1
|
Huang J, Hao J, Luo H, Chen L, Luo H, Liu H, Xu Y, Wang P. Construction of a C-reactive protein-albumin-lymphocyte index-based prediction model for all-cause mortality in patients on maintenance hemodialysis. Ren Fail 2025; 47:2444396. [PMID: 39809257 PMCID: PMC11734386 DOI: 10.1080/0886022x.2024.2444396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE The mortality rate of patients undergoing maintenance hemodialysis (MHD) remains high. The C-reactive protein-albumin-lymphocyte (CALLY) index is a novel biomarker that reflects inflammation, nutritional and immune status, all merged into one single derived parameter. No study has yet linked the CALLY index to survival in hemodialysis. This study aims to explore the correlation between the CALLY index and mortality in MHD patients, and develop and validate a nomogram to estimate the likelihood of death in this population. METHODS This retrospective cohort study collected data from 436 patients and they were divided into survival group (n = 335) and non-survival group (n = 101). Multivariate logistic regression analysis was used to screen factors associated with death, and nomograms were developed to estimate the risk of death in MHD patients. The discrimination and calibration of nomograms were validated using the area under the receiver operating characteristic (ROC) curve (AUC) and calibration curve. In the study, stratification analysis and covariate adjustment were conducted to explore the correlation between the CALLY index and the mortality of MHD patients. RESULTS In the final model, logistic regression showed that the CALLY index, creatinine, triglycerides, dialysis duration, absolute neutrophil count, blood urea nitrogen, sodium and ferritin were variables associated with mortality in MHD patients. A nomogram was developed to assess the risk of death in MHD patients. The AUC of the model was 0.821 (95% CI: 0.778-0.861). The results of stratified analysis and calibration model showed that the CALLY index was a protective factor for maintaining the mortality of MHD patients. CONCLUSIONS The CALLY index is closely related to the mortality of MHD patients. A nomogram constructed based on CALLY index can effectively evaluate the mortality risk of MHD patients.
Collapse
Affiliation(s)
- Junmin Huang
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junfeng Hao
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huasheng Luo
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lu Chen
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongying Luo
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huafeng Liu
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongzhi Xu
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peng Wang
- Department of Nephrology, National Clinical Key Specialty Construction Program (2023), Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Ren Q, Ding K, Jiang W, Zhu W, Gao Y. Molecular crosstalk and potential causal mechanisms of rheumatoid arthritis and sarcopenia co-morbidity: A gene integration analysis. Exp Gerontol 2025; 203:112729. [PMID: 40081680 DOI: 10.1016/j.exger.2025.112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) promotes the onset and progression of sarcopenia, yet mechanisms of co-morbidity between RA and sarcopenia are under-explored. Therefore, this study integrated Gene Expression Omnibus (GEO) and Genome-wide association studies (GWAS) data to comprehensively identify shared genes, associated mechanisms, and biological pathways in RA and sarcopenia. METHODS Utilizing two GEO datasets-GSE226151, which includes 60 RNA-seq samples of skeletal muscle from healthy aged, pre-sarcopenia, and sarcopenia individuals, and GSE55235, with 20 RNA-seq samples of synovial tissue from healthy and RA joints-we performed differentially expressed genes analysis, weighted gene co-expression network analysis to identify crosstalk genes in RA and sarcopenia, and enrichment analysis for these genes. Using relevant GWAS datasets, SMR analyses and cis-eQTL analyses were performed. We further validated and identified key crosstalk genes and explored potential causal associations between key crosstalk genes and RA and sarcopenia-related traits. RESULTS We identified 25 crosstalk genes shared between RA and sarcopenia, which are involved in immune-inflammatory response pathways, including neutrophil extracellular trap formation and Fc gamma receptor-mediated phagocytosis. SMR analysis further identified six core crosstalk genes: NCF1, FCGR2A, FCGR3A, SORL1, FCGR3B, and ITGAX (PSMR < 0.05). cis-eQTL analysis showed that FCGR2A might have a negative causal association with appendicular lean mass, whole body fat-free mass, and a positive causal association with RA (P < 0.05). CONCLUSION Overall, this study is the first to reveal the molecular crosstalk between RA and sarcopenia, identifying 25 shared genes and key immune-inflammatory response-related pathways. Further SMR and cis-eQTL analyses were conducted to validate six core genes, with FCGR2A emerging as a potential drug target for RA-associated sarcopenia. These findings provide new insights into the comorbid mechanisms of RA and sarcopenia, offering potential therapeutic targets for both conditions.
