1
|
Özdemir İ, Aktaş AŞ, Tuncer MC. Investigation of the effect of thymoquinone and doxorubicin on the EGFR/FOXP3 signaling pathway in OVCAR3 human ovarian adenocarcinoma cells. Acta Cir Bras 2025; 40:e401725. [PMID: 40172364 PMCID: PMC11960576 DOI: 10.1590/acb401725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 04/04/2025] Open
Abstract
PURPOSE To investigate the cytotoxic and apoptotic effects of the combination of doxorubicin (Dox) and thymoquinone (TQ) on ovarian adenocarcinoma cells (OVCAR3) via the EGFR/FOXP3 signaling pathway. METHODS We used human OVCAR3 and human skin keratinocyte cells (HaCaT). Different concentrations of TQ and Dox were applied to the cells for 24, 48, and 72 hours, and the cytotoxicity level was determined via the MTT method. Expression levels of EGFR/FOXP3 for cell proliferation and apoptosis were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. The colony counting was performed after DAPI staining, and the effect on cell proliferation was determined. RESULTS Cytotoxicity was found to be highest with TQ and Dox treatments, and cell migration was prevented, especially in the group that received combined TQ and Dox treatment. Moreover, using RT-qPCR analysis, activity in the EGFR and FOXP3 pathway was found to be downregulated the most with TQ, and the amount of protein decreased with TQ and Dox. CONCLUSIONS The findings showed that the greatest cytotoxic effect and the most apoptosis occurred during TQ treatment. Additionally, it was determined that a significant decrease in EGFR and FOXP3 levels occurred with the application of TQ and Dox.
Collapse
Affiliation(s)
- İlhan Özdemir
- Atatürk University – Faculty of Medicine – Department of Gynecology and Obstetrics – Erzurum – Turkey
| | - Ayfer Şanli Aktaş
- Dicle University – Faculty of Medicine – Department of Histology and Embryology – Diyarbakir – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| |
Collapse
|
2
|
Zhai X, Shen N, Guo T, Wang J, Xie C, Cao Y, Liu L, Yan Y, Meng S, Du S. SPTLC2 drives an EGFR-FAK-HBEGF signaling axis to promote ovarian cancer progression. Oncogene 2025; 44:679-693. [PMID: 39645550 DOI: 10.1038/s41388-024-03249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with ovarian cancer (OC) progression. However, inhibition of EGFR signaling in OC patients achieved limited therapeutic effects, highlighting the need to define the mechanism of EGFR deregulation in OC development. Herein we showed that serine palmitoyltransferase long chain base subunit 2 (SPTLC2) acts as a positive regulator in the EGFR signaling pathway in OC. Phenotypically, depletion of SPTLC2 suppressed clonogenic growth and migration of OC cells in vitro and in ovo, as well as metastasis in OC xenograft models, whereas overexpression of SPTLC2 yielded opposite effects. Mechanistically, SPTLC2 drives an EGFR-FAK-HBEGF signaling axis via binding with EGFR. Notably, the serine palmitoyltransferase activity of SPTLC2 is critical for regulation of the EGFR-FAK-HBEGF signaling axis and activity in OC progression. Clinically, high SPTLC2 expression is associated with high-grade serous ovarian cancer and metastasis. Collectively, our findings establish an oncogenic role of SPTLC2 in OC growth and progression though upregulation of EGFR signaling and suggest that SPTLC2 represents a potential therapeutic target in EGFR-driven ovarian cancer patients.
Collapse
Affiliation(s)
- Xingyue Zhai
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Shen
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Jianxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yukai Cao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Ling Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Chatterjee P, Ghosh D, Chowdhury SR, Roy SS. ETS1 drives EGF-induced glycolytic shift and metastasis of epithelial ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119805. [PMID: 39159682 DOI: 10.1016/j.bbamcr.2024.119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Epithelial ovarian cancer (EOC), a leading cause of gynecological cancer-related morbidity and mortality and the most common type of ovarian cancer (OC), is widely characterized by alterations in the Epidermal Growth Factor (EGF) signaling pathways. The phenomenon of metastasis is largely held accountable for the majority of EOC-associated deaths. Existing literature reports substantiate evidence on the indispensable role of metabolic reprogramming, particularly the phenomenon of the 'Warburg effect' or aerobic glycolysis in priming the cancer cells towards Epithelial to Mesenchymal transition (EMT), subsequently facilitating EMT. Considering the diverse roles of growth factor signaling across different stages of oncogenesis, our prime emphasis was laid on unraveling mechanistic details of EGF-induced 'Warburg effect' and resultant metastasis in EOC cells. Our study puts forth Ets1, an established oncoprotein and key player in OC progression, as the prime metabolic sensor to EGF-induced cues from the tumor microenvironment (TME). EGF treatment has been found to induce Ets1 expression in OC cells predominantly through the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) pathway activation. This subsequently results in pronounced glycolysis, characterized by an enhanced lactate production through transcriptional up-regulation of key determinant genes of the central carbon metabolism namely, hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4). Furthermore, this study reports an unforeseen combinatorial blockage of HK2 and MCT4 as an effective approach to mitigate cellular metastasis in OC. Collectively, our work proposes a novel mechanistic insight into EGF-induced glycolytic bias in OC cells and also sheds light on an effective therapeutic intervention approach exploiting these insights.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Fromhage G, Obermayr E, Bednarz-Knoll N, Van Gorp T, Welsch E, Polterauer S, Braicu EI, Mahner S, Sehouli J, Vergote I, Concin N, Kurtz S, Steinbiss S, Torge A, Zeillinger R, Wölber L, Brandt B. Loss of copy numbers of retrotransposons (HERVK) on chromosome 7p11.2 impacts EGFR (Epidermal Growth Factor Receptor)-induced phenotypes for platinum sensitivity and long-term survival in ovarian cancer-A study from the OVCAD consortium. Int J Cancer 2024; 155:934-945. [PMID: 38709956 DOI: 10.1002/ijc.34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
We analyzed variations in the epidermal growth factor receptor (EGFR) gene and 5'-upstream region to identify potential molecular predictors of treatment response in primary epithelial ovarian cancer. Tumor tissues collected during debulking surgery from the prospective multicenter OVCAD study were investigated. Copy number variations in the human endogenous retrovirus sequence human endogenous retrovirus K9 (HERVK9) and EGFR Exons 7 and 9, as well as repeat length and loss of heterozygosity of polymorphic CA-SSR I and relative EGFR mRNA expression were determined quantitatively. At least one EGFR variation was observed in 94% of the patients. Among the 30 combinations of variations discovered, enhanced platinum sensitivity (n = 151) was found dominantly with HERVK9 haploidy and Exon 7 tetraploidy, overrepresented among patients with survival ≥120 months (24/29, p = .0212). EGFR overexpression (≥80 percentile) was significantly less likely in the responders (17% vs. 32%, p = .044). Multivariate Cox regression analysis, including age, FIGO stage, and grade, indicated that the patients' subgroup was prognostically significant for CA-SSR I repeat length <18 CA for both alleles (HR 0.276, 95% confidence interval 0.109-0.655, p = .001). Although EGFR variations occur in ovarian cancer, the mRNA levels remain low compared to other EGFR-mutated cancers. Notably, the inherited length of the CA-SSR I repeat, HERVK9 haploidy, and Exon 7 tetraploidy conferred three times higher odds ratio to survive for more than 10 years under therapy. This may add value in guiding therapies if determined during follow-up in circulating tumor cells or circulating tumor DNA and offers HERVK9 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gesa Fromhage
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Toon Van Gorp
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Welsch
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Kurtz
- Center for Bioinformatics Hamburg, MIN-Faculty, Universität Hamburg, Hamburg, Germany
| | - Sascha Steinbiss
- DCSO Deutsche Cyber-Sicherheitsorganisation GmbH, Berlin, Germany
| | - Antje Torge
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Linn Wölber
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Yang F, Yan L, Ji J, Lou Y, Zhu J. HER2 puzzle pieces: Non-Coding RNAs as keys to mechanisms, chemoresistance, and clinical outcomes in Ovarian cancer. Pathol Res Pract 2024; 258:155335. [PMID: 38723327 DOI: 10.1016/j.prp.2024.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer (OC) presents significant challenges, characterized by limited treatment options and therapy resistance often attributed to dysregulation of the HER2 signaling pathway. Non-coding RNAs (ncRNAs) have emerged as key players in regulating gene expression in OC. This comprehensive review underscores the pivotal role of ncRNAs in modulating HER2 signaling, with a specific focus on their mechanisms, impact on chemoresistance, and prognostic/diagnostic implications. MicroRNAs, long non-coding RNAs, and circular RNAs have been identified as essential regulators in the modulation of the HER2 pathway. By directly targeting key components of the HER2 axis, these ncRNAs influence its activation and downstream signaling cascades. Dysregulated ncRNAs have been closely associated with chemoresistance, leading to treatment failures and disease progression in OC. Furthermore, distinct expression profiles of ncRNAs hold promise as reliable prognostic and diagnostic markers, facilitating personalized treatment strategies and enhancing disease outcome assessments. A comprehensive understanding of how ncRNAs intricately modulate HER2 signaling is imperative for the development of targeted therapies and the improvement of patient outcomes. The integration of ncRNA profiles into clinical practice has the potential to enhance prognostic and diagnostic accuracy in the management of ovarian cancer. Further research efforts are essential to validate the clinical utility of ncRNAs and elucidate their precise roles in the regulation of HER2 signaling. In conclusion, ncRNAs play a crucial role in governing HER2 signaling in ovarian cancer, impacting chemoresistance and providing valuable prognostic and diagnostic insights. The exploration of ncRNA-mediated HER2 modulation offers promising avenues for the development of personalized treatment approaches, ultimately advancing patient care and outcomes in OC.
