1
|
Miao C, Sun R, Ji D, Wu M, Fu Q, Mei L, Wu Z. Mechanism of the GALNT family proteins in regulating tumorigenesis and development of lung cancer (Review). Mol Clin Oncol 2025; 22:37. [PMID: 40083861 PMCID: PMC11904754 DOI: 10.3892/mco.2025.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Lung cancer is one of the most common and lethal malignant tumors. Currently, surgical resection is the most effective treatment for early-stage lung cancer, and often results in favorable recovery outcomes. Therefore, early detection and control of lung cancer occurrence, invasion and metastasis are crucial for improving patient survival rates. Identifying tumor markers for lung cancer plays a vital role in facilitating early detection and control of its progression. The GALNT family proteins are enzymes that regulate the initial step in mucin O-glycan synthesis. It has been revealed that the expression of polypeptide N-acetyl-galactosamine-transferase (GALNT) family members is dysregulated in various tumors, and is closely associated with tumorigenesis, tumor cell growth, metastasis, adhesion, and serves as an important early indicator of tumor development. The present review compiles and analyzes findings concerning the role of GALNT family proteins in regulating lung cancer, with the goals of elucidating their mechanisms in lung cancer occurrence and progression and providing insights for improving the prognosis and therapeutic treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Changchun Miao
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Ronggui Sun
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Deyu Ji
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Min Wu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Qigui Fu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Liangliang Mei
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Zhiyong Wu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| |
Collapse
|
2
|
Srivastava A, Skopelitou D, Miao B, Giagiobbe S, Paramasivam N, Kumar A, Diquigiovanni C, Bonora E, Bandapalli OR, Försti A, Hemminki K. Prioritization of predisposition genes for familial non-medullary thyroid cancer by whole-genome sequencing. Eur J Endocrinol 2025; 192:398-407. [PMID: 40177881 DOI: 10.1093/ejendo/lvaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE Thyroid cancer (TC) is the most common endocrine malignancy, with 90%-95% of the cases representing non-medullary thyroid cancer (NMTC). Familial cases account only for a few of all cases and the underlying genetic causes are still poorly understood. METHODS We whole-genome sequenced affected and unaffected members of an Italian NMTC family and applied our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2) which prioritized 12 coding variants. We refined this selection using the VarSome American College of Medical Genetics and Genomics (ACMG) implementation, SNAP2 predictions and further in silico scores. RESULTS We prioritized 4 possibly pathogenic variants in 4 genes including Ret proto-oncogene (RET), polypeptide N-acetylgalactosaminyltransferase 10 (GALNT10), ubinuclein-1 (UBN1), and prostaglandin I2 receptor (PTGIR). The role of RET point mutations in medullary thyroid carcinoma is well established. Similarly, somatic rearrangements of RET are known in papillary TC, a specific histotype of NMTC. In contrast to RET, no germline variants in PTGIR, GALNT10, or UBN1 have been linked to the development of TC to date. However, alterations in these genes have been shown to affect pathways related to cell proliferation, apoptosis, growth, and differentiation, as well as posttranslational modification and gene regulation. A thorough review of the available literature together with computational evidence supported the interpretation of the 4 shortlisted variants as possibly disease-causing in this family. CONCLUSIONS Our results implicate the first germline variant in RET in a family with NMTC as well as the first germline variants in PTGIR, GALNT10, and UBN1 in TC.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Heidelberg University, Medical Faculty, Heidelberg 69120, Germany
| | - Diamanto Skopelitou
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Heidelberg University, Medical Faculty, Heidelberg 69120, Germany
| | - Beiping Miao
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sara Giagiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Clinical Cooperation Unit Molecular Hematology-Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Chiara Diquigiovanni
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40126, Italy
| | - Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40126, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40126, Italy
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Heidelberg University, Medical Faculty, Heidelberg 69120, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg 69120, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32300, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
3
|
Langiu M, Crescence L, Mège D, Dubois C, Panicot-Dubois L. Consequences of platelet-educated cancer cells on the expression of inflammatory and metastatic glycoproteins. PLoS One 2025; 20:e0317096. [PMID: 40096084 PMCID: PMC11913274 DOI: 10.1371/journal.pone.0317096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated thrombosis, a major cause of mortality in cancer patients, exhibits a 4 to 7 times higher incidence compared to the general population. Platelet activation by tumor cells contributes to this pro-thrombotic state. Cancer cell-educated platelets have also been described to be implicated in promoting metastasis. Intriguingly, our team, among others, unveils a reverse process, wherein platelets educate cancer cells by transferring lipids, RNAs, and proteins. Here, focusing on colorectal and pancreatic cancers, our study investigates genes and proteins mediating platelet education of cancer cells. We demonstrated, for the first time, that platelets can educate cancer cells by inducing changes in the transcription of genes related to glycosylation, inflammation, and metastasis in cancer cells themselves. These results indicate a direct impact of platelets on cancer cell phenotype. This novel insight suggests potential therapeutic avenues for cancer treatment, disrupting platelet-mediated alterations and influencing the course of cancer progression.
Collapse
Affiliation(s)
- Mélanie Langiu
- Aix Marseille University, INRAE 1260 (Institut National de la Recherche Agronomique et de l'Environnement), INSERM 1263 (Institut National de la Santé et de la Recherche), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
| | - Lydie Crescence
- Aix Marseille University, INRAE 1260 (Institut National de la Recherche Agronomique et de l'Environnement), INSERM 1263 (Institut National de la Santé et de la Recherche), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
- Marseille University, PIVMI (Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
| | - Diane Mège
- Aix Marseille University, INRAE 1260 (Institut National de la Recherche Agronomique et de l'Environnement), INSERM 1263 (Institut National de la Santé et de la Recherche), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
- Department of Digestive Surgery, La Timone University Hospital, Marseille, France
| | - Christophe Dubois
- Aix Marseille University, INRAE 1260 (Institut National de la Recherche Agronomique et de l'Environnement), INSERM 1263 (Institut National de la Santé et de la Recherche), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
- Marseille University, PIVMI (Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille University, INRAE 1260 (Institut National de la Recherche Agronomique et de l'Environnement), INSERM 1263 (Institut National de la Santé et de la Recherche), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
- Marseille University, PIVMI (Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), Marseille, France
| |
Collapse
|
4
|
Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol 2024; 591:112269. [PMID: 38763428 DOI: 10.1016/j.mce.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic β cells and regulates β cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in β cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating β cells biology, providing a missing link of β cells O-glycosylation to diabetes development.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
5
|
Sun X, Wu H, Tang L, Al-Danakh A, Jian Y, Gong L, Li C, Yu X, Zeng G, Chen Q, Yang D, Wang S. GALNT6 promotes bladder cancer malignancy and immune escape by epithelial-mesenchymal transition and CD8 + T cells. Cancer Cell Int 2024; 24:308. [PMID: 39245709 PMCID: PMC11382498 DOI: 10.1186/s12935-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Bladder cancer (BC) ranks as the sixth cancer in males and the ninth most common cancer worldwide. Conventional treatment modalities, including surgery, radiation, chemotherapy, and immunotherapy, have limited efficacy in certain advanced instances. The involvement of GALNT6-mediated aberrant O-glycosylation modification in several malignancies and immune evasion is a subject of speculation. However, its significance in BC has not been investigated. Through the integration of bioinformatics analysis and laboratory experimentation, we have successfully clarified the role of GALNT6 in BC. Our investigation revealed that GALNT6 has significant expression in BC, and its high expression level correlates with advanced stage and high grade, leading to poor overall survival. Moreover, both in vitro and in vivo experiments demonstrate a strong correlation between elevated levels of GALNT6 and tumor growth, migration, and invasion. Furthermore, there is a negative correlation between elevated GALNT6 levels, the extent of CD8+ T cell infiltration in the tumor microenvironment, and the prognosis of patients. Functional experiments have shown that the increased expression of GALNT6 could enhance the malignant characteristics of cancer cells by activating the epithelial-mesenchymal transition (EMT) pathway. In brief, this study examined the impact of GALNT6-mediated abnormal O-glycosylation on the occurrence and progression of bladder cancer and its influence on immune evasion. It also explored the possible molecular mechanism underlying the interaction between tumor cells and immune cells, as well as the bidirectional signaling involved. These findings offer a novel theoretical foundation rooted in glycobiology for the clinical application of immunotherapy in BC.