Collapse
Affiliation(s)
- Qiang Ren
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Rheumatology and Immunology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Rheumatology and Immunology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Wen Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Rheumatology and Immunology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongxiang Gao
- Rheumatology and Immunology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
3
|
Razazian M, Bahiraii S, Sohail A, Mandl M, Jannat I, Beilhack G, Alesutan I, Voelkl J. Fisetin ameliorates vascular smooth muscle cell calcification via DUSP1-dependent p38 MAPK inhibition. Aging (Albany NY) 2025; 17:206233. [PMID: 40179317 DOI: 10.18632/aging.206233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Medial vascular calcification is highly prevalent in advanced age and chronic kidney disease (CKD), where it is associated with increased risk for cardiovascular events and mortality. Vascular smooth muscle cells (VSMCs) actively regulate this process, which can be augmented by inflammation and cellular senescence. Thus, the present study investigated the impact of fisetin, a flavonol with anti-inflammatory and senolytic properties, on VSMC calcification. Fisetin treatment suppressed calcific marker expression and calcification of VSMCs as well as p38 MAPK phosphorylation induced by pro-calcific conditions. These effects were abolished by silencing of dual-specificity phosphatase 1 (DUSP1), a negative regulator of p38 MAPK activity. Moreover, knockdown of DUSP1 alone was sufficient to increase calcific marker expression in VSMCs, effects blunted by pharmacological p38 MAPK inhibition. Accordingly, DUSP1 knockdown aggravated calcification of VSMCs during pro-calcific conditions. In addition, fisetin ameliorated the effects of uremic conditions in VSMCs exposed to serum from dialysis patients. Fisetin also inhibited vascular calcification as well as calcific marker expression ex vivo in mouse aortic explants exposed to high phosphate and in vivo in a cholecalciferol overload mouse model. In conclusion, fisetin acts as a potent anti-calcific agent during VSMC calcification, an effect involving DUSP1-mediated regulation of p38 MAPK-dependent pro-calcific signaling.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Azmat Sohail
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Markus Mandl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin 13347, Germany
| |
Collapse
|
4
|
Razazian M, Bahiraii S, Jannat I, Tiffner A, Beilhack G, Levkau B, Voelkl J, Alesutan I. Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification. Pflugers Arch 2025:10.1007/s00424-025-03068-6. [PMID: 39899071 DOI: 10.1007/s00424-025-03068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Adéla Tiffner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| |
Collapse
|
5
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
6
|
Jia X, Peng M, Wang Z, Li X, Mou T, Wang X, Xia Y, Ma J, Wang Q, Li Z, Zhang L, Zhu W, Xu G. Relationship Between Dietary Inflammatory Index and Carotid Artery Calcification in Patients with Ischemic Stroke. J Inflamm Res 2024; 17:10131-10140. [PMID: 39634286 PMCID: PMC11616426 DOI: 10.2147/jir.s479965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Purpose Diet may influence systemic inflammatory status, vascular calcification, and, therefore, the development of atherosclerosis. The Dietary Inflammatory Index (DII) is a measure of the inflammatory potential of diet. Although previous studies have examined the relationship between DII and cardiovascular diseases, its specific association with carotid artery calcification in ischemic stroke patients remains insufficiently explored. This study aimed to evaluate the relationship between Dietary Inflammatory Index (DII) and carotid artery calcification in patients with ischemic stroke. Methods This is a retrospective cross-sectional analysis based on a prospective registry database. Patients with ischemic stroke were enrolled via Nanjing Stroke Registry Program. DII was calculated based on 39 food components with the help of a food frequency questionnaire. Carotid artery calcification was quantified as calcification score using the Agatston method based on computed tomography angiography. The data were compared among patients stratified by tertiles of DII. Multiple logistic regression models were used to evaluate the influence of DII on carotid artery calcification. Spearman analysis was used to evaluate the relationship between DII and ln-transformed carotid artery calcification score. Results Of the 601 enrolled, carotid artery calcification was detected in 368 (61.23%) patients. Compared with patients with the lowest DII, those with higher DII had a higher ratio of stroke subtypes of large artery atherosclerosis (p =0.050), a higher calcification score (p <0.001), and a higher ratio of calcification (p <0.001). Other baseline characteristics, including sex and age, showed no significant differences across the DII tertiles. Patients with carotid artery calcification had significantly higher DII scores compared to those without calcification (p = 0.018). Logistic regression analysis showed that patients with the highest DII tertile had a higher risk of carotid artery calcification after adjusting for significant cofounders (OR =1.880, 95% CI, 1.205-2.932; p =0.005). Spearman correlation analysis indicated that DII was associated with ln-transformed carotid artery calcification score in patients with carotid artery calcification (R =0.110, p =0.035). Conclusion DII was associated with carotid artery calcification in patients with ischemic stroke. Considering a possible causal relationship, the mechanism of this relationship warrants further investigation.
Collapse
Affiliation(s)
- Xuerong Jia
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Min Peng
- Department of Neurology, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518000, People’s Republic of China
| | - Zewen Wang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Xiang Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
- Department of Neurology, The Ninth People’s Hospital of Chongqing, Chongqing, 400700, People’s Republic of China
| | - Tao Mou
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Xiaoke Wang
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Yaqian Xia
- Department of Neurology, The People’s Hospital of Rugao, Rugao, Jiangsu, 226500, People’s Republic of China
| | - Jizi Ma
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Qing Wang
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Zefang Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
- Department of Neurology, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
| |
Collapse
|
7
|
Alesutan I, Razazian M, Luong TTD, Estepa M, Pitigala L, Henze LA, Obereigner J, Mitter G, Zickler D, Schuchardt M, Deisl C, Makridakis M, Gollmann-Tepeköylü C, Pasch A, Cejka D, Suessner S, Antlanger M, Bielesz B, Müller M, Vlahou A, Holfeld J, Eckardt KU, Voelkl J. Augmentative effects of leukemia inhibitory factor reveal a critical role for TYK2 signaling in vascular calcification. Kidney Int 2024; 106:611-624. [PMID: 39084258 DOI: 10.1016/j.kint.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Medial vascular calcification in chronic kidney disease (CKD) involves pro-inflammatory pathways induced by hyperphosphatemia. Several interleukin 6 family members have been associated with pro-calcific effects in vascular smooth muscle cells (VSMCs) and are considered as therapeutic targets. Therefore, we investigated the role of leukemia inhibitory factor (LIF) during VSMC calcification. LIF expression was found to be increased following phosphate exposure of VSMCs. LIF supplementation aggravated, while silencing of endogenous LIF or LIF receptor (LIFR) ameliorated the pro-calcific effects of phosphate in VSMCs. The soluble LIFR mediated antagonistic effects towards LIF and reduced VSMC calcification. Mechanistically, LIF induced phosphorylation of the non-receptor tyrosine-protein kinase 2 (TYK2) and signal transducer and activator of transcription-3 (STAT3) in VSMCs. TYK2 inhibition by deucravacitinib, a selective, allosteric oral immunosuppressant used in psoriasis treatment, not only blunted the effects of LIF, but also interfered with the pro-calcific effects induced by phosphate. Conversely, TYK2 overexpression aggravated VSMC calcification. Ex vivo calcification of mouse aortic rings was ameliorated by Tyk2 pharmacological inhibition and genetic deficiency. Cholecalciferol-induced vascular calcification in mice was improved by Tyk2 inhibition and in the Tyk2-deficient mice. Similarly, calcification was ameliorated in Abcc6/Tyk2-deficient mice after adenine/high phosphorus-induced CKD. Thus, our observations indicate a role for LIF in CKD-associated vascular calcification. Hence, the effects of LIF identify a central pro-calcific role of TYK2 signaling, which may be a future target to reduce the burden of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Cells, Cultured
- Disease Models, Animal
- Leukemia Inhibitory Factor/metabolism
- Leukemia Inhibitory Factor/genetics
- Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism
- Leukemia Inhibitory Factor Receptor alpha Subunit/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphates/metabolism
- Phosphorylation
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- TYK2 Kinase/metabolism
- TYK2 Kinase/genetics
