1
|
Sahin F, Breinbauer R, Linnemann C, Tombaz M, Nussler AK, Ehnert S. Quantification of Circulating Cell-Free DNA as a NETosis Marker in Trauma Patients with Type 2 Diabetes Mellitus. Methods Protoc 2025; 8:42. [PMID: 40278516 PMCID: PMC12029683 DOI: 10.3390/mps8020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly impairs fracture healing, with neutrophils playing a crucial role in this process. In T2DM, these immune cells are over-activated, leading to the excessive release of neutrophil extracellular traps (NETs), increasing inflammation and hindering recovery. Thus, a need for markers to assess patients in the risk group arises. This study demonstrates that circulating cell-free DNA (cfDNA) can be efficiently quantified from serum samples by a single-step qPCR and be used as a marker for NETosis. Our results revealed that trauma patients with T2DM have the highest cfDNA levels, followed by trauma patients, and the healthy group has the lowest. The method shows strong correlations between cfDNA and neutrophil-specific markers such as MPO, citH3, AZU1, and α-defensin, highlighting its potential as a rapid indicator of NETosis. This approach could allow the timely interference for high-risk patients, ultimately improving healing outcomes and reducing complications such as chronic inflammation, non-union fractures, and diabetic foot ulcers.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (F.S.); (R.B.); (A.K.N.)
| |
Collapse
|
2
|
Cox M, Vitello DJ, Chawla A. The Current Role of Circulating Tumor DNA in the Management of Pancreatic Cancer. J Gastrointest Cancer 2025; 56:44. [PMID: 39808248 DOI: 10.1007/s12029-024-01129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes. Circulating tumor DNA (ctDNA) represents a promising novel biomarker in the identification and management of PDAC. Drawn from peripheral blood and analyzed using a variety of techniques, the detection of ctDNA in PDAC has been associated with shorter OS, minimal residual disease presence, and shorter recurrence-free survival. The use of ctDNA has also been examined as an indicator of therapeutic resistance, susceptibility to targeted therapy, and therapeutic response. While promising, ctDNA analysis is limited by its low rates of detection in some settings and lack of predictive ability in others. Many studies examining the utility of ctDNA for the management of PDAC have been relatively small retrospective cohort studies. The current findings will need to be validated by incorporation of ctDNA analysis into cancer registries and larger prospective studies. Given the current, rapid evolution in the field, it is possible that with time, ctDNA will be more routinely incorporated into the clinical management of PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, USA
| | - Dominic J Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, USA.
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
4
|
Arayici ME, İnal A, Basbinar Y, Olgun N. Evaluation of the diagnostic and prognostic clinical values of circulating tumor DNA and cell-free DNA in pancreatic malignancies: a comprehensive meta-analysis. Front Oncol 2024; 14:1382369. [PMID: 38983931 PMCID: PMC11231086 DOI: 10.3389/fonc.2024.1382369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The diagnostic and prognostic clinical value of circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) in pancreatic malignancies are unclear. Herein, we aimed to perform a meta-analysis to evaluate ctDNA and cfDNA as potential diagnostic and prognostic biomarkers. METHODS PRISMA reporting guidelines were followed closely for conducting the current meta-analysis. The PubMed/Medline, Scopus, and Web of Science (WoS) databases were scanned in detail to identify eligible papers for the study. A quality assessment was performed in accordance with the REMARK criteria. The risk ratios (RRs) of the diagnostic accuracy of ctDNA compared to that of carbohydrate antigen 19.9 (CA 19.9) in all disease stages and the hazard ratios (HRs) of the prognostic role of ctDNA in overall survival (OS) were calculated with 95% confidence intervals (CIs). RESULTS A total of 18 papers were evaluated to assess the diagnostic accuracy and prognostic value of biomarkers related to pancreatic malignancies. The pooled analysis indicated that CA19.9 provides greater diagnostic accuracy across all disease stages than ctDNA or cfDNA (RR = 0.64, 95% CI: 0.50-0.82, p < 0.001). Additionally, in a secondary analysis focusing on prognosis, patients who were ctDNA-positive were found to have significantly worse OS (HR = 2.00, 95% CI: 1.51-2.66, p < 0.001). CONCLUSION The findings of this meta-analysis demonstrated that CA19-9 still has greater diagnostic accuracy across all disease stages than KRAS mutations in ctDNA or cfDNA. Nonetheless, the presence of detectable levels of ctDNA was associated with worse patient outcomes regarding OS. There is a growing need for further research on this topic. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.37766/inplasy2023.12.0092, identifier INPLASY2023120092.
Collapse
Affiliation(s)
- Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Abdullah İnal
- Department of General Surgery, Faculty of Medicine, İzmir Democracy University, İzmir, Türkiye
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Nur Olgun
- Department of Clinical Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| |
Collapse
|
5
|
Ben-Ami R, Wang QL, Zhang J, Supplee JG, Fahrmann JF, Lehmann-Werman R, Brais LK, Nowak J, Yuan C, Loftus M, Babic A, Irajizad E, Davidi T, Zick A, Hubert A, Neiman D, Piyanzin S, Gal-Rosenberg O, Horn A, Shemer R, Glaser B, Boos N, Jajoo K, Lee L, Clancy TE, Rubinson DA, Ng K, Chabot JA, Kastrinos F, Kluger M, Aguirre AJ, Jänne PA, Bardeesy N, Stanger B, O'Hara MH, Till J, Maitra A, Carpenter EL, Bullock AJ, Genkinger J, Hanash SM, Paweletz CP, Dor Y, Wolpin BM. Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer. Gut 2024; 73:639-648. [PMID: 38123998 PMCID: PMC10958271 DOI: 10.1136/gutjnl-2023-331074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.
Collapse
Affiliation(s)
- Roni Ben-Ami
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Qiao-Li Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Julianna G Supplee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roni Lehmann-Werman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Nowak
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Loftus
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tal Davidi
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofer Gal-Rosenberg
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Horn
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel
| | - Natalia Boos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunal Jajoo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas E Clancy
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John A Chabot
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Michael Kluger
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ben Stanger
- Department of Medicine, Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark H O'Hara
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob Till
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Erica L Carpenter
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea J Bullock
- Division of Hematology and Oncology, Beth-Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanine Genkinger
- Department of epidemiology, Mailman school of public health, Columbia university, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia university Irving Medical Center, New York, New York, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lockwood CM, Borsu L, Cankovic M, Earle JSL, Gocke CD, Hameed M, Jordan D, Lopategui JR, Pullambhatla M, Reuther J, Rumilla KM, Tafe LJ, Temple-Smolkin RL, Terraf P, Tsimberidou AM. Recommendations for Cell-Free DNA Assay Validations: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2023; 25:876-897. [PMID: 37806433 DOI: 10.1016/j.jmoldx.2023.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Diagnosing, selecting therapy for, and monitoring cancer in patients using a minimally invasive blood test represents a significant advance in precision medicine. Wide variability exists in how circulating tumor DNA (ctDNA) assays are developed, validated, and reported in the literature, which hinders clinical adoption and may negatively impact patient care. Standardization is needed for factors affecting ctDNA assay performance and reporting, including pre-analytical variables, analytical considerations, and elements of laboratory assay reporting. The Association for Molecular Pathology Clinical Practice Committee's Liquid Biopsy Working Group (LBxWG), including organizational representation from the American Society of Clinical Oncology and the College of American Pathologists, has undertaken a full-text data extraction of 1228 ctDNA publications that describe assays performed in patients with lymphoma and solid tumor malignancies. With an emphasis on clinical assay validation, the LBxWG has developed a set of 13 best practice consensus recommendations for validating, reporting, and publishing clinical ctDNA assays. Recommendations include reporting key pre-analytical considerations and assay performance metrics; this analysis demonstrates these elements are inconsistently included in publications. The LBxWG recommendations are intended to assist clinical laboratories with validating and reporting ctDNA assays and to ensure high-quality data are included in publications. It is expected that these recommendations will need to be updated as the body of literature continues to mature.
Collapse
Affiliation(s)
- Christina M Lockwood
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, Seattle, Washington.
| | - Laetitia Borsu
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Milena Cankovic
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jonathan S L Earle
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, Connecticut; Hartford Pathology Associates, Hartford, Connecticut
| | - Christopher D Gocke
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Meera Hameed
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jean R Lopategui
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Jacquelyn Reuther
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Invitae, San Francisco, California
| | - Kandelaria M Rumilla
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Laura J Tafe
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Panieh Terraf
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Apostolia M Tsimberidou
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Investigational Cancer Therapeutics, Unit 455, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Sellahewa R, Moghaddam SM, Lundy J, Jenkins BJ, Croagh D. Circulating Tumor DNA Is an Accurate Diagnostic Tool and Strong Prognostic Marker in Pancreatic Cancer. Pancreas 2023; 52:e188-e195. [PMID: 37751379 DOI: 10.1097/mpa.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.
Collapse
|
8
|
Tanaka J, Nakagawa T, Harada K, Morizane C, Tanaka H, Shiba S, Ohba A, Hijioka S, Takai E, Yachida S, Kamura Y, Ishida T, Yokoi T, Uematsu C. Efficient and accurate KRAS genotyping using digital PCR combined with melting curve analysis for ctDNA from pancreatic cancer patients. Sci Rep 2023; 13:3039. [PMID: 36810451 PMCID: PMC9944920 DOI: 10.1038/s41598-023-30131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
A highly sensitive and highly multiplexed quantification technique for nucleic acids is necessary to predict and evaluate cancer treatment by liquid biopsy. Digital PCR (dPCR) is a highly sensitive quantification technique, but conventional dPCR discriminates multiple targets by the color of the fluorescent dye of the probe, which limits multiplexing beyond the number of colors of fluorescent dyes. We previously developed a highly multiplexed dPCR technique combined with melting curve analysis. Herein, we improved the detection efficiency and accuracy of multiplexed dPCR with melting curve analysis to detect KRAS mutations in circulating tumor DNA (ctDNA) prepared from clinical samples. The mutation detection efficiency was increased from 25.9% of the input DNA to 45.2% by shortening the amplicon size. The limit of detection of mutation was improved from 0.41 to 0.06% by changing the mutation type determination algorithm for G12A, resulting in a limit of detection of less than 0.2% for all the target mutations. Then, ctDNA in plasma from pancreatic cancer patients was measured and genotyped. The measured mutation frequencies correlated well with those measured by conventional dPCR, which can measure only the total frequency of KRAS mutants. KRAS mutations were detected in 82.3% of patients with liver or lung metastasis, which was consistent with other reports. Accordingly, this study demonstrated the clinical utility of multiplex dPCR with melting curve analysis to detect and genotype ctDNA from plasma with sufficient sensitivity.