Collapse
Affiliation(s)
- Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Haotian Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ling Tang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yuli Jian
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Gong
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Congchen Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang Zeng
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, 210096, Nanjing, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
6
|
Peng Y, Liu J, Sun L, Zheng Q, Cao C, Ding W, Yang S, Ma L, Zhang W. GALNT9 enrichment attenuates MPP +-induced cytotoxicity by ameliorating protein aggregations containing α-synuclein and mitochondrial dysfunction. Biol Direct 2024; 19:77. [PMID: 39237967 PMCID: PMC11378468 DOI: 10.1186/s13062-024-00524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND GALNTs (UDP-GalNAc; polypeptide N-acetylgalactosaminyltransferases) initiate mucin-type O-GalNAc glycosylation by adding N-GalNAc to protein serine/threonine residues. Abnormalities in O-GalNAc glycosylation are involved in various disorders such as Parkinson's disease (PD), a neurodegenerative disorder. GALNT9 is potentially downregulated in PD patients. METHODS To determine whether GALNT9 enrichment ameliorates cytotoxicity related to PD-like variations, a pcDNA3.1-GALNT9 plasmid was constructed and transfected into SH-SY5Y cells to establish a GALNT9-overexpressing cell model. RESULTS Downregulation of GALNT9 and O-GalNAc glycosylation was confirmed in our animal and cellular models of PD-like variations. GALNT9 supplementation greatly attenuated cytotoxicity induced by MPP+ (1-Methyl-4-phenylpyridinium iodide) since it led to increased levels of tyrosine hydroxylase and dopamine, reduced rates of apoptosis, and significantly ameliorated MPP+-induced mitochondrial dysfunction by alleviating abnormal levels of mitochondrial membrane potential and reactive oxygen species. A long-lasting mPTP (mitochondrial permeability transition pores) opening and calcium efflux resulted in significantly lower activity in the cytochrome C-associated apoptotic pathway and mitophagy process, signifying that GALNT9 supplementation maintained neuronal cell health under MPP+ exposure. Additionally, it was found that glycans linked to proteins influenced the formation of protein aggregates containing α-synuclein, and GALNT9 supplement dramatically reduced such insoluble protein aggregations under MPP+ treatment. Glial GALNT9 predominantly appears under pathological conditions like PD-like variations. CONCLUSIONS GALNT9 enrichment improved cell survival, and glial GALNT9 potentially represents a pathogenic index for PD patients. This study provides insights into the development of therapeutic strategies for the treatment of PD.
Collapse
Affiliation(s)
- Yuanwen Peng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dalian, China
| | - Lili Sun
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qiuying Zheng
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Can Cao
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shufeng Yang
- Department of Microbiology, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
8
|
Takahashi A, Koike R, Watanabe S, Kuribayashi K, Wabitsch M, Miyamoto M, Komuro A, Seki M, Nashimoto M, Shimizu-Ibuka A, Yamashita K, Iwata T. Polypeptide N-acetylgalactosaminyltransferase-15 regulates adipogenesis in human SGBS cells. Sci Rep 2024; 14:20049. [PMID: 39209927 PMCID: PMC11362553 DOI: 10.1038/s41598-024-70930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Adipogenesis involves intricate molecular mechanisms regulated by various transcription factors and signaling pathways. In this study, we aimed to identify factors specifically induced during adipogenesis in the human preadipocyte cell line, SGBS, but not in the mouse preadipocyte cell line, 3T3-L1. Microarray analysis revealed distinct gene expression profiles, with 1460 genes induced in SGBS cells and 1297 genes induced in 3T3-L1 cells during adipogenesis, with only 297 genes commonly induced. Among the genes uniquely induced in SGBS cells, we focused on GALNT15, which encodes polypeptide N-acetylgalactosaminyltransferase-15. Its expression increased transiently during adipogenesis in SGBS cells but remained low in 3T3-L1 cells. Overexpression of GALNT15 increased mRNA levels of CCAAT-enhancer binding protein (C/EBPα) and leptin but had no significant impact on adipogenesis in SGBS cells. Conversely, knockdown of GALNT15 suppressed mRNA expression of adipocyte marker genes, reduced lipid accumulation, and decreased the percentage of cells with oil droplets. The induction of C/EBPα and peroxisome proliferator-activated receptor γ during adipogenesis was promoted or suppressed in SGBS cells subjected to overexpression or knockdown of GALNT15, respectively. These data suggest that polypeptide N-acetylgalactosaminyltransferase-15 is a novel regulatory molecule that enhances adipogenesis in SGBS cells.
Collapse
Affiliation(s)
- Asuka Takahashi
- Department of Functional Morphology, Graduate School of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Ryo Koike
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Shota Watanabe
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Kyoko Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Tōon, 791-0295, Japan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany
| | - Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Mineaki Seki
- Division of DNA Repair and Genome Integrity, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Masayuki Nashimoto
- RNA Therapeutics Division, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | | | - Kikuji Yamashita
- Division of Anatomy and Histology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Takeo Iwata
- Department of Functional Morphology, Graduate School of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan.
- Department of Functional Morphology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan.
| |
Collapse
|
9
|
Caporossi D, Dimauro I. Exercise-induced redox modulation as a mediator of DNA methylation in health maintenance and disease prevention. Free Radic Biol Med 2024; 213:113-122. [PMID: 38242245 DOI: 10.1016/j.freeradbiomed.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy
| |
Collapse
|
10
|
Collette AM, Hassan SA, Schmidt SI, Lara AJ, Yang W, Samara NL. An unusual dual sugar-binding lectin domain controls the substrate specificity of a mucin-type O-glycosyltransferase. SCIENCE ADVANCES 2024; 10:eadj8829. [PMID: 38416819 PMCID: PMC10901373 DOI: 10.1126/sciadv.adj8829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, β, and γ), where α and β can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and β in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the β repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and β into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.
Collapse
Affiliation(s)
- Abbie M Collette
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, OCICB, NIAID, NIH, Bethesda, MD 20892, USA
| | - Susan I Schmidt
- MICaB Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander J Lara
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Weiming Yang
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Nadine L Samara
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Enomoto T, Okada H, Tomita H, Iinuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 11:1308879. [PMID: 38269087 PMCID: PMC10806140 DOI: 10.3389/fcell.2023.1308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: The abnormal glycocalyx (GCX) on the surface of cancer cells has been reported to be tall and aberrantly glycosylated and has been linked to the progression and spread of cancer-a finding also observed in bladder cancer. However, the characteristics of GCX in various types of human bladder cancer remain unknown, and herein, we aimed to provide information on the diversity of glycan components in the GCX of bladder cancers and to shed light on their characteristics. Methods: We used scanning electron microscopy and lanthanum staining to examine the surface GCX of human bladder carcinomas in three-dimensional images, showing the bulky GCX in some carcinomas. We also examined glycan alterations in early to progressive stages of bladder cancers using 20 distinct lectin stains on frozen sections from transurethral resection of bladder tumors. Results and discussion: Distinctive Vicia villosa lectin (VVL) staining was observed in invasive urothelial carcinomas, including those with muscle invasion and variant components. In the clinical setting, cancers with atypia of grades 2-3 had a significantly higher VVL scoring intensity than those with grade 1 atypia (p < 0.005). This study identified that a specific lectin, VVL, was more specific to invasive urothelial carcinomas. This lectin, which selectively binds to sites of cancer progression, is a promising target for drug delivery in future clinical investigations.
Collapse
Affiliation(s)
- Torai Enomoto
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Urology, Matsunami General Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Tobisawa
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
12
|
Krauze AV, Zhao Y, Li MC, Shih J, Jiang W, Tasci E, Cooley Zgela T, Sproull M, Mackey M, Shankavaram U, Tofilon P, Camphausen K. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023; 13:1499. [PMID: 37892181 PMCID: PMC10604983 DOI: 10.3390/biom13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Ming-Chung Li
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Joanna Shih
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Philip Tofilon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| |
Collapse
|
13
|
Gallardo-Gómez M, Rodríguez-Girondo M, Planell N, Moran S, Bujanda L, Etxart A, Castells A, Balaguer F, Jover R, Esteller M, Cubiella J, Gómez-Cabrero D, De Chiara L. Serum methylation of GALNT9, UPF3A, WARS, and LDB2 as noninvasive biomarkers for the early detection of colorectal cancer and advanced adenomas. Clin Epigenetics 2023; 15:157. [PMID: 37794510 PMCID: PMC10552320 DOI: 10.1186/s13148-023-01570-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Early detection has proven to be the most effective strategy to reduce the incidence and mortality of colorectal cancer (CRC). Nevertheless, most current screening programs suffer from low participation rates. A blood test may improve both the adherence to screening and the selection to colonoscopy. In this study, we conducted a serum-based discovery and validation of cfDNA methylation biomarkers for CRC screening in a multicenter cohort of 433 serum samples including healthy controls, benign pathologies, advanced adenomas (AA), and CRC. RESULTS First, we performed an epigenome-wide methylation analysis with the MethylationEPIC array using a sample pooling approach, followed by a robust prioritization of candidate biomarkers for the detection of advanced neoplasia (AN: AA and CRC). Then, candidate biomarkers were validated by pyrosequencing in independent individual cfDNA samples. We report GALNT9, UPF3A, WARS, and LDB2 as new noninvasive biomarkers for the early detection of AN. The combination of GALNT9/UPF3A by logistic regression discriminated AN with 78.8% sensitivity and 100% specificity, outperforming the commonly used fecal immunochemical test and the methylated SEPT9 blood test. CONCLUSIONS Overall, this study highlights the utility of cfDNA methylation for CRC screening. Our results suggest that the combination methylated GALNT9/UPF3A has the potential to serve as a highly specific and sensitive blood-based test for screening and early detection of CRC.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- CINBIO, Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, CINBIO, Universidade de Vigo, Campus As Lagoas-Marcosende s/n. 36310, Vigo, Spain
- Translational Oncology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Núria Planell
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de La Granvia, 199. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Biodonostia Health Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Ane Etxart
- Department of Surgery, Hospital Universitario Donostia, San Sebastián, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Rodrigo Jover
- Department of Gastroenterology, Hospital General Universitario de Alicante, Alicante, Spain
- Servicio de Medicina Digestiva. ISABIAL. Universidad Miguel Hernández, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Ourense, Spain
| | - David Gómez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, UK
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo, Spain.
