forster
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Lee A. Baugh
- Division of Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (J.L.S.)
| |
Collapse
|
11
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
12
|
Ciantar J, Marttila S, Rajić S, Kostiniuk D, Mishra PP, Lyytikäinen LP, Mononen N, Kleber ME, März W, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Identification and functional characterisation of DNA methylation differences between East- and West-originating Finns. Epigenetics 2024; 19:2397297. [PMID: 39217505 PMCID: PMC11382697 DOI: 10.1080/15592294.2024.2397297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Eastern and Western Finns show a striking difference in coronary heart disease-related mortality; genetics is a known contributor for this discrepancy. Here, we discuss the potential role of DNA methylation in mediating the discrepancy in cardiometabolic disease-risk phenotypes between the sub-populations. We used data from the Young Finns Study (n = 969) to compare the genome-wide DNA methylation levels of East- and West-originating Finns. We identified 21 differentially methylated loci (FDR < 0.05; Δβ >2.5%) and 7 regions (smoothed FDR < 0.05; CpGs ≥ 5). Methylation at all loci and regions associates with genetic variants (p < 5 × 10-8). Independently of genetics, methylation at 11 loci and 4 regions associates with transcript expression, including genes encoding zinc finger proteins. Similarly, methylation at 5 loci and 4 regions associates with cardiometabolic disease-risk phenotypes including triglycerides, glucose, cholesterol, as well as insulin treatment. This analysis was also performed in LURIC (n = 2371), a German cardiovascular patient cohort, and results replicated for the association of methylation at cg26740318 and DMR_11p15 with diabetes-related phenotypes and methylation at DMR_22q13 with triglyceride levels. Our results indicate that DNA methylation differences between East and West Finns may have a functional role in mediating the cardiometabolic disease discrepancy between the sub-populations.
Collapse
Affiliation(s)
- Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daria Kostiniuk
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
13
|
Markov Y, Levine M, Higgins-Chen AT. Reliable detection of stochastic epigenetic mutations and associations with cardiovascular aging. GeroScience 2024; 46:5745-5765. [PMID: 38736015 PMCID: PMC11493905 DOI: 10.1007/s11357-024-01191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Stochastic epigenetic mutations (SEMs) have been proposed as novel aging biomarkers to capture heterogeneity in age-related DNA methylation changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. Because SEMs are defined by their outlier status, it is critical to differentiate extreme values due to technical noise or data artifacts from those due to real biology. Using technical replicate data, we found SEM detection is not reliable: across 3 datasets, 24 to 39% of hypoSEM and 46 to 67% of hyperSEM are not shared between replicates. We identified factors influencing SEM reliability-including blood cell type composition, probe beta-value statistics, genomic location, and presence of SNPs. We used these factors in a training dataset to build a machine learning-based filter that removes unreliable SEMs, and found this filter enhances reliability in two independent validation datasets. We assessed associations between SEM loads and aging phenotypes in the Framingham Heart Study and discovered that associations with aging outcomes were in large part driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations were preserved after filtering out unreliable SEMs and were enhanced after adjusting for blood cell composition. Finally, we utilized these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which uses parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.
Collapse
Affiliation(s)
- Yaroslav Markov
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Morgan Levine
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Chervova O, Panteleeva K, Chernysheva E, Widayati TA, Baronik ŽF, Hrbková N, Schneider JL, Bobak M, Beck S, Voloshin V. Breaking new ground on human health and well-being with epigenetic clocks: A systematic review and meta-analysis of epigenetic age acceleration associations. Ageing Res Rev 2024; 102:102552. [PMID: 39423872 DOI: 10.1016/j.arr.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic clocks provide an accurate molecular readout of epigenetic age and epigenetic age acceleration (EAA) derived from DNA methylation data have shown promise as biomarkers of ageing. This systematic review synthesised research on associations between EAA measures and various physiological, cognitive, social, and environmental factors. A comprehensive search strategy identified 299 publications reporting 1050 unique EAA-factor associations based on 53 methylation clocks. Random-effects meta-analyses pooled results across studies for selected EAA-factor pairs. Significant pooled associations emerged, providing insights into relationships between specific factors and accelerated epigenetic ageing. We developed a novel four-level classification system to categorise this diverse range of factors and enable a structured synthesis. To aid further research planning in this rapidly evolving field, TEAPEE (Tracker of EAA Associations with Phenotype & Environmental Exposure) - an interactive, searchable web table detailing all EAA-factor associations - was developed, cataloguing the epigenetic clocks, associated factors, classification categories, and direct links to the original studies. This resource will empower future investigations into the multifaceted determinants of epigenetic ageing, contributing to a deeper understanding of the epigenome's sensitivity to various life experiences and exposures.
Collapse
Affiliation(s)
- Olga Chervova
- UCL Research Department of Epidemiology & Public Health, University College London, London, United Kingdom; UCL Cancer Institute, University College London, London, United Kingdom.
| | - Kseniia Panteleeva
- University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
| | - Elizabeth Chernysheva
- University of Otago, Department of Pathology and Biomedical Science, Christchurch, New Zealand
| | | | | | - Natálie Hrbková
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Martin Bobak
- UCL Research Department of Epidemiology & Public Health, University College London, London, United Kingdom
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Vitaly Voloshin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Esposito S, Bonaccio M, Di Castelnuovo A, Ruggiero E, Persichillo M, Magnacca S, De Curtis A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing. Nutrients 2024; 16:3353. [PMID: 39408320 PMCID: PMC11478881 DOI: 10.3390/nu16193353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Studies investigating the associations between life-course socioeconomic status (SES) and biological aging (the difference between biological and chronological age, Δage) have mostly been focused on epigenetic clocks and on a limited number of mediators. The aim of this study was to investigate this relationship using a blood-based aging clock, as well as the potential mediation of different factors including lifestyles or their proxies and physical and mental wellbeing. METHODS A deep-learning aging clock based on 36 blood markers was deployed, in a large Italian population cohort: the Moli-sani study (N = 4772; ≥35 years; 48% men). SES was defined as an eight-level trajectory over the life course, which was tested with Δage in linear models incrementally adjusted for age, sex, and prevalent health conditions. Moreover, the proportion of associations explained by diverse potential mediators, including diet, smoking, physical activity, alcohol, body mass index (BMI), and physical and mental quality of life (QoL) was estimated. RESULTS Compared to participants with a stably high SES, those showing an educational and financial downward trajectory were older than their CA (β (95%CI) = 1.28 (0.73-1.83) years), as were those with a stably low SES (0.75 (0.25-01.25) years). These associations were largely explained by the tested mediators (overall proportion: 36.2% and 66.3%, respectively), prominently by physical QoL (20.7% and 41.0%), BMI (16.8% and 34.3%), lifestyle (10.6% and 24.6%), and dietary inflammatory score (5.3% and 9.2%). CONCLUSIONS These findings indicate that life-course socioeconomic inequalities are associated with accelerated biological aging, suggesting physical wellbeing and pro-inflammatory lifestyles as potential public health targets to slow down this process in susceptible socioeconomic strata of the population.