Collapse
Affiliation(s)
- Junko Tanaka
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan.
| | - Tatsuo Nakagawa
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Kunio Harada
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidenori Tanaka
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Shiba
- Division of Genomic Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiro Ohba
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Erina Takai
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshio Kamura
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Takeshi Ishida
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Takahide Yokoi
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Chihiro Uematsu
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| |
Collapse
|
9
|
Lawrence P, Chabane M, Abrouk L, Thiesson A, Berthé D, Diarra AB, Bengaly K, Traoré B, Kassogué D, Durand G, Voegele C, Le Calvez-Kelm F, Steenkeste N, Hainaut P, Kouriba B, Gormally E. First Molecular Characterization of Chronic Hepatitis B Carriers in Timbuktu, Mali. Diagnostics (Basel) 2023; 13:375. [PMID: 36766478 PMCID: PMC9913942 DOI: 10.3390/diagnostics13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In Mali, hepatocellular carcinoma (HCC) is the third and sixth most common cancer in men and women, respectively. Mali comprises several distinct climato-ecological zones. Most studies to date have been conducted in the sub-Sahelian zone of southern Mali, including the capital city Bamako. In this part of the country, the main risk factors for HCC are chronic hepatitis B virus (HBV) carriage and dietary exposure to aflatoxins, a well-known hepatocarcinogen. Data are scarce for other ecological zones, but our preliminary data from 721 blood donors in the area of Timbuktu, presented in this study, suggest that chronic HBV carriage is also endemic in the northern Saharan zone of Mali. For further study, 29 healthy HBV chronic carrier volunteers were recruited from the blood transfusion center in Timbuktu. Successful viral genotyping in 20 volunteers revealed HBV genotype E in 13 cases and D in 7 cases, suggesting that this geographical and anthropological transition zone may also represent a transition zone between HBV genotypes that dominate sub-Saharan and northern Africa, respectively. Sequencing of circulating cell-free plasma DNA (cfDNA) from donors did not reveal the presence of the TP53 R249S mutation in these donors, a marker of dietary exposure to aflatoxins in sub-Saharan Africa. These results suggest that the geo-epidemiological distribution of the risk factors for HCC is not uniform across Mali, but is dependent upon climatic, socioeconomic and anthropological factors that might have an impact on patterns of chronic liver disease and cancer.
Collapse
Affiliation(s)
- Philip Lawrence
- CONFLUENCE: Sciences et Humanités Confluence (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
| | | | - Lucie Abrouk
- CONFLUENCE: Sciences et Humanités Confluence (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
| | - Adrien Thiesson
- CONFLUENCE: Sciences et Humanités Confluence (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
| | | | - Amadou B. Diarra
- Centre National de Transfusion Sanguine (CNTS, National Blood Bank), Bamako BPE1520, Mali
| | - Karim Bengaly
- Centre d’Infectiologie Charles Mérieux, Bamako BPE2283, Mali
| | - Brehima Traoré
- Centre d’Infectiologie Charles Mérieux, Bamako BPE2283, Mali
| | | | - Geoffroy Durand
- International Agency for Research on Cancer, 69008 Lyon, France
| | | | | | | | - Pierre Hainaut
- Institute of Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38700 La Tronche, France
| | - Bourema Kouriba
- Centre d’Infectiologie Charles Mérieux, Bamako BPE2283, Mali
| | - Emmanuelle Gormally
- CONFLUENCE: Sciences et Humanités Confluence (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
| |
Collapse
|
10
|
Mazer BL, Lee JW, Roberts NJ, Chu LC, Lennon AM, Klein AP, Eshleman JR, Fishman EK, Canto MI, Goggins MG, Hruban RH. Screening for pancreatic cancer has the potential to save lives, but is it practical? Expert Rev Gastroenterol Hepatol 2023; 17:555-574. [PMID: 37212770 PMCID: PMC10424088 DOI: 10.1080/17474124.2023.2217354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Most patients with pancreatic cancer present with advanced stage, incurable disease. However, patients with high-grade precancerous lesions and many patients with low-stage disease can be cured with surgery, suggesting that early detection has the potential to improve survival. While serum CA19.9 has been a long-standing biomarker used for pancreatic cancer disease monitoring, its low sensitivity and poor specificity have driven investigators to hunt for better diagnostic markers. AREAS COVERED This review will cover recent advances in genetics, proteomics, imaging, and artificial intelligence, which offer opportunities for the early detection of curable pancreatic neoplasms. EXPERT OPINION From exosomes, to circulating tumor DNA, to subtle changes on imaging, we know much more now about the biology and clinical manifestations of early pancreatic neoplasia than we did just five years ago. The overriding challenge, however, remains the development of a practical approach to screen for a relatively rare, but deadly, disease that is often treated with complex surgery. It is our hope that future advances will bring us closer to an effective and financially sound approach for the early detection of pancreatic cancer and its precursors.
Collapse
Affiliation(s)
- Benjamin L. Mazer
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jae W. Lee
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas J. Roberts
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda C. Chu
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Marie Lennon
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P. Klein
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R. Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K. Fishman
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcia Irene Canto
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G. Goggins
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Topham JT, Renouf DJ, Schaeffer DF. Circulating tumor DNA: toward evolving the clinical paradigm of pancreatic ductal adenocarcinoma. Ther Adv Med Oncol 2023; 15:17588359231157651. [PMID: 36895849 PMCID: PMC9989430 DOI: 10.1177/17588359231157651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Over a decade of sequencing-based genomics research has unveiled a diverse somatic mutation landscape across patients with pancreatic ductal adenocarcinoma (PDAC), and the identification of druggable mutations has aligned with the development of novel targeted therapeutics. However, despite these advances, direct translation of years of PDAC genomics research into the clinical care of patients remains a critical and unmet need. Technologies that enabled the initial mapping of the PDAC mutation landscape, namely whole-genome and transcriptome sequencing, remain overly expensive in terms of both time and financial resources. Consequentially, dependence on these technologies to identify the relatively small subset of patients with actionable PDAC alterations has greatly impeded enrollment for clinical trials testing novel targeted therapies. Liquid biopsy tumor profiling using circulating tumor DNA (ctDNA) generates new opportunities by overcoming these challenges while further addressing issues particularly relevant to PDAC, namely, difficulty of obtaining tumor tissue via fine-needle biopsy and the need for faster turnaround time due to rapid disease progression. Meanwhile, ctDNA-based approaches for tracking disease kinetics with respect to surgical and therapeutic interventions offer a means to elevate the current clinical management of PDAC toward higher granularity and accuracy. This review provides a clinically focused summary of ctDNA advances, limitations, and opportunities in PDAC and postulates ctDNA sequencing technology as a catalyst for evolving the clinical decision-making paradigm of this disease.
Collapse
Affiliation(s)
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Division of Anatomic Pathology, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.,Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| |
Collapse
|
12
|
Levink IJM, Visser IJ, Koopmann BDM, van Driel LMJW, Poley JW, Cahen DL, Bruno MJ, Fuhler GM. Protein biomarkers in pancreatic juice and serum for identification of pancreatic cancer. Gastrointest Endosc 2022; 96:801-813.e2. [PMID: 35537661 DOI: 10.1016/j.gie.2022.04.1342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS To date, surveillance of high-risk individuals for pancreatic ductal adenocarcinoma (PDAC) has not lived up to expectations, as identification of curable stages through imaging remains challenging. Biomarkers are therefore needed. Pancreatic juice (PJ) may be a promising source, because it is in direct contact with the ductal epithelial lining from which PDAC arises. We aimed to develop a panel of biomarkers from serum and PJ to detect PDAC for future surveillance purposes. METHODS All patients who underwent PJ collection on secretin stimulation at the Erasmus MC were included. Both PJ and serum were evaluated. Protein levels were determined by the Lowry assay. Potential biomarkers (interleukin-8, interferon-γ, neutrophil gelatinase-associated lipocalin [NGAL], mucin 5, subtype AC [MUC5AC], mucin 2, phospholipase A2 group IB) were selected based on previously reported outcomes and assessed with enzyme-linked immunosorbent assay. Serum carbohydrate antigen 19-9 (CA19-9) values were determined by electrochemiluminescence immunoassay. RESULTS This study included 59 cases and 126 surveilled control subjects (who underwent PJ collection), of whom 71 had a hereditary predisposition (35 genetic, 36 familial) and 55 had (suspected neoplastic) pancreatic cysts. CA19-9 values were available for 53 cases and 48 control subjects. Serum CA19-9, as well as PJ interleukin-8, NGAL and MUC5AC, were associated with PDAC independent of age, gender, and presence of diabetes mellitus. Serum CA19-9 had a significantly higher area under the curve (AUC; .86; 95% confidence interval [CI], .79-.94) than individual PJ markers (AUC, .62-.70). A combination of PJ markers and serum CA19-9 (panel 2: sensitivity 42% [95% CI, 29-57] and specificity 96% [95% CI, 86-100]) did not improve diagnostic performance compared with CA19-9 alone (sensitivity 70% [95% CI, 56-82] and specificity 85% [95% CI, 72-94]). CONCLUSIONS High levels of serum CA19-9 and PJ-derived proteins are associated with PDAC. Prospective surveillance studies including individuals at risk of developing PDAC are required to validate these findings.
Collapse
Affiliation(s)
- Iris J M Levink
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isis J Visser
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brechtje D M Koopmann
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lydi M J W van Driel
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Werner Poley
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Djuna L Cahen
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Caliez O, Pietrasz D, Ksontini F, Doat S, Simon JM, Vaillant JC, Taly V, Laurent-Puig P, Bachet JB. Circulating tumor DNA: a help to guide therapeutic strategy in patients with borderline and locally advanced pancreatic adenocarcinoma? Dig Liver Dis 2022; 54:1428-1436. [PMID: 35120842 DOI: 10.1016/j.dld.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND prognostic biomarkers could be useful to better select patients with borderline resectable (BR) or locally advanced (LA) pancreatic adenocarcinoma (PA) for chemoradiotherapy (CRT) and/or secondary resection. AIMS The main objective of this work was to study characteristics, received treatments and prognostic of patients with BR or LA PA according to their baseline circulating tumor DNA status and, for secondary objective, neutrophil-to-lymphocyte Ratio (NLR). METHODS ctDNA status at baseline was determined using Next Generation Sequencing in a consecutive monocentric cohort of patients with a BR or LA PA. RESULTS 69 patients were included, 31 with BR PA and 38 with LA PA. 14 (20.3%) patients had baseline positive ctDNA. Five (7.8%) patients had NLR> 5. Patients with positive ctDNA had 3.7 months shorter progression free survival (p = 0.006). Patients with positive ctDNA had earlier progression after the beginning of CRT (4.4 vs 7.1 months; p = 0.068) and shorter relapse free survival after secondary resection (9.2 vs 22.9 months; p = 0.016). CONCLUSIONS positive ctDNA at baseline was associated with a worse prognosis in patients with BR or LA PA. These data are exploratory and must be confirmed in further prospective trials.