- Department of Biochemistry, Genetics and Immunology, CINBIO, Universidade de Vigo, Campus As Lagoas-Marcosende s/n. 36310, Vigo, Spain.
- Translational Oncology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
- Cancer Genomics Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
14
|
Reis JSD, Santos MARDC, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Previato LM, da Fonseca LM, Freire-de-Lima L. Increased Expression of the Pathological O-glycosylated Form of Oncofetal Fibronectin in the Multidrug Resistance Phenotype of Cancer Cells. Matrix Biol 2023; 118:47-68. [PMID: 36882122 DOI: 10.1016/j.matbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Changes in protein glycosylation are a hallmark of transformed cells and modulate numerous phenomena associated with cancer progression, such as the acquisition of multidrug resistance (MDR) phenotype. Different families of glycosyltransferases and their products have already been described as possible modulators of the MDR phenotype. Among the glycosyltransferases intensively studied in cancer research, UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (pp-GalNAc-T6), which is widely expressed in many organs and tissues, stands out. Its influence in several events associated with kidney, oral, pancreatic, renal, lung, gastric and breast cancer progression has already been described. However, its participation in the MDR phenotype has never been studied. Here, we demonstrate that human breast adenocarcinoma MCF-7 MDR cell lines, generated by chronic exposure to doxorubicin, in addition to exhibiting increased expression of proteins belonging to the ABC superfamily (ABCC1 and ABCG2), and anti-apoptotic proteins (Blcl-2 and Bcl-xL), also present high expression of pp-GalNAc-T6, the enzyme currently proposed as the main responsible for the biosynthesis of oncofetal fibronectin (onf-FN), a major extracellular matrix component expressed by cancer cells and embryonic tissues, but absent in healthy cells. Our results show that onf-FN, which is generated by the addition of a GalNAc unit at a specific threonine residue inside the type III homology connective segment (IIICS) domain of FN, is strongly upregulated during the acquisition of the MDR phenotype. Also, the silencing of pp-GalNAc-T6, not only compromises the expression of the oncofetal glycoprotein, but also made the MDR cells more sensitive to all anticancer drugs tested, partially reversing the MDR phenotype. Taken together, our results demonstrate for the first time the upregulation of the O-glycosylated oncofetal fibronectin, as well as the direct participation of pp-GalNAc-T6 during the acquisition of a MDR phenotype in a breast cancer model, giving credence to the hypothesis that in transformed cells, glycosyltransferases and/or their products, such as unusual extracellular matrix glycoproteins can be used as potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Jhenifer Santos Dos Reis
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcos André Rodrigues da Costa Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Alexandre Morrot
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Rio de Janeiro, RJ 21941-902, Brazil; Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ 21040-360, Brazil
| | - Jose Osvaldo Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Lucia Mendonça Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
15
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
Protein Glycosylation as Biomarkers in Gynecologic Cancers. Diagnostics (Basel) 2022; 12:diagnostics12123177. [PMID: 36553184 PMCID: PMC9777642 DOI: 10.3390/diagnostics12123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Gynecologic cancers are the leading cause of death in women. Endometrial, ovarian, and cervical cancer are the three main types of gynecologic cancers. Poor prognoses and high mortality rates of advanced-stage cancer are still challenges of all three types. Diagnostic tools for early cancer detection could be the cornerstone for further cancer treatment and prevention. Glycosylation plays a vital role in cell proliferation, adhesion, motility, and angiogenesis, and is aberrantly expressed in cancer cells. Alterations of glycosylation may represent promising biomarkers with potential diagnostic and monitoring applications, as well as disease prognosis. Many glycosylated biomarkers, including glycoprotein, glycan, and enzyme, were discovered and well-studied for application in gynecologic cancers. Some of them have been developed as targets for cancer treatment. The use of certain biomarkers for diagnostics and monitoring of gynecologic cancers has clinical advantages, as it is quantitative, comparable, convenient, and inexpensive. However, one of the single markers have sufficient sensitivity for the screening of gynecologic cancers. In this review, we introduced the details of glycosylation and the current application of glycosylated biomarkers in these three cancers. Moreover, we also reviewed the different roles of each biomarker in other cancers and aimed to understand these glycosylated biomarkers comprehensively.
Collapse
|
17
|
Wang T, Wang Z, Yang J, Chen Y, Min H. Screening and Identification of Key Biomarkers in Metastatic Uveal Melanoma: Evidence from a Bioinformatic Analysis. J Clin Med 2022; 11:jcm11237224. [PMID: 36498797 PMCID: PMC9739237 DOI: 10.3390/jcm11237224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: To identify key biomarkers in the metastasis of uveal melanoma (UM). Methods: The microarray datasets GSE27831 and GSE22138 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified, and functional enrichment analyses were performed. A protein−protein interaction network was constructed, and four algorithms were performed to increase the reliability of hub genes. Biomarker analysis and metastasis-free survival analysis were performed to screen and verify prognostic hub genes. Results: A total of 138 DEGs were identified, consisting of 71 downregulated genes and 67 upregulated genes. Four genes (ROBO1, FMN1, FYN and FXR1) were selected as hub genes. Biomarker analysis and metastasis-free survival analysis showed that ROBO1, FMN1, FYN and FXR1 were factors affecting the metastasis and metastasis-free survival of UM (all p < 0.05). High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. Multivariable logistic regression and Cox analyses in GSE 27831 indicated that ROBO1 was an independent factor affecting metastasis and metastasis-free survival of UM (p = 0.010 and p = 0.009), while ROBO1 and FMN1 were independent factors affecting metastasis and metastasis-free survival of UM in GSE22138 (all p < 0.05). Conclusions: ROBO1, FMN1, FYN and FXR1 should be regarded as diagnostic biomarkers for the metastasis of UM, especially ROBO1 and FMN1. High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. This study may facilitate the understanding of the molecular mechanisms underlying the metastasis of UM.