Collapse
Affiliation(s)
- Fangwei Yang
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China.
| | - Lixiang Yan
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Junnan Ji
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Yunxia Lou
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Jinlu Zhu
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| |
Collapse
|
7
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
8
|
Vo D, Liu Y, Sood AK, Rezvani K, Jazaeri AA, Liu J. EGFR, HLA-G, CD70, c-MET, and NY-ESO1 as potential biomarkers in high grade epithelial ovarian carcinoma. Cancer Biomark 2024; 39:289-298. [PMID: 38250760 DOI: 10.3233/cbm-230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
High grade epithelial ovarian carcinoma is an aggressive tumor. Treatment includes platinum therapy, however it recurs in most patients due to therapy resistance. In this project, we study the immunohistochemical (IHC) expression of five potential biomarkers/prognostic markers in high grade epithelial ovarian carcinoma: EGFR, HLA-G, CD70, c-MET, and NY-ESO1. A cohort of 274 patients is used. We compare the IHC expression with age, stage, ascites status, family history of cancer, disease free survival (DFS) and overall survival (OS). EGFR expression is significantly correlated with family history and worse OS. HLA-G is associated with worse OS. To confirm the results of EGFR and HLA-G, a second separated cohort of 248 patients is used. Positive EGFR expression again shows worse OS, while HLA-G expression has worse prognostic trend. CD70 has a worse OS trend. C-MET and NY-ESO1 do not have any clinical correlations. EGFR can potentially serve as target in future clinical immune therapy trials.
Collapse
Affiliation(s)
- Duc Vo
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| | - Yan Liu
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| | - Anil K Sood
- MD Anderson Cancer Center, Department of Gynecologic Oncology & Reproductive Medicine, Houston, TX, USA
| | - Katy Rezvani
- MD Anderson Cancer Center, Department of Stem Cell Transplantation, Houston, TX, USA
| | - Amir A Jazaeri
- MD Anderson Cancer Center, Department of Gynecologic Oncology & Reproductive Medicine, Houston, TX, USA
| | - Jinsong Liu
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| |
Collapse
|
9
|
Xia T, Ye F, Zhao W, Min P, Qi C, Wang Q, Zhao M, Zhang Y, Du J. Comprehensive Analysis of MICALL2 Reveals Its Potential Roles in EGFR Stabilization and Ovarian Cancer Cell Invasion. Int J Mol Sci 2023; 25:518. [PMID: 38203692 PMCID: PMC10778810 DOI: 10.3390/ijms25010518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Molecules interacting with CasL (MICALs) are critical mediators of cell motility that act by cytoskeleton rearrangement. However, the molecular mechanisms underlying the regulation of cancer cell invasion remain elusive. The aim of this study was to investigate the potential role of one member of MICALs, i.e., MICALL2, in the invasion and function of ovarian cancer cells. We showed by bioinformatics analysis that MICALL2 expression was significantly higher in tissues of advanced-stage ovarian cancer and associated with poor overall survival of patients. MICALL2 was strongly correlated with the infiltration of multiple types of immune cells and T-cell exhaustion markers. Moreover, enrichment analyses showed that MICALL2 was involved in the tumor-related matrix degradation pathway. Mechanistically, MMP9 was identified as the target gene of MICALL2 for the regulation of invadopodium formation and SKOV3, HO-8910PM cell invasion. In addition, EGFR-AKT-mTOR signaling was identified as the downstream pathway of MICALL2 in the regulation of MMP9 expression. Furthermore, MICALL2 silencing promoted EGFR degradation; however, this effect was abrogated by treatment with the autophagy inhibitors acadesine and chloroquine diphosphate. Silencing of MICALL2 resulted in a suppressive activity of Rac1 while suppressing Rac1 activation attenuated the pro-EGFR, pro-MMP9, and proinvasive effects induced by the overexpression of MICALL2. Collectively, our results indicated that MICALL2 participated in the process of immune infiltration and invasion by ovarian cancer cells. Moreover, MICALL2 prevented EGFR degradation in a Rac1-dependent manner, consequently leading to EGFR-AKT-mTOR-MMP9 signaling activation and invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (T.X.); (F.Y.); (W.Z.); (P.M.); (C.Q.); (Q.W.); (M.Z.); (Y.Z.)
| |
Collapse
|
10
|
Son JS, Chow R, Kim H, Lieu T, Xiao M, Kim S, Matuszewska K, Pereira M, Nguyen DL, Petrik J. Liposomal delivery of gene therapy for ovarian cancer: a systematic review. Reprod Biol Endocrinol 2023; 21:75. [PMID: 37612696 PMCID: PMC10464441 DOI: 10.1186/s12958-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.
Collapse
Affiliation(s)
- Jin Sung Son
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Ryan Chow
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Helena Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Toney Lieu
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Maria Xiao
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Sunny Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - David Le Nguyen
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jim Petrik
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada.
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
- Department of Obstetrics and Gynecology, University of McMaster, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Melo V, Nelemans LC, Vlaming M, Lourens HJ, Wiersma VR, Bilemjian V, Huls G, de Bruyn M, Bremer E. EGFR-selective activation of CD27 co-stimulatory signaling by a bispecific antibody enhances anti-tumor activity of T cells. Front Immunol 2023; 14:1191866. [PMID: 37545491 PMCID: PMC10399592 DOI: 10.3389/fimmu.2023.1191866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Levi Collin Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Valerie R. Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vrouyr Bilemjian
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics & Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Forlani L, De Cecco L, Simeon V, Paolini B, Bagnoli M, Cecere SC, Spina A, Citeroni E, Bignotti E, Lorusso D, Arenare L, Russo D, De Angelis C, Ardighieri L, Scognamiglio G, Del Sesto M, Tognon G, Califano D, Schettino C, Chiodini P, Perrone F, Mezzanzanica D, Pignata S, Tomassetti A. Biological and clinical impact of membrane EGFR expression in a subgroup of OC patients from the phase IV ovarian cancer MITO-16A/MANGO-OV2A trial. J Exp Clin Cancer Res 2023; 42:83. [PMID: 37041632 PMCID: PMC10088260 DOI: 10.1186/s13046-023-02651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Validated prognostic biomarkers for anti-angiogenic therapy using the anti-VEGF antibody Bevacizumab in ovarian cancer (OC) patients are still an unmet clinical need. The EGFR can contribute to cancer-associated biological mechanisms in OC cells including angiogenesis, but its targeting gave disappointing results with less than 10% of OC patients treated with anti-EGFR compounds showing a positive response, likely due to a non adequate selection and stratification of EGFR-expressing OC patients. METHODS EGFR membrane expression was evaluated by immunohistochemistry in a cohort of 310 OC patients from the MITO-16A/MANGO-OV2A trial, designed to identify prognostic biomarkers of survival in patients treated with first line standard chemotherapy plus bevacizumab. Statistical analyses assessed the association between EGFR and clinical prognostic factors and survival outcomes. A single sample Gene Set Enrichment-like and Ingenuity Pathway Analyses were applied to the gene expression profile of 195 OC samples from the same cohort. In an OC in vitro model, biological experiments were performed to assess specific EGFR activation. RESULTS Based on EGFR-membrane expression, three OC subgroups of patients were identified being the subgroup with strong and homogeneous EGFR membrane localization, indicative of possible EGFR out/in signalling activation, an independent negative prognostic factor for overall survival of patients treated with an anti-angiogenic agent. This OC subgroup resulted statistically enriched of tumors of histotypes different than high grade serous lacking angiogenic molecular characteristics. At molecular level, among the EGFR-related molecular traits identified to be activated only in this patients' subgroup the crosstalk between EGFR with other RTKs also emerged. In vitro, we also showed a functional cross-talk between EGFR and AXL RTK; upon AXL silencing, the cells resulted more sensitive to EGFR targeting with erlotinib. CONCLUSIONS Strong and homogeneous cell membrane localization of EGFR, associated with specific transcriptional traits, can be considered a prognostic biomarker in OC patients and could be useful for a better OC patients' stratification and the identification of alternative therapeutic target/s in a personalized therapeutic approach.