Collapse
Affiliation(s)
- Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Augusto Di Castelnuovo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Sara Magnacca
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Bari, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Isernia, Italy; (S.E.); (M.B.); (A.D.C.); (E.R.); (M.P.); (S.M.); (A.D.C.); (C.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Bari, Italy
| | | |
Collapse
|
16
|
Potter C, Hill C, Smyth LJ, Neville C, Scott A, Kee F, McGuinness B, McKnight A. Cohort profile: DNA methylation in the Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) - recruitment and participant characteristics. BMJ Open 2024; 14:e085652. [PMID: 39277204 PMCID: PMC11404182 DOI: 10.1136/bmjopen-2024-085652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
PURPOSE Epigenetic modifications including DNA methylation (DNAm) are proposed mechanisms by which social or environmental exposures may influence health and behaviours as we age. The Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) DNAm cohort, established in 2013, is one of several worldwide, nationally representative prospective studies of ageing with biological samples from participants who consented to multiomic analysis. PARTICIPANTS NICOLA recruited 8478 participants (8283 aged 50 years or older and 195 spouses or partners at the same address aged under 50 years). Computer-Assisted Personal Interviews, Self-Completion Questionnaires and detailed Health Assessments (HA) were completed. Of the 3471 (44.1%) participants who attended the HA in wave 1, which included venous blood sampling, 2000 were identified for the DNAm cohort. Following technical and data quality control checks, DNAm data are currently available for n=1870. FINDINGS TO DATE There was no significant difference based on age, self-reported gender, education, employment, smoking or alcohol status and subjective health reports between the DNAm cohort and other HA attendees. Participants were more likely to be in the DNAm group if they lived with one other person (OR 1.26, 95% CI 1.07 to 1.49). The DNAm group had a lower proportion of depressed participants and those meeting criteria for post-traumatic stress disorder (11.7% and 4.4% vs 13.5% and 4.5%, respectively) categorised by objective assessment tools but this was not significant (OR 0.84, 95% CI 0.69 to 1.02 and OR 0.87, 95% CI 0.64 to 1.19). FUTURE PLANS The deeply phenotyped DNAm cohort in NICOLA with planned prospective follow-up and additional multiomic data releases will increase the cohort's utility for research into ageing. The genomic and epigenetic data for the DNAm cohort has been deposited on the European Genome-Phenome Archive, increasing the profile of this cohort and data availability to researchers.
Collapse
Affiliation(s)
- Claire Potter
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire Hill
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Angela Scott
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Frank Kee
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Amy McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
García-delaTorre P, Rivero-Segura NA, Sánchez-García S, Becerril-Rojas K, Sandoval-Rodriguez FE, Castro-Morales D, Cruz-Lopez M, Vazquez-Moreno M, Rincón-Heredia R, Ramirez-Garcia P, Gomez-Verjan JC. GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis. GeroScience 2024; 46:3511-3524. [PMID: 38358578 PMCID: PMC11226692 DOI: 10.1007/s11357-024-01095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.
Collapse
Affiliation(s)
- Paola García-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | | | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | | | | | - Diana Castro-Morales
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Miguel Cruz-Lopez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Miguel Vazquez-Moreno
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Perla Ramirez-Garcia
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico
| | - Juan Carlos Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), 10200, Mexico City, Mexico.
| |
Collapse
|
18
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
Clark SL, McGinnis EW, Zhao M, Xie L, Marks GT, Aberg KA, van den Oord EJCG, Copeland WE. The Impact of Childhood Mental Health and Substance Use on Methylation Aging Into Adulthood. J Am Acad Child Adolesc Psychiatry 2024; 63:825-834. [PMID: 38157979 PMCID: PMC11745081 DOI: 10.1016/j.jaac.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To test whether childhood mental health symptoms, substance use, and early adversity accelerate the rate of DNA methylation (DNAm) aging from adolescence to adulthood. METHOD DNAm was assayed from blood samples in 381 participants in both adolescence (mean [SD] age = 13.9 [1.6] years) and adulthood (mean [SD] age = 25.9 [2.7] years). Structured diagnostic interviews were completed with participants and their parents at multiple childhood observations (1,950 total) to assess symptoms of common mental health disorders (attention-deficit/hyperactivity disorder, oppositional defiant disorder, conduct disorder, anxiety, and depression) and common types of substance use (alcohol, cannabis, nicotine) and early adversities. RESULTS Neither childhood mental health symptoms nor substance use variables were associated with DNAm aging cross-sectionally. In contrast, the following mental health symptoms and substance variables were associated with accelerated DNAm aging from adolescence to adulthood: depressive symptoms (b = 0.314, SE = 0.127, p = .014), internalizing symptoms (b = 0.108, SE = 0.049, p = .029), weekly cannabis use (b =1.665, SE = 0.591, p = .005), and years of weekly cannabis use (b = 0.718, SE = 0.283, p = .012). In models testing all individual variables simultaneously, the combined effect of the variables was equivalent to a potential difference of 3.17 to 3.76 years in DNAm aging. A final model tested a variable assessing cumulative exposure to mental health symptoms, substance use, and early adversities. This cumulative variable was strongly associated with accelerated aging (b = 0.126, SE = 0.044, p = .005). CONCLUSION Mental health symptoms and substance use accelerated DNAm aging into adulthood in a manner consistent with a shared risk mechanism. PLAIN LANGUAGE SUMMARY Using data from 381 participants in the Great Smoky Mountains Study, the authors examined whether childhood mental health symptoms, substance use, and early adversity accelerate biological aging, as measured by DNA methylation age, from adolescence to adulthood. Depressive symptoms and cannabis use were found to significantly accelerate biological aging. Models that tested the combined effect of mental health symptoms, substance use, and early adversity demonstrated that there was a shared effect across these types of childhood problems on accelerated aging.