Collapse
Affiliation(s)
- Tan Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixing Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hanyi Min
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-186-0136-7871; Fax: +86-010-6915-6815
| |
Collapse
|
18
|
Detarya M, Lert-Itthiporn W, Mahalapbutr P, Klaewkla M, Sorin S, Sawanyawisuth K, Silsirivanit A, Seubwai W, Wongkham C, Araki N, Wongkham S. Emerging roles of GALNT5 on promoting EGFR activation in cholangiocarcinoma: a mechanistic insight. Am J Cancer Res 2022; 12:4140-4159. [PMID: 36225633 PMCID: PMC9548001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer in that the incidence is now increasing worldwide. N-acetylgalactosaminyltransferase 5 (GALNT5), an enzyme that initiates the first step of mucin type-O glycosylation, has been reported to promote aggressiveness of CCA cells via the epithelial to the mesenchymal transition (EMT) process, and Akt/Erk activation. In this study, the clinical and biological relevance of GALNT5 and the molecular mechanisms by which GALNT5 modulated EGFR in promoting CCA progression were examined. Using publicly available datasets, upregulation of GALNT5 in patient CCA tissues and its correlation with EGFR expression was noted. High levels of GALNT5 were significantly associated with the short survival of patients, suggesting a prognostic marker of GALNT5 for CCA. GALNT5 modulated EGFR expression as shown in CCA cell lines. Upregulation of GALNT5 significantly increased EGFR mRNA and protein in GALNT5 overexpressing cells, whereas suppression of GALNT5 expression gave the opposite results. The molecular dynamics simulations and MM/PB(GB)SA-based free energy calculations showed that O-glycosylation on the EGFR extracellular domain enhanced the structural stability, compactness, and H-bond formation of the EGF/GalNAc-EGFR complex compared with those of EGF/EGFR. This stabilized the growth factor binding site and fostered stronger interactions between EGF and EGFR. Using the EGF-induced EGFR activation model, GALNT5 was shown to mediate EGFR stability via a decreased rate of EGFR degradation and enhanced EGFR activity by increasing the binding affinity of EGF/EGFR that consequently increasing the activation of EGFR and its downstream effectors Akt and Erk. In summary, GALNT5 was upregulated in CCA tissues and associated with a worse prognosis. The study identified for the first time the impacts of GALNT5 on EGFR activity by increasing: 1) EGFR expression via a transcriptional-dependent mechanism, 2) EGFR stability by reducing EGFR degradation, and 3) EGFR activation through an increased binding affinity of EGF/EGFR which all together fostered the activation of EGFR. These results expanded the understanding of the molecular mechanism of how GALNT5 impacted CCA progression and suggested GALNT5 as a new target for therapeutic intervention against metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Methus Klaewkla
- Future Health Innovation Technology Co., Ltd.Bangkok 10170, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto UniversityKumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| |
Collapse
|
19
|
Garay YC, Cejas RB, Lorenz V, Zlocowski N, Parodi P, Ferrero FA, Angeloni G, García VA, Sendra VG, Lardone RD, Irazoqui FJ. Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health. J Mol Med (Berl) 2022; 100:1387-1403. [PMID: 36056254 DOI: 10.1007/s00109-022-02249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Polypeptide N-acetylgalactosamine transferase 3 (ppGalNAc-T3) is an enzyme involved in the initiation of O-GalNAc glycan biosynthesis. Acting as a writer of frequent post-translational modification (PTM) on human proteins, ppGalNAc-T3 has key functions in the homeostasis of human cells and tissues. We review the relevant roles of this molecule in the biosynthesis of O-GalNAc glycans, as well as in biological functions related to human physiological and pathological conditions. With main emphasis in ppGalNAc-T3, we draw attention to the different ways involved in the modulation of ppGalNAc-Ts enzymatic activity. In addition, we take notice on recent reports of ppGalNAc-T3 having different subcellular localizations, highlight critical intrinsic and extrinsic functions in cellular physiology that are exerted by ppGalNAc-T3-synthesized PTMs, and provide an update on several human pathologies associated with dysfunctional ppGalNAc-T3. Finally, we propose biotechnological tools as new therapeutic options for the treatment of pathologies related to altered ppGalNAc-T3. KEY MESSAGES: ppGalNAc-T3 is a key enzyme in the human O-GalNAc glycans biosynthesis. enzyme activity is regulated by PTMs, lectin domain and protein-protein interactions. ppGalNAc-T3 is located in human Golgi apparatus and cell nucleus. ppGalNAc-T3 has a central role in cell physiology as well as in several pathologies. Biotechnological tools for pathological management are proposed.
Collapse
Affiliation(s)
- Yohana Camila Garay
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Romina Beatriz Cejas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Virginia Lorenz
- Facultad de Bioquímica Y Ciencias Biológicas, Instituto de Salud Y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Natacha Zlocowski
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Instituto de Investigaciones en Ciencias de La Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro Parodi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Franco Alejandro Ferrero
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Genaro Angeloni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Valentina Alfonso García
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Victor German Sendra
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ricardo Dante Lardone
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Fernando José Irazoqui
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
20
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
21
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
22
|
Proux-Gillardeaux V, Advedissian T, Perin C, Gelly JC, Viguier M, Deshayes F. Identification of a new regulation pathway of EGFR and E-cadherin dynamics. Sci Rep 2021; 11:22705. [PMID: 34811416 PMCID: PMC8609017 DOI: 10.1038/s41598-021-02042-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
E-cadherin and EGFR are known to be closely associated hence regulating differentiation and proliferation notably in epithelia. We have previously shown that galectin-7 binds to E-cadherin and favors its retention at the plasma membrane. In this study, we shed in light that galectin-7 establishes a physical link between E-cadherin and EGFR. Indeed, our results demonstrate that galectin-7 also binds to EGFR, but unlike the binding to E-cadherin this binding is sugar dependent. The establishment of E-cadherin/EGFR complex and the binding of galectin-7 to EGFR thus lead to a regulation of its signaling and intracellular trafficking allowing cell proliferation and migration control. In vivo observations further support these results since an epidermal thickening is observed in galectin-7 deficient mice. This study therefore reveals that galectin-7 controls epidermal homeostasis through the regulation of E-cadherin/EGFR balance.
Collapse
Affiliation(s)
| | - Tamara Advedissian
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, UMR3691, CNRS, 75015, Paris, France
| | - Charlotte Perin
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Mireille Viguier
- CNRS, Institut Jacques Monod, Université de Paris, F-75013, Paris, France
| | | |
Collapse
|
23
|
Polypeptide-GalNAc-Transferase-13 Shows Prognostic Impact in Breast Cancer. Cancers (Basel) 2021; 13:cancers13225616. [PMID: 34830771 PMCID: PMC8616257 DOI: 10.3390/cancers13225616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a public health concern and is currently the fifth cause of mortality worldwide. Identification of different biological subtypes is essential for clinical management; therefore, the role of pathologists is essential and useful tools for immunohistochemistry diagnosis are needed. Polypeptide-GalNAc-transferases are emerging novel biomarkers related to cancer behavior and GalNAc-T13, correlated with aggressiveness in some tumors, is an interesting candidate. Few monoclonal antibodies reacting with native proteins, and not affected by fixation and paraffin embedding, have been reported. The aim of this work was to develop a useful monoclonal antibody anti-GalNAc-T13 and to assess its potential significance in breast cancer diagnosis. We evaluated 6 human breast cancer cell lines, 338 primary breast tumors and 48 metastatic lymph nodes and looked for clinical significance correlating GalNAc-T13 expression with patients' clinical features and survival. We found high GalNAc-T13 expression in 43.8% of the cases and observed a significant higher expression in metastatic lymph nodes, correlating with worse overall survival. We hypothesized several possible molecular mechanisms and their implications. We conclude that GalNAc-T13 may be a novel biomarker in breast cancer, useful for routine pathological diagnosis. Elucidation of molecular mechanisms related to aggressiveness should contribute to understand the role of GalNAc-T13 in breast cancer biology.
Collapse
|
24
|
Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-Associated Phenotypes in Mammals. Molecules 2021; 26:5504. [PMID: 34576978 PMCID: PMC8472655 DOI: 10.3390/molecules26185504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mucin-type O-glycosylation involves the attachment of glycans to an initial O-linked N-acetylgalactosamine (GalNAc) on serine and threonine residues on proteins. This process in mammals is initiated and regulated by a large family of 20 UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) (EC 2.4.1.41). The enzymes are encoded by a large gene family (GALNTs). Two of these genes, GALNT2 and GALNT3, are known as monogenic autosomal recessive inherited disease genes with well characterized phenotypes, whereas a broad spectrum of phenotypes is associated with the remaining 18 genes. Until recently, the overlapping functionality of the 20 members of the enzyme family has hindered characterizing the specific biological roles of individual enzymes. However, recent evidence suggests that these enzymes do not have full functional redundancy and may serve specific purposes that are found in the different phenotypes described. Here, we summarize the current knowledge of GALNT and associated phenotypes.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
25
|
Li S, Qi Y, Huang Y, Guo Y, Huang T, Jia L. Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma. J Physiol Biochem 2021; 77:667-682. [PMID: 34423392 DOI: 10.1007/s13105-021-00833-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/27/2021] [Indexed: 01/27/2023]
Abstract
Accumulating evidence suggests cancer-derived exosomes play an important role in promoting angiogenesis. Long noncoding RNA small nucleolar RNA host gene 16 (SNHG16) is known to aggravate hepatocellular carcinoma (HCC) progression. However, the function of exosomal SNHG16 in HCC angiogenesis remains unclear. In this study, the expression of SNHG16 was significantly upregulated in HCC tissues and cell lines. The proliferative, migratory, and angiogenic abilities of HUVECs were enhanced after exposure to exosomes derived from HCC cells by transmitting SNHG16. In addition, SNHG16 was validated to promote the biological function of HUVECs directly. Exosomal SNHG16 increased GALNT1 expression to promote angiogenesis via sponging miR-4500. SNHG16/miR-4500/GALNT1 axis played an important role in exosome-mediated angiogenesis and tumor growth in vitro and vivo. Furthermore, SNHG16 activated PI3K/Akt/mTOR pathway via competing endogenous miR-4500 and GALNT1. Meanwhile, the expression of plasma exosomal SNHG16 upregulated in the plasma of HCC patients. These data elucidated the essential role of exosomal SNHG16 in communication between HCC cells and endothelial cells. Exosomal SNHG16 could be utilized as a therapeutic target for anti-angiogenesis in HCC progression.