Collapse
Affiliation(s)
- Olivier Caliez
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Sorbonne Université, UPMC, Paris 6, France
| | - Daniel Pietrasz
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Department of Digestive Surgery, Hôpital Paul Brousse, Villejuif, France
| | - Feryel Ksontini
- Department of Oncology, Institute Salah-Azaïz, Tunis, Tunisia
| | - Solène Doat
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Marc Simon
- Department of Radiation Oncology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Christophe Vaillant
- Department of Digestive Surgery, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valerie Taly
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France
| | - Pierre Laurent-Puig
- French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; French National Institute of Health and Medical Research (INSERM), Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université de Paris, Paris, France; Sorbonne Université, UPMC, Paris 6, France.
| |
Collapse
|
14
|
Herreros-Villanueva M, Bujanda L, Ruiz-Rebollo L, Torremocha R, Ramos R, Martín R, Artigas MC. Circulating tumor DNA tracking in patients with pancreatic cancer using next-generation sequencing. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:637-644. [PMID: 35092761 DOI: 10.1016/j.gastrohep.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer remains one of the most devastating malignancies due to the absence of techniques for early diagnosis and the lack of target therapeutic options for advanced disease. Next Generation Sequencing (NGS) generates high throughput and valuable genetic information when evaluating circulating tumor DNA (ctDNA); however clinical utility of liquid biopsy in pancreatic cancer has not been demonstrated yet. The aim of this study was to evaluate whether results from a Next Generation Sequencing panel on plasma samples from pancreatic cancer patients could have a clinical significance. METHODS From December 2016 to January 2020, plasma samples from 27 patients with pancreatic ductal adenocarcinoma at two different tertiary Spanish Hospitals underwent ctDNA testing using a commercial NGS panel of 65 genes. Clinical data were available for these patients. VarsSome Clinical software was used to analyse NGS data and establish pathogenicity. RESULTS Evaluable NGS results were obtained in 18 out of the 27 plasma samples. Somatic pathogenic mutations were found mainly in KRAS, BRCA2, FLT3 and HNF1A, genes. Pathogenic mutations were detected in 50% of plasma samples from patient diagnosed at stages III-IV samples. FLT3 mutations were observed in 22.22% of samples which constitute a novel result in the field. CONCLUSIONS Liquid biopsy using NGS is a valuable tool but still not sensitive or specific enough to provide clinical utility in pancreatic cancer patients.
Collapse
Affiliation(s)
- Marta Herreros-Villanueva
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain.
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Lourdes Ruiz-Rebollo
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | | | | | - Rubén Martín
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
15
|
Li W, Wang J, Li Y, Yue Q, Cui M, Liu J. KRAS Mutations in Peripheral Blood (with or without CA19-9) for Differential Diagnosis of Pancreatic Cancer and Chronic Pancreatitis: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
16
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Pietrasz D, Sereni E, Lancelotti F, Pea A, Luchini C, Innamorati G, Salvia R, Bassi C. Circulating tumour DNA: a challenging innovation to develop "precision onco-surgery" in pancreatic adenocarcinoma. Br J Cancer 2022; 126:1676-1683. [PMID: 35197581 PMCID: PMC9174156 DOI: 10.1038/s41416-022-01745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the third leading cause of cancer-related mortality within the next decade. Management of PDAC remains challenging with limited effective treatment options and a dismal long-term prognosis. Liquid biopsy and circulating biomarkers seem to be promising to improve the multidisciplinary approach in PDAC treatment. Circulating tumour DNA (ctDNA) is the most studied blood liquid biopsy analyte and can provide insight into the molecular profile and individual characteristics of the tumour in real-time and in advance of standard imaging modalities. This could pave the way for identifying new therapeutic targets and markers of tumour response to supplement diagnostic and provide enhanced stratified treatment. Although its specificity seems excellent, the current sensitivity of ctDNA remains a limitation for clinical use, especially in patients with a low tumour burden. Increasing evidence suggests that ctDNA is a pertinent candidate biomarker to assess minimal residual disease after surgery but also a strong independent prognostic biomarker. This review explores the current knowledge and recent developments in ctDNA as a screening, diagnostic, prognostic and predictive biomarker in the management of resectable PDAC but also technical and analytical challenges that must be overcome to move toward "precision onco-surgery."
Collapse
Affiliation(s)
- Daniel Pietrasz
- APHP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Université Paris-Saclay, 94800, Villejuif, France.
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy.
| | - Elisabetta Sereni
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Francesco Lancelotti
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Pea
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giulio Innamorati
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
18
|
Hemissi I, Boussetta S, Dallali H, Hellal F, Durand G, Voegele C, Ayed H, Zaghbib S, Naimi Z, Ayadi M, Chebil M, Mckay J, Le Calvez-Kelm F, Ouerhani S. Development of a custom next-generation sequencing panel for the determination of bladder cancer risk in a Tunisian cohort. Mol Biol Rep 2022; 49:1233-1258. [PMID: 34854013 DOI: 10.1007/s11033-021-06951-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGOUND Bladder cancer (BCa) is a heterogeneous disease caused by the interaction between environmental and genetic risk factors. The goal of this case-control study was to evaluate the implication of a selected SNP panel in the risk of BCa development in a Tunisian cohort. We were also interested in studying the interaction between this predictive panel and environmental risk factors. METHODS The case/control cohort was composed with 249 BCa cases and 255 controls. The designed Bladder cancer hereditary panel (BCHP) was composed of 139 selected variants. These variants were genotyped by an amplification-based targeted Next-Generation Sequencing (NGS) on the Ion Torrent Proton sequencer (Life Technologies, Ion Torrent technology). RESULTS We have found that rs162555, rs2228000, rs10936599, rs710521, rs3752645, rs804276, rs4639, rs4881400 and rs288980 were significantly associated with decreased risk of bladder cancer. However the homozygous genotypes for VPS37C (rs7104333, A/A), MPG (rs1013358, C/C) genes or the heterozygous genotype for ARNT gene (rs1889740, rs2228099, rs2256355, rs2864873), GSTA4 (rs17614751) and APOBR/IL27 (rs17855750) were significantly associated with increased risk of bladder cancer development compared to reference group (OR 2.53, 2.34, 1.99, 2.00, 2.00, 1.47, 1.96 and 2.27 respectively). We have also found that non-smokers patients harboring heterozygous genotypes for ARNT/rs2864873 (A > G), ARNT/ rs1889740 (C > T) or GSTA4/rs17614751 (G-A) were respectively at 2.775, 3.069 and 6.608-fold increased risk of Bca development compared to non-smokers controls with wild genotypes. Moreover the ARNT CT (rs1889740), ARNT CG (rs2228099), ARNT TC (rs2864873) and GSS GA genotypes were associated with an increased risk of BCa even in absence of professional risk factors. Finally the decision-tree analysis produced a three major BCa classes. These three classes were essentially characterized by an intensity of tobacco use more than 20 pack years (PY) and the CYP1A2 (rs762551) genotype. CONCLUSIONS The determined association between environmental factors, genetic variations and the risk of Bca development may provide additional information to urologists that may help them for clinical assessment and treatment decisions. Nevertheless, the underlying mechanisms through which these genes or SNPs affect the clinical behavior of BCas require further studies.
Collapse
Affiliation(s)
- Imen Hemissi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, National Institute of Applied Sciences and Technology of Tunis, University of Carthage, Tunis, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, Tunis, Tunisia
| | | | - Faycel Hellal
- National Institute of Applied Sciences and Technology of Tunis, University of Carthage, Tunis, Tunisia
| | - Geoffroy Durand
- Centre International de Recherche sur le Cancer CIRC/International Agency for Research on Cancer IARC, Lyon, France
| | - Catherine Voegele
- Centre International de Recherche sur le Cancer CIRC/International Agency for Research on Cancer IARC, Lyon, France
| | - Haroun Ayed
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Selim Zaghbib
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Zeineb Naimi
- Medical Oncology Department, Saleh Azaiez Institute, Tunis, Tunisia
| | - Mouna Ayadi
- Medical Oncology Department, Saleh Azaiez Institute, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - James Mckay
- Centre International de Recherche sur le Cancer CIRC/International Agency for Research on Cancer IARC, Lyon, France
| | - Florence Le Calvez-Kelm
- Centre International de Recherche sur le Cancer CIRC/International Agency for Research on Cancer IARC, Lyon, France
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, National Institute of Applied Sciences and Technology of Tunis, University of Carthage, Tunis, Tunisia.
| |
Collapse
|
19
|
Schreyer D, Neoptolemos JP, Barry ST, Bailey P. Deconstructing Pancreatic Cancer Using Next Generation-Omic Technologies-From Discovery to Knowledge-Guided Platforms for Better Patient Management. Front Cell Dev Biol 2022; 9:795735. [PMID: 35096825 PMCID: PMC8793685 DOI: 10.3389/fcell.2021.795735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular landscaping studies reveal a potentially brighter future for pancreatic ductal adenocarcinoma (PDAC) patients. Blood-borne biomarkers obtained from minimally invasive "liquid biopsies" are now being trialled for early disease detection and to track responses to therapy. Integrated genomic and transcriptomic studies using resectable tumour material have defined intrinsic patient subtypes and actionable genomic segments that promise a shift towards genome-guided patient management. Multimodal mapping of PDAC using spatially resolved single cell transcriptomics and imaging techniques has identified new potentially therapeutically actionable cellular targets and is providing new insights into PDAC tumour heterogeneity. Despite these rapid advances, defining biomarkers for patient selection remain limited. This review examines the current PDAC cancer biomarker ecosystem (identified in tumour and blood) and explores how advances in single cell sequencing and spatially resolved imaging modalities are being used to uncover new targets for therapeutic intervention and are transforming our understanding of this difficult to treat disease.