Collapse
Affiliation(s)
| | | | - Min Zhao
- Virginia Commonwealth University, Richmond, Virginia
| | - Linying Xie
- Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | |
Collapse
|
20
|
Crimmins EM, Klopack ET, Kim JK. Generations of epigenetic clocks and their links to socioeconomic status in the Health and Retirement Study. Epigenomics 2024; 16:1031-1042. [PMID: 39023350 PMCID: PMC11404624 DOI: 10.1080/17501911.2024.2373682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: This is a brief description of links between nine epigenetic clocks related to human aging and socioeconomic and behavioral characteristics as well as health outcomes.Materials & methods: We estimate frequently used and novel clocks from one data source, the Health and Retirement Study.Results: While all of these clocks are thought to reflect "aging," they use different CpG sites and do not strongly relate to each other. First and fourth generation clocks are not as linked to socioeconomic status or health outcomes as second and third generation clocks.Conclusion: Epigenetic clocks reflect exciting new tools and their continued evolution is likely to improve our understanding of how exposures get under the skin to accelerate aging.
Collapse
Affiliation(s)
- Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90089-0191, USA
| | - Eric T Klopack
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90089-0191, USA
| | - Jung Ki Kim
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90089-0191, USA
| |
Collapse
|
21
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
22
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. BMC Med Genomics 2024; 17:146. [PMID: 38802805 PMCID: PMC11129464 DOI: 10.1186/s12920-024-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. METHODS We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = 2,531) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether demographic factors including age, sex, and educational attainment modified the relationships between epigenetic age acceleration and blood lipids. RESULTS After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05), although the effect sizes were relatively small (e.g., < 7 mg/dL of TC per standard deviation in epigenetic age acceleration). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjustment for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. CONCLUSION Multiple measures of epigenetic age acceleration are associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or non-linear relationships between age and these lipids, as both TC and LDL-C decrease faster at older ages.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
23
|
Wang X, Peng Y, Liu F, Wang P, Si C, Gong J, Zhou H, Zhang M, Song F. Joint association of biological aging and lifestyle with risks of cancer incidence and mortality: A cohort study in the UK Biobank. Prev Med 2024; 182:107928. [PMID: 38471624 DOI: 10.1016/j.ypmed.2024.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Aging is a risk factor for cancer incidence and mortality. Biological aging can reflect the aging degree of the body better than chronological age and can be aggravated by unhealthy lifestyle factors. We aimed to assess the joint effect of biological aging and lifestyle with risks of cancer incidence and mortality. METHODS This study included a total of 281,889 participants aged 37 to 73 from the UK Biobank database. Biological age was derived from chronological age and 9 clinical blood indicators, and lifestyle score was constructed by body mass index, smoking status, alcohol consumption, physical activity, and diet. Multivariate Cox hazard proportional regression model was used to analyze the independent and joint association of biological aging and lifestyle with risks of cancer incidence and mortality, respectively. RESULTS Over a median follow-up period of 12.3 years, we found that older biological age was associated with increased risks of overall cancer, digestive system cancers, lung, breast and renal cancers incidence and mortality (HRs: 1.12-2.25). In the joint analysis of biological aging and lifestyle with risks of cancer incidence and mortality, compared with unhealthy lifestyle and younger biological age, individuals with healthy lifestyle and older biological age had decreased risks of incidence (8% ∼ 60%) and mortality (20% ∼ 63%) for overall, esophageal, colorectal, pancreatic and lung cancers. CONCLUSIONS Biological aging may be an important risk factor for cancer morbidity and mortality. A healthier lifestyle is more likely to mitigate the adverse effects of biological aging on overall cancer and some site-specific cancers.
Collapse
Affiliation(s)
- Xixuan Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yu Peng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Fubin Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Changyu Si
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Jianxiao Gong
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Huijun Zhou
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Ming Zhang
- Comprehensive Management Department of Occupational Health, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China.
| |
Collapse
|
24
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
25
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
26
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
27
|
Noroozi R, Rudnicka J, Pisarek A, Wysocka B, Masny A, Boroń M, Migacz-Gruszka K, Pruszkowska-Przybylska P, Kobus M, Lisman D, Zielińska G, Iljin A, Wiktorska JA, Michalczyk M, Kaczka P, Krzysztofik M, Sitek A, Ossowski A, Spólnicka M, Branicki W, Pośpiech E. Analysis of epigenetic clocks links yoga, sleep, education, reduced meat intake, coffee, and a SOCS2 gene variant to slower epigenetic aging. GeroScience 2024; 46:2583-2604. [PMID: 38103096 PMCID: PMC10828238 DOI: 10.1007/s11357-023-01029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
DNA methylation (DNAm) clocks hold promise for measuring biological age, useful for guiding clinical interventions and forensic identification. This study compared the commonly used DNAm clocks, using DNA methylation and SNP data generated from nearly 1000 human blood or buccal swab samples. We evaluated different preprocessing methods for age estimation, investigated the association of epigenetic age acceleration (EAA) with various lifestyle and sociodemographic factors, and undertook a series of novel genome-wide association analyses for different EAA measures to find associated genetic variants. Our results highlighted the Skin&Blood clock with ssNoob normalization as the most accurate predictor of chronological age. We provided novel evidence for an association between the practice of yoga and a reduction in the pace of aging (DunedinPACE). Increased sleep and physical activity were associated with lower mortality risk score (MRS) in our dataset. University degree, vegetable consumption, and coffee intake were associated with reduced levels of epigenetic aging, whereas smoking, higher BMI, meat consumption, and manual occupation correlated well with faster epigenetic aging, with FitAge, GrimAge, and DunedinPACE clocks showing the most robust associations. In addition, we found a novel association signal for SOCS2 rs73218878 (p = 2.87 × 10-8) and accelerated GrimAge. Our study emphasizes the importance of an optimized DNAm analysis workflow for accurate estimation of epigenetic age, which may influence downstream analyses. The results support the influence of genetic background on EAA. The associated SOCS2 is a member of the suppressor of cytokine signaling family known for its role in human longevity. The reported association between various risk factors and EAA has practical implications for the development of health programs to improve quality of life and reduce premature mortality associated with age-related diseases.