Collapse
Affiliation(s)
- Shuangda Li
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yu Qi
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yiran Huang
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Tong Huang
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, 9 Lvshunnan Road Xiduan, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
26
|
Gillman AS, Helmuth T, Koljack CE, Hutchison KE, Kohrt WM, Bryan AD. The Effects of Exercise Duration and Intensity on Breast Cancer-Related DNA Methylation: A Randomized Controlled Trial. Cancers (Basel) 2021; 13:4128. [PMID: 34439282 PMCID: PMC8394212 DOI: 10.3390/cancers13164128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Emerging research suggests that one mechanism through which physical activity may decrease cancer risk is through its influence on the methylation of genes associated with cancer. The purpose of the current study was to prospectively test, using a rigorous experimental design, whether aerobic exercise affects DNA methylation in genes associated with breast cancer, as well as whether quantity of exercise completed affects change in DNA methylation in a dose-response manner. 276 women (M age = 37.25, SD = 4.64) were recruited from the Denver metro area for a randomized controlled trial in which participants were assigned to a supervised aerobic exercise program varying in a fully crossed design by intensity (55-65% versus 75-85% of VO2max) and duration (40 versus 20 min per session). DNA methylation was assessed via blood samples provided at baseline, after completing a 16-week supervised exercise intervention, and six months after the intervention. 137 participants completed the intervention, and 81 had viable pre-post methylation data. Contrary to our hypotheses, total exercise volume completed in kcal/kg/week was not associated with methylation from baseline to post-intervention for any of the genes of interest. An increase in VO2max over the course of the intervention, however, was associated with decreased post-intervention methylation of BRCA1, p = 0.01. Higher levels of self-reported exercise during the follow-up period were associated with lower levels of GALNT9 methylation at the six-month follow-up. This study provides hypothesis-generating evidence that increased exercise behavior and or increased fitness might affect methylation of some genes associated with breast cancer to reduce risk.
Collapse
Affiliation(s)
- Arielle S. Gillman
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Timothy Helmuth
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Claire E. Koljack
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Kent E. Hutchison
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Wendy M. Kohrt
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Angela D. Bryan
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| |
Collapse
|
27
|
Xu Z, Zhang Y, Ocansey DKW, Wang B, Mao F. Glycosylation in Cervical Cancer: New Insights and Clinical Implications. Front Oncol 2021; 11:706862. [PMID: 34485140 PMCID: PMC8415776 DOI: 10.3389/fonc.2021.706862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer has become the most frequent female malignancy and presents as a general health challenge in many countries undergoing economic development. Various human papillomaviruses (HPV) types have appeared as one of the most critically identifiable causes of widespread cervical cancers. Conventional cervical cytological inspection has limitations of variable sensitivity according to cervical cytology. Glycobiology has been fundamental in related exploration in various gynecologic and reproductive fields and has contributed to our understanding of cervical cancer. It is associated with altered expression of N-linked glycan as well as abnormal expression of terminal glycan structures. The analytical approaches available to determine serum and tissue glycosylation, as well as potential underlying molecular mechanisms involved in the cellular glycosylation alterations, are monitored. Moreover, cellular glycosylation influences various aspects of cervical cancer biology, ranging from cell surface expressions, cell-cell adhesion, cancer signaling, cancer diagnosis, and management. In general, discoveries in glycan profiling make it technically reproducible and affordable to perform serum glycoproteomic analyses and build on previous work exploring an expanded variety of glycosylation markers in the majority of cervical cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Gruener RF, Ling A, Chang YF, Morrison G, Geeleher P, Greene GL, Huang RS. Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling. Cancers (Basel) 2021; 13:885. [PMID: 33672646 PMCID: PMC7924213 DOI: 10.3390/cancers13040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 01/20/2023] Open
Abstract
(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies. (2) Methods: We used an established machine learning approach to build models of drug response based on cell line transcriptome data, which we then applied to patient tumor data to obtain predicted sensitivity scores for hundreds of drugs in over 1000 breast cancer patients. We then examined the relationships between predicted drug response and patient clinical features. (3) Results: Our analysis recapitulated several suspected vulnerabilities in TNBC and identified a number of compounds-of-interest. AZD-1775, a Wee1 inhibitor, was predicted to have preferential activity in TNBC (p < 2.2 × 10-16) and its efficacy was highly associated with TP53 mutations (p = 1.2 × 10-46). We validated these findings using independent cell line screening data and pathway analysis. Additionally, co-administration of AZD-1775 with standard-of-care paclitaxel was able to inhibit tumor growth (p < 0.05) and increase survival (p < 0.01) in a xenograft mouse model of TNBC. (4) Conclusions: Overall, this study provides a framework to turn any cancer transcriptomic dataset into a dataset for drug discovery. Using this framework, one can quickly generate meaningful drug discovery hypotheses for a cancer population of interest.
Collapse
Affiliation(s)
- Robert F. Gruener
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - Gladys Morrison
- Committee for Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA;
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.F.G.); (Y.-F.C.); (G.L.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
30
|
Detarya M, Sawanyawisuth K, Aphivatanasiri C, Chuangchaiya S, Saranaruk P, Sukprasert L, Silsirivanit A, Araki N, Wongkham S, Wongkham C. The O-GalNAcylating enzyme GALNT5 mediates carcinogenesis and progression of cholangiocarcinoma via activation of AKT/ERK signaling. Glycobiology 2020; 30:312-324. [PMID: 31868214 DOI: 10.1093/glycob/cwz098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Mucin type O-glycosylation is a posttranslational modification of membrane and secretory proteins. Transferring of N-acetylgalactosamine, the first sugar of O-glycosylation, is catalyzed by one of the 20 isoforms of polypeptide N-acetylgalactosaminyltransferases (GALNTs). In this study, Vicia villosa lectin (VVL), a lectin that recognizes O-GalNAcylated glycans, was used to detect VVL-binding glycans (VBGs) in cholangiocarcinoma (CCA). The elevation of VBGs in tumor tissues of the liver fluke associated with CCA from hamsters and patients was noted. VBGs were detected in hyperplastic/dysplastic bile ducts and CCA but not in normal biliary epithelia and hepatocytes, indicating the association of VBGs with CCA development and progression. GALNT5 was shown to be the major isoform found in human CCA cell lines with high VBG expression. Suppression of GALNT5 expression using siRNA significantly reduced VBG expression, signifying the connection of GALNT5 and VBGs observed. Knocked-down GALNT5 expression considerably inhibited proliferation, migration and invasion of CCA cells. Increased expression of GALNT5 using pcDNA3.1-GALNT5 expression vector induced invasive phenotypes in CCA cells with low GALNT5 expression. Increasing of claudin-1 and decreasing of slug and vimentin expression together with inactivation of Akt/Erk signaling were noted in GALNT5 knocked-down cells. These observations were reversed in GALNT5 over-expressing cells. GALNT5-modulated progression of CCA cells was shown to be, in part, via GALNT5-mediated autocrine/paracrine factors that stimulated activations of Akt/Erk signaling and the epithelial to mesenchymal transition process. GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Department of Pathology, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Paksiree Saranaruk
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Lukkana Sukprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
31
|
Groer C, Zhang T, Lu R, Cai S, Mull D, Huang A, Forrest M, Berkland C, Aires D, Forrest ML. Intratumoral Cancer Chemotherapy with a Carrier-Based Immunogenic Cell-Death Eliciting Platinum (IV) Agent. Mol Pharm 2020; 17:4334-4345. [PMID: 32975949 DOI: 10.1021/acs.molpharmaceut.0c00781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A carrier-based, immunogenic cell death (ICD)-eliciting platinum(IV) chemotherapeutic agent was synthesized via complexation between an axially derivatized Pt(IV)-tocopherol and hyaluronan (HA)-tocopherol nanocarrier. The resultant HA-Pt(IV) complex demonstrated antiproliferative activity and induced calreticulin translocation, an indicator of ICD, in murine and human head and neck cancer (HNC) cells. The intratumorally administered HA-Pt(IV) treatments were tolerable and efficacious in both immunocompetent and immunodeficient mice with HNC, partially because of the direct cytotoxicity. Superior efficacy and survival were observed in the immunocompetent group, suggesting a possible Pt(IV)-induced immunological response, which would only manifest in animals with an intact immune system. Subsequent imaging of tumor tissues demonstrated increased macrophage infiltration in the HA-Pt(IV)-treated tumors compared to the nontreated controls and the cisplatin-treated tumors, suggesting favorable inflammatory activation. RNA sequencing of HA-Pt(IV)-treated tumors indicated that carbohydrate and vitamin metabolisms were the most important Kyoto Encyclopedia of Genes and Genomes pathways, and molecular function, biological process, and cellular component were highly enriched gene ontology categories.