Collapse
Affiliation(s)
- Luca Forlani
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Vittorio Simeon
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Biagio Paolini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sabrina Chiara Cecere
- Urogynaecological Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Eleonora Citeroni
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili Di Brescia, Brescia, Italy
- Angelo Nocivelli Institute of Molecular Medicine, ASST Spedali Civili of Brescia- University of Brescia, Brescia, Italy
| | - Domenica Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, and Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Laura Ardighieri
- Department of Pathology, Azienda Socio Sanitaria Territoriale Spedali Civili Di Brescia, Brescia, Italy
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Michele Del Sesto
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Delia Mezzanzanica
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| | - Sandro Pignata
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Tomassetti
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
13
|
Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol Ther Oncolytics 2023; 28:293-306. [PMID: 36911068 PMCID: PMC9999170 DOI: 10.1016/j.omto.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide. Receptor tyrosine kinases (RTKs) have long been sought as therapeutic targets for EOC, as they are frequently hyperactivated in primary tumors and drive disease relapse, progression, and metastasis. More recently, these oncogenic drivers have been implicated in EOC response to poly(ADP-ribose) polymerase (PARP) inhibitors and epigenome-interfering agents. This evidence revives RTKs as promising targets for therapeutic intervention of EOC. This review summarizes recent studies on the role of RTKs in EOC malignancy and the use of their inhibitors for clinical treatment. Our focus is on the ERBB family, c-Met, and VEGFR, as they are linked to drug resistance and targetable using commercially available drugs. The importance of these RTKs and their inhibitors is highlighted by their impact on signal transduction and intratumoral heterogeneity in EOC and successful use as maintenance therapy in the clinic through suppression of the VEGF/VEGFR axis. Finally, the therapeutic potential of RTK inhibitors is discussed in the context of combinatorial targeting via co-inhibiting proliferative and anti-apoptotic pathways, epigenomic/transcriptional programs, and harnessing the efficacy of PARP inhibitors and programmed cell death 1/ligand 1 immune checkpoint therapies.
Collapse
|
14
|
Ex vivo chemosensitivity assay using primary ovarian cancer organoids for predicting clinical response and screening effective drugs. Hum Cell 2023; 36:752-761. [PMID: 36474106 DOI: 10.1007/s13577-022-00827-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Selecting the best treatment for individual patients with cancer has attracted attention for improving clinical outcomes. Recent progress in organoid culture may lead to the development of personalized medicine. Unlike molecular-targeting drugs, there are no predictive methods for patient response to standard chemotherapies for ovarian cancer. We prepared organoids using the cancer tissue-originated spheroid (CTOS) method from 61 patients with ovarian cancer with 100% success rate. Chemosensitivity assays for paclitaxel and carboplatin were performed with 84% success rate using the primary organoids from 50 patients who received the chemotherapy. A wide range of sensitivities was observed among organoids for both drugs. All four clinically resistant organoids were resistant to both drugs in 18 cases in which clinical response information was available. Five out of 18 cases (28%) were double-resistant, the response rate of which was compatible with the clinical remission rate. Carboplatin was significantly more sensitive in serous than in clear cell subtypes (P = 0.025). We generated two lines of organoids, screened 1135 drugs, and found several drugs with better combinatory effects with carboplatin than with paclitaxel. Some drugs, including afatinib, have shown an additive effect with carboplatin. The organoid sensitivity assay did not predict the clinical outcomes, both progression free and overall survival.
Collapse
|
15
|
Lan T, Li Y, Wang Y, Wang ZC, Mu CY, Tao AB, Gong JL, Zhou Y, Xu H, Li SB, Gu B, Ma P, Luo L. Increased endogenous PKG I activity attenuates EGF-induced proliferation and migration of epithelial ovarian cancer via the MAPK/ERK pathway. Cell Death Dis 2023; 14:39. [PMID: 36653376 PMCID: PMC9849337 DOI: 10.1038/s41419-023-05580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
The type I cGMP-dependent protein kinase (PKG I) is recognized as a tumor suppressor, but its role in EGFR regulated epithelial ovarian cancer (EOC) progression remains unclear. We evaluated the in vivo and in vitro effects of activated PKG I in EGF-induced EOC cell proliferation, migration, and invasion. The expressions of EGFR and PKG I were elevated, but the activated PKG I was decreased in EOC tissues of patients and cells lines. The addition of 8-Br-cGMP, a specific PKG I activator, attenuated the EGF-induced EOC cell proliferation, migration, and invasion in vitro. Similarly, activated PKG I also attenuated EOC progression in vivo using an EOC xenograft nude mouse model. The activated PKG I interacted with EGFR, causing increased threonine (693) phosphorylation and decreased tyrosine (1068) phosphorylation of EGFR, which resulted in disrupted EGFR-SOS1-Grb2 combination. Subsequently, the cytoplasmic phosphorylation of downstream proteins (c-Raf, MEK1/2, and ERK1/2) were declined, impeding the phosphorylated ERK1/2's nucleus translocation, and this reduction of phosphorylated tyrosine (1068) EGFR and ERK1/2 were also abolished by Rp-8-Br-cGMPS. Our results suggest that the activation of PKG I attenuates EGF-induced EOC progression, and the 8-Br-cGMP-PKG I-EGFR/MEK/ERK axis might be a potential target for EOC therapy.
Collapse
Affiliation(s)
- Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ying Li
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yue Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Zhong-Cheng Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Chun-Yan Mu
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ai-Bin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Li Gong
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, NY, USA
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Hao Xu
- Department of Gynecology Huangshi Love & Health Hospital affiliated to Hubei Polytechnic University, Hubei City, Wuhan Province, China
| | - Shi-Bao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
16
|
Wallis B, Bowman KR, Lu P, Lim CS. The Challenges and Prospects of p53-Based Therapies in Ovarian Cancer. Biomolecules 2023; 13:159. [PMID: 36671544 PMCID: PMC9855757 DOI: 10.3390/biom13010159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
It has been well established that mutations in the tumor suppressor gene, p53, occur readily in a vast majority of cancer tumors, including ovarian cancer. Typically diagnosed in stages three or four, ovarian cancer is the fifth leading cause of death in women, despite accounting for only 2.5% of all female malignancies. The overall 5-year survival rate for ovarian cancer is around 47%; however, this drops to an abysmal 29% for the most common type of ovarian cancer, high-grade serous ovarian carcinoma (HGSOC). HGSOC has upwards of 96% of cases expressing mutations in p53. Therefore, wild-type (WT) p53 and p53-based therapies have been explored as treatment options via a plethora of drug delivery vehicles including nanoparticles, viruses, polymers, and liposomes. However, previous p53 therapeutics have faced many challenges, which have resulted in their limited translational success to date. This review highlights a selection of these historical p53-targeted therapeutics for ovarian cancer, why they failed, and what the future could hold for a new generation of this class of therapies.