Collapse
Affiliation(s)
- Rezvan Noroozi
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanna Rudnicka
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Pisarek
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
| | - Bożena Wysocka
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | | | - Magdalena Kobus
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Dagmara Lisman
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Małgorzata Michalczyk
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Piotr Kaczka
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Krzysztofik
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aneta Sitek
- Department of Anthropology, University of Lodz, Lodz, Poland
| | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Wojciech Branicki
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
- Institute of Forensic Research, Krakow, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| |
Collapse
|
28
|
Harris KM, Levitt B, Gaydosh L, Martin C, Meyer JM, Mishra AA, Kelly AL, Aiello AE. The Sociodemographic and Lifestyle Correlates of Epigenetic Aging in a Nationally Representative U.S. Study of Younger Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585983. [PMID: 38585956 PMCID: PMC10996523 DOI: 10.1101/2024.03.21.585983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Importance Epigenetic clocks represent molecular evidence of disease risk and aging processes and have been used to identify how social and lifestyle characteristics are associated with accelerated biological aging. However, most of this research is based on older adult samples who already have measurable chronic disease. Objective To investigate whether and how sociodemographic and lifestyle characteristics are related to biological aging in a younger adult sample across a wide array of epigenetic clock measures. Design Nationally representative prospective cohort study. Setting United States (U.S.). Participants Data come from the National Longitudinal Study of Adolescent to Adult Health, a national cohort of adolescents in grades 7-12 in U.S. in 1994 followed for 25 years over five interview waves. Our analytic sample includes participants followed-up through Wave V in 2016-18 who provided blood samples for DNA methylation (DNAm) testing (n=4237) at Wave V. Exposure Sociodemographic (sex, race/ethnicity, immigrant status, socioeconomic status, geographic location) and lifestyle (obesity status, exercise, tobacco, and alcohol use) characteristics. Main Outcome Biological aging assessed from blood DNAm using 16 epigenetic clocks when the cohort was aged 33-44 in Wave V. Results While there is considerable variation in the mean and distribution of epigenetic clock estimates and in the correlations among the clocks, we found sociodemographic and lifestyle factors are more often associated with biological aging in clocks trained to predict current or dynamic phenotypes (e.g., PhenoAge, GrimAge and DunedinPACE) as opposed to clocks trained to predict chronological age alone (e.g., Horvath). Consistent and strong associations of faster biological aging were found for those with lower levels of education and income, and those with severe obesity, no weekly exercise, and tobacco use. Conclusions and Relevance Our study found important social and lifestyle factors associated with biological aging in a nationally representative cohort of younger-aged adults. These findings indicate that molecular processes underlying disease risk can be identified in adults entering midlife before disease is manifest and represent useful targets for interventions to reduce social inequalities in heathy aging and longevity. Key Points Question: Are epigenetic clocks, measures of biological aging developed mainly on older-adult samples, meaningful for younger adults and associated with sociodemographic and lifestyle characteristics in expected patterns found in prior aging research?Findings: Sociodemographic and lifestyle factors were associated with biological aging in clocks trained to predict morbidity and mortality showing accelerated aging among those with lower levels of education and income, and those with severe obesity, no weekly exercise, and tobacco use.Meaning: Age-related molecular processes can be identified in younger-aged adults before disease manifests and represent potential interventions to reduce social inequalities in heathy aging and longevity.
Collapse
|
29
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. RESEARCH SQUARE 2024:rs.3.rs-3934965. [PMID: 38464171 PMCID: PMC10925395 DOI: 10.21203/rs.3.rs-3934965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. Methods We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = and f) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether the relationships between epigenetic age acceleration and blood lipids differ by demographic factors including age, sex, and educational attainment. Results After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjusting for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. Conclusion Epigenetic age acceleration, a powerful biomarker of cellular aging, is highly associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or the non-linear relationship between age and these lipids, as both TC and LDL-C decrease faster at older ages. More studies are needed to further understand the temporal relationships between epigenetic age acceleration on blood lipids and other health outcomes.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan
| |
Collapse
|
30
|
Li X, Cao X, Zhang J, Fu J, Mohedaner M, Zhuogadanzeng, Sun X, Yang G, Yang Z, Kuo CL, Chen X, Cohen AA, Liu Z. Accelerated aging mediates the associations of unhealthy lifestyles with cardiovascular disease, cancer, and mortality. J Am Geriatr Soc 2024; 72:181-193. [PMID: 37789775 PMCID: PMC11078652 DOI: 10.1111/jgs.18611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND With two well-validated aging measures capturing mortality and morbidity risk, this study examined whether and to what extent aging mediates the associations of unhealthy lifestyles with adverse health outcomes. METHODS Data were from 405,944 adults (40-69 years) from UK Biobank (UKB) and 9972 adults (20-84 years) from the US National Health and Nutrition Examination Survey (NHANES). An unhealthy lifestyles score (range: 0-5) was constructed based on five factors (smoking, drinking, physical inactivity, unhealthy body mass index, and unhealthy diet). Two aging measures, Phenotypic Age Acceleration (PhenoAgeAccel) and Biological Age Acceleration (BioAgeAccel) were calculated using nine and seven blood biomarkers, respectively, with a higher value indicating the acceleration of aging. The outcomes included incident cardiovascular disease (CVD), incident cancer, and all-cause mortality in UKB; CVD mortality, cancer mortality, and all-cause mortality in NHANES. A general linear regression model, Cox proportional hazards model, and formal mediation analysis were performed. RESULTS The unhealthy lifestyles score was positively associated with PhenoAgeAccel (UKB: β = 0.741; NHANES: β = 0.874, all p < 0.001). We further confirmed the respective associations of PhenoAgeAccel and unhealthy lifestyles with the outcomes in UKB and NHANES. The mediation proportion of PhenoAgeAccel in associations of unhealthy lifestyles with incident CVD, incident cancer, and all-cause mortality were 20.0%, 17.8%, and 26.6% (all p < 0.001) in UKB, respectively. Similar results were found in NHANES. The findings were robust when using another aging measure-BioAgeAccel. CONCLUSIONS Accelerated aging partially mediated the associations of lifestyles with CVD, cancer, and mortality in UK and US populations. The findings reveal a novel pathway and the potential of geroprotective programs in mitigating health inequality in late life beyond lifestyle interventions.