Collapse
Affiliation(s)
- Daniel Schreyer
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - John P. Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Nikas IP, Mountzios G, Sydney GI, Ioakim KJ, Won JK, Papageorgis P. Evaluating Pancreatic and Biliary Neoplasms with Small Biopsy-Based Next Generation Sequencing (NGS): Doing More with Less. Cancers (Basel) 2022; 14:cancers14020397. [PMID: 35053560 PMCID: PMC8773813 DOI: 10.3390/cancers14020397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pancreatic cancer and cholangiocarcinoma are aggressive diseases mostly diagnosed at an advanced and inoperable stage. This review presents the value of next-generation sequencing (NGS) when performed on small biopsies—including fine-needle aspiration/biopsy samples, brushings, pancreatic juice and bile, and also blood—in the field of pancreatobiliary neoplasia. NGS could guide physicians while evaluating pancreatic solid and cystic lesions or suspicious biliary strictures, performing surveillance in high-risk individuals, or monitoring the disease and assessing prognosis in already diagnosed cancer patients. Evidence suggests that NGS performed on small biopsies is a robust tool for the diagnosis and pre-operative risk stratification of pancreatic and biliary lesions, whereas it also carries significant prognostic and therapeutic value. However, effective standardization of the pre-analytical and analytical assay parameters used for each clinical scenario is needed to fully implement NGS into routine practice and provide more personalized management in patients with suspected or established pancreatobiliary neoplasia. Abstract Pancreatic cancer and cholangiocarcinoma are lethal diseases mainly diagnosed at an inoperable stage. As pancreatobiliary surgical specimens are often unavailable for further molecular testing, this review aimed to highlight the diagnostic, prognostic, and therapeutic impact of next-generation sequencing (NGS) performed on distinct small biopsies, including endoscopic ultrasound fine-needle aspirations and biopsies of pancreatic solid and cystic lesions, biliary duct brushings, and also “liquid biopsies” such as the pancreatic juice, bile, and blood. NGS could clarify indeterminate pancreatic lesions or biliary strictures, for instance by identifying TP53 or SMAD4 mutations indicating high-grade dysplasia or cancer. It could also stratify pancreatic cystic lesions, by distinguishing mucinous from non-mucinous cysts and identifying high-risk cysts that should be excised in surgically fit patients, whereas the combination of cytology, elevated cystic CEA levels and NGS could improve the overall diagnostic accuracy. When NGS is performed on the pancreatic juice, it could stratify high-risk patients under surveillance. On the plasma, it could dynamically monitor the disease course and response to therapy. Notably, the circulating tumor DNA (ctDNA) levels have been associated with staging, grading, and survival. Lastly, NGS has shown potential in identifying potentially actionable molecular alterations. In conclusion, NGS applied on small biopsies could carry significant diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Correspondence:
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, 11526 Athens, Greece;
| | - Guy I. Sydney
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Kalliopi J. Ioakim
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Limassol General Hospital, Limassol 4131, Cyprus
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital and College of Medicine, Seoul 03080, Korea;
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
21
|
Cowan RW, Pratt ED, Kang JM, Zhao J, Wilhelm JJ, Abdulla M, Qiao EM, Brennan LP, Ulintz PJ, Bellin MD, Rhim AD. Pancreatic Cancer-Related Mutational Burden Is Not Increased in a Patient Cohort With Clinically Severe Chronic Pancreatitis. Clin Transl Gastroenterol 2021; 12:e00431. [PMID: 34797250 PMCID: PMC8604013 DOI: 10.14309/ctg.0000000000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Chronic pancreatitis is associated with an increased risk of developing pancreatic cancer, and patients with inherited forms of pancreatitis are at greatest risk. We investigated whether clinical severity of pancreatitis could also be an indicator of cancer risk independent of etiology by performing targeted DNA sequencing to assess the mutational burden in 55 cancer-associated genes. METHODS Using picodroplet digital polymerase chain reaction and next-generation sequencing, we reported the genomic profiles of pancreases from severe clinical cases of chronic pancreatitis that necessitated palliative total pancreatectomy with islet autotransplantation. RESULTS We assessed 57 tissue samples from 39 patients with genetic and idiopathic etiologies and found that despite the clinical severity of disease, there was no corresponding increase in mutational burden. The average allele frequency of somatic variants was 1.19% (range 1.00%-5.97%), and distinct regions from the same patient displayed genomic heterogeneity, suggesting that these variants are subclonal. Few oncogenic KRAS mutations were discovered (7% of all samples), although we detected evidence of frequent cancer-related variants in other genes such as TP53, CDKN2A, and SMAD4. Of note, tissue samples with oncogenic KRAS mutations and samples from patients with PRSS1 mutations harbored an increased total number of somatic variants, suggesting that these patients may have increased genomic instability and could be at an increased risk of developing pancreatic cancer. DISCUSSION Overall, we showed that even in those patients with chronic pancreatitis severe enough to warrant total pancreatectomy with islet autotransplantation, pancreatic cancer-related mutational burden is not appreciably increased.
Collapse
Affiliation(s)
- Robert W. Cowan
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
| | - Erica D. Pratt
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
| | - Jin Muk Kang
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
| | - Jun Zhao
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Joshua J. Wilhelm
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA;
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Muhamad Abdulla
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Edmund M. Qiao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA;
| | - Luke P. Brennan
- University of Michigan Medical School, Ann Arbor, Michigan, USA;
| | - Peter J. Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA;
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan, USA.
| | - Melena D. Bellin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA;
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Andrew D. Rhim
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA;
| |
Collapse
|
22
|
Balendran-Braun S, Kieler M, Liebmann-Reindl S, Unseld M, Bianconi D, W Prager G, Streubel B. Bead-Based Isolation of Circulating Tumor DNA from Pancreatic Cancer Patients Enables High Fidelity Next Generation Sequencing. Cancer Manag Res 2021; 13:6249-6261. [PMID: 34393517 PMCID: PMC8357621 DOI: 10.2147/cmar.s308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and poses a challenge to the treating clinician. With the emergence of genomic profiling technologies, circulating tumor DNA (ctDNA) is increasingly recognized as a versatile biomarker for risk stratification and disease monitoring. We aimed to compare two commercially available NGS panels in a cohort of patients with advanced PDAC undergoing palliative chemotherapy. METHODS CtDNA was isolated with a magnetic bead-based protocol from two consecutive blood samples before and during chemotherapy in 21 patients with PDAC. Mutations were assessed by using a panel covering 15 (GP15) or 50 (GP50) cancer-associated genes. Results were compared to tumor tissue (GP15), if available. RESULTS Isolation of ctDNA resulted in a high mean value of 1.9 ng/µL (total volume of ~40 µL). Although the same number of patients were positive for at least one mutation (76%), the most commonly mutated oncogene in PDAC, KRAS, was detectable in an additional 25% of all patients with the GP15 panel due to a higher coverage. The genomic concordance rate between tissue DNA and ctDNA analyses was 65.22%. DISCUSSION Our study demonstrates the feasibility of an NGS-based approach for ctDNA analysis and underlines the importance of using a disease-specific panel with a sufficiently high coverage.
Collapse
Affiliation(s)
| | - Markus Kieler
- Department of Medicine I, Division of Oncology, Comprehensive Cancer Center, Medical University, Vienna, Austria
| | | | - Matthias Unseld
- Department of Medicine I, Division of Oncology, Comprehensive Cancer Center, Medical University, Vienna, Austria
| | - Daniela Bianconi
- Department of Medicine I, Division of Oncology, Comprehensive Cancer Center, Medical University, Vienna, Austria
| | - Gerald W Prager
- Department of Medicine I, Division of Oncology, Comprehensive Cancer Center, Medical University, Vienna, Austria
| | - Berthold Streubel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Asano K, Mikata R, Chiba T, Kan M, Maruta S, Yamada T, Miura Y, Shima Y, Sensui M, Nagashima H, Yokoyama M, Ohyama H, Kusakabe Y, Yasui S, Sugiyama H, Ohno I, Kato J, Takano S, Ohtsuka M, Kato N. Analysis of circulating cell-free DNA after endoscopic ultrasound-guided fine needle aspiration in pancreatic ductal adenocarcinoma. Pancreatology 2021; 21:S1424-3903(21)00140-X. [PMID: 33865724 DOI: 10.1016/j.pan.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Recently, increase in cell-free DNA (cfDNA) concentration or newly detected KRAS mutation after endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) biopsy were reported to be related to the occurrence of new distant metastasis. In this study, we investigated whether cfDNA concentration increased with the release of tumor components into the blood after EUS-FNA and whether its increase was related to prognosis. METHODS Sixty-eight patients underwent EUS-FNA and were pathologically confirmed as having pancreatic ductal adenocarcinoma (PDAC). We measured plasma cfDNA concentration and the copy number of KRAS mutation in 68 patients and circulating tumor cells in 8 before and after EUS-FNA. RESULTS The average cfDNA concentration after EUS-FNA (672.5 ± 919.6 ng/mL) was significantly higher than that before EUS-FNA (527.7 ± 827.3 ng/mL) (P < 0.001). KRAS mutation in plasma was detected in 8 patients (11.8%), however a significant increase in cfDNA concentration after EUS-FNA was not related to the change in KRAS-mutant copy number. Minimal increase in circulating tumor cells was observed in 3 of 8 patients. New distant metastasis was observed within 286 days to initial metastasis detection in 6 of 12 patients with ≥2-fold increase in cfDNA concentration and 26 of 56 patients with <2-fold increase within 185 days. In 32 patients who underwent surgery, ≥2-fold increase in cfDNA did not affect early recurrence. CONCLUSIONS The increase in cfDNA concentration after EUS-FNA was not caused by tumor cell components released into blood vessels. Hence, the risk of seeding via the blood stream after EUS-FNA may need not be considered.
Collapse
Affiliation(s)
- Kosho Asano
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rintaro Mikata
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoyasu Kan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shikiko Maruta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihito Yamada
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshifumi Miura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukiko Shima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyuki Sensui
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Nagashima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Yokoyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Ohyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Yasui
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Harutoshi Sugiyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Izumi Ohno
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
K-ras point mutation detection as an ancillary diagnostic biomarker: 1 step forward and 2 steps back? Gastrointest Endosc 2021; 93:605-607. [PMID: 33583519 DOI: 10.1016/j.gie.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
|
25
|
Calanzani N, Druce PE, Snudden C, Milley KM, Boscott R, Behiyat D, Saji S, Martinez-Gutierrez J, Oberoi J, Funston G, Messenger M, Emery J, Walter FM. Identifying Novel Biomarkers Ready for Evaluation in Low-Prevalence Populations for the Early Detection of Upper Gastrointestinal Cancers: A Systematic Review. Adv Ther 2021; 38:793-834. [PMID: 33306189 PMCID: PMC7889689 DOI: 10.1007/s12325-020-01571-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Detecting upper gastrointestinal (GI) cancers in primary care is challenging, as cancer symptoms are common, often non-specific, and most patients presenting with these symptoms will not have cancer. Substantial investment has been made to develop biomarkers for cancer detection, but few have reached routine clinical practice. We aimed to identify novel biomarkers for upper GI cancers which have been sufficiently validated to be ready for evaluation in low-prevalence populations. METHODS We systematically searched MEDLINE, Embase, Emcare, and Web of Science for studies published in English from January 2000 to October 2019 (PROSPERO registration CRD42020165005). Reference lists of included studies were assessed. Studies had to report on second measures of diagnostic performance (beyond discovery phase) for biomarkers (single or in panels) used to detect pancreatic, oesophageal, gastric, and biliary tract cancers. We included all designs and excluded studies with less than 50 cases/controls. Data were extracted on types of biomarkers, populations and outcomes. Heterogeneity prevented pooling of outcomes. RESULTS We identified 149 eligible studies, involving 22,264 cancer cases and 49,474 controls. A total of 431 biomarkers were identified (183 microRNAs and other RNAs, 79 autoantibodies and other immunological markers, 119 other proteins, 36 metabolic markers, 6 circulating tumour DNA and 8 other). Over half (n = 231) were reported in pancreatic cancer studies. Only 35 biomarkers had been investigated in at least two studies, with reported outcomes for that individual marker for the same tumour type. Apolipoproteins (apoAII-AT and apoAII-ATQ), and pepsinogens (PGI and PGII) were the most promising biomarkers for pancreatic and gastric cancer, respectively. CONCLUSION Most novel biomarkers for the early detection of upper GI cancers are still at an early stage of matureness. Further evidence is needed on biomarker performance in low-prevalence populations, in addition to implementation and health economic studies, before extensive adoption into clinical practice can be recommended.
Collapse
Affiliation(s)
- Natalia Calanzani
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Paige E Druce
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Claudia Snudden
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristi M Milley
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Rachel Boscott
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dawnya Behiyat
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Smiji Saji
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Javiera Martinez-Gutierrez
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
- Department of Family Medicine, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jasmeen Oberoi
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Garth Funston
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mike Messenger
- Leeds Centre for Personalised Medicine and Health, University of Leeds, Leeds, UK
| | - Jon Emery
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| | - Fiona M Walter
- The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Research and Department of General Practice, University of Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Hussung S, Akhoundova D, Hipp J, Follo M, Klar RFU, Philipp U, Scherer F, von Bubnoff N, Duyster J, Boerries M, Wittel U, Fritsch RM. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021; 21:49. [PMID: 33430810 PMCID: PMC7802224 DOI: 10.1186/s12885-020-07736-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Novel biomarkers and molecular monitoring tools hold potential to improve outcome for patients following resection of pancreatic ductal adenocarcinoma (PDAC). We hypothesized that the combined longitudinal analysis of mutated cell-free plasma KRAS (cfKRASmut) and CA 19–9 during adjuvant treatment and follow-up might more accurately predict disease course than hitherto available parameters. Methods Between 07/2015 and 10/2018, we collected 134 plasma samples from 25 patients after R0/R1-resection of PDAC during adjuvant chemotherapy and post-treatment surveillance at our institution. Highly sensitive discriminatory multi-target ddPCR assays were employed to screen plasma samples for cfKRASmut. cfKRASmut and CA 19–9 dynamics were correlated with recurrence-free survival (RFS) and overall survival (OS). Patients were followed-up until 01/2020. Results Out of 25 enrolled patients, 76% had undergone R0 resection and 48% of resected PDACs were pN0. 17/25 (68%) of patients underwent adjuvant chemotherapy. Median follow-up was 22.0 months, with 19 out of 25 (76%) patients relapsing during study period. Median RFS was 10.0 months, median OS was 22.0 months. Out of clinicopathologic variables, only postoperative CA 19–9 levels and administration of adjuvant chemotherapy correlated with survival endpoints. cfKRASmut. was detected in 12/25 (48%) of patients, and detection of high levels inversely correlated with survival endpoint. Integration of cfKRASmut and CA 19–9 levels outperformed either individual marker. cfKRASmut outperformed CA 19–9 as dynamic marker since increase during adjuvant chemotherapy and follow-up was highly predictive of early relapse and poor OS. Conclusions Integrated analysis of cfKRASmut and CA 19–9 levels is a promising approach for molecular monitoring of patients following resection of PDAC. Larger prospective studies are needed to further develop this approach and dissect each marker’s specific potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07736-x.
Collapse
Affiliation(s)
- Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Dilara Akhoundova
- Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Julian Hipp
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Rhena F U Klar
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Ulrike Philipp
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Wittel
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Ralph M Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany. .,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland. .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Jaworski JJ, Morgan RD, Sivakumar S. Circulating Cell-Free Tumour DNA for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:E3704. [PMID: 33317202 PMCID: PMC7763954 DOI: 10.3390/cancers12123704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is a lethal disease, with mortality rates negatively associated with the stage at which the disease is detected. Early detection is therefore critical to improving survival outcomes. A recent focus of research for early detection is the use of circulating cell-free tumour DNA (ctDNA). The detection of ctDNA offers potential as a relatively non-invasive method of diagnosing pancreatic cancer by using genetic sequencing technology to detect tumour-specific mutational signatures in blood samples before symptoms manifest. These technologies are limited by a number of factors that lower sensitivity and specificity, including low levels of detectable ctDNA in early stage disease and contamination with non-cancer circulating cell-free DNA. However, genetic and epigenetic analysis of ctDNA in combination with other standard diagnostic tests may improve early detection rates. In this review, we evaluate the genetic and epigenetic methods under investigation in diagnosing pancreatic cancer and provide a perspective for future developments.
Collapse
Affiliation(s)
- Jedrzej J. Jaworski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK;
| | - Robert D. Morgan
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Department of Medical Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| |
Collapse
|
28
|
Lueong SS, Herbst A, Liffers ST, Bielefeld N, Horn PA, Tannapfel A, Reinacher-Schick A, Hinke A, Hegewisch-Becker S, Kolligs FT, Siveke JT. Serial Circulating Tumor DNA Mutational Status in Patients with KRAS-Mutant Metastatic Colorectal Cancer from the Phase 3 AIO KRK0207 Trial. Clin Chem 2020; 66:1510-1520. [PMID: 33257977 DOI: 10.1093/clinchem/hvaa223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND We assessed the usefulness of circulating tumor DNA (ctDNA) pre- or post-treatment initiation for outcome prediction and treatment monitoring in metastatic colorectal cancer (mCRC). METHODS Droplet digital PCR was used to measure absolute mutant V-Ki-ras2 Kirsten rat sarcoma viral oncogene ((mut)KRAS) ctDNA concentrations in 214 healthy controls (plasma and sera) and in 151 tissue-based mutKRAS positive patients with mCRC from the prospective multicenter phase 3 trial AIO KRK0207. Serial mutKRAS ctDNA was analyzed prior to and 2-3 weeks after first-line chemotherapy initiation with fluoropyrimidine, oxaliplatin, and bevacizumab in patients with mCRC and correlated with clinical parameters. RESULTS mut KRAS ctDNA was detected in 74.8% (113/151) of patients at baseline and in 59.6% (90/151) at follow-up. mutKRAS ctDNA at baseline and follow-up was associated with poor overall survival (OS) (hazard ratio [HR] =1.88, 95% confidence interval [CI] 1.20-2.95; HR = 2.15, 95% CI 1.47-3.15) and progression-free survival (PFS) (HR = 2.53, 95% CI 1.44-4.46; HR = 1.90, 95% CI 1.23-2.95), respectively. mutKRAS ctDNA clearance at follow-up conferred better disease control (P = 0.0075), better OS (log-rank P = 0.0018), and PFS (log-rank P = 0.0018). Measurable positive mutKRAS ctDNA at follow-up was the strongest and most significant independent prognostic factor on OS in multivariable analysis (HR = 2.31, 95% CI 1.40-3.25). CONCLUSIONS Serial analysis of circulating mutKRAS concentrations in mCRC has prognostic value. Post treatment mutKRAS concentrations 2 weeks after treatment initiation were associated with therapeutic response in multivariable analysis and may be an early response predictor in patients receiving first-line combination chemotherapy. CLINICALTRIALSGOV IDENTIFIER NCT00973609.
Collapse
Affiliation(s)
- Smiths S Lueong
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Andreas Herbst
- Institute of Laboratory Medicine, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK, Partner Site Munich) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Nicola Bielefeld
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Peter A Horn
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | | | - Anke Reinacher-Schick
- Department of Hematology, Oncology and Palliative Care, St. Josef-Hospital, Ruhr-University Bochum
| | - Axel Hinke
- CCRC: Cancer Clinical Research Consulting, Düsseldorf, Germany
| | | | - Frank T Kolligs
- German Cancer Consortium (DKTK, Partner Site Munich) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Department of Medicine, Division of- Gastroenterology, Hepatology & Infectiology, Helios Clinic Berlin-Buch, Berlin, Germany.,Department of Medicine II, University of Munich, Munich, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| |
Collapse
|
29
|
Khomiak A, Brunner M, Kordes M, Lindblad S, Miksch RC, Öhlund D, Regel I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020; 12:E3234. [PMID: 33147766 PMCID: PMC7692691 DOI: 10.3390/cancers12113234] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis that is frequently diagnosed at an advanced stage. Although less common than other malignant diseases, it currently ranks as the fourth most common cause of cancer-related death in the European Union with a five-year survival rate of below 9%. Surgical resection, followed by adjuvant chemotherapy, remains the only potentially curative treatment but only a minority of patients is diagnosed with locally resectable, non-metastatic disease. Patients with advanced disease are treated with chemotherapy but high rates of treatment resistance and unfavorable side-effect profiles of some of the used regimens remain major challenges. Biomarkers reflect pathophysiological or physiological processes linked to a disease and can be used as diagnostic, prognostic and predictive tools. Thus, accurate biomarkers can allow for better patient stratification and guide therapy choices. Currently, the only broadly used biomarker for PDAC, CA 19-9, has multiple limitations and the need for novel biomarkers is urgent. In this review, we highlight the current situation, recent discoveries and developments in the field of biomarkers of PDAC and their potential clinical applications.
Collapse
Affiliation(s)
- Andrii Khomiak
- Shalimov National Institute of Surgery and Transplantology, 03058 Kyiv, Ukraine;
| | - Marius Brunner
- Department of Gastroenterology, Endocrinology and Gastrointestinal Oncology, University Medical Center, 37075 Goettingen, Germany;
| | - Maximilian Kordes
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden;
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stina Lindblad
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Rainer Christoph Miksch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Daniel Öhlund
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
30
|
The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers (Basel) 2020; 12:cancers12092353. [PMID: 32825312 PMCID: PMC7564395 DOI: 10.3390/cancers12092353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This meta-analysis aims to identify the diagnostic accuracy of mutations in the Kirsten Rat Sarcoma (KRAS) oncogene in the diagnosis of pancreatic ductal adenocarcinoma (PDAC). The survival of PDAC remains poor often due to the fact that disease is advanced at diagnosis. We analysed 22 studies, with a total of 2156 patients, to identify if the detection of KRAS mutations from pancreatic exocrine secretions yields sufficient specificity and sensitivity to detect patients with PDAC amongst healthy individuals. The majority of the studies were retrospective, samples were obtained endoscopically or surgically, and included comparator populations of patients with chronic pancreatitis and pre-malignant pancreatic lesions (PanIN) as well as healthy controls. We performed several analyses to identify the diagnostic accuracy for PDAC among these patient populations. Our results highlighted that the diagnostic accuracy of KRAS mutation for PDAC was of variable sensitivity and specificity when compared with PanINs and chronic pancreatitis, but had a higher specificity among healthy individuals. The sensitivity of this test must be improved to prevent missing early PDAC or PanINs. This could be achieved with rigorous prospective cohort studies, in which high-risk patients with normal cross-sectional imaging undergo surveillance following KRAS mutation testing.
Collapse
|
31
|
Use of Biomarkers and Imaging for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071965. [PMID: 32707720 PMCID: PMC7409286 DOI: 10.3390/cancers12071965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers worldwide, and it is typically diagnosed late, with a poor prognosis. Early detection is the most important underlying factor for improving the prognosis of pancreatic cancer patients. One of the most effective strategies for detecting cancers at an early stage is screening of the general population. However, because of the low incidence of pancreatic cancer in the general population, the stratification of subjects who need to undergo further examinations by invasive and expensive modalities is important. Therefore, minimally invasive modalities involving biomarkers and imaging techniques that would facilitate the early detection of pancreatic cancer are highly needed. Multiple types of new blood biomarkers have recently been developed, including unique post-translational modifications of circulating proteins, circulating exosomes, microRNAs, and circulating tumor DNA. We previously reported that circulating apolipoprotein A2 undergoes unique processing in the bloodstream of patients with pancreatic cancer and its precancerous lesions. Additionally, we recently demonstrated a new method for measuring pancreatic proton density in the fat fraction using a fat–water magnetic resonance imaging technique that reflects pancreatic steatosis. In this review, we describe recent developments in potential biomarkers and imaging modalities for the early detection and risk stratification of pancreatic cancer, and we discuss current strategies for implementing screening programs for pancreatic cancer.
Collapse
|
32
|
Abdallah R, Taly V, Zhao S, Pietrasz D, Bachet JB, Basile D, Mas L, Zaanan A, Laurent-Puig P, Taieb J. Plasma circulating tumor DNA in pancreatic adenocarcinoma for screening, diagnosis, prognosis, treatment and follow-up: A systematic review. Cancer Treat Rev 2020; 87:102028. [PMID: 32485509 DOI: 10.1016/j.ctrv.2020.102028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
While no biomarker is currently recommended for the management of pancreatic adenocarcinoma (PA), circulating tumor DNA (ctDNA) seems promising but little is known on how it may help to manage our patients in the near future. This systematic review of literature was designed to explore the current knowledge on ctDNA as a screening, diagnostic, prognostic, predictive and theranostic biomarker in the management of PA. We retrieved 62 full-text articles, 3 meta-analyses, 2 clinical trials, 1 abstract and 13 ongoing trials. Results were categorized into sections about screening, diagnosis, prognosis and follow-up of localized and advanced PA together with possible theranostics applications. Although its specificity is excellent, the current sensitivity of ctDNA remains a limitation especially in patients without metastatic disease. Therefore, this biomarker cannot be currently used as a screening or diagnostic tool. Increasing evidence suggests that ctDNA is a relevant candidate biomarker to assess minimal residual disease after radical surgery, but also a strong independent biomarker linked to a poor prognosis in advanced PA. Some recent data also indicates that ctDNA is an attractive biomarker for longitudinal follow-up and possibly early treatment adaptation. Its role in tumor profiling in advanced disease to decide targeted treatments remains to be explored. Altogether, ctDNA appears to be a reliable prognostic tool. Though promising results have been reported, further studies are still needed to define exactly how ctDNA can help physicians in the screening, diagnosis and treatment, as PA is expected to become a major cause of cancer-related deaths in the forthcoming decade.
Collapse
Affiliation(s)
- Raëf Abdallah
- Université de Paris, Department of Hepatogastroenterology and GI Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Valérie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Shulin Zhao
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Daniel Pietrasz
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Jean-Baptiste Bachet
- Department of Hepatogastroenterology and GI Oncology, La Pitié-Salpêtrière Hospital, Paris, INSERM UMRS 1138, Université de Paris, Paris, France
| | - Debora Basile
- Université de Paris, Department of Hepatogastroenterology and GI Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France; Department of Medicine (DAME), University of Udine, Italy
| | - Léo Mas
- Department of Hepatogastroenterology and GI Oncology, La Pitié-Salpêtrière Hospital, Paris, INSERM UMRS 1138, Université de Paris, Paris, France
| | - Aziz Zaanan
- Université de Paris, Department of Hepatogastroenterology and GI Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Pierre Laurent-Puig
- Université de Paris, Department of Hepatogastroenterology and GI Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Julien Taieb
- Université de Paris, Department of Hepatogastroenterology and GI Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| |
Collapse
|
33
|
Zvereva M, Roberti G, Durand G, Voegele C, Nguyen MD, Delhomme TM, Chopard P, Fabianova E, Adamcakova Z, Holcatova I, Foretova L, Janout V, Brennan P, Foll M, Byrnes GB, McKay JD, Scelo G, Le Calvez-Kelm F. Circulating tumour-derived KRAS mutations in pancreatic cancer cases are predominantly carried by very short fragments of cell-free DNA. EBioMedicine 2020; 55:102462. [PMID: 32249202 PMCID: PMC7251242 DOI: 10.1016/j.ebiom.2019.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring. METHODS We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution. FINDINGS Higher KRAS amplicon size (167 bp and 218 bp) was associated with lower detectable cell-free DNA mutant allelic fractions (p < 0·0001), with up to 4·6-fold (95% CI: 2·6-8·1) difference on average when comparing the 218bp- and the 57bp-amplicons. The proportion of cases with detectable KRAS mutations was also hampered with increased amplicon lengths, with only half of the cases having detectable ctDNA using the 218 bp assay relative to those detected with amplicons less than 80 bp. INTERPRETATION Tumour-derived mutations are carried by shorter cell-free DNA fragments than fragments of wild-type allele. Targeting short amplicons increases the sensitivity of cell-free DNA assays for pancreatic cancer and should be taken into account for optimized assay design and for evaluating their clinical performance. FUNDING IARC; MH CZ - DRO; MH SK; exchange program between IARC and Sao Paulo medical Sciences; French Cancer League.
Collapse
Affiliation(s)
- Maria Zvereva
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Gabriel Roberti
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France; Santa Casa de Sao Paulo of medical Sciences, Sao Paulo, Brazil
| | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Catherine Voegele
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Minh Dao Nguyen
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Tiffany M Delhomme
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Priscilia Chopard
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Eleonora Fabianova
- Regional Authority of Public Health, Banska Bystrica, and Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Zora Adamcakova
- Regional Authority of Public Health, Banska Bystrica, and Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Ivana Holcatova
- First Faculty of Medicine, Charles University of Prague, Institute of Hygiene and Epidemiology, Prague, Czechia
| | - Lenka Foretova
- Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czechia
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czechia
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Graham B Byrnes
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - James D McKay
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Florence Le Calvez-Kelm
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
34
|
Sugimori M, Sugimori K, Tsuchiya H, Suzuki Y, Tsuyuki S, Kaneta Y, Hirotani A, Sanga K, Tozuka Y, Komiyama S, Sato T, Tezuka S, Goda Y, Irie K, Miwa H, Miura Y, Ishii T, Kaneko T, Nagahama M, Shibata W, Nozaki A, Maeda S. Quantitative monitoring of circulating tumor DNA in patients with advanced pancreatic cancer undergoing chemotherapy. Cancer Sci 2020; 111:266-278. [PMID: 31746520 PMCID: PMC6942439 DOI: 10.1111/cas.14245] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
According to cancer genome sequences, more than 90% of cases of pancreatic ductal adenocarcinoma (PDAC) harbor active KRAS mutations. Digital PCR (dPCR) enables accurate detection and quantification of rare mutations. We assessed the dynamics of circulating tumor DNA (ct-DNA) in patients with advanced PDAC undergoing chemotherapy using dPCR. KRAS G12/13 mutation was assayed by dPCR in 47 paired tissue- and ct-DNA samples. The 21 patients were subjected to quantitative ct-DNA monitoring at 4 to 8-week intervals during chemotherapy. KRAS mutation was detected in 45 of those 47 patients using tissue DNA. In the KRAS mutation-negative cases, next-generation sequencing revealed KRAS Q61K and NRAS Q61R mutations. KRAS mutation was detected in 23/45 cases using ct-DNA (liver or lung metastasis, 18/19; mutation allele frequency [MAF], 0.1%-31.7%; peritoneal metastasis, 3/9 [0.1%], locally advanced, 2/17 [0.1%-0.2%]). In the ct-DNA monitoring, the MAF value changed in concordance with the disease state. In the 6 locally advanced cases, KRAS mutation appeared concurrently with liver metastasis. Among the 6 cases with liver metastasis, KRAS mutation disappeared during the duration of stable disease or a partial response, and reappeared at the time of progressive disease. The median progression-free survival was longer in cases in which KRAS mutation disappeared after an initial course of chemotherapy than in those in which it was continuously detected (248.5 vs 50 days, P < .001). Therefore, ct-DNA monitoring enables continuous assessment of disease state and could have prognostic utility during chemotherapy.
Collapse
Affiliation(s)
- Makoto Sugimori
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuya Sugimori
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Hiromi Tsuchiya
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yoshimasa Suzuki
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Sho Tsuyuki
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshihiro Kaneta
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akane Hirotani
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Katsuyuki Sanga
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuichiro Tozuka
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Satoshi Komiyama
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Takeshi Sato
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Shun Tezuka
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yoshihiro Goda
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Kuniyasu Irie
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Haruo Miwa
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Yuuki Miura
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Tomohiro Ishii
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Takashi Kaneko
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Masatsugu Nagahama
- Department of GastroenterologyShowa University Fujigaoka HospitalYokohamaJapan
| | - Wataru Shibata
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
- Division of Translational ResearchAdvanced Medical Research CenterYokohama City UniversityYokohamaJapan
| | - Akito Nozaki
- Gastroenterological CenterYokohama City University Medical CenterYokohamaJapan
| | - Shin Maeda
- Department of GastroenterologyYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
35
|
Brancaccio M, Natale F, Falco G, Angrisano T. Cell-Free DNA Methylation: The New Frontiers of Pancreatic Cancer Biomarkers' Discovery. Genes (Basel) 2019; 11:E14. [PMID: 31877923 PMCID: PMC7017422 DOI: 10.3390/genes11010014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancer types world-wide. Its high mortality is related to the difficulty in the diagnosis, which often occurs when the disease is already advanced. As of today, no early diagnostic tests are available, while only a limited number of prognostic tests have reached clinical practice. The main reason is the lack of reliable biomarkers that are able to capture the early development or the progression of the disease. Hence, the discovery of biomarkers for early diagnosis or prognosis of PDAC remains, de facto, an unmet need. An increasing number of studies has shown that cell-free DNA (cfDNA) methylation analysis represents a promising non-invasive approach for the discovery of biomarkers with diagnostic or prognostic potential. In particular, cfDNA methylation could be utilized for the identification of disease-specific signatures in pre-neoplastic lesions or chronic pancreatitis (CP), representing a sensitive and non-invasive method of early diagnosis of PDAC. In this review, we will discuss the advantages and pitfalls of cfDNA methylation studies. Further, we will present the current advances in the discovery of pancreatic cancer biomarkers with early diagnostic or prognostic potential, focusing on pancreas-specific (e.g., CUX2 or REG1A) or abnormal (e.g., ADAMTS1 or BNC1) cfDNA methylation signatures in high risk pre-neoplastic conditions and PDAC.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Francesco Natale
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Biogem Scarl, Istituto di Ricerche Genetiche “Gaetano Salvatore”, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
36
|
Mendy M, Caboux E, Wild CP. Centralization of the IARC Biobank: Combining Multiple Sample Collections into a Common Platform. Biopreserv Biobank 2019; 17:433-443. [PMID: 31091138 DOI: 10.1089/bio.2018.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) is the World Health Organization's (WHO) cancer research agency. The agency conducts research on cancer with worldwide collaborations, adopting a multidisciplinary approach of epidemiology and laboratory-based studies on cancer causes, as well as preventive interventions. The IARC Biobank stores multiple collections of samples and conducts preanalytical services for studies conducted worldwide in support of the research activities. Traditionally, the multiple collections from these studies were managed by the individual research groups in different project-specific databases. In 2010, a program to centralize sample collections into a single platform was initiated by adopting a common database with the introduction of a minimum dataset for sample collections received at IARC. The process involved checking data files, verifying the storage location of samples, conducting data harmonization, and importing or migrating existing data from project-specific spreadsheets and databases into the common database. In addition to the creation of a common biobank database and an up-to-date inventory of IARC's biological resources, a governance structure was established. The creation of the Biobank Steering Committee and the adoption of an access policy is to facilitate and guide the sharing of IARC's resources in a transparent manner, while taking into account Ethical, Legal, and Social Issues.
Collapse
Affiliation(s)
- Maimuna Mendy
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, Lyon, France
| | - Elodie Caboux
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
37
|
Natale F, Vivo M, Falco G, Angrisano T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin Epigenetics 2019; 11:132. [PMID: 31492175 PMCID: PMC6729090 DOI: 10.1186/s13148-019-0728-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic pancreatitis presents a high risk of inflammation-related progression to pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. The high mortality rate is directly related to the difficulty in promptly diagnosing the disease, which often presents as overt and advanced. Hence, early diagnosis for pancreatic cancer becomes crucial, propelling research into the molecular and epigenetic landscape of the disease. MAIN BODY Recent studies have shown that cell-free DNA methylation profiles from inflammatory diseases or cancer can vary, thus opening a new venue for the development of biomarkers for early diagnosis. In particular, cell-free DNA methylation could be employed in the identification of pre-neoplastic signatures in individuals with suspected pancreatic conditions, representing a specific and non-invasive method of early diagnosis of pancreatic cancer. In this review, we describe the molecular determinants of pancreatic cancer and how these are related to chronic pancreatitis. We will then present an overview of differential methylated genes in the two conditions, highlighting their diagnostic or prognostic potential. CONCLUSION Exploiting the relation between abnormally methylated cell-free DNA and pre-neoplastic lesions or chronic pancreatitis may become a game-changing approach for the development of tools for the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Francesco Natale
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
38
|
Kennedy SR, Zhang Y, Risques RA. Cancer-Associated Mutations but No Cancer: Insights into the Early Steps of Carcinogenesis and Implications for Early Cancer Detection. Trends Cancer 2019; 5:531-540. [PMID: 31474358 PMCID: PMC8765002 DOI: 10.1016/j.trecan.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
Cancer is a disease of aging fueled by the accumulation of somatic mutations. While mutations in tumors are well characterized, little is known about the early mutational processes that initiate tumorigenesis. Recent advances in next-generation sequencing (NGS) have enabled the detection of mutations in normal tissue, revealing an unanticipated high level of age-related somatic mutations affecting most individuals and tissues. Surprisingly, many of these mutations are similar to mutations commonly found in tumors, suggesting an ongoing process of positive selection and clonal expansion akin to what occurs in cancer, but within normal tissue. Here we discuss some of the most important biological and clinical implications of these novel findings, with a special focus on their impact for cancer detection and prediction.
Collapse
Affiliation(s)
- Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Yuezheng Zhang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Mohan S, Ayub M, Rothwell DG, Gulati S, Kilerci B, Hollebecque A, Sun Leong H, Smith NK, Sahoo S, Descamps T, Zhou C, Hubner RA, McNamara MG, Lamarca A, Valle JW, Dive C, Brady G. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in Pancreatic cancer. Sci Rep 2019; 9:11610. [PMID: 31406261 PMCID: PMC6690979 DOI: 10.1038/s41598-019-47489-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
Serial biopsy of pancreatic ductal adenocarcinoma (PDAC), to chart tumour evolution presents a significant challenge. We examined the utility of circulating free DNA (cfDNA) as a minimally invasive approach across a cohort of 55 treatment-naïve patients with PDAC; 31 with metastatic and 24 with locally advanced disease. Somatic mutations in cfDNA were detected using next generation sequencing in 15/24 (62.5%) and 27/31 (87%) of patients with locally advanced and metastatic disease, respectively. Copy number changes were detected in cfDNA of 10 patients of whom 7 exhibited gain of chromosome 12p harbouring KRAS as well as a canonical KRAS codon 12 mutation. In multivariable Cox Regression analysis, we show for the first time that patients with KRAS copy number gain and KRAS mutation have significantly worse outcomes, suggesting that this may be linked to PDAC progression. The simple cfDNA assay we describe will enable determination of the presence of KRAS copy number gain and KRAS mutations in larger studies and clinical trials.
Collapse
Affiliation(s)
- Sumitra Mohan
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Mahmood Ayub
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Dominic G Rothwell
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Sakshi Gulati
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Bedirhan Kilerci
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Antoine Hollebecque
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Hui Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, M20 4BX, Macclesfield, UK
| | - Nigel K Smith
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, M20 4BX, Macclesfield, UK
| | - Tine Descamps
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Cong Zhou
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Richard A Hubner
- Medical Oncology Department, The Christie NHS Foundation Trust; Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, United Kingdom
| | - Mairéad G McNamara
- Medical Oncology Department, The Christie NHS Foundation Trust; Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Angela Lamarca
- Medical Oncology Department, The Christie NHS Foundation Trust; Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, United Kingdom
| | - Juan W Valle
- Medical Oncology Department, The Christie NHS Foundation Trust; Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Caroline Dive
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK
| | - Ged Brady
- Clinical Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, SK10 4TG, Macclesfield, UK.
| |
Collapse
|
40
|
Luchini C, Veronese N, Nottegar A, Cappelletti V, Daidone MG, Smith L, Parris C, Brosens LAA, Caruso MG, Cheng L, Wolfgang CL, Wood LD, Milella M, Salvia R, Scarpa A. Liquid Biopsy as Surrogate for Tissue for Molecular Profiling in Pancreatic Cancer: A Meta-Analysis Towards Precision Medicine. Cancers (Basel) 2019; 11:1152. [PMID: 31405192 PMCID: PMC6721631 DOI: 10.3390/cancers11081152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy (LB) is a non-invasive approach representing a promising tool for new precision medicine strategies for cancer treatment. However, a comprehensive analysis of its reliability for pancreatic cancer (PC) is lacking. To this aim, we performed the first meta-analysis on this topic. We calculated the pooled sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio, and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area under curve (AUC) were used to evaluate the overall accuracy. We finally assessed the concordance rate of all mutations detected by multi-genes panels. Fourteen eligible studies involving 369 patients were included. The overall pooled sensitivity and specificity were 0.70 and 0.86, respectively. The LR+ was 3.85, the LR- was 0.34 and DOR was 15.84. The SROC curve with an AUC of 0.88 indicated a relatively high accuracy of LB for molecular characterization of PC. The concordance rate of all mutations detected by multi-genes panels was 31.9%. LB can serve as surrogate for tissue in the molecular profiling of PC, because of its relatively high sensitivity, specificity and accuracy. It represents a unique opportunity to be further explored towards its introduction in clinical practice and for developing new precision medicine approaches against PC.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Nicola Veronese
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Alessia Nottegar
- Department of Surgery, Section of Pathology, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Vera Cappelletti
- Applied Research and Technological Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Maria G Daidone
- Applied Research and Technological Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Lee Smith
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Parris
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lodewijk A A Brosens
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6526GA Nijmegen, The Netherlands
| | - Maria G Caruso
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher L Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Salvia
- Department of General and Visceral Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
41
|
Lee J, Park SS, Lee YK, Norton JA, Jeffrey SS. Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol 2019; 13:1623-1650. [PMID: 31243883 PMCID: PMC6670020 DOI: 10.1002/1878-0261.12537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Reliable biomarkers are required to evaluate and manage pancreatic ductal adenocarcinoma. Circulating tumor cells and circulating tumor DNA are shed into blood and can be relatively easily obtained from minimally invasive liquid biopsies for serial assays and characterization, thereby providing a unique potential for early diagnosis, forecasting disease prognosis, and monitoring of therapeutic response. In this review, we provide an overview of current technologies used to detect circulating tumor cells and circulating tumor DNA and describe recent advances regarding the multiple clinical applications of liquid biopsy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jee‐Soo Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Sung Sup Park
- Department of Laboratory MedicineSeoul National University College of MedicineSeoulKorea
| | - Young Kyung Lee
- Department of Laboratory MedicineHallym University Sacred Heart HospitalAnyangKorea
- Department of Laboratory MedicineHallym University College of MedicineAnyangKorea
| | - Jeffrey A. Norton
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
42
|
Kobayashi T, Honda K. Trends in biomarker discoveries for the early detection and risk stratification of pancreatic cancer using omics studies. Expert Rev Mol Diagn 2019; 19:651-654. [PMID: 31298060 DOI: 10.1080/14737159.2019.1643718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine , Kobe , Hyogo , Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
43
|
Liu DSK, Mato Prado M, Giovannetti E, Jiao LR, Krell J, Frampton AE. Can circulating tumor and exosomal nucleic acids act as biomarkers for pancreatic ductal adenocarcinoma? Expert Rev Mol Diagn 2019; 19:553-558. [PMID: 31159604 DOI: 10.1080/14737159.2019.1622414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Daniel S K Liu
- a HPB Surgical Unit, Dept. of Surgery & Cancer , Imperial College, Hammersmith Hospital campus , London , UK
- b Division of Cancer, Dept. of Surgery & Cancer , Imperial College , London , UK
| | - Mireia Mato Prado
- b Division of Cancer, Dept. of Surgery & Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- c Department of Medical Oncology, Cancer Center Amsterdam , Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV , , Amsterdam , The Netherlands
- d Fondazione Pisana per la Scienza , 56017 , Pisa , Italy
| | - Long R Jiao
- a HPB Surgical Unit, Dept. of Surgery & Cancer , Imperial College, Hammersmith Hospital campus , London , UK
| | - Jonathan Krell
- b Division of Cancer, Dept. of Surgery & Cancer , Imperial College , London , UK
| | - Adam E Frampton
- a HPB Surgical Unit, Dept. of Surgery & Cancer , Imperial College, Hammersmith Hospital campus , London , UK
- b Division of Cancer, Dept. of Surgery & Cancer , Imperial College , London , UK
| |
Collapse
|
44
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [PMID: 31416571 DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
45
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
46
|
Avogbe PH, Manel A, Vian E, Durand G, Forey N, Voegele C, Zvereva M, Hosen MI, Meziani S, De Tilly B, Polo G, Lole O, Francois P, Delhomme TM, Carreira C, Monteiro-Reis S, Henrique R, Abedi-Ardekani B, Byrnes G, Foll M, Weiderpass E, McKay J, Jeronimo C, Scelo G, Le Calvez-Kelm F. Urinary TERT promoter mutations as non-invasive biomarkers for the comprehensive detection of urothelial cancer. EBioMedicine 2019; 44:431-438. [PMID: 31122840 PMCID: PMC6603852 DOI: 10.1016/j.ebiom.2019.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recurrent mutations in the promoter of the telomerase reverse transcriptase (TERT) gene (C228T and C250T) detected in tumours and cells shed into urine of urothelial cancer (UC) patients are putative biomarkers for UC detection and monitoring. However, the possibility of detecting these mutations in cell-free circulating DNA (cfDNA) in blood and urine, or DNA from urinary exfoliated cells (cellDNA) with a single-gene sensitive assay has never been tested in a case-control setting. METHODS We developed a single-plex assay (UroMuTERT) for the detection of low-abundance TERT promoter mutations. We tested 93 primary and recurrent UC cases and 94 controls recruited in France (blood, urine samples and tumours for the cases), and 50 primary UC cases and 50 controls recruited in Portugal (urinary exfoliated cell samples). We compared our assay with urine cytology. FINDINGS In the French series, C228T or C250T were detected in urinary cfDNA or cellDNA in 81 cases (87·1%; 95% CI 78·6-93·2), and five controls (Specificity 94·7%; 95%CI 88·0-98·3), with 98·6% (95% CI 92·5-99·96) concordance in matched tumours. Detection rate in plasma cfDNA among cases was 7·1%. The UroMuTERT sensitivity was (i) highest for urinary cfDNA and cellDNA combined, (ii) consistent across primary and recurrent cases, tumour stages and grades, (iii) higher for low-risk non-muscle invasive UC (86·1%) than urine cytology (23·0%) (P < 0·0001) and (iv) 93·9% when combined with cytology. In the Portuguese series - the sensitivity and specificity for detection of UC with urinary cellDNA was 68·0% (95% CI 53·3-80·5) and 98·0% (95% CI 89·3-100·0). INTERPRETATION TERT promoter mutations detected by the UroMuTERT assay in urinary DNA (cfDNA or cellDNA) show excellent sensitivity and specificity for the detection of UC, significantly outperforming that of urine cytology notably for detection of low-grade early stages UC. FUND: French Cancer League; French Foster Research in Molecular Biology and European Commission FP7 Marie Curie COFUND.
Collapse
Affiliation(s)
| | - Arnaud Manel
- Protestant Clinic of Lyon, Urology department, Lyon, France
| | - Emmanuel Vian
- Protestant Clinic of Lyon, Urology department, Lyon, France
| | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Nathalie Forey
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Maria Zvereva
- International Agency for Research on Cancer (IARC), Lyon, France; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Md Ismail Hosen
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Sonia Meziani
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Gilles Polo
- Protestant Clinic of Lyon, Urology department, Lyon, France
| | - Olesia Lole
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Pauline Francois
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Sara Monteiro-Reis
- Portuguese Oncology Institute of Porto, Research Center (CI-IPOP), Porto, Portugal
| | - Rui Henrique
- Portuguese Oncology Institute of Porto, Research Center (CI-IPOP), Porto, Portugal; Portuguese Oncology Institute of Porto (IPOP), Department of Pathology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | | | - Graham Byrnes
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Carmen Jeronimo
- Portuguese Oncology Institute of Porto, Research Center (CI-IPOP), Porto, Portugal; Portuguese Oncology Institute of Porto (IPOP), Department of Pathology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | | |
Collapse
|
47
|
Liu X, Liu L, Ji Y, Li C, Wei T, Yang X, Zhang Y, Cai X, Gao Y, Xu W, Rao S, Jin D, Lou W, Qiu Z, Wang X. Enrichment of short mutant cell-free DNA fragments enhanced detection of pancreatic cancer. EBioMedicine 2019; 41:345-356. [PMID: 30857943 PMCID: PMC6442234 DOI: 10.1016/j.ebiom.2019.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Analysis of cell-free DNA (cfDNA) is promising for broad applications in clinical settings, but with significant bias towards late-stage cancers. Although recent studies have discussed the diverse and degraded nature of cfDNA molecules, little is known about its impact on the practice of cfDNA analysis. Methods We developed single-strand library preparation and hybrid-capture-based cfDNA sequencing (SLHC-seq) to analysis degraded cfDNA fragments. Next we used SLHC-seq to perform cfDNA profiling in 112 pancreatic cancer patients, and the results were compared with 13 previous reports. Extensive analysis was performed in terms of cfDNA fragments to explore the reasons for higher detection rate of KRAS mutations in the circulation of pancreatic cancers. Findings By applying the new approach, we achieved higher efficiency in analysis of mutations than previously reported using other detection assays. 791 cancer-specific mutations were detected in plasma of 88% patients with KRAS hotspots detected in 70% of all patients. Only 8 mutations were detected in 28 healthy controls without any known oncogenic or truncating alleles. cfDNA profiling by SLHC-seq was largely consistent with results of tissue-based sequencing. SLHC-seq rescued short or damaged cfDNA fragments along to increase the sensitivity and accuracy of circulating-tumour DNA detection. Interpretation We found that the small mutant fragments are prevalent in early-stage patients, which provides strong evidence for fragment size-based detection of pancreatic cancer. The new pipeline enhanced our understanding of cfDNA biology and provide new insights for liquid biopsy.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China; Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changyu Li
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xuerong Yang
- Department of Radiology, Shuguang Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuefang Zhang
- Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xuyu Cai
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Weihong Xu
- Stanford Genome Technology Center, Palo Alto, CA, USA
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Dayong Jin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China.
| | - Zilong Qiu
- Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China.
| |
Collapse
|
48
|
Xie W, Xie L, Song X. The diagnostic accuracy of circulating free DNA for the detection of KRAS mutation status in colorectal cancer: A meta-analysis. Cancer Med 2019; 8:1218-1231. [PMID: 30791218 PMCID: PMC6434340 DOI: 10.1002/cam4.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations have been reported as a reliable biomarker for epidermal growth factor receptor (EGFR) targeted therapy and are also associated with poor prognosis in colorectal cancer (CRC) patients. However, limitations of detecting KRAS mutations in tissues are obvious. KRAS mutations in the peripheral blood can be detected as an alternative to tissue analysis. The objective of this meta‐analysis was to evaluate the diagnostic value of cfDNA (circulating free DNA) compared with tissues and to investigate the prognostic potential of cfDNA KRAS mutations in CRC patients. Searches were performed in PubMed, Embase, and Cochrane Library for published studies. We extracted true‐positive (TP), false‐positive (FP), false‐negative (FN), true‐negative (TN) values, survival rate of CRC patients with mutant and wild‐type KRAS and calculated pooled sensitivity and specificity, positive/negative likelihood ratios [PLRs/NLRs], diagnostic odds ratios [DORs], and corresponding 95% confidence intervals [95% CIs]. We also generated a summary receiver operating characteristic (SROC) curve to evaluate the overall diagnostic potential. Totally, 31 relevant studies were recruited and used for the meta‐analysis on the efficacy of cfDNA testing in detecting KRAS mutations. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.637 (95% CI: 0.607‐0.666), 0.943 (95% CI: 0.930‐0.954), 10.024 (95% CI: 6.912‐14.535), 0.347 (95% CI: 0.269‐0.447), and 37.882 (95% CI: 22.473‐63.857), respectively. The area under the SROC curve was 0.9392. Together, the results suggest that detecting KRAS mutations in cfDNA has adequate diagnostic efficacy in terms of specificity. There is a promising role for cfDNA in the detection of KRAS mutations in CRC patients. However, prospective studies with larger patient cohorts are still required before definitive conclusions of the prognostic potential of cfDNA KRAS mutations in CRC patients were drawn.
Collapse
Affiliation(s)
- Wenli Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Shandong Province, Jinan, P.R. China
| | - Li Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Province, Jinan, P.R. China
| | - Xianrang Song
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Shandong Province, Jinan, P.R. China.,Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Province, Jinan, P.R. China
| |
Collapse
|
49
|
Januszewicz W, Fitzgerald RC. Early detection and therapeutics. Mol Oncol 2019; 13:599-613. [PMID: 30677217 PMCID: PMC6396365 DOI: 10.1002/1878-0261.12458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022] Open
Abstract
Early detection, including cancer screening and surveillance, is emerging as one of the most important topics in modern oncology. Because symptomatic presentation remains the predominant route to cancer diagnosis, there is a growing interest in developing techniques to detect the disease at an early, curative stage. Moreover, growing understanding of cancer biology has paved the way for prevention studies with the focus on therapeutic interventions for premalignant conditions. Where there is a recognisable precursor stage, such as a colorectal adenoma or Barrett's metaplasia, the removal of abnormal tissue prevents the development of cancer and enables stratification of the patient to a high-risk group requiring further surveillance. Here, we provide a review of the available technologies for early diagnosis and minimally-invasive treatment.
Collapse
Affiliation(s)
- Wladyslaw Januszewicz
- MRC Cancer Unit, University of Cambridge, UK.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | | |
Collapse
|
50
|
Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, Stephens BM, Huang J, Semaan A, Guerrero PA, Kamyabi N, Zhao J, Hurd MW, Koay EJ, Taniguchi CM, Herman JM, Javle M, Wolff R, Katz M, Varadhachary G, Maitra A, Alvarez HA. Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer. Gastroenterology 2019; 156:108-118.e4. [PMID: 30240661 PMCID: PMC6434712 DOI: 10.1053/j.gastro.2018.09.022] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We aimed to investigate the clinical utility of circulating tumor cell DNA (ctDNA) and exosome DNA (exoDNA) in pancreatic cancer. METHODS We collected liquid biopsy samples from 194 patients undergoing treatment for localized or metastatic pancreatic adenocarcinoma from April 7, 2015, through October 13, 2017 (425 blood samples collected before [baseline] and during therapy). Additional liquid biopsy samples were collected from 37 disease control individuals. Droplet digital polymerase chain reaction was used to determine KRAS mutant allele fraction (MAF) from ctDNA and exoDNA purified from plasma. For the longitudinal analysis, we analyzed exoDNA and ctDNA in 123 serial blood samples from 34 patients. We performed analysis including Cox regression, Fisher exact test, and Bayesian inference to associate KRAS MAFs in exoDNA and ctDNA with prognostic and predictive outcomes. RESULTS In the 34 patients with potentially resectable tumors, an increase in exoDNA level after neoadjuvant therapy was significantly associated with disease progression (P = .003), whereas ctDNA did not show correlations with outcomes. Concordance rates of KRAS mutations present in surgically resected tissue and detected in liquid biopsy samples were greater than 95%. On univariate analysis, patients with metastases and detectable ctDNA at baseline status had significantly shorter times of progression-free survival (PFS) (hazard ratio [HR] for death, 1.8; 95% CI, 1.1-3.0; P = .019), and overall survival (OS) (HR, 2.8; 95% CI, 1.4-5.7; P = .0045) compared with patients without detectable ctDNA. On multivariate analysis, MAFs ≥5% in exoDNA were a significant predictor of PFS (HR, 2.28; 95% CI, 1.18-4.40; P = .014) and OS (HR, 3.46; 95% CI, 1.40-8.50; P = .007). A multianalyte approach showed detection of both ctDNA and exoDNA MAFs ≥5% at baseline status to be a significant predictor of OS (HR, 7.73, 95% CI, 2.61-22.91, P = .00002) on multivariate analysis. In the longitudinal analysis, an MAF peak above 1% in exoDNA was significantly associated with radiologic progression (P = .0003). CONCLUSIONS In a prospective cohort of pancreatic cancer patients, we show how longitudinal monitoring using liquid biopsy samples through exoDNA and ctDNA provides both predictive and prognostic information relevant to therapeutic stratification.
Collapse
Affiliation(s)
- Vincent Bernard
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas,The University of Texas MD Anderson Cancer Center UTHealth
Graduate School of Biomedical Sciences, Houston, Texas
| | - Dong