Collapse
Affiliation(s)
| | | | | | - Carol S. Lim
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Corno C, D’Arcy P, Bagnoli M, Paolini B, Costantino M, Carenini N, Corna E, Alberti P, Mezzanzanica D, Colombo D, Linder S, Arrighetti N, Perego P. The deubiquitinase USP8 regulates ovarian cancer cell response to cisplatin by suppressing apoptosis. Front Cell Dev Biol 2022; 10:1055067. [PMID: 36578788 PMCID: PMC9791127 DOI: 10.3389/fcell.2022.1055067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of therapeutic approaches to improve response to platinum-based therapies is an urgent need for ovarian carcinoma. Deubiquitinases are a large family of ubiquitin proteases implicated in a variety of cellular functions and may contribute to tumor aggressive features through regulation of processes such as proliferation and cell death. Among the subfamily of ubiquitin-specific peptidases, USP8 appears to be involved in modulation of cancer cell survival by still poorly understood mechanisms. Thus, we used ovarian carcinoma cells of different histotypes, including cisplatin-resistant variants with increased survival features to evaluate the efficacy of molecular targeting of USP8 as a strategy to overcome drug resistance/modulate cisplatin response. We performed biochemical analysis of USP8 activity in pairs of cisplatin-sensitive and -resistant cells and found increased USP8 activity in resistant cells. Silencing of USP8 resulted in decreased activation of receptor tyrosine kinases and increased sensitivity to cisplatin in IGROV-1/Pt1 resistant cells as shown by colony forming assay. Increased cisplatin sensitivity was associated with enhanced cisplatin-induced caspase 3/7 activation and apoptosis, a phenotype also observed in cisplatin sensitive cells. Increased apoptosis was linked to FLIPL decrease and cisplatin induction of caspase 3 in IGROV-1/Pt1 cells, cisplatin-induced claspin and survivin down-regulation in IGROV-1 cells, thereby showing a decrease of anti-apoptotic proteins. Immunohistochemical staining on 65 clinical specimens from advanced stage ovarian carcinoma indicated that 40% of tumors were USP8 positive suggesting that USP8 is an independent prognostic factor for adverse outcome when considering progression free survival as a clinical end-point. Taken together, our results support that USP8 may be of diagnostic value and may provide a therapeutic target to improve the efficacy of platinum-based therapy in ovarian carcinoma.
Collapse
Affiliation(s)
- Cristina Corno
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Padraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marina Bagnoli
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Biagio Paolini
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Matteo Costantino
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Nives Carenini
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Elisabetta Corna
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Alberti
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Arrighetti
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Perego
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| |
Collapse
|
18
|
Kamal IM, Temerik DF, Yassin EH, Mosad E, A H, Hussien MT. Prognostic Outcome of Mesenchymal Transition Biomarkers in Correlation with EGFR Expression in Epithelial Ovarian Carcinoma Patients. Asian Pac J Cancer Prev 2022; 23:4213-4225. [PMID: 36580004 PMCID: PMC9971466 DOI: 10.31557/apjcp.2022.23.12.4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND CD44 is an epithelial-mesenchymal transition (EMT) surface receptor that regulates the interactivity between the cells and the extracellular matrix, thereby promoting cell migration. The epidermal growth factor receptor (EGFR) family is a trans-membrane kinase-related protein. It regulates cell adhesion proteins, which may promote cell proliferation and invasiveness. Mesenchymal epithelial transition (MET) is another EMT receptor that stimulates cell proliferation, invasion, survival, and angiogenesis. This study aimed to evaluate the prognostic impact of CD44, EGFR expressions, and MET gene amplification in epithelial ovarian cancer (EOC). METHODS This is a retrospective cohort study, including 85 cases of EOC. CD44 and EGFR expressions were evaluated in both epithelial and stromal cells by immunohistochemistry. Tumor cells also underwent a cytogenetic analysis using fluorescent in situ hybridization (FISH) to detect MET gene amplification. RESULTS High CD44 expression in tumors was significantly associated with serous subtypes (P=0.001), peritoneal deposits (P=0.002), and advanced stage (P=0.002). EGFR high tumor expression demonstrated a significant association with lymph node metastasis (P=0.038) and the advanced stage of EOC (P=0.016). Increased copy number of the MET gene was significantly associated with partial therapy response (P=0.030). CD44 and EGFR tumor high expression was associated with poor overall survival (OS). In addition, MET gene gain in tumors was associated with a shorter OS (P=0.000). CONCLUSION EMT biomarkers (CD44 and MET) and EGFR expression in EOC are independent prognostic factors for OS. MET gene increase copy number was detected in cases of serous neoplasm and associated with poor survival and minimal therapy response.
Collapse
Affiliation(s)
- Israa Mostafa Kamal
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Etemad H Yassin
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Eman Mosad
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Hanan A
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut Egypt.
| | - Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt. ,For Correspondence:
| |
Collapse
|
19
|
Qureshi R, Basit SA, Shamsi JA, Fan X, Nawaz M, Yan H, Alam T. Machine learning based personalized drug response prediction for lung cancer patients. Sci Rep 2022; 12:18935. [PMID: 36344580 PMCID: PMC9640729 DOI: 10.1038/s41598-022-23649-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient's mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient's unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ .
Collapse
Affiliation(s)
- Rizwan Qureshi
- grid.452146.00000 0004 1789 3191College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Syed Abdullah Basit
- FAST National University of Computer and Emerging Sciences, Karachi, Pakistan
| | - Jawwad A. Shamsi
- FAST National University of Computer and Emerging Sciences, Karachi, Pakistan
| | - Xinqi Fan
- grid.35030.350000 0004 1792 6846Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong ,grid.35030.350000 0004 1792 6846Center for Intelligent Multidimensional Data Analysis (CIMDA), City University of Hong Kong, Kowloon, Hong Kong
| | - Mehmood Nawaz
- grid.10784.3a0000 0004 1937 0482Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Hong Yan
- grid.35030.350000 0004 1792 6846Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong ,grid.35030.350000 0004 1792 6846Center for Intelligent Multidimensional Data Analysis (CIMDA), City University of Hong Kong, Kowloon, Hong Kong
| | - Tanvir Alam
- grid.452146.00000 0004 1789 3191College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
20
|
Zhou Q, van den Berg NS, Kang W, Pei J, Nishio N, van Keulen S, Engelen MA, Lee YJ, Hom M, Vega Leonel JCM, Hart Z, Vogel H, Cayrol R, Martin BA, Roesner M, Shields G, Lui N, Gephart MH, Raymundo RC, Yi G, Granucci M, Grant GA, Li G, Rosenthal EL. Factors for Differential Outcome Across Cancers in Clinical Molecule-Targeted Fluorescence Imaging. J Nucl Med 2022; 63:1693-1700. [PMID: 35332092 PMCID: PMC9635681 DOI: 10.2967/jnumed.121.263674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical imaging performance using a fluorescent antibody was compared across 3 cancers to elucidate physical and biologic factors contributing to differential translation of epidermal growth factor receptor (EGFR) expression to macroscopic fluorescence in tumors. Methods: Thirty-one patients with high-grade glioma (HGG, n = 5), head-and-neck squamous cell carcinoma (HNSCC, n = 23), or lung adenocarcinoma (LAC, n = 3) were systemically infused with 50 mg of panitumumab-IRDye800 1-3 d before surgery. Intraoperative open-field fluorescent images of the surgical field were acquired, with imaging device settings and operating room lighting conditions being tested on tissue-mimicking phantoms. Fluorescence contrast and margin size were measured on resected specimen surfaces. Antibody distribution and EGFR immunoreactivity were characterized in macroscopic and microscopic histologic structures. The integrity of the blood-brain barrier was examined via tight junction protein (Claudin-5) expression with immunohistochemistry. Stepwise multivariate linear regression of biologic variables was performed to identify independent predictors of panitumumab-IRDye800 concentration in tissue. Results: Optimally acquired at the lowest gain for tumor detection with ambient light, intraoperative fluorescence imaging enhanced tissue-size dependent tumor contrast by 5.2-fold, 3.4-fold, and 1.4-fold in HGG, HNSCC, and LAC, respectively. Tissue surface fluorescence target-to-background ratio correlated with margin size and identified 78%-97% of at-risk resection margins ex vivo. In 4-μm-thick tissue sections, fluorescence detected tumor with 0.85-0.89 areas under the receiver-operating-characteristic curves. Preferential breakdown of blood-brain barrier in HGG improved tumor specificity of intratumoral antibody distribution relative to that of EGFR (96% vs. 80%) despite its reduced concentration (3.9 ng/mg of tissue) compared with HNSCC (8.1 ng/mg) and LAC (6.3 ng/mg). Cellular EGFR expression, tumor cell density, plasma antibody concentration, and delivery barrier were independently associated with local intratumoral panitumumab-IRDye800 concentration, with 0.62 goodness of fit of prediction. Conclusion: In multicancer clinical imaging of a receptor-ligand-based molecular probe, plasma antibody concentration, delivery barrier, and intratumoral EGFR expression driven by cellular biomarker expression and tumor cell density led to heterogeneous intratumoral antibody accumulation and spatial distribution whereas tumor size, resection margin, and intraoperative imaging settings substantially influenced macroscopic tumor contrast.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California;
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Nynke S van den Berg
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Wenying Kang
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Jacqueline Pei
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Naoki Nishio
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Stan van Keulen
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC-location VUMC/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Myrthe A Engelen
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Yu-Jin Lee
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Marisa Hom
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Johana C M Vega Leonel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Zachary Hart
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, California
| | - Romain Cayrol
- Department of Pathology, Stanford University, Stanford, California
| | - Brock A Martin
- Department of Pathology, Stanford University, Stanford, California
| | - Mark Roesner
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| | - Glenn Shields
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| | - Natalie Lui
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, California; and
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Roan C Raymundo
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Grace Yi
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Monica Granucci
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California;
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| |
Collapse
|
21
|
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now? Biomedicines 2022; 10:biomedicines10092113. [PMID: 36140214 PMCID: PMC9495728 DOI: 10.3390/biomedicines10092113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker.