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/etiology
- Vascular Calcification/genetics
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Lakmi Pitigala
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Laura A Henze
- Department of Internal Medicine and Cardiology, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Obereigner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Gregor Mitter
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Faculty of Medicine, Medical School Berlin, Berlin, Germany
| | - Christine Deisl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Calciscon AG, Biel, Switzerland
| | - Daniel Cejka
- Internal Medicine III-Nephrology, Transplantation Medicine, Rheumatology, Ordensklinikum Linz, Linz, Austria
| | | | - Marlies Antlanger
- Department of Internal Medicine 2, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - Bernhard Bielesz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Johannes Holfeld
- Department for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Sohail A, Obereigner J, Mitter G, Schmid T, Hofer AS, Schuster G, Hügl A, Dorninger AH, Mandl M, Pasch A, Lackner HK, Papousek I, Dieplinger B, Suessner S, Antlanger M, Cejka D, Alesutan I, Voelkl J. Association of serum zinc with mineral stress in chronic kidney disease. Clin Kidney J 2024; 17:sfae258. [PMID: 39286240 PMCID: PMC11403325 DOI: 10.1093/ckj/sfae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background The excessive cardiovascular mortality of patients with chronic kidney disease (CKD) could be linked to mineral stress, the biological consequence of calcium-phosphate nanoparticle exposure. This study investigated whether zinc is associated with mineral stress markers in CKD. Methods Zinc and T50 (serum calcification propensity) as well as hydrodynamic radius of secondary calciprotein particles (CPP2) were measured in blood donors and CKD patients with/out dialysis. Results Serum zinc concentrations and T50 were reduced, while CPP2 radius was increased in CKD patients. Serum zinc levels positively correlated with T50 and inversely correlated with CPP2 radius. In a hierarchical linear regression model, T50 was associated with age, calcium, phosphate, magnesium and albumin. Addition of zinc significantly improved prediction of the model, confirming an additional contribution of zinc to T50. Similar observations were made for the association of zinc and CPP2 radius, but spiking experiments indicated that zinc may stronger modify T50 than CPP2 radius. Also, urinary zinc excretion was increased in patients with kidney disease and correlated to T50 and CPP2 radius. Serum zinc further correlated with markers of arterial stiffness in blood donors and CKD patients, but these associations did not remain significant in a multivariate linear regression model. Conclusions Reduced serum zinc levels in CKD appear directly linked to lower T50 and associated with larger CPP2 radius. Further studies on the associations of zinc and mineral stress as well as putative therapeutic benefits of zinc supplementation are required.
Collapse
Affiliation(s)
- Azmat Sohail
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Obereigner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Gregor Mitter
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | | | - Anna-Sofie Hofer
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| | - Gerhard Schuster
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Astrid Hügl
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Angelika H Dorninger
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Markus Mandl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Calciscon AG, Biel, Switzerland
| | - Helmut K Lackner
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilona Papousek
- Institute of Psychology, Biological Psychology Unit, University of Graz, Graz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, Linz, Austria
| | - Susanne Suessner
- Red Cross Transfusion Service of Upper Austria, Austrian Red Cross, Linz, Austria
| | - Marlies Antlanger
- Department of Internal Medicine 2, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III - Nephrology, Hypertension, Transplantation Medicine, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
9
|
Zhang B, Liao R. Early Serum Biomarkers of Cardiovascular Disease in Elderly Patients with Chronic Kidney Disease. Cardiorenal Med 2024; 14:508-520. [PMID: 39217975 DOI: 10.1159/000541014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The global population is aging. It is estimated that by 2050, the proportion of the elderly population will reach 16%. Various studies have suggested that elderly people have a greater incidence of CKD. These elderly patients are also susceptible to cardiovascular disease (CVD), which is the leading cause of death, resulting in poor prognosis in this population. However, CVD in such patients is often insidious and lacks early markers for effective evaluation. Fortunately, several studies have recently proposed biomarkers associated with this process. SUMMARY This study aimed to summarize the early biomarkers of CVD in elderly patients with CKD to provide a basis for its prevention and treatment. KEY MESSAGES This review outlines four categories of potential early biomarkers. All of them have been shown to have some clinical value for these patients, but more research is still needed.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Liu Y, He W, Ji Y, Wang Q, Li X. A linear positive association between high-sensitivity C-reactive protein and the prevalence of cardiovascular disease among individuals with diabetes. BMC Cardiovasc Disord 2024; 24:411. [PMID: 39118024 PMCID: PMC11308650 DOI: 10.1186/s12872-024-04091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
AIMS To assess the correlation between high-sensitivity C-reactive protein (Hs-CRP) and the prevalence of cardiovascular disease (CVD) among individuals with diabetes. METHODS A total of 1,555 participants from the National Health and Nutrition Examination Survey were enrolled in this cross-sectional study after excluding individuals without diabetes and those who lacked data on Hs-CRP, diabetes and CVD. All participants were divided into four groups based on quartiles of Hs-CRP: Q1 (≤ 1.20 mg/L), Q2 (1.20-2.86 mg/L), Q3 (2.86-6.40 mg/L), and Q4 (> 6.40 mg/L). Logistic regression analysis, subgroup analysis and restricted cubic spline (RCS) analysis were used to evaluate the correlation between Hs-CRP and the prevalence of CVD in individuals with diabetes. RESULTS In univariate logistic regression analysis, a higher level of Hs-CRP was associated with a higher prevalence of CVD (P < 0.05). In the multivariate logistic regression analysis adjusting for confounders, the correlation between Hs-CRP and the prevalence of CVD remained significant (Q3 vs. Q1, OR: 1.505, 95% CI: 1.056-2.147, P = 0.024; Q4 vs. Q1, OR: 1.711, 95% CI: 1.171-2.499, P = 0.006; log10(Hs-CRP), OR: 1.504, 95% CI: 1.168-1.935, P = 0.002). Further subgroup analysis showed that a higher Hs-CRP was independently associated with a higher prevalence of CVD in the < 60 years, male, non-hypertension and non-hypercholesterolemia subgroups (P < 0.05). Additionally, RCS analysis revealed a linear positive correlation between Hs-CRP and CVD prevalence (P for nonlinearity = 0.244). CONCLUSION A higher level of Hs-CRP was closely related to a higher prevalence of CVD in people with diabetes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, The Affiliated Changzhou, No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Wei He
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Yuan Ji
- Department of Cardiology, The Affiliated Changzhou, No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Qingjie Wang
- Department of Cardiology, The Affiliated Changzhou, No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Xun Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
11
|
Chen SJ, Lu SY, Tseng CC, Huang KH, Chen TL, Fu LM. Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein. BIOSENSORS 2024; 14:283. [PMID: 38920587 PMCID: PMC11201708 DOI: 10.3390/bios14060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay (ELISA) method, in which capture antibodies and detection antibodies are pre-deposited on the substrate of the microchip and used to form an immune complex with the target antigen. Horseradish peroxidase (HRP) is added as a marker enzyme, followed by a colorimetric reaction using 3,3',5,5'-tetramethylbenzidine (TMB). The absorbance values (a.u.) of the colorimetric reaction compounds are measured using a micro-spectrometer device and used to measure the corresponding hs-CRP concentration according to the pre-established calibration curve. It is shown that the hs-CRP concentration can be determined within 50 min. In addition, the system achieves recovery rates of 93.8-106.2% in blind water samples and 94.5-104.6% in artificial urine. The results showed that the CRP detection results of 41 urine samples from patients with chronic kidney disease (CKD) were highly consistent with the conventional homogeneous particle-enhanced turbidimetric immunoassay (PETIA) method's detection results (R2 = 0.9910). The experimental results showed its applicability in the detection of CRP in both urine and serum. Overall, the results indicate that the current microfluidic ELISA detection system provides an accurate and reliable method for monitoring the hs-CRP concentration in point-of-care applications.
Collapse
Affiliation(s)
- Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Song-Yu Lu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan;
- College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - To-Lin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| |
Collapse
|
12
|
Ballester-Servera C, Alonso J, Cañes L, Vázquez-Sufuentes P, García-Redondo AB, Rodríguez C, Martínez-González J. Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:523. [PMID: 38790628 PMCID: PMC11118817 DOI: 10.3390/antiox13050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, β-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and β-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Ana B. García-Redondo
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| |
Collapse
|
13
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Jin F, Chang X, Wang X, Xiong H, Wang L, Zhang B, Wang P, Zhao L. Relationship between red blood cell-related indices and coronary artery calcification. Postgrad Med J 2023; 99:4-10. [PMID: 36947423 DOI: 10.1093/postmj/qgac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Red blood cell (RBC) indices such as RBC count and RBC distribution width (RDW) are associated with heart failure and coronary artery disease, but the relationship between RBC indices and coronary artery calcification (CAC) is unclear. This study aimed to investigate RBC indices' correlation with, and predictive value for, the presence and severity of CAC. METHODS In this study, 1257 hospitalized patients who received a coronary computed tomography angiography examination were finally selected. Patients were classified into a control group (without CAC, n = 655) and a calcification group (with CAC, n = 602) according to their CAC score. The calcification group was further divided into a low calcification group, medium calcification group, and high calcification group. RESULTS In the calcification group, the RBC count was lower, and the RDW-standard deviation (SD) and RDW-coefficient of variation (CV) were higher, than those in the control group (P < .05). In the high calcification group, the RBC count was significantly lower, and the RDW-SD and RDW-CV were significantly higher, than those in the low calcification group (P < .05). Multivariate logistic regression analysis showed that RBC count, RDW-SD, and RDW-CV were independent predictors of CAC presence. Furthermore, multivariate logistic regression analysis also showed that RBC count and RDW-SD were independent predictors of severe CAC. CONCLUSIONS RBC indices were significantly associated with the presence and severity of CAC, indicating that these RBC indices have the potential to be predictors of CAC.
Collapse
Affiliation(s)
- Fulu Jin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Xiansong Chang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
- Emergency Department of Xuguan District, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Xiaozhong Wang
- Emergency Department of Xuguan District, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Hui Xiong
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
- Emergency Department of Xuguan District, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Li Wang
- Emergency Department of Xuguan District, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Bo Zhang
- Radiology Department, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004 China
| | - Peiyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| | - Liangping Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, China
| |
Collapse
|
18
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
19
|
Zhang WB, Feng SY, Xiao ZX, Qi YF, Zeng ZF, Chen H. Down-regulating of MFN2 promotes vascular calcification via regulating RAS-RAF-ERK1/2 pathway. Int J Cardiol 2022; 366:11-18. [PMID: 35716948 DOI: 10.1016/j.ijcard.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Vascular calcification (VC), as a prevalent feature of atherosclerosis (AS), is a life-threatening pathological change. Mitofusin 2 (MFN2) has been reported to be down-regulated and participate in the pathogenesis of AS. Here, we explored the feasible impacts of MFN2 on VC in AS. METHODS Atherosclerotic lesion was evaluated by Oil Red O staining. The VC was detected by Alizarin Red S staining, ALP staining, and calcium content in vascular smooth muscle cells (VSMCs) or atherosclerotic mice. The chondrocyte differentiation of VSMCs was measured by Alcian blue staining. Western blotting and qRT-PCR were used to determine the protein and mRNA expression of associated molecules. Intermolecular interaction was measured by ChIP and dual luciferase assays. RESULTS The expression of MFN2 and E2F1 was reduced in the aorta tissues of AS patients and mice. Silencing of MFN2 drove calcification in VSMCs and aortas of atherosclerotic mice as confirmed by up-regulating RUNX2, OPG levels, and down-regulating SM22α, α-SMA levels. The chondrocyte differentiation of VSMCs was accelerated by MFN2 knockdown through inducing the expression of Aggrecan, Collagen II, and SOX9. In addition, E2F1 promoted the transcription and expression of MFN2 in VSMCs. Overexpression of MFN2 or E2F1 suppressed ox-LDL-induced VSMC calcification. Finally, MFN2 depletion enhanced VSMC calcification via activating RAS-RAF-ERK1/2 pathway. CONCLUSION Our results suggest that silencing of MFN2 drives VC via activating RAS-RAF-ERK1/2 pathway in the progression of AS, thus MFN2 may be a therapeutic target for AS.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China.
| | - Si-Yi Feng
- Department of Ultrasound Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Zhan-Xiang Xiao
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - You-Fei Qi
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Zhao-Fan Zeng
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Hao Chen
- Department of Vascular Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| |
Collapse
|
20
|
Jung S, Choi BH, Joo NS. Serum Homocysteine and Vascular Calcification: Advances in Mechanisms, Related Diseases, and Nutrition. Korean J Fam Med 2022; 43:277-289. [PMID: 36168899 PMCID: PMC9532189 DOI: 10.4082/kjfm.21.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying and preventing modifiable risk factors for cardiovascular disease is very important. Vascular calcification has been studied clinically as an asymptomatic preclinical marker of atherosclerosis and a risk factor for cardio-cerebrovascular disease. It is known that higher homocysteine levels are associated with calcified plaques and the higher the homocysteine level, the higher the prevalence and progression of vascular calcification. Homocysteine is a byproduct of methionine metabolism and is generally maintained at a physiological level. Moreover, it may increase if the patient has a genetic deficiency of metabolic enzymes, nutritional deficiencies of related cofactors (vitamins), chronic diseases, or a poor lifestyle. Homocysteine is an oxidative stress factor that can lead to calcified plaques and trigger vascular inflammation. Hyperhomocysteinemia causes endothelial dysfunction, transdifferentiation of vascular smooth muscle cells, and the induction of apoptosis. As a result of transdifferentiation and cell apoptosis, hydroxyapatite accumulates in the walls of blood vessels. Several studies have reported on the mechanisms of multiple cellular signaling pathways that cause inflammation and calcification in blood vessels. Therefore, in this review, we take a closer look at understanding the clinical consequences of hyperhomocysteinemia and apply clinical approaches to reduce its prevalence.
Collapse
Affiliation(s)
- Susie Jung
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | | | - Nam-Seok Joo
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
- Corresponding Author: Nam-Seok Joo Tel: +82-31-219-5324, Fax: +82-31-219-5218, E-mail:
| |
Collapse
|
21
|
Pluquet M, Kamel S, Choukroun G, Liabeuf S, Laville SM. Serum Calcification Propensity Represents a Good Biomarker of Vascular Calcification: A Systematic Review. Toxins (Basel) 2022; 14:toxins14090637. [PMID: 36136575 PMCID: PMC9501050 DOI: 10.3390/toxins14090637] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification contributes to cardiovascular morbidity and mortality. A recently developed serum calcification propensity assay is based on the half-transformation time (T50) from primary calciprotein particles (CPPs) to secondary CPPs, reflecting the serum’s endogenous capacity to prevent calcium phosphate precipitation. We sought to identify and review the results of all published studies since the development of the T50-test by Pasch et al. in 2012 (whether performed in vitro, in animals or in the clinic) of serum calcification propensity. To this end, we searched PubMed, Elsevier EMBASE, the Cochrane Library and Google Scholar databases from 2012 onwards. At the end of the selection process, 57 studies were analyzed with regard to the study design, sample size, characteristics of the study population, the intervention and the main results concerning T50. In patients with primary aldosteronism, T50 is associated with the extent of vascular calcification in the abdominal aorta. In chronic kidney disease (CKD), T50 is associated with the severity and progression of coronary artery calcification. T50 is also associated with cardiovascular events and all-cause mortality in CKD patients, patients on dialysis and kidney transplant recipients and with cardiovascular mortality in patients on dialysis, kidney transplant recipients, patients with ischemic heart failure and reduced ejection fraction, and in the general population. Switching from acetate-acidified dialysate to citrate-acidified dialysate led to a longer T50, as did a higher dialysate magnesium concentration. Oral administration of magnesium (in CKD patients), phosphate binders, etelcalcetide and spironolactone (in hemodialysis patients) was associated with a lower serum calcification propensity. Serum calcification propensity is an overall marker of calcification associated with hard outcomes but is currently used in research projects only. This assay might be a valuable tool for screening serum calcification propensity in at-risk populations (such as CKD patients and hemodialyzed patients) and, in particular, for monitoring changes over time in T50.
Collapse
Affiliation(s)
- Maxime Pluquet
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Said Kamel
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Department of Biochemistry, Amiens University Medical Center, F-80000 Amiens, France
| | - Gabriel Choukroun
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Department of Nephrology, Amiens University Medical Center, F-80000 Amiens, France
| | - Sophie Liabeuf
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
- Correspondence:
| | - Solène M. Laville
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
| |
Collapse
|
22
|
Periostin Augments Vascular Smooth Muscle Cell Calcification via β-Catenin Signaling. Biomolecules 2022; 12:biom12081157. [PMID: 36009051 PMCID: PMC9405747 DOI: 10.3390/biom12081157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of β-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased β-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/β-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvβ3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of β-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvβ3 and the activation of the WNT/β-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.
Collapse
|
23
|
Merino-Ribas A, Araujo R, Pereira L, Campos J, Barreiros L, Segundo MA, Silva N, Costa CFFA, Quelhas-Santos J, Trindade F, Falcão-Pires I, Alencastre I, Dumitrescu IB, Sampaio-Maia B. Vascular Calcification and the Gut and Blood Microbiome in Chronic Kidney Disease Patients on Peritoneal Dialysis: A Pilot Study. Biomolecules 2022; 12:biom12070867. [PMID: 35883423 PMCID: PMC9313079 DOI: 10.3390/biom12070867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) is a frequent condition in chronic kidney disease (CKD) and a well-established risk factor for the development of cardiovascular disease (CVD). Gut dysbiosis may contribute to CVD and inflammation in CKD patients. Nonetheless, the role of gut and blood microbiomes in CKD-associated VC remains unknown. Therefore, this pilot study aimed to explore the link between gut and blood microbiomes and VC in CKD patients on peritoneal dialysis (CKD-PD). Our results showed relative changes in specific taxa between CKD-PD patients with and without VC, namely Coprobacter, Coprococcus 3, Lactobacillus, and Eubacterium eligens group in the gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the blood. An association between VC and all-cause mortality risk in CKD-PD patients was also observed, and patients with higher mortality risk corroborate the changes of Eubacterium eligens in the gut and Devosia genus in the blood. Although we did not find differences in uremic toxins, intestinal translocation markers, and inflammatory parameters among CKD-PD patients with and without VC, soluble CD14 (sCD14), a nonspecific marker of monocyte activation, positively correlated with VC severity. Therefore, gut Eubacterium eligens group, blood Devosia, and circulating sCD14 should be further explored as biomarkers for VC, CVD, and mortality risk in CKD.
Collapse
Affiliation(s)
- Ana Merino-Ribas
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Nephrology Department, Hospital Universitari de Girona Doctor Josep Trueta, 17007 Girona, Spain
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luciano Pereira
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Joana Campos
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Nádia Silva
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Carolina F. F. A. Costa
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Janete Quelhas-Santos
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Fábio Trindade
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Inês Falcão-Pires
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Ines Alencastre
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Ioana Bancu Dumitrescu
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Fresenius Nephrocare, 110372 Pitesti, Romania
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
- Correspondence: ; Tel.: +351-220-901-100
| |
Collapse
|
24
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
25
|
Wang ZX, Luo ZW, Li FXZ, Cao J, Rao SS, Liu YW, Wang YY, Zhu GQ, Gong JS, Zou JT, Wang Q, Tan YJ, Zhang Y, Hu Y, Li YY, Yin H, Wang XK, He ZH, Ren L, Liu ZZ, Hu XK, Yuan LQ, Xu R, Chen CY, Xie H. Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nat Commun 2022; 13:1453. [PMID: 35304471 PMCID: PMC8933454 DOI: 10.1038/s41467-022-29191-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861. This study uncovers the role of extracellular vesicles from bone matrix as a messenger in the development of osteoporosis and vascular calcification (calcification paradox) during skeletal aging and menopause by transferring miR-483-5p and miR-2861.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-You Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Kai Wang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Ren
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China. .,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China.
| |
Collapse
|
26
|
Henze LA, Estepa M, Pieske B, Lang F, Eckardt KU, Alesutan I, Voelkl J. Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells 2021; 10:cells10113083. [PMID: 34831306 PMCID: PMC8623153 DOI: 10.3390/cells10113083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany; (L.A.H.); (M.E.); (B.P.)
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany;
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- Correspondence: ; Tel.: +43-732-2468-8990
| | - Jakob Voelkl
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.-U.E.); (J.V.)
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, 4040 Linz, Austria
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| |
Collapse
|
27
|
Feng Z, Wang T, Dong S, Jiang H, Zhang J, Raza HK, Lei G. Association between gut dysbiosis and chronic kidney disease: a narrative review of the literature. J Int Med Res 2021; 49:3000605211053276. [PMID: 34704483 PMCID: PMC8554569 DOI: 10.1177/03000605211053276] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a serious non-communicable disease that poses a significant burden on healthcare and society. It is essential to devise new strategies to better treat patients with CKD. Research has illustrated that gut dysbiosis, describing an abnormal intestinal ecology, is closely associated with CKD. In this narrative review, we summarized the evidence of their mutual relationship and discussed the potential treatment options to correct gut dysbiosis in patients with CKD. Gut dysbiosis significantly increases the risk of CKD, especially in the older population. Gut dysbiosis also plays a role in CKD complications, such as hypertension, cardiovascular events, and cognitive dysfunction. The relationship between gut dysbiosis and CKD is bidirectional, and CKD itself can lead to changes in gut microecology. The usual therapies for CKD can also increase the incidence of gut dysbiosis. Meanwhile, probiotics and antibiotics are generally used to correct gut dysbiosis. Further studies are required to elaborate the association between gut dysbiosis and CKD, and more treatment options should be explored to prevent CKD in patients with gut dysbiosis.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Ting Wang
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Sheng Dong
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | - Genping Lei
- Department of Nephrology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China.,Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Moser B, Poetsch F, Estepa M, Luong TTD, Pieske B, Lang F, Alesutan I, Voelkl J. Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Arch 2021; 473:1899-1910. [PMID: 34564739 PMCID: PMC8599266 DOI: 10.1007/s00424-021-02621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and β-adrenergic receptors. The present study explored the effects of β2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. β2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of β2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.
Collapse
Affiliation(s)
- Barbara Moser
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clin Sci (Lond) 2021; 135:515-534. [PMID: 33479769 PMCID: PMC7859357 DOI: 10.1042/cs20201122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.
Collapse
|
30
|
Xiong H, Wang L, Jin F, Zhang B, Wang X, Chang X, Zhao LP. Association of cystatin C with coronary artery calcification in patients undergoing multidetector computed tomography. Medicine (Baltimore) 2021; 100:e26761. [PMID: 34397720 PMCID: PMC8322554 DOI: 10.1097/md.0000000000026761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Cystatin C is associated with atherosclerosis, but the relationship between cystatin C and coronary artery calcification (CAC) is uncertain. The purpose of this study was to evaluate the predictive value of cystatin C on the occurrence and severity of CAC.A total of 1447 hospitalized patients with coronary computed tomography angiography were selected in this study. According to the CAC score (CACS), patients were divided into calcification group (with CAC, n = 749) and control group (without CAC, n = 698). The calcification group was further divided into low calcification group (CACS < 100, n = 407), medium calcification group (CACS 100-400, n = 203), and high calcification group (CACS≥400, n = 139).Patients with CAC had higher cystatin C level than those in control group (P < .05). With the increase of calcification score, the cystatin C level showed an upward trend. The cystatin C level in the high calcification group was significantly higher than those in the low and medium calcification group (P < .05). ROC curve analysis showed that cystatin C had a high predictive value for the occurrence of CAC [area under the curve 0.640, 95% confidence interval (95% CI) 0.591-0.690, cut-off value 0.945 mg/L, sensitivity 0.683, specificity 0.558, P < .05] and severe CAC (area under the curve 0.638, 95% CI 0.550-0.762, cut-off value 0.965 mg/L, sensitivity 0.865, specificity 0.398, P < .05). Multivariate logistic regression analysis showed that cystatin C was an independent predictor of severe CAC (AOR 3.748, 95% CI 1.138-10.044, P < .05).Cystatin C was significantly associated with the occurrence and severity of CAC, suggesting that cystatin C had the potential as a predictor of CAC.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Cardiology
- Emergency Department of Xuguan District
| | - Li Wang
- Department of Cardiology
- Emergency Department of Xuguan District
| | | | - Bo Zhang
- Radiology Department, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | | | | | | |
Collapse
|
31
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
32
|
Ren Y, Li X, Wang S, Pan W, Lv H, Wang M, Zhou X, Xia Y, Yin D. Serum alkaline phosphatase levels are associated with coronary artery calcification patterns and plaque vulnerability. Catheter Cardiovasc Interv 2021; 97 Suppl 2:1055-1062. [PMID: 33689203 DOI: 10.1002/ccd.29642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to investigate the association of serum alkaline phosphatase (ALP) with calcification patterns and plaque morphology detected by intravascular ultrasound (IVUS) in acute coronary syndrome (ACS) patients. BACKGROUND ALP has been shown to predict vascular calcification and long-term cardiovascular events. However, the relationship between ALP and vascular calcification patterns or plaque morphology remains unclear. METHODS In total, 328 ACS patients who underwent IVUS examinations were screened from January 2017 to December 2018; among them, 234 eligible participants were grouped according to the tertiles of ALP levels (<68, 68-80, and >80 IU/L). Demographic data and IVUS parameters were documented and analyzed. RESULTS After adjusting for potential confounders, independent associations were observed between ALP and the presence of coronary calcification, spotty calcification, minimum lumen area (MLA) ≤ 4.0 mm2 , and plaque burden (PB) > 70%. Compared with the lowest ALP tertile group, the highest ALP group had higher risks of calcification (odds ratio [OR], 2.85; 95% confidence interval [95%CI], 1.38-5.90; p = .005), spotty calcification (OR, 1.86; 95%CI, 1.09-3.84; p = .012), MLA≤4.0 mm2 (OR, 3.32; 95%CI, 1.51-7.28; p = .003), and PB > 70% (OR, 4.59; 95%CI, 1.83-11.50; p = .001). Similar results were found when ALP was analyzed as a continuous variable or a category variate according to the cut-off value determined by the receiver operating characteristic curve analysis. Furthermore, the model including clinical factors and ALP significantly improved the predictive power for coronary calcification, spotty calcification, MLA≤4.0 mm2 , and PB > 70%. CONCLUSION Our findings suggest that ALP may be a potential predictive biomarker for calcification and plaque vulnerability.
Collapse
Affiliation(s)
- Yongkui Ren
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinsheng Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weili Pan
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haichen Lv
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minxian Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuchen Zhou
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Da Yin
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Plasma protein expression profiles, cardiovascular disease, and religious struggles among South Asians in the MASALA study. Sci Rep 2021; 11:961. [PMID: 33441605 PMCID: PMC7806901 DOI: 10.1038/s41598-020-79429-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022] Open
Abstract
Blood protein concentrations are clinically useful, predictive biomarkers of cardiovascular disease (CVD). Despite a higher burden of CVD among U.S. South Asians, no CVD-related proteomics study has been conducted in this sub-population. The aim of this study is to investigate the associations between plasma protein levels and CVD incidence, and to assess the potential influence of religiosity/spirituality (R/S) on significant protein-CVD associations, in South Asians from the MASALA Study. We used a nested case–control design of 50 participants with incident CVD and 50 sex- and age-matched controls. Plasma samples were analyzed by SOMAscan for expression of 1305 proteins. Multivariable logistic regression models and model selection using Akaike Information Criteria were performed on the proteins and clinical covariates, with further effect modification analyses conducted to assess the influence of R/S measures on significant associations between proteins and incident CVD events. We identified 36 proteins that were significantly expressed differentially among CVD cases compared to matched controls. These proteins are involved in immune cell recruitment, atherosclerosis, endothelial cell differentiation, and vascularization. A final multivariable model found three proteins (Contactin-5 [CNTN5], Low affinity immunoglobulin gamma Fc region receptor II-a [FCGR2A], and Complement factor B [CFB]) associated with incident CVD after adjustment for diabetes (AUC = 0.82). Religious struggles that exacerbate the adverse impact of stressful life events, significantly modified the effect of Contactin-5 and Complement factor B on risk of CVD. Our research is this first assessment of the relationship between protein concentrations and risk of CVD in a South Asian sample. Further research is needed to understand patterns of proteomic profiles across diverse ethnic communities, and the influence of resources for resiliency on proteomic signatures and ultimately, risk of CVD.
Collapse
|
34
|
Grund A, Sinha MD, Haffner D, Leifheit-Nestler M. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease-A Pediatric Perspective. Front Pediatr 2021; 9:702719. [PMID: 34422725 PMCID: PMC8372151 DOI: 10.3389/fped.2021.702719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are a hallmark in pediatric patients with chronic kidney disease (CKD) contributing to an enhanced risk of all-cause and CV morbidity and mortality in these patients. The bone-derived phosphaturic hormone fibroblast growth factor (FGF) 23 progressively rises with declining kidney function to maintain phosphate homeostasis, with up to 1,000-fold increase in patients with kidney failure requiring dialysis. FGF23 is associated with the development of left ventricular hypertrophy (LVH) and thereby accounts to be a CVD risk factor in CKD. Experimentally, FGF23 directly induces hypertrophic growth of cardiac myocytes in vitro and LVH in vivo. Further, clinical studies in adult CKD have observed cardiotoxicity associated with FGF23. Data regarding prevalence and determinants of FGF23 excess in children with CKD are limited. This review summarizes current data and discusses whether FGF23 may be a key driver of LVH in pediatric CKD.
Collapse
Affiliation(s)
- Andrea Grund
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Manish D Sinha
- Department of Paediatric Nephrology, King's College London, Evelina London Children's Hospital, London, United Kingdom
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| |
Collapse
|
35
|
Chakrabarti A, Goldstein DR, Sutton NR. Age-associated arterial calcification: the current pursuit of aggravating and mitigating factors. Curr Opin Lipidol 2020; 31:265-272. [PMID: 32773466 PMCID: PMC7891872 DOI: 10.1097/mol.0000000000000703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW The incidence of arterial calcification increases with age, can occur independently of atherosclerosis and hyperlipidemia, contributes to vessel stiffening, and is associated with adverse cardiovascular outcomes. Here, we provide an up-to-date review of how aging leads to arterial calcification and discuss potential therapies. RECENT FINDINGS Recent research suggests that mitochondrial dysfunction (impaired efficiency of the respiratory chain, increased reactive oxygen species production, and a high mutation rate of mitochondrial DNA), cellular senescence, ectonucleotidases, and extrinsic factors such as hyperglycemia promote age-determined calcification. We discuss the future potential impact of antilipidemics, senolytics, and poly(ADP-ribose)polymerases inhibitors on age-associated arterial calcification. SUMMARY Understanding how mechanisms of aging lead to arterial calcification will allow us to pinpoint prospective strategies to mitigate arterial calcification, even after the effects of aging have already begun to occur.
Collapse
Affiliation(s)
- Apurba Chakrabarti
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
36
|
Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. Int J Mol Sci 2020; 21:ijms21197207. [PMID: 33003561 PMCID: PMC7583813 DOI: 10.3390/ijms21197207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-kB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.
Collapse
|
37
|
Alesutan I, Moritz F, Haider T, Shouxuan S, Gollmann-Tepeköylü C, Holfeld J, Pieske B, Lang F, Eckardt KU, Heinzmann SS, Voelkl J. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J Mol Med (Berl) 2020; 98:985-997. [PMID: 32488546 PMCID: PMC7343738 DOI: 10.1007/s00109-020-01925-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Abstract In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Franco Moritz
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatjana Haider
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sun Shouxuan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tubingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Sophie Heinzmann
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular Calcification: An Important Understanding in Nephrology. Vasc Health Risk Manag 2020; 16:167-180. [PMID: 32494148 PMCID: PMC7229867 DOI: 10.2147/vhrm.s242685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening state in chronic kidney disease (CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated, and complex biological process that is mediated by genetics, epigenetics, dysregulated form of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways. Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD. Here, an update on different cellular and molecular processes involved in VC in CKD is discussed to elucidate the probable therapeutic pathways in the future.
Collapse
Affiliation(s)
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
39
|
Evenepoel P, Dejongh S, Verbeke K, Meijers B. The Role of Gut Dysbiosis in the Bone-Vascular Axis in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12050285. [PMID: 32365480 PMCID: PMC7290823 DOI: 10.3390/toxins12050285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the 'calcification paradox' or the bone-vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone-vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone-vascular axis may open avenues for novel therapeutics, including nutriceuticals.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-344591; Fax: +32-16-344599
| | - Sander Dejongh
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven—University of Leuven, B-3000 Leuven, Belgium
| | - Bjorn Meijers
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
40
|
Pathophysiological and Genetic Aspects of Vascular Calcification. Cardiol Res Pract 2020; 2020:5169069. [PMID: 32411445 PMCID: PMC7201852 DOI: 10.1155/2020/5169069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that vascular calcification is an independent cardiovascular risk factor (CRF) of morbidity and mortality. New studies point out the existence of a complex physiopathological mechanism that involves inflammation, oxidation, the release of chemical mediators, and genetic factors that promote the osteochondrogenic differentiation of vascular smooth muscle cells (VSMC). This review will evaluate the main mechanisms involved in the pathophysiology and genetics modulation of the process of vascular calcification. Objective. A systematic review of the pathophysiology factors involved in vascular calcification and its genetic influence was performed. Methods. A systematic review was conducted in the Medline and PubMed databases and were searched for studies concerning vascular calcification using the keywords and studies published until 2020/01 in English. Inclusion Criteria. Studies in vitro, animal models, and humans. These include cohort (both retrospective and prospective cohort studies), case-control, cross-sectional, and systematic reviews. Exclusion Criteria. Studies before 2003 of the existing literature.
Collapse
|
41
|
Research Models for Studying Vascular Calcification. Int J Mol Sci 2020; 21:ijms21062204. [PMID: 32210002 PMCID: PMC7139511 DOI: 10.3390/ijms21062204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Calcification of the vessel wall contributes to high cardiovascular morbidity and mortality. Vascular calcification (VC) is a systemic disease with multifaceted contributing and inhibiting factors in an actively regulated process. The exact underlying mechanisms are not fully elucidated and reliable treatment options are lacking. Due to the complex pathophysiology, various research models exist evaluating different aspects of VC. This review aims to give an overview of the cell and animal models used so far to study the molecular processes of VC. Here, in vitro cell culture models of different origins, ex vivo settings using aortic tissue and various in vivo disease-induced animal models are summarized. They reflect different aspects and depict the (patho)physiologic mechanisms within the VC process.
Collapse
|
42
|
Opdebeeck B, D’Haese PC, Verhulst A. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Toxins (Basel) 2020; 12:toxins12010058. [PMID: 31963891 PMCID: PMC7020422 DOI: 10.3390/toxins12010058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
The protein-bound uremic toxins, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are considered to be harmful vascular toxins. Arterial media calcification, or the deposition of calcium phosphate crystals in the arteries, contributes significantly to cardiovascular complications, including left ventricular hypertrophy, hypertension, and impaired coronary perfusion in the elderly and patients with chronic kidney disease (CKD) and diabetes. Recently, we reported that both IS and PCS trigger moderate to severe calcification in the aorta and peripheral vessels of CKD rats. This review describes the molecular and cellular mechanisms by which these uremic toxins induce arterial media calcification. A complex interplay between inflammation, coagulation, and lipid metabolism pathways, influenced by epigenetic factors, is crucial in IS/PCS-induced arterial media calcification. High levels of glucose are linked to these events, suggesting that a good balance between glucose and lipid levels might be important. On the cellular level, effects on endothelial cells, which act as the primary sensors of circulating pathological triggers, might be as important as those on vascular smooth muscle cells. Endothelial dysfunction, provoked by IS and PCS triggered oxidative stress, may be considered a key event in the onset and development of arterial media calcification. In this review a number of important outstanding questions such as the role of miRNA’s, phenotypic switching of both endothelial and vascular smooth muscle cells and new types of programmed cell death in arterial media calcification related to protein-bound uremic toxins are put forward and discussed.
Collapse
|
43
|
Inhibition of vascular smooth muscle cell calcification by vasorin through interference with TGFβ1 signaling. Cell Signal 2019; 64:109414. [PMID: 31505229 DOI: 10.1016/j.cellsig.2019.109414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Elevated transforming growth factor β1 (TGFβ1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFβ1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFβ to inhibit TGFβ signaling. Thus, the present study explored the effects of vasorin on osteo-/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFβ1 or β-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFβ1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFβ1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFβ1-induced osteo-/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFβ1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFβ1 signaling, osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFβ1 signaling and protects against osteo-/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.
Collapse
|