Collapse
Affiliation(s)
- Chad Groer
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ti Zhang
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Shuang Cai
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Derek Mull
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| | - Melanie Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, Lawrence, Kansas 66045, United States
| | - Daniel Aires
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Division of Dermatology, Department of Internal Medicine, School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160, United States
| | - Marcus Laird Forrest
- HylaPharm LLC, 2029 Becker Dr, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, Kansas 66047, United States
| |
Collapse
|
32
|
Rasheduzzaman M, Kulasinghe A, Dolcetti R, Kenny L, Johnson NW, Kolarich D, Punyadeera C. Protein glycosylation in head and neck cancers: From diagnosis to treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188422. [PMID: 32853734 DOI: 10.1016/j.bbcan.2020.188422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Glycosylation is the most common post-translational modification (PTM) of proteins. Malignant tumour cells frequently undergo an alteration in surface protein glycosylation. This phenomenon is also common in cancers of the head and neck, most of which are squamous cell carcinomas (HNSCC). It affects cell functions, including proliferation, motility and invasiveness, thus increasing the propensity to metastasise. HNSCC represents the sixth most frequent malignancy worldwide. These neoplasms, which arise from the mucous membranes of the various anatomical subsites of the upper aero-digestive tract, are heterogeneous in terms of aetiology and clinico-pathologic features. With current treatments, only about 50% of HNSCC patients survive beyond 5-years. Therefore, there is the pressing need to dissect NHSCC heterogeneity to inform treatment choices. In particular, reliable biomarkers of predictive and prognostic value are eagerly needed. This review describes the current state of the art and bio-pathological meaning of glycosylation signatures associated with HNSCC and explores the possible role of tumour specific glycoproteins as potential biomarkers and attractive therapeutic targets. We have also compiled data relating to altered glycosylation and the nature of glycoproteins as tools for the identification of circulating tumour cells (CTCs) in the new era of liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Rasheduzzaman
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Riccardo Dolcetti
- Translational Research Institute, Woolloongabba, QLD, Australia.; The University of Queensland Diamantina Institute, 37 Kent Street Woolloongabba, QLD 4102, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Cancer Care Services, Royal Brisbane and Women's Hospital, Joyce Tweddell Building, Herston, QLD, 4029, Australia
| | - Newell W Johnson
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London, United Kingdom
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD, Australia.
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Woolloongabba, QLD, Australia..
| |
Collapse
|
33
|
Mohl JE, Gerken TA, Leung MY. ISOGlyP: de novo prediction of isoform-specific mucin-type O-glycosylation. Glycobiology 2020; 31:168-172. [PMID: 32681163 DOI: 10.1093/glycob/cwaa067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GalNAc-Ts) which initiate and define sites of O-glycosylation are linked to many cancers and other diseases. Current O-glycosyation prediction programs utilize O-glycoproteomics data obtained without regard to the transferase isoform (s) responsible for the glycosylation. With 20 different GalNAc-Ts in humans, having an ability to predict and interpret O-glycosylation sites in terms of specific GalNAc-T isoforms is invaluable. To fill this gap, ISOGlyP (Isoform-Specific O-Glycosylation Prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at ISOGlyP.utep.edu. The code is also available on GitHub (https://github.com/jonmohl/ISOGlyP).
Collapse
Affiliation(s)
- Jonathon E Mohl
- Department of Mathematical Sciences and Border Biomedical Research Center, The University of Texas at El Paso, W University, El Paso, TX 79968, USA
| | - Thomas A Gerken
- Departments of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ming-Ying Leung
- Department of Mathematical Sciences and Border Biomedical Research Center, The University of Texas at El Paso, W University, El Paso, TX 79968, USA
| |
Collapse
|
34
|
MOHL JONATHONE, GERKEN THOMAS, LEUNG MINGYING. Predicting mucin-type O-Glycosylation using enhancement value products from derived protein features. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020; 19:2040003. [PMID: 33208985 PMCID: PMC7671581 DOI: 10.1142/s0219633620400039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucin-type O-glycosylation is one of the most common post-translational modifications of proteins. This glycosylation is initiated in the Golgi by the addition of the sugar N-acetylgalactosamine (GalNAc) onto protein Ser and Thr residues by a family of polypeptide GalNAc transferases. In humans there are 20 isoforms that are differentially expressed across tissues that serve multiple important biological roles. Using random peptide substrates, isoform specific amino acid preferences have been obtained in the form of enhancement values (EV). These EVs alone have previously been used to predict O-glycosylation sites via the web based ISOGlyP (Isoform Specific O-Glycosylation Prediction) tool. Here we explore additional protein features to determine whether these can complement the random peptide derived enhancement values and increase the predictive power of ISOGlyP. The inclusion of additional protein substrate features (such as secondary structure and surface accessibility) was found to increase sensitivity with minimal loss of specificity, when tested with three different published in vivo O-glycoproteomics data sets, thus increasing the overall accuracy of the ISOGlyP predictions.
Collapse
Affiliation(s)
- JONATHON E. MOHL
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - THOMAS GERKEN
- Departments of Biochemistry and Chemistry, Case Western Reserve
University, Cleveland, OH, 44106, USA
| | - MING-YING LEUNG
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
35
|
Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, Kramer SH, Pedersen SF, Joshi HJ, Bennett EP, Dabelsteen S, Wandall HH. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep 2020; 21:e48885. [PMID: 32329196 PMCID: PMC7271655 DOI: 10.15252/embr.201948885] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emil Mh Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe H Kramer
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Leung KK, Wilson GM, Kirkemo LL, Riley NM, Coon JJ, Wells JA. Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proc Natl Acad Sci U S A 2020; 117:7764-7775. [PMID: 32205440 PMCID: PMC7148585 DOI: 10.1073/pnas.1917947117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting the strong dependence of the oncogene on the MAPK pathway to propagate signaling. Cell surface protein capture is mediated by covalent tagging of surface glycans, yet current methods do not afford sequencing of intact glycopeptides. Thus, we complement the surfaceome data with whole cell glycoproteomics enabled by a recently developed technique called activated ion electron transfer dissociation (AI-ETD). We found massive oncogene-induced changes to the glycoproteome and differential increases in complex hybrid glycans, especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
| |
Collapse
|
37
|
Hu Y, Graff M, Haessler J, Buyske S, Bien SA, Tao R, Highland HM, Nishimura KK, Zubair N, Lu Y, Verbanck M, Hilliard AT, Klarin D, Damrauer SM, Ho YL, Wilson PWF, Chang KM, Tsao PS, Cho K, O’Donnell CJ, Assimes TL, Petty LE, Below JE, Dikilitas O, Schaid DJ, Kosel ML, Kullo IJ, Rasmussen-Torvik LJ, Jarvik GP, Feng Q, Wei WQ, Larson EB, Mentch FD, Almoguera B, Sleiman PM, Raffield LM, Correa A, Martin LW, Daviglus M, Matise TC, Ambite JL, Carlson CS, Do R, Loos RJF, Wilkens LR, Le Marchand L, Haiman C, Stram DO, Hindorff LA, North KE, Kooperberg C, Cheng I, Peters U. Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet 2020; 16:e1008684. [PMID: 32226016 PMCID: PMC7145272 DOI: 10.1371/journal.pgen.1008684] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Buyske
- Department of Statistics and Biostatistics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine K. Nishimura
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Niha Zubair
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marie Verbanck
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Austin T. Hilliard
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston VA Healthcare System, Boston, Massachusetts, United States of America
| | - Scott M. Damrauer
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, United States of America
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | | | - Peter W. F. Wilson
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, United States of America
- Atlanta VA Medical Center, Decatur, Georgia, United States of America
| | - Kyong-Mi Chang
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Christopher J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Themistocles L. Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Lauren E. Petty
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Jennifer E. Below
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Matthew L. Kosel
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Gail P. Jarvik
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Qiping Feng
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wei-Qi Wei
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America
| | - Frank D. Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Berta Almoguera
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Patrick M. Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adolfo Correa
- Departments of Medicine, Pediatrics, and Population Health Science, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lisa W. Martin
- School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tara C. Matise
- Department of Statistics and Biostatistics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, California, United States of America