Collapse
|
22
|
Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J Clin Med 2022; 11:jcm11133888. [PMID: 35807169 PMCID: PMC9267752 DOI: 10.3390/jcm11133888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a common cause of death among women worldwide. The current diagnostic and prognostic procedures available for the treatment of ovarian cancer are either not specific or are very expensive. Gene expression profiling has proved to be a very effective tool in the exploration of new molecular markers in patients with ovarian cancer, although the link between such markers and patient survival and clinical outcomes is still elusive. We are looking for genes that may function in the development and progression of ovarian cancer. The aim of our study was to evaluate the expression of selected suppressor genes (ATM, BRCA1, BRCA2), proto-oncogenes (KRAS, c-JUN, c-FOS), pro-apoptotic genes (NOXA, PUMA), genes related to chromatin remodeling (MEN1), and genes related to carcinogenesis (NOD2, CHEK2, EGFR). Tissue samples from 30 normal ovaries and 60 ovarian carcinoma tumors were provided for analysis of the gene and protein expression. Gene expression analysis was performed using the real-time PCR method. The protein concentrations from tissue homogenates were determined using the ELISA technique according to the manufacturers’ protocols. An increase in the expression level of mRNA and protein in women with ovarian cancer was observed for KRAS, c-FOS, PUMA, and EGFR. No significant changes in the transcriptional levels we observed for BRCA1, BRCA2, NOD2, or CHEK2. In conclusion, we suggest that KRAS, NOXA, PUMA, c-FOS, and c-JUN may be associated with poor prognosis in ovarian cancer.
Collapse
|
23
|
Nikas IP, Lee C, Song MJ, Kim B, Ryu HS. Biomarkers expression among paired serous ovarian cancer primary lesions and their peritoneal cavity metastases in treatment-naïve patients: A single-center study. Cancer Med 2022; 11:2193-2203. [PMID: 35212471 PMCID: PMC9160817 DOI: 10.1002/cam4.4600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Background High‐grade serous ovarian carcinoma (HGSOC), the most common histologic subtype of ovarian epithelial cancer, is associated with treatment resistance, enhanced recurrence rates, and poor prognosis. HGSOCs often metastasize to the peritoneal cavity, while fluid cytology examination could identify such metastases. This retrospective study aimed to identify potential biomarker discrepancies between paired HGSOC primary tissues and metastatic peritoneal fluid cytology samples, processed as cell blocks (CBs). Methods Twenty‐four pairs of formalin‐fixed, paraffin‐embedded primary tissues and metastatic CBs from an equal number of treatment‐naïve patients were used, and immunohistochemistry (IHC) for epidermal growth factor receptor (EGFR), human epidermal growth factor receptor, programmed cell death‐1 ligand 1 (PD‐L1), and CD147 was applied. Results 13/24 pairs showed discordant EGFR IHC results; in all these 13 patients, EGFR was positive (≥1+ membranous staining intensity found in at least 10% of the cancer cells) in the peritoneal, yet negative in the primary tissue samples. Notably, EGFR IHC was positive in 15/24 of the metastatic, whereas in just 2/24 of the primary HGSOC samples (p < 0.001). Although most PD‐L1 results were concordant, 5/24 and 6/24 pairs exhibited discordant results when stained with the E1L3N and 22C3 clones, respectively. Lastly, CD147 overexpression was found more often in the metastatic rather than the matched primary HGSOCs stained with CD147, though the difference was not significant. Conclusions Cytology from effusions could be considered for biomarker testing when present, even when tissue from the primary cancer is also available and adequately cellular, as it could provide additional information of potential clinical significance.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University CyprusNicosiaCyprus
| | - Cheol Lee
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Min Ji Song
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Bohyun Kim
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
- Department of Pathology, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
24
|
Liu Z, Li L, Li X, Hua M, Sun H, Zhang S. Prediction and prognostic significance of ALOX12B and PACSIN1 expression in gastric cancer by genome-wide RNA expression and methylation analysis. J Gastrointest Oncol 2021; 12:2082-2092. [PMID: 34790376 DOI: 10.21037/jgo-21-508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the common gastrointestinal cancers, characterized by late discovery and metastasis. However, research of gene methylation and expression in gastric cancer (GC) metastasis has been quite limited. This study aimed to investigate the altered gene expression patterns between metastasis and non-metastasis samples using high-throughput RNA and methylation profiles from a large number of patients. Another aim was to identify a specific potential metastasis biomarker, with the ability to predict the metastasis possibility and prognosis of patients with STAD. Methods In this study, we integrated The Cancer Genome Atlas (TCGA) program STAD datasets, analyzed the RNA expression and DNA methylation data between non-metastasis (M0) and distant metastasis (M1) samples, and evaluated the candidate biomarker in survival and prognosis of GC. Results Among all patients enrolled, 329 with M0 and M1 information were positive for RNA analysis, and 353 with M0 and M1 information were positive for methylation analysis. We found 29 upregulated and 200 downregulated genes in RNA level, and 5,046 hypermethylated and 8,563 hypomethylated probes in methylation level. Among these genes, we found high RNA expression level and low DNA methylation level of ALOX12B and PACSIN1 in GC metastasis samples. Patients with high expression of these 2 genes had poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS). Conclusions The expression levels of ALOX12B and PACSIN1 were higher in the metastasis than non-metastasis group, and participants with high expression of these 2 genes were found to have poor survival. The genes ALOX12B and PACSIN1 are potential biomarkers of metastasis and poor prognosis, especially in early stage GC, and provide additional information for subsequent comprehensive treatment of GC.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Lei Li
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Xindi Li
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Mingtao Hua
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Huaqing Sun
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Shengui Zhang
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
25
|
Wang Z, Meng F, Zhong Z. Emerging targeted drug delivery strategies toward ovarian cancer. Adv Drug Deliv Rev 2021; 178:113969. [PMID: 34509574 DOI: 10.1016/j.addr.2021.113969] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a high-mortality malignancy in women. The contemporary clinical chemotherapy with classic cytotoxic drugs, targeted molecular inhibitors would mostly fail when ovarian cancer cells become drug-resistant or metastasize through the body or when patients bare no more toleration because of strong adverse effects. The past decade has spotted varying targeted delivery systems including antibody-drug conjugates (ADCs), peptide/folate/aptamer-drug conjugates, polymer-drug conjugates, ligand-functionalized nanomedicines, and dual-targeted nanomedicines that upgrade ovarian cancer chemo- and molecular therapy effectively in preclinical/clinical settings via endowing therapeutic agents selectivity and bypassing drug resistance as well as lessening systemic toxicity. The targeted delivery approaches further provide means to potentiate emergent treatment modalities such as molecular therapy, gene therapy, protein therapy, photodynamic therapy, dual-targeting therapy and combination therapy for ovarian cancer. This review highlights up-to-date development of targeted drug delivery strategies toward advanced, metastatic, relapsed, and drug resistant ovarian cancers.