Collapse
Affiliation(s)
- Xueqin Li
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jingyun Zhang
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinjing Fu
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Mayila Mohedaner
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhuogadanzeng
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiaoyi Sun
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Gan Yang
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhenqing Yang
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Chia-Ling Kuo
- Department of Community Medicine and Health Care, Connecticut Convergence Institute for Translation in Regenerative Engineering, Institute for Systems Genomics, University of Connecticut Health, Farmington, CT 06030, USA
| | - Xi Chen
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT 06520, USA
- Department of Economics, Yale University, New Haven, CT 06520, USA
| | - Alan A Cohen
- Department of Family Medicine, Research Centre on Aging, CHUS Research Centre, University of Sherbrooke, Sherbrooke, QC, Canada
- Butler Columbia Aging Center and Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
31
|
Markov Y, Levine M, Higgins-Chen AT. Stochastic Epigenetic Mutations: Reliable Detection and Associations with Cardiovascular Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571149. [PMID: 38168247 PMCID: PMC10760000 DOI: 10.1101/2023.12.12.571149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Stochastic Epigenetic Mutations (SEMs) have been proposed as novel aging biomarkers that have the potential to capture heterogeneity in age-related DNA methylation (DNAme) changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide (CpG) sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. While individual SEMs are rarely consistent across subjects, the SEM load - the total number of SEMs - increases with age. However, given poor technical reliability of measurement for many DNA methylation sites, we posited that many outliers might represent technical noise. Our study of whole blood samples from 36 individuals, each measured twice, found that 23.3% of hypoSEM and 45.6% hyperSEM are not shared between replicates. This diminishes the reliability of SEM loads, where intraclass correlation coefficients are 0.96 for hypoSEM and 0.90 for hyperSEM. We linked SEM reliability to multiple factors, including blood cell type composition, probe beta-value statistics, and presence of SNPs. A machine learning approach, leveraging these factors, filtered unreliable SEMs, enhancing reliability in a separate dataset of technical replicates from 128 individuals. Analysis of the Framingham Heart Study confirmed previously reported SEM association with mortality and revealed novel connections to cardiovascular disease. We discover that associations with aging outcomes are primarily driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations are preserved after filtering out unreliable SEMs and are enhanced after adjusting for blood cell composition. Finally, we utilize these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which utilizes parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.
Collapse
Affiliation(s)
- Yaroslav Markov
- Program in Computational Biology & Bioinformatics, Yale Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Morgan Levine
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Kaczorowska A, Sebastjan A, Kołodziej M, Fortuna M, Ignasiak Z. The level of actual functional fitness of men from different living environments in Poland and associations with health - a cross-sectional study. BMC Geriatr 2023; 23:842. [PMID: 38087228 PMCID: PMC10717969 DOI: 10.1186/s12877-023-04577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The study aimed to assess the differences in functional fitness between older men living in social welfare homes (SWH) and men living in society. METHODS The study involved 474 men aged 60-84, including 134 men living in social welfare homes and 340 men living in community. The Senior Fitness Test was used to assess functional fitness. Body weight and height were measured. Moreover, data on age, education, taking up physical activity and place of residence were collected. RESULTS A significantly lower level of functional fitness of SWH residents was demonstrated compared to men living in the society (p < 0.001). A significant percentage of seniors living in SWH did not reach the normal range for the Polish population. Also, the level of education, physical activity and health self-assessment differentiated the institutionalized men from those living in the community. CONCLUSIONS The place of residence is a factor that differentiates seniors' functional fitness levels. The reduced fitness of social welfare home residents may also result from the low level of their daily physical activity, education and health. Introducing physical activity programs for elderly residents in social welfare homes seems reasonable. TRIAL REGISTRATION ISRCTN platform as 18,225,729; December 2020.
Collapse
Affiliation(s)
- Antonina Kaczorowska
- Institute of Health Sciences, University of Opole, ul. Katowicka 68, Opole, 45-060, Poland.
| | - Anna Sebastjan
- Department of Biostructure, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Małgorzata Kołodziej
- Department of Biomechanics, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Małgorzata Fortuna
- Faculty of Health and Physical Culture Sciences, The Witelon State University of Applied Sciences in Legnica, Legnica, Poland
| | - Zofia Ignasiak
- Department of Biostructure, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
33
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
34
|
Wang W, Dearman A, Bao Y, Kumari M. Partnership status and positive DNA methylation age acceleration across the adult lifespan in the UK. SSM Popul Health 2023; 24:101551. [PMID: 38034479 PMCID: PMC10682041 DOI: 10.1016/j.ssmph.2023.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
Although a significant body of research has shown that married people are healthier and live longer, empirical research on sex differences in the link between marital status and health suggests results are mixed. Moreover, the sex disparities in marital status and health relationships vary across adulthood. The literature on partnership status and measures of ageing is largely focused on older age groups and is limited in its view of early adulthood. Data from waves 2 and 3 (2010-2012) of Understanding Society: UKHLS were used to examine the association of current partnership status with epigenetic age acceleration (AA) assessed with DNA methylation (DNAm) algorithms 'Phenoage' and ' DunedinPACE ' in 3492 participants (aged 16-97). Regression models were estimated separately for men and women, and further stratified by age groups. Divorced/separated and widowed people showed positive age acceleration compared to the married/cohabiting people (reference group). Some sex differences were apparent, especially, among the single and divorced/separated groups. Age differences were also apparent, for example in men, being single was negatively associated with DNAmAA in the youngest group, but positively in the oldest group compared to partnered counterparts. These findings illustrate the importance of partnerships on the ageing process, in particular marital change through divorce and widowhood for positive age acceleration in adults. For single groups, observations were heterogenous by age and sex.