| | - Christopher S. Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Chris Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucia A. Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California, United States of America
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
38
|
Kudryavtseva AV, Lukyanova EN, Kharitonov SL, Nyushko KM, Krasheninnikov AA, Pudova EA, Guvatova ZG, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Snezhkina AV, Krasnov GS. Bioinformatic identification of differentially expressed genes associated with prognosis of locally advanced lymph node-positive prostate cancer. J Bioinform Comput Biol 2020; 17:1950003. [PMID: 30866732 DOI: 10.1142/s0219720019500033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the primary causes of cancer-related mortality in men worldwide. Patients with locally advanced PCa with metastases in regional lymph nodes are usually marked as a high-risk group. One of the chief concerns for this group is to make an informed decision about the necessity of conducting adjuvant androgen deprivation therapy after radical surgical treatment. During the oncogenic transformation and progression of the disease, the expression of many genes is altered. Some of these genes can serve as markers for diagnosis, predicting the prognosis or effectiveness of drug therapy, as well as possible therapeutic targets. We undertook bioinformatic analysis of the RNA-seq data deposited in The Cancer Genome Atlas consortium database to identify possible prognostic markers. We compared the groups with favorable and unfavorable prognosis for the cohort of patients with PCa showing lymph node metastasis (pT2N1M0, pT3N1M0, and pT4N1M0) and for the most common molecular type carrying the fusion transcript TMPRSS2-ERG. For the entire cohort, we revealed at least six potential markers (IDO1, UGT2B15, IFNG, MUC6, CXCL11, and GBP1). Most of these genes are involved in the positive regulation of immune response. For the TMPRSS2-ERG subtype, we also identified six genes, the expression of which may be associated with prognosis: TOB1, GALNT7, INAFM1, APELA, RAC3, and NNMT. The identified genes, after additional studies and validation in the extended cohort, could serve as a prognostic marker of locally advanced lymph node-positive PCa.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Elena N Lukyanova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Sergey L Kharitonov
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Kirill M Nyushko
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Alexey A Krasheninnikov
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Elena A Pudova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Zulfiya G Guvatova
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Boris Y Alekseev
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Marina V Kiseleva
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Andrey D Kaprin
- † Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolev Str., Obninsk 249036, Russian Federation
| | - Alexey A Dmitriev
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - Anastasiya V Snezhkina
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| | - George S Krasnov
- * Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russian Federation
| |
Collapse
|
39
|
Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, Katagiri T. The GALNT6‑LGALS3BP axis promotes breast cancer cell growth. Int J Oncol 2020; 56:581-595. [PMID: 31894262 DOI: 10.3892/ijo.2019.4941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
Polypeptide N‑acetylgalactosaminyltransferase 6 (GALNT6), which is involved in the initiation of O‑glycosylation, has been reported to play crucial roles in mammary carcinogenesis through binding to several substrates; however, its biological roles in mediating growth‑promoting effects remain unknown. The present study demonstrated a crucial pathophysiological role of GALNT6 through its O‑glycosylation of lectin galactoside‑binding soluble 3 binding protein (LGALS3BP), a secreted growth‑promoting glycoprotein, in breast cancer growth. The Cancer Genome Atlas data analysis revealed that high expression levels of GALNT6 were significantly associated with poor prognosis of breast cancer. GALNT6 O‑glycosylated LGALS3BP in breast cancer cells, whereas knockdown of GALNT6 by siRNA led to the inhibition of both the O‑glycosylation and secretion of LGALS3BP, resulting in the suppression of breast cancer cell growth. Notably, LGALS3BP is potentially O‑glycosylated at three sites (T556, T571 and S582) by GALNT6, thereby promoting autocrine cell growth, whereas the expression of LGALS3BP with three Ala substitutions (T556A, T571A and S582A) in cells drastically reduced GALNT6‑dependent LGALS3BP O‑glycosylation and secretion, resulting in suppression of autocrine growth‑promoting effect. The findings of the present study suggest that the GALNT6‑LGALS3BP axis is crucial for breast cancer cell proliferation and may be a therapeutic target and biomarker for mammary tumors.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Jae-Hyun Park
- Cancer Precision Medicine, Inc., Kawasaki, Kanagawa 210‑0821, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Tokushima 770‑0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| |
Collapse
|
40
|
Hu Y, Feng J, Wu F. The Multiplicity of Polypeptide GalNAc-Transferase: Assays, Inhibitors, and Structures. Chembiochem 2018; 19:2503-2521. [PMID: 30152088 DOI: 10.1002/cbic.201800303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Mucin-type O-glycosylation is the dominant form of glycosylation in eukaryotes and plays an important role in various physiological processes. The polypeptide GalNAc-transferase (GalNAc-T) catalyzes the first step in the attachment of mucin-type O-glycosylation. GalNAc-T was recently uncovered to be linked with cancer, atherogenic dyslipidemia, and X-linked hypophosphatemic rickets. Therefore, it has attracted increasing interest as a new target for exploring the underlying mechanism and developing new treatments for related diseases. Decades of studies on GalNAc-T have laid a stable foundation for understanding the catalytic mechanism, determining atom-resolution three-dimensional structures, and developing various types of biochemical assays as well as small-molecule inhibitor leads. Here, we systematically summarize this invaluable knowledge on GalNAc-T and cultivate new perspectives to foster breakthrough points for mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Youtian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Feng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
41
|
Zamani ARN, Mashayekhi MR, Jadid MFS, Faridvand Y, Tajalli H, Rahbarghazi R. Photo-modulation of zinc phthalocyanine-treated breast cancer cell line ZR-75-1 inhibited the normal tumor activity in vitro. Lasers Med Sci 2018; 33:1969-1978. [PMID: 30143924 DOI: 10.1007/s10103-018-2563-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/19/2023]
Abstract
Regarding post-complication of convenient therapies against breast cancer, the emergence of effective approaches is essential. Photodynamic therapy is touted as a novel invasive therapeutic approach by the application of a photosensitizer promoted by laser irradiation. This study aimed to investigate the combined regime of low-level laser irradiation with zinc phthalocyanine in human breast cancer ZR-75-1 cell line. Cells were treated with 0.01 and 5 μg/ml of ZnPc for 24 h and exposed to radiation (70 mW) for 60 s. Cell viability was evaluated by MTT and flow cytometry. Cell migration capacity was monitored by scratch test, Transwell migration insert, and gelatin zymography. The function of MDR in treated cells was examined by Rhodamine 123 exclusion test. The level of GALNT11 was measured by ELISA. The expression of Bax and Bcl-2 genes was evaluated by real-time PCR. Laser irradiation and zinc phthalocyanine induced cell cytotoxicity in a dose-dependent manner. Flow cytometry analysis showed the induction of apoptotic and necrotic changes in treated cells. We found a reduction in migration rate and MMP-9 activity in cells undergoing the experimental procedure (p < 0.05). Immunofluorescence imaging revealed the intracellular accumulation of Rhodamine 123 coincided with a reduction in the level of GALNT11 in treated cells, showing the reduction of MDR activity and tumor cell resistance. Similar to flow cytometry assay, the reduction of Bcl-2 (approximately twofold) and upregulation of Bax genes were found in treated cells. Photodynamic therapy could be as an effective and alternative method for the treatment of breast cancer in a human.
Collapse
Affiliation(s)
| | | | | | - Yousef Faridvand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Tajalli
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Sahasrabudhe NM, Lenos K, van der Horst JC, Rodríguez E, van Vliet SJ. Oncogenic BRAFV600E drives expression of MGL ligands in the colorectal cancer cell line HT29 through N-acetylgalactosamine-transferase 3. Biol Chem 2018; 399:649-659. [PMID: 29894293 DOI: 10.1515/hsz-2018-0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Abstract
Colorectal cancer is the third most common cancer type worldwide. It is characterized by a high expression of aberrantly glycosylated ligands, such as the Tn antigen (GalNAcα1-Ser/Thr), which is a major ligand for the C-type lectin macrophage galactose-type lectin (MGL). We have previously determined that a high level of MGL ligands in colorectal tumors is associated with lower disease-free survival in patients with late stage disease, which we could attribute to the presence of oncogenic BRAFV600E mutations. Here we aimed to elucidate the downstream pathway of BRAFV600E governing high MGL ligand and Tn antigen expression. We focused on glycosylation-related enzymes involved in the synthesis or elongation of Tn antigen, N-acetylgalactosamine-transferases (GALNTs) and C1GalT1/COSMC, respectively. Both the activity and expression of C1GalT1 and COSMC were unrelated to the BRAF mutational status. In contrast, GALNT3, GALNT7 and GALNT12 were increased in colorectal cancer cells harboring the BRAFV600E mutation. Through CRISPR-Cas9 gene knockouts we could establish that GALNT3 increased MGL ligand synthesis in the HT29 cell line, while GALNT7 and GALNT12 appeared to have redundant roles. Together our results highlight a novel mechanistic pathway connecting BRAFV600E to aberrant glycosylation in colorectal cancer through GALNT3.