Collapse
|
26
|
Bolitho C, Moscova M, Baxter RC, Marsh DJ. Amphiregulin increases migration and proliferation of epithelial ovarian cancer cells by inducing its own expression via PI3-kinase signaling. Mol Cell Endocrinol 2021; 533:111338. [PMID: 34062166 DOI: 10.1016/j.mce.2021.111338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/09/2022]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in many types of cancer, including epithelial ovarian cancer (EOC), and its expression has been found to correlate with advanced stage and poor prognosis. The EGFR ligand amphiregulin (AREG) has been investigated as a target for human cancer therapy and is known to have an autocrine role in many cancers. A cytokine array identified AREG as one of several cytokines upregulated by EGF in a phosphatidylinositol 3-kinase (PI3-K) dependent manner in EOC cells. To investigate the functional role of AREG in EOC, its effect on cellular migration and proliferation was assessed in two EOC cells lines, OV167 and SKOV3. AREG increased both migration and proliferation of EOC cell line models through activation of PI3-K signaling, but independent of mitogen activated protein kinase (MAPK) signaling. Through an AREG autocrine loop mediated via PI3-K, upregulation of AREG led to increased levels of both AREG transcript and secreted AREG, while downregulation of endogenous AREG decreased the ability of exogenous AREG to induce cell migration and proliferation. Further, inhibition of endogenous AREG activity or metalloproteinase activity decreased EGF-induced EOC migration and proliferation, indicating a role for soluble endogenous AREG in mediating the functional effects of EGFR in inducing migration and proliferation in EOC.
Collapse
Affiliation(s)
- Christine Bolitho
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michelle Moscova
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia; School of Medical Sciences, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Robert C Baxter
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia; Northern Clinical School, Kolling Institute, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
27
|
Expression of HER2/neu Receptor in Epithelial Ovarian Cancers: An Immunohistochemical Pilot Study in Central India. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
p85β alters response to EGFR inhibitor in ovarian cancer through p38 MAPK-mediated regulation of DNA repair. Neoplasia 2021; 23:718-730. [PMID: 34144267 PMCID: PMC8220107 DOI: 10.1016/j.neo.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
EGFR signaling promotes ovarian cancer tumorigenesis, and high EGFR expression correlates with poor prognosis. However, EGFR inhibitors alone have demonstrated limited clinical benefit for ovarian cancer patients, owing partly to tumor resistance and the lack of predictive biomarkers. Cotargeting EGFR and the PI3K pathway has been previously shown to yield synergistic antitumor effects in ovarian cancer. Therefore, we reasoned that PI3K may affect cellular response to EGFR inhibition. In this study, we revealed PI3K isoform-specific effects on the sensitivity of ovarian cancer cells to the EGFR inhibitor erlotinib. Gene silencing of PIK3CA (p110α) and PIK3CB (p110β) rendered cells more susceptible to erlotinib. In contrast, low expression of PIK3R2 (p85β) was associated with erlotinib resistance. Depletion of PIK3R2, but not PIK3CA or PIK3CB, led to increased DNA damage and reduced level of the nonhomologous end joining DNA repair protein BRD4. Intriguingly, these defects in DNA repair were reversed upon erlotinib treatment, which caused activation and nuclear import of p38 MAPK to promote DNA repair with increased protein levels of 53BP1 and BRD4 and foci formation of 53BP1. Remarkably, inhibition of p38 MAPK or BRD4 re-sensitized PIK3R2-depleted cells to erlotinib. Collectively, these data suggest that p38 MAPK activation and the subsequent DNA repair serve as a resistance mechanism to EGFR inhibitor. Combined inhibition of EGFR and p38 MAPK or DNA repair may maximize the therapeutic potential of EGFR inhibitor in ovarian cancer.
Collapse
|
29
|
Ma Q, Song J, Wang S, He N. MUC1 regulates AKT signaling pathway by upregulating EGFR expression in ovarian cancer cells. Pathol Res Pract 2021; 224:153509. [PMID: 34118726 DOI: 10.1016/j.prp.2021.153509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
MUC1, a type I transmembrane glycoprotein, mediates tumor growth and cellular differentiation in various types of cancers. However, the mechanism of MUCI in ovarian cancer has not been fully clarified. In our study, we have observed that MUC1 can play a crucial role in the development and progression of ovarian cancer and act as a predictive marker. We also found that MUC1 could increase the expression of EGFR, and MUC1-EGFR co-administration could promote the cellular growth via the AKT pathway. Taxol is an important drug for treating ovarian cancer, which can prevent cancer recurrence and reduce mortality. Our data have collectively reflected that Taxol can prevent ovarian cancer with abnormal expression of MUC1.
Collapse
Affiliation(s)
- Qingxia Ma
- School of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jingyi Song
- School of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Shuo Wang
- School of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ningning He
- School of Basic Medical Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
30
|
Zhou Q, van den Berg NS, Rosenthal EL, Iv M, Zhang M, Vega Leonel JCM, Walters S, Nishio N, Granucci M, Raymundo R, Yi G, Vogel H, Cayrol R, Lee YJ, Lu G, Hom M, Kang W, Hayden Gephart M, Recht L, Nagpal S, Thomas R, Patel C, Grant GA, Li G. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial. Theranostics 2021; 11:7130-7143. [PMID: 34158840 PMCID: PMC8210618 DOI: 10.7150/thno.60582] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: First-line therapy for high-grade gliomas (HGGs) includes maximal safe surgical resection. The extent of resection predicts overall survival, but current neuroimaging approaches lack tumor specificity. The epidermal growth factor receptor (EGFR) is a highly expressed HGG biomarker. We evaluated the safety and feasibility of an anti-EGFR antibody, panitumuab-IRDye800, at subtherapeutic doses as an imaging agent for HGG. Methods: Eleven patients with contrast-enhancing HGGs were systemically infused with panitumumab-IRDye800 at a low (50 mg) or high (100 mg) dose 1-5 days before surgery. Near-infrared fluorescence imaging was performed intraoperatively and ex vivo, to identify the optimal tumor-to-background ratio by comparing mean fluorescence intensities of tumor and histologically uninvolved tissue. Fluorescence was correlated with preoperative T1 contrast, tumor size, EGFR expression and other biomarkers. Results: No adverse events were attributed to panitumumab-IRDye800. Tumor fragments as small as 5 mg could be detected ex vivo and detection threshold was dose dependent. In tissue sections, panitumumab-IRDye800 was highly sensitive (95%) and specific (96%) for pathology confirmed tumor containing tissue. Cellular delivery of panitumumab-IRDye800 was correlated to EGFR overexpression and compromised blood-brain barrier in HGG, while normal brain tissue showed minimal fluorescence. Intraoperative fluorescence improved optical contrast in tumor tissue within and beyond the T1 contrast-enhancing margin, with contrast-to-noise ratios of 9.5 ± 2.1 and 3.6 ± 1.1, respectively. Conclusions: Panitumumab-IRDye800 provided excellent tumor contrast and was safe at both doses. Smaller fragments of tumor could be detected at the 100 mg dose and thus more suitable for intraoperative imaging.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nynke S. van den Berg
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eben L. Rosenthal
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Center, Stanford University, Stanford, CA, USA
| | - Michael Iv
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shannon Walters
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Naoki Nishio
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica Granucci
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Roan Raymundo
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Grace Yi
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Jin Lee
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guolan Lu
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marisa Hom
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenying Kang
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Larry Recht
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena Thomas
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag Patel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
31
|
Zheng S, Fu Y. Age-related copy number variations and expression levels of F-box protein FBXL20 predict ovarian cancer prognosis. Transl Oncol 2020; 13:100863. [PMID: 32898767 PMCID: PMC7486480 DOI: 10.1016/j.tranon.2020.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/04/2022] Open
Abstract
About 70% of ovarian cancer (OvCa) cases are diagnosed at advanced stages (stage III/IV) with only 20–40% of them survive over 5 years after diagnosis. A reliably screening marker could enable a paradigm shift in OvCa early diagnosis and risk stratification. Age is one of the most significant risk factors for OvCa. Older women have much higher rates of OvCa diagnosis and poorer clinical outcomes. In this article, we studied the correlation between aging and genetic alterations in The Cancer Genome Atlas Ovarian Cancer dataset. We demonstrated that copy number variations (CNVs) and expression levels of the F-Box and Leucine-Rich Repeat Protein 20 (FBXL20), a substrate recognizing protein in the SKP1-Cullin1-F-box-protein E3 ligase, can predict OvCa overall survival, disease-free survival and progression-free survival. More importantly, FBXL20 copy number loss predicts the diagnosis of OvCa at a younger age, with over 60% of patients in that subgroup have OvCa diagnosed at age less than 60 years. Clinicopathological studies further demonstrated malignant histological and radiographical features associated with elevated FBXL20 expression levels. This study has thus identified a potential biomarker for OvCa prognosis.