Collapse
Affiliation(s)
- Wen Wang
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Anna Dearman
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Yanchun Bao
- Department of Mathematics, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
35
|
Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, Zhu X. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. Ageing Res Rev 2023; 92:102121. [PMID: 37944707 DOI: 10.1016/j.arr.2023.102121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aging is widespread worldwide and a significant risk factor for cardiovascular disease (CVD). Mechanisms underlying aging have attracted considerable attention in recent years. Remarkably, aging and CVD overlap in numerous ways, with deregulated nutrient sensing as a common mechanism and lifestyle as a communal modifier. Interestingly, lifestyle triggers or suppresses multiple nutrient-related signaling pathways. In this review, we first present the composition of the nutrient-sensing network (NSN) and its metabolic impact on aging and CVD. Secondly, we review how risk factors closely associated with CVD, including adverse life states such as sedentary behavior, sleep disorders, high-fat diet, and psychosocial stress, contribute to aging and CVD, with a focus on the bridging role of the NSN. Finally, we focus on the positive effects of beneficial dietary interventions, specifically dietary restriction and the Mediterranean diet, on the regulation of nutrient metabolism and the delayed effects of aging and CVD that depend on the balance of the NSN. In summary, we expound on the interaction between lifestyle, NSN, aging, and CVD.
Collapse
Affiliation(s)
- Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
36
|
Schmitz LL, Duffie E, Zhao W, Ratliff SM, Ding J, Liu Y, Merkin SS, Smith JA, Seeman T. Associations of Early-Life Adversity With Later-Life Epigenetic Aging Profiles in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2023; 192:1991-2005. [PMID: 37579321 PMCID: PMC10988110 DOI: 10.1093/aje/kwad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
Epigenetic biomarkers of accelerated aging have been widely used to predict disease risk and may enhance our understanding of biological mechanisms between early-life adversity and disparities in aging. With respect to childhood adversity, most studies have used parental education or childhood disadvantage and/or have not examined the role played by socioemotional or physical abuse and trauma in epigenetic profiles at older ages. This study leveraged data from the Multi-Ethnic Study of Atherosclerosis (MESA) on experiences of threat and deprivation in participants' early lives (i.e., before the age of 18 years) to examine whether exposure to specific dimensions of early-life adversity is associated with epigenetic profiles at older ages that are indicative of accelerated biological aging. The sample included 842 MESA respondents with DNA methylation data collected between 2010 and 2012 who answered questions on early-life adversities in a 2018-2019 telephone follow-up. We found that experiences of deprivation, but not threat, were associated with later-life GrimAge epigenetic aging signatures that were developed to predict mortality risk. Results indicated that smoking behavior partially mediates this association, which suggests that lifestyle behaviors may act as downstream mechanisms between parental deprivation in early life and accelerated epigenetic aging in later life.
Collapse
Affiliation(s)
- Lauren L Schmitz
- Correspondence to Dr. Lauren L. Schmitz, Robert M. La Follette School of Public Affairs, University of Wisconsin–Madison, 1225 Observatory Drive, Madison, WI 53706 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Yaskolka Meir A, Keller M, Hoffmann A, Rinott E, Tsaban G, Kaplan A, Zelicha H, Hagemann T, Ceglarek U, Isermann B, Shelef I, Blüher M, Stumvoll M, Li J, Haange SB, Engelmann B, Rolle-Kampczyk U, von Bergen M, Hu FB, Stampfer MJ, Kovacs P, Liang L, Shai I. The effect of polyphenols on DNA methylation-assessed biological age attenuation: the DIRECT PLUS randomized controlled trial. BMC Med 2023; 21:364. [PMID: 37743489 PMCID: PMC10519069 DOI: 10.1186/s12916-023-03067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION ClinicalTrials.gov, NCT03020186.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ilan Shelef
- Soroka University Medical Center, 84101, Be'er Sheva, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Sven-Bastian Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Be'er Sheva, Israel.
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany.