Collapse
Affiliation(s)
- Neha M Sahasrabudhe
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Kristiaan Lenos
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Joost C van der Horst
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
43
|
Ubillos L, Berriel E, Mazal D, Victoria S, Barrios E, Osinaga E, Berois N. Polypeptide-GalNAc-T6 expression predicts better overall survival in patients with colon cancer. Oncol Lett 2018; 16:225-234. [PMID: 29928405 PMCID: PMC6006374 DOI: 10.3892/ol.2018.8686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal carcinoma (CRC) is the second leading cause of cancer mortality worldwide. O-glycosylated mucins at the cell surface of colonic mucosa exhibit alterations in cancer and are involved in fundamental biological processes, including invasion and metastasis. Certain members of the GalNAc-transferase family may be responsible for these changes and are being investigated as novel biomarkers of cancer. In the present study the prognostic significance of GalNAc-T6 was investigated in patients with CRC patients. GalNAc-T6 expression was observed in all three colon cancer cell lines analyzed by reverse transcription-polymerase chain reaction, immunofluorescence and flow cytometry. A cohort of 81 colon cancer specimens was analyzed by immunohistochemical staining using MAb T6.3. It was demonstrated that GalNAc-T6 was expressed in 35/81 (43%) cases of colon cancer but not in the normal colonic mucosa. No association was observed with the clinical-pathologic parameters. However, patients expressing GalNAc-T6 had a significantly increased overall survival (median, 58 months; P<0.001) compared with GalNAc-T6 negative patients, especially those with advanced disease. These results suggest that GalNAc-T6 expression predicts an improved outcome in patients with CRC. The molecular mechanism underlying the less aggressive behavior of colon cancer cells expressing GalNAc-T6 remains to be elucidated.
Collapse
Affiliation(s)
- Luis Ubillos
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.,Servicio de Oncología Clínica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Edgardo Berriel
- Clínica Quirúrgica 1, Hospital Pasteur, Facultad de Medicina, Universidad de la República, Montevideo 11400, Uruguay.,Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Daniel Mazal
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Sabina Victoria
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Enrique Barrios
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.,Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| |
Collapse
|
44
|
Kightlinger W, Lin L, Rosztoczy M, Li W, DeLisa MP, Mrksich M, Jewett MC. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 2018; 14:627-635. [PMID: 29736039 DOI: 10.1038/s41589-018-0051-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 01/17/2023]
Abstract
Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient N-linked glycosylation in vitro and in the Escherichia coli cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Liang Lin
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Madisen Rosztoczy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenhao Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.,Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Milan Mrksich
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
45
|
Manwar Hussain MR, Iqbal Z, Qazi WM, Hoessli DC. Charge and Polarity Preferences for N-Glycosylation: A Genome-Wide In Silico Study and Its Implications Regarding Constitutive Proliferation and Adhesion of Carcinoma Cells. Front Oncol 2018. [PMID: 29541627 PMCID: PMC5835500 DOI: 10.3389/fonc.2018.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structural and functional diversity of the human proteome is mediated by N- and O-linked glycosylations that define the individual properties of extracellular and membrane-associated proteins. In this study, we utilized different computational tools to perform in silico based genome-wide mapping of 1,117 human proteins and unravel the contribution of both penultimate and vicinal amino acids for the asparagine-based, site-specific N-glycosylation. Our results correlate the non-canonical involvement of charge and polarity environment of classified amino acids (designated as L, O, A, P, and N groups) in the N-glycosylation process, as validated by NetNGlyc predictions, and 130 literature-reported human proteins. From our results, particular charge and polarity combinations of non-polar aliphatic, acidic, basic, and aromatic polar side chain environment of both penultimate and vicinal amino acids were found to promote the N-glycosylation process. However, the alteration in side-chain charge and polarity environment of genetic variants, particularly in the vicinity of Asn-containing epitope, may induce constitutive glycosylation (e.g., aberrant glycosylation at preferred and non-preferred sites) of membrane proteins causing constitutive proliferation and triggering epithelial-to-mesenchymal transition. The current genome-wide mapping of 1,117 proteins (2,909 asparagine residues) was used to explore charge- and polarity-based mechanistic constraints in N-glycosylation, and discuss alterations of the neoplastic phenotype that can be ascribed to N-glycosylation at preferred and non-preferred sites.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics (CAS), Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Iqbal
- Institute of Molecular Sciences & Bioinformatics, Lahore, Pakistan.,Department of Physics, GC University Lahore, Lahore, Pakistan
| | - Wajahat M Qazi
- Center for Intelligent Machines and Robotics, Department of Computer Science, COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Daniel C Hoessli
- Institute of Molecular Sciences & Bioinformatics, Lahore, Pakistan.,Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
46
|
Nguyen AT, Chia J, Ros M, Hui KM, Saltel F, Bard F. Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis. Cancer Cell 2017; 32:639-653.e6. [PMID: 29136507 DOI: 10.1016/j.ccell.2017.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Cancers grow within tissues through molecular mechanisms still unclear. Invasiveness correlates with perturbed O-glycosylation, a covalent modification of cell-surface proteins. Here, we show that, in human and mouse liver cancers, initiation of O-glycosylation by the GALNT glycosyl-transferases increases and shifts from the Golgi to the endoplasmic reticulum (ER). In a mouse liver cancer model, expressing an ER-targeted GALNT1 (ER-G1) massively increased tumor expansion, with median survival reduced from 23 to 10 weeks. In vitro cell growth was unaffected, but ER-G1 strongly enabled matrix degradation and tissue invasion. Unlike its Golgi-localized counterpart, ER-G1 glycosylates the matrix metalloproteinase MMP14, a process required for tumor expansion. Together, our results indicate that GALNTs strongly promote liver tumor growth after relocating to the ER.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manon Ros
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kam Man Hui
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore; Duke-NUS Graduate Medical School, Singapore, 8 College Road, Singapore 169857, Singapore
| | - Frederic Saltel
- INSERM, U1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000 Bordeaux, France; University of Bordeaux, U1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000 Bordeaux, France
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.
| |
Collapse
|
47
|
Men CD, Liu QN, Ren Q. A prognostic 11 genes expression model for ovarian cancer. J Cell Biochem 2017; 119:1971-1978. [PMID: 28817186 DOI: 10.1002/jcb.26358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
The symptoms of ovarian cancer at early stages are usually absent which makes the diagnosis in its early stages exceedingly difficult. Previous research has proven that ovarian cancer is a genetic disease, which depends on the alteration of multi-cancer related genes and anti-cancer genes, multi-stages and multi-pathways, involving a variety of oncogene activation and anti-oncogene inactivation. For a better understanding of the prognostic classification of ovarian cancer, gene expression profiles were used to analyze the prognostic factors of ovarian cancer, and the prognostic model was used to classify the ovarian cancer samples. The ovarian cancer samples data were downloaded from TCGA dataset. Rebust likelihood-based survival model was built to find the key genes that could function as prognostic markers. The samples were classified by unsupervised hierarchical clustering. Furthermore, Kaplan-Meier survival analysis was used to analyze the differences in the prognosis of the samples. The prognostic model was used to classify the samples, and then the best classification model was selected as the prognostic model of ovarian cancer. Finally, GEO datasets were used for external data validation. A total of 886 genes with influence on prognosis was obtained. Then genomic combinations of 11 genes were screened out by random sampling. Then the active number of influential factors was counted based on the expression level of featured genes. When the number of influencing factors is ≥7, the prognosis difference among these genes is the largest (P-value = 0.000775); and this was chosen as the final Classification model. To summary, a prognostic 11genes expression model was preliminarily built to classify the ovarian cancer samples.
Collapse
Affiliation(s)
- Chuan-Di Men
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Graduate School, Bengbu Medical College, Bengbu, China
| | - Qiong-Na Liu
- Department of Gynaecology and Obstetrics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Qing Ren
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Komiyama T, Ogura A, Hirokawa T, Zhijing M, Kamiguchi H, Asai S, Miyachi H, Kobayashi H. Analysis to Estimate Genetic Variations in the Idarubicin-Resistant Derivative MOLT-3. Int J Mol Sci 2016; 18:E12. [PMID: 28025493 PMCID: PMC5297647 DOI: 10.3390/ijms18010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Gene alterations are a well-established mechanism leading to drug resistance in acute leukemia cells. A full understanding of the mechanisms of drug resistance in these cells will facilitate more effective chemotherapy. In this study, we investigated the mechanism(s) of drug resistance in the human acute leukemia cell line MOLT-3 and its idarubicin-resistant derivative MOLT-3/IDR through complete mitochondrial and nuclear DNA analyses. We identified genetic differences between these two cell lines. The ND3 mutation site (p.Thr61Ile) in the mitochondrial DNA sequence was unique to MOLT-3/IDR cells. Moreover, we identified five candidate genes harboring genetic alterations, including GALNT2, via CGH array analysis. Sequencing of the GALNT2 exon revealed a G1716K mutation present within the stop codon in MOLT-3/IDR cells but absent from MOLT-3 cells. This mutation led to an additional 18 amino acids in the protein encoded by GALNT2. Using real-time PCR, we determined an expression value for this gene of 0.35. Protein structure predictions confirmed a structural change in GALNT2 in MOLT-3/IDR cells that corresponded to the site of the mutation. We speculate that this mutation may be related to idarubicin resistance.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | - Takatsugu Hirokawa
- The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Miao Zhijing
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hayato Miyachi
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|