Collapse
Affiliation(s)
- Shuhua Zheng
- Nova Southeastern University, College of Osteopathic Medicine, Florida 33314, USA.
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
32
|
Santangelo G, Caruso G, Palaia I, Tomao F, Perniola G, Di Donato V, Fischetti M, Muzii L, Benedetti Panici P. The emerging role of precision medicine in the treatment of ovarian cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1777854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Giuseppe Caruso
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
33
|
de Muynck LDAN, Gaarenstroom KN, Sier CFM, van Duijvenvoorde M, Bosse T, Mieog JSD, de Kroon CD, Vahrmeijer AL, Peters ITA. Novel Molecular Targets for Tumor-Specific Imaging of Epithelial Ovarian Cancer Metastases. Cancers (Basel) 2020; 12:cancers12061562. [PMID: 32545676 PMCID: PMC7352913 DOI: 10.3390/cancers12061562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
In epithelial ovarian cancer (EOC), the strongest prognostic factor is the completeness of surgery. Intraoperative molecular imaging that targets cell-surface proteins on tumor cells may guide surgeons to detect metastases otherwise not visible to the naked eye. Previously, we identified 29% more metastatic lesions during cytoreductive surgery using OTL-38, a fluorescent tracer targeting folate receptor-α (FRα). Unfortunately, eleven out of thirteen fluorescent lymph nodes were tumor negative. The current study evaluates the suitability of five biomarkers (EGFR, VEGF-A, L1CAM, integrin αvβ6 and EpCAM) as alternative targets for molecular imaging of EOC metastases and included FRα as a reference. Immunohistochemistry was performed on paraffin-embedded tissue sections of primary ovarian tumors, omental, peritoneal and lymph node metastases from 84 EOC patients. Tumor-negative tissue specimens from these patients were included as controls. EGFR, VEGF-A and L1CAM were highly expressed in tumor-negative tissue, whereas αvβ6 showed heterogeneous expression in metastases. The expression of EpCAM was most comparable to FRα in metastatic lesions and completely absent in the lymph nodes that were false-positively illuminated with OTL-38 in our previous study. Hence, EpCAM seems to be a promising novel target for intraoperative imaging and may contribute to a more reliable detection of true metastatic EOC lesions.
Collapse
Affiliation(s)
- Lysanne D. A. N. de Muynck
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.D.A.N.d.M.); (C.F.M.S.); (J.S.D.M.); (A.L.V.)
| | - Katja N. Gaarenstroom
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.N.G.); (M.v.D.); (C.D.d.K.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.D.A.N.d.M.); (C.F.M.S.); (J.S.D.M.); (A.L.V.)
| | - Maurice van Duijvenvoorde
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.N.G.); (M.v.D.); (C.D.d.K.)
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.D.A.N.d.M.); (C.F.M.S.); (J.S.D.M.); (A.L.V.)
| | - Cornelis D. de Kroon
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.N.G.); (M.v.D.); (C.D.d.K.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.D.A.N.d.M.); (C.F.M.S.); (J.S.D.M.); (A.L.V.)
| | - Inge T. A. Peters
- Department of Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.N.G.); (M.v.D.); (C.D.d.K.)
- Correspondence: ; Tel.: +31-715262845
| |
Collapse
|
34
|
Expression of HER2 and EGFR Proteins in Advanced Stage High-grade Serous Ovarian Tumors Show Mutual Exclusivity. Int J Gynecol Pathol 2020; 40:49-55. [DOI: 10.1097/pgp.0000000000000678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Cytoplasmic expression of EGFR shRNA using a modified T7 autogene-based hybrid mRNA/DNA system induces long-term EGFR silencing and prolongs antitumor effects. Biochem Pharmacol 2020; 171:113735. [DOI: 10.1016/j.bcp.2019.113735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
|
36
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
37
|
Kotcherlakota R, Vydiam K, Jeyalakshmi Srinivasan D, Mukherjee S, Roy A, Kuncha M, Rao TN, Sistla R, Gopal V, Patra CR. Restoration of p53 Function in Ovarian Cancer Mediated by Gold Nanoparticle-Based EGFR Targeted Gene Delivery System. ACS Biomater Sci Eng 2019; 5:3631-3644. [PMID: 33405744 DOI: 10.1021/acsbiomaterials.9b00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted gene delivery of wild type tumor suppressor gene p53 is a promising approach to inhibit the progression of ovarian cancer. Although several gene delivery vehicles have been reported earlier, there is paucity for targeted delivery of wild type p53 to ovarian cancer using gold nanoparticles. As it is well-known that EGFR (epidermal growth factor receptor) is overexpressed in ovarian cancer, in this study we hypothesized that the FDA approved monoclonal antibody C225 (cetuximab) that targets EGFR could be used for targeted delivery of wild type p53 gene. With this impetus, we devised an approach wherein cationic gold nanoparticles (AuNPs) were employed to generate gold nanoparticle-based drug delivery system (DDS, Au-C225-p53DNA where p53DNA is pCMVp53 plasmid) that was formulated and characterized by biochemical and biophysical methods. The nanoconjugate complexed with DNA (Au-C225-p53DNA) is serum-stable and protects the bound DNA from digestion by DNase-I. Additionally, in vitro reporter gene expression assays demonstrated efficient and specific gene transfection in EGFR overexpressing SK-OV-3 cells. Further, the intraperitoneal administration of Au-C225-p53DNA in SK-OV-3 xenograft mouse model displayed significant tumor targeting and tumor regression. Altogether, these studies indicated a promising nanoparticle-based approach for targeting ovarian cancers caused by mutated p53.
Collapse
Affiliation(s)
- Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kalyan Vydiam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - Durga Jeyalakshmi Srinivasan
- CSIR-Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, Telangana India
| | - Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - T Nageswara Rao
- Mass and Analytical Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Fogg KC, Olson WR, Miller JN, Khan A, Renner C, Hale I, Weisman PS, Kreeger PK. Alternatively activated macrophage-derived secretome stimulates ovarian cancer spheroid spreading through a JAK2/STAT3 pathway. Cancer Lett 2019; 458:92-101. [PMID: 31129149 DOI: 10.1016/j.canlet.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes when tumor spheroids detach from the primary tumor and re-attach throughout the peritoneal cavity. Once the cancer cells have implanted in these new sites, the development of metastatic lesions is dependent on the disaggregation of cancer cells from the spheroids and subsequent expansion across the collagenous extracellular matrix (ECM). As HGSOC progresses an increase in alternatively activated macrophages (AAMs) in the surrounding ascites fluid has been observed and AAMs have been shown to enhance tumor invasion and growth in a wide range of cancers. We hypothesized that soluble factors from AAMs in the peritoneal microenvironment promote the disaggregation of ovarian cancer spheroids across the underlying ECM. We determined that co-culture with AAMs significantly increased HGSOC spheroid spreading across a collagen matrix. Multivariate modeling identified AAM-derived factors that correlated with enhanced spread of HGSOC spheroids and experimental validation showed that each individual cell line responded to a distinct AAM-derived factor (FLT3L, leptin, or HB-EGF). Despite this ligand-level heterogeneity, we determined that the AAM-derived factors utilized a common signaling pathway to induce spheroid spreading: JAK2/STAT3 activation followed by MMP-9 mediated spreading. Furthermore, immunostaining demonstrated that FLT3, LEPR, EGFR, and pSTAT3 were upregulated in metastases in HGSOC patients, with substantial patient-to-patient heterogeneity. These results suggest that inhibiting individual soluble factors will not inhibit AAM-induced effects across a broad group of patients; instead, the downstream JAK2/STAT3/MMP-9 pathway should be examined as potential therapeutic targets to slow metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Will R Olson
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jamison N Miller
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Aisha Khan
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Carine Renner
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Isaac Hale
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul S Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
39
|
Cancer of Reproductive System: Receptors and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [PMCID: PMC7122620 DOI: 10.1007/978-3-030-29168-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carcinogenesis in the different organs of the reproductive system, particularly, prostate, ovarian, and cervical tissues, involves aberrant expression of various physiological receptors belonging to different superfamilies. This chapter provides insights into the physiological receptors that are associated with the genesis, progression, metastasis, management, as well as the prognosis of the cancers of the male and female reproductive systems. It also highlights the structural and binding characteristics of the highly predominant receptors, namely, androgen, estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) receptors, which are overexpressed in these cancers and discusses various strategies to target them.
Collapse
|
40
|
Zhou Q, Hou CN, Yang HJ, He Z, Zuo MZ. Distinct expression and prognostic value of members of the epidermal growth factor receptor family in ovarian cancer. Cancer Manag Res 2018; 10:6937-6948. [PMID: 30588099 PMCID: PMC6300368 DOI: 10.2147/cmar.s183769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Increased aberrant expression or activation of the epidermal growth factor receptor (EGFR) family members has been reported in a wide range of cancers, and the EGFR family of tyrosine kinases has emerged as an important therapeutic target in malignancies. However, the expression patterns and exact roles of each distinct EGFR family member, which contribute to tumorigenesis and progression of ovarian cancer (OC), are yet to be elucidated. Materials and methods In the current study, we report the distinct expression and prognostic value of EGFR family members in patients with OC by analyzing a series of databases including ONCOMINE, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, and Database for Annotation, Visualization and Integrated Discovery . Results It was found that in patients with OC, mRNA expression levels of ERBB2/3/4 were significantly upregulated, whereas the transcription levels of EGFR were downregulated. Aberrant EGFR expression and ERBB2/3/4 mRNA levels were associated with OC prognosis. Conclusion These results suggest that EGFR and ERBB3/4 are distinct prognostic biomarkers and may be potential targets for OC. These results may be beneficial to better understand the molecular underpinning of OC and may be useful to develop tools for more accurate OC prognosis and for promoting the development of EGFR-targeted inhibitors for OC treatment.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Chao-Nan Hou
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Huai-Jie Yang
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Ze He
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Man-Zhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| |
Collapse
|
41
|
Mao C, Zhao Y, Li F, Li Z, Tian S, Debinski W, Ming X. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J Control Release 2018; 286:289-300. [PMID: 30081143 DOI: 10.1016/j.jconrel.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
Abstract
Drug resistance remains a formidable challenge to cancer therapy. P-glycoprotein (Pgp) contributes to multidrug resistance in numerous cancers by preventing accumulation of anticancer drugs in cancer cells. Strategies to overcome this resistance have been vigorously sought for over 3 decades, yet clinical solutions do not exist. The main reason for the failure is lack of cancer specificity of small-molecule Pgp inhibitors, thus causing severe toxicity in normal tissues. In this study, Pgp-targeted photodynamic therapy (PDT) was developed to achieve superior cancer specificity through antibody targeting plus locoregional light activation. Thus, a Pgp monoclonal antibody was chemically modified with IR700, a porphyrin photosensitizer. In vitro studies showed that the antibody-photosensitizer conjugates specifically bind to Pgp-expressing drug resistant cancer cells, and caused dramatic cytotoxicity upon irradiation with a near infrared light. We then tested our Pgp-targeted approach in mouse xenograft models of chemoresistant ovarian cancer and head and neck cancer. In both models, targeted PDT produced rapid tumor shrinkage, and significantly prolonged survival of tumor-bearing mice. We conclude that our targeted PDT approach produces molecularly targeted and spatially selective ablation of chemoresistant tumors, and thereby provides an effective approach to overcome Pgp-mediated multidrug resistance in cancer, where conventional approaches have failed.
Collapse
Affiliation(s)
- Chengqiong Mao
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yan Zhao
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Fang Li
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Waldemar Debinski
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Thomas K Hearn Brain Tumor Research Center, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
42
|
Co-expression and prognostic significance of the HER family members, EGFRvIII, c-MET, CD44 in patients with ovarian cancer. Oncotarget 2018; 9:19662-19674. [PMID: 29731973 PMCID: PMC5929416 DOI: 10.18632/oncotarget.24791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
EGFR and HER-2 are important targets but none of the monoclonal antibodies or small molecule tyrosine kinase inhibitors specific for the HER members has been approved for the treatment of patients with ovarian cancers. In some studies, co-expression of other growth factor receptors has been associated with resistance to therapy with the HER inhibitors. The aim of the present study was to determine the relative expression, cellular location, and prognostic significance of HER-family members, the EGFR mutant (EGFRvIII) c-MET, IGF-1R and the cancer stem cell biomarker CD44 in 60 patients with FIGO stage III and IV ovarian cancer. At cut off >5% of tumour cells with positive staining, 62%, 59%, 65% and 45% of the cases were EGFR, HER-2, HER-3 and HER-4 positive, and 3%, 22% and 48.3% of the cases were positive for EGFRvIII, c-MET, and CD44 respectively. Interestingly, 23% co-expressed all four members of the HER family. On univariate analysis, only EGFR staining at >50% of tumour cells (HR = 3.57, p = 0.038) and CD44 staining at 3+ intensity (HR = 7.99, p = 0.004) were associated with a poorer overall survival. EGFR expression (HR = 2.83, p = 0.019) and its co-expression with HER-2, HER-3, HER-2/HER-3, and c-MET were all associated with poorer disease-free survival. Our results suggest co-expression of the HER-family members is common in Stage III and IV ovarian cancer patients. Further studies on the prognostic significance and predictive value of all HER family member proteins for the response to treatment with various forms of the HER inhibitors are warranted.
Collapse
|
43
|
EGFR Immunoexpression in Malignant Serous and Mucinous Ovarian Tumors. CURRENT HEALTH SCIENCES JOURNAL 2018; 44:129-134. [PMID: 30746159 PMCID: PMC6320459 DOI: 10.12865/chsj.44.02.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/27/2018] [Indexed: 01/28/2023]
Abstract
The epithelial growth factor receptor (EGFR) is involved in various stages of cancer growth such as tumor initiation, angiogenesis and metastasis, being an attractive target for oncogenic therapy. The present study aims to evaluate the EGFR expression in 54 cases of serous and mucinous ovarian borderline tumors and carcinomas. EGFR expression was present in more than half of the investigated tumors, more frequently in carcinomas than in borderline tumors, especially in the serous type. The highest values of the final staining score (FSS) were observed only in serous carcinomas in the advanced stages of the disease. As a result of frequent expression of EGFR in ovarian tumors, it is necessary to monitor EGFR inhibitors for ovarian cancer therapy, but probably after establishing more rigorous selection and stratification criteria for patients.
Collapse
|
44
|
Pang J, Jiang P, Wang Y, Jiang L, Qian H, Tao Y, Shi R, Gao J, Chen Y, Wu Y. Cross-linked hyaluronan gel inhibits the growth and metastasis of ovarian carcinoma. J Ovarian Res 2018; 11:22. [PMID: 29510732 PMCID: PMC5840805 DOI: 10.1186/s13048-018-0394-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The recurrence, metastasis and poor prognosis are important characteristics of ovarian carcinoma (OC), which are associated with exfoliation of cells from the primary tumor and colonization of the cells in pelvic cavity. On the other hand, the life quality of the patients undergoing surgical resection of OC was influenced by postoperative adhesions. Therefore, preventing postoperative implant tumor and adhesion may be effective methods to improve OC treatment. HyaRegen Gel, a cross-linked hyaluronan gel (CHAG), has been widely used as an anti-adhesive agent following pelvic operation in clinic. However, whether it can affect the implantation and growth of OC cells or not is still not clear. METHODS Migration and invasion assays were applied to detect the effect of CHAG on migration and invasion of OC cells. Western blotting was performed to detect the phosphorylation/activation of EGFR and ERK, and the expression of PCNA and MMP7. Pull down assay was used to analyze the effect of CHAG on the activation of small G protein Rac1. Nude mice implantation tumor model was applied to observe the effect of CHAG on implantation tumor of OC cells. RESULTS The results of in vitro experiments showed that CHAG suppressed both basic and EGF-induced migration and invasion of OC cells, blocked the activation of EGF-initiated EGFR activation, inhibited downstream signal transduction of EGFR, and decreased expression of proliferation and migration/invasion related proteins. Meanwhile, results of in vivo experiments showed that CHAG not only inhibited the formation of implantation tumor of OC cells but also delayed the of the growth of the tumors. CONCLUSIONS CHAG inhibited migration, invasion and proliferation of OC cells in vitro, and suppressed development of implantation tumor of OC in vivo. This made it as both anti-tumor and anti-adhesion agents.
Collapse
Affiliation(s)
- Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Pengcheng Jiang
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Lu Jiang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Yan Tao
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Ruxia Shi
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jizong Gao
- R & D Department, Changzhou BioRegen Biomedical (Changzhou) Co., Ltd., Changzhou City, Jiangsu Province, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212013, People's Republic of China.
| |
Collapse
|