| |
Collapse
|
39
|
Watkins SH, Testa C, Chen JT, De Vivo I, Simpkin AJ, Tilling K, Diez Roux AV, Davey Smith G, Waterman PD, Suderman M, Relton C, Krieger N. Epigenetic clocks and research implications of the lack of data on whom they have been developed: a review of reported and missing sociodemographic characteristics. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad005. [PMID: 37564905 PMCID: PMC10411856 DOI: 10.1093/eep/dvad005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic characteristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples - prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that other researchers can make informed judgements about the appropriateness of the model for their study population.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jarvis T Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Andrew J Simpkin
- School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Ana V Diez Roux
- Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pamela D Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
40
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
41
|
Lima CNC, Kovács EHC, Mirza S, Del Favero-Campbell A, Diaz AP, Quevedo J, Argue BMR, Richards JG, Williams A, Wemmie JA, Magnotta VA, Fiedorowicz JG, Soares JC, Gaine ME, Fries GR. Association between the epigenetic lifespan predictor GrimAge and history of suicide attempt in bipolar disorder. Neuropsychopharmacology 2023; 48:954-962. [PMID: 36878995 PMCID: PMC10156727 DOI: 10.1038/s41386-023-01557-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Bipolar disorder (BD) has been previously associated with premature mortality and aging, including acceleration of epigenetic aging. Suicide attempts (SA) are greatly elevated in BD and are associated with decreased lifespan, biological aging, and poorer clinical outcomes. We investigated the relationship between GrimAge, an epigenetic clock trained on time-to-death and associated with mortality and lifespan, and SA in two independent cohorts of BD individuals (discovery cohort - controls (n = 50), BD individuals with (n = 77, BD/SA) and without (n = 67, BD/non-SA) lifetime history of SA; replication cohort - BD/SA (n = 48) and BD/non-SA (n = 47)). An acceleration index for the GrimAge clock (GrimAgeAccel) was computed from blood DNA methylation (DNAm) and compared between groups with multiple general linear models. Differences in epigenetic aging from the discovery cohort were validated in the independent replication cohort. In the discovery cohort, controls, BD/non-SA, and BD/SA significantly differed on GrimAgeAccel (F = 5.424, p = 0.005), with the highest GrimAgeAccel in BD/SA (p = 0.004, BD/SA vs. controls). Within the BD individuals, BD/non-SA and BD/SA differed on GrimAgeAccel in both cohorts (p = 0.008) after covariate adjustment. Finally, DNAm-based surrogates revealed possible involvement of plasminogen activator inhibitor 1, leptin, and smoking pack-years in driving accelerated epigenetic aging. These findings pair with existing evidence that not only BD, but also SA, may be associated with an accelerated biological aging and provide putative biological mechanisms for morbidity and premature mortality in this population.
Collapse
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Emese H C Kovács
- Department of Neuroscience and Pharmacology, The University of Iowa, 51 Newton Rd, 52242, Iowa City, IA, USA
| | - Salahudeen Mirza
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Institute of Child Development, University of Minnesota, 51 E River Rd, 55455, Minneapolis, MN, USA
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Benney M R Argue
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
| | - Jenny Gringer Richards
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Aislinn Williams
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Jess G Fiedorowicz
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute, 501 Smyth, K1H 8L6, Ottawa, ON, Canada
| | - Jair C Soares
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Marie E Gaine
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin, 77030, Houston, TX, USA.
| |
Collapse
|
42
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
43
|
Lin B, Mu Y, Ding Z. Assessing the Causal Association between Biological Aging Biomarkers and the Development of Cerebral Small Vessel Disease: A Mendelian Randomization Study. BIOLOGY 2023; 12:biology12050660. [PMID: 37237474 DOI: 10.3390/biology12050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Biological aging biomarkers, such as leukocyte telomere length (LTL) and epigenetic clocks, have been associated with the risk of cerebral small vessel disease (CSVD) in several observational studies. However, it is unclear whether LTL or epigenetic clocks play causal roles as prognostic biomarkers in the development of CSVD. We performed a Mendelian randomization (MR) study of LTL and four epigenetic clocks on ten subclinical and clinical CSVD measures. We obtained genome-wide association (GWAS) data for LTL from the UK Biobank (N = 472,174). Data on epigenetic clocks were derived from a meta-analysis (N = 34,710), and CSVD data (N cases =1293-18,381; N controls = 25,806-105,974) were extracted from the Cerebrovascular Disease Knowledge Portal. We found that genetically determined LTL and epigenetic clocks were not individually associated with ten measures of CSVD (IVW p > 0.05), and this result was consistent across sensitivity analyses. Our findings imply that LTL and epigenetic clocks may not help in predicting CSVD development as causal prognostic biomarkers. Further studies are needed to illustrate the potential of reverse biological aging in serving as an effective form of preventive therapy for CSVD.
Collapse
Affiliation(s)
- Biying Lin
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Rd., Hangzhou 310006, China
| | - Yuzhu Mu
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Rd., Hangzhou 310006, China
- Department of Radiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Rd., Hangzhou 310006, China
| |
Collapse
|
44
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
45
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
46
|
Smyth LJ, Cruise SM, Tang J, Young I, McGuinness B, Kee F, McKnight AJ. Differential methylation in CD44 and SEC23A is associated with time preference in older individuals. ECONOMICS AND HUMAN BIOLOGY 2023; 49:101233. [PMID: 36812724 DOI: 10.1016/j.ehb.2023.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 05/08/2023]
Abstract
Time preference is a measure used to ascertain the level of which individuals prefer smaller, immediate rewards over larger, delayed rewards. We explored how an individual's time preference associates with their epigenetic profile. Time preferences were ascertained by asking participants of the Northern Ireland COhort for the Longitudinal study of Ageing to make a series of choices between two hypothetical income scenarios. From these, eight 'time preference' categories were derived, ranging from "patient" to "impatient" on an ordinal scale. The Infinium High Density Methylation Assay, MethylationEPIC (Illumina) was used to evaluate the status of 862,927 CpGs. Time preference and DNA methylation data were obtained for 1648 individuals. Four analyses were conducted, assessing the methylation patterns at single site resolution between patient and impatient individuals using two adjustment models. In this discovery cohort analysis, two CpG sites were identified with significantly different levels of methylation (p < 9 × 10-8) between the individuals allocated to the patient group and the remaining population following adjustment for covariates; cg08845621 within CD44 and cg18127619 within SEC23A. Neither of these genes have previously been linked to time preference. Epigenetic modifications have not previously been linked to time preference using a population cohort but they may represent important biomarkers of accumulated, complex determinants of this trait. Further analysis is warranted of both the top-ranked results and of DNA methylation as an important link between measurable biomarkers and health behaviours.
Collapse
Affiliation(s)
- Laura J Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| | - Sharon M Cruise
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| | - Jianjun Tang
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, China.
| | - Ian Young
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| | - Bernadette McGuinness
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| | - Frank Kee
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, BT12 6BJ Northern Ireland, United Kingdom
| |
Collapse
|
47
|
Jung J, McCartney DL, Wagner J, Yoo J, Bell AS, Mavromatis LA, Rosoff DB, Hodgkinson CA, Sun H, Schwandt M, Diazgranados N, Smith AK, Michopoulos V, Powers A, Stevens J, Bradley B, Fani N, Walker RM, Campbell A, Porteous DJ, McIntosh AM, Horvath S, Marioni RE, Evans KL, Goldman D, Lohoff FW. Additive Effects of Stress and Alcohol Exposure on Accelerated Epigenetic Aging in Alcohol Use Disorder. Biol Psychiatry 2023; 93:331-341. [PMID: 36182531 DOI: 10.1016/j.biopsych.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Stress contributes to premature aging and susceptibility to alcohol use disorder (AUD), and AUD itself is a factor in premature aging; however, the interrelationships of stress, AUD, and premature aging are poorly understood. METHODS We constructed a composite score of stress from 13 stress-related outcomes in a discovery cohort of 317 individuals with AUD and control subjects. We then developed a novel methylation score of stress (MS stress) as a proxy of composite score of stress comprising 211 CpGs selected using a penalized regression model. The effects of MS stress on health outcomes and epigenetic aging were assessed in a sample of 615 patients with AUD and control subjects using epigenetic clocks and DNA methylation-based telomere length. Statistical analysis with an additive model using MS stress and a MS for alcohol consumption (MS alcohol) was conducted. Results were replicated in 2 independent cohorts (Generation Scotland, N = 7028 and the Grady Trauma Project, N = 795). RESULTS Composite score of stress and MS stress were strongly associated with heavy alcohol consumption, trauma experience, epigenetic age acceleration (EAA), and shortened DNA methylation-based telomere length in AUD. Together, MS stress and MS alcohol additively showed strong stepwise increases in EAA. Replication analyses showed robust association between MS stress and EAA in the Generation Scotland and Grady Trauma Project cohorts. CONCLUSIONS A methylation-derived score tracking stress exposure is associated with various stress-related phenotypes and EAA. Stress and alcohol have additive effects on aging, offering new insights into the pathophysiology of premature aging in AUD and, potentially, other aspects of gene dysregulation in this disorder.
Collapse
Affiliation(s)
- Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Joyce Yoo
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hui Sun
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Melanie Schwandt
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nancy Diazgranados
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Alicia K Smith
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
48
|
Foster CA, Barker-Kamps M, Goering M, Patki A, Tiwari HK, Mrug S. Epigenetic age acceleration correlates with BMI in young adults. Aging (Albany NY) 2023; 15:513-523. [PMID: 36656735 PMCID: PMC9925674 DOI: 10.18632/aging.204492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Obesity increases the risk of Type 2 diabetes, cardiovascular disease, several types of cancer, and other age-related disorders. Among older adults, obesity is also related to epigenetic age, typically measured with DNA methylation (DNAm). Because less is known about obesity and epigenetic aging earlier in the lifespan, this study examined the relationship between obesity and DNAm in young adulthood and whether these relationships vary by sex. METHODS A cross-sectional community sample of 290 healthy young adults (mean age 27.39 years, 60% female; 80% African American, 18% White) had their BMI and waist circumference measured. Four epigenetic age estimators were derived from salivary DNA: Hannum DNAm, Horvath DNAm, Phenoage DNAm, and GrimAge DNAm. Sociodemographic covariates included age, sex, race, parental education, and income-to-needs ratio. RESULTS After adjusting for covariates, higher BMI and waist were associated with higher DNAm PhenoAge in both sexes, with a stronger effect on BMI in males (β = 0.35, p < .001) compared to females (β = 0.13, p = .002). Higher waist, but not BMI, was associated with higher Horvath DNA methylation age. Both BMI and waist circumference were associated with higher Hannum DNAm age in men but not in women. Neither BMI nor waist circumference were related to GrimAge. DISCUSSION This study extends prior research by linking obesity with accelerated epigenetic aging in young adulthood, replicating the associations across two measures of obesity and four indices of salivary epigenetic aging. The results add to evidence that higher BMI accelerates aging early in the lifespan.
Collapse
Affiliation(s)
- Christy Anne Foster
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Malcolm Barker-Kamps
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marlon Goering
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amit Patki
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hemant K. Tiwari
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sylvie Mrug
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
49
|
Nannini DR, Joyce BT, Zheng Y, Gao T, Wang J, Liu L, Jacobs DR, Schreiner PJ, Liu C, Dai Q, Horvath S, Lu AT, Yaffe K, Greenland P, Lloyd-Jones DM, Hou L. Alcohol consumption and epigenetic age acceleration in young adults. Aging (Albany NY) 2023; 15:371-395. [PMID: 36622282 PMCID: PMC9925681 DOI: 10.18632/aging.204467] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Alcohol is a widely consumed substance in the United States, however its effect on aging remains understudied. In this study of young adults, we examined whether cumulative alcohol consumption, i.e., alcohol years of beer, liquor, wine, and total alcohol, and recent binge drinking, were associated with four measures of age-related epigenetic changes via blood DNA methylation. A random subset of study participants in the Coronary Artery Risk Development in Young Adults Study underwent DNA methylation profiling using the Illumina MethylationEPIC Beadchip. Participants with alcohol consumption and methylation data at examination years 15 (n = 1,030) and 20 (n = 945) were included. Liquor and total alcohol consumption were associated with a 0.31-year (P = 0.002) and a 0.12-year (P = 0.013) greater GrimAge acceleration (GAA) per additional five alcohol years, while beer and wine consumption observed marginal (P = 0.075) and no associations (P = 0.359) with GAA, respectively. Any recent binge drinking and the number of days of binge drinking were associated with a 1.38-year (P < 0.001) and a 0.15-year (P < 0.001) higher GAA, respectively. We observed statistical interactions between cumulative beer (P < 0.001) and total alcohol (P = 0.004) consumption with chronological age, with younger participants exhibiting a higher average in GAA compared to older participants. No associations were observed with the other measures of epigenetic aging. These results suggest cumulative liquor and total alcohol consumption and recent binge drinking may alter age-related epigenetic changes as captured by GAA. With the increasing aging population and widespread consumption of alcohol, these findings may have potential implications for lifestyle modification to promote healthy aging.
Collapse
Affiliation(s)
- Drew R. Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian T. Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Qi Dai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kristine Yaffe
- University of California at San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Donald M. Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
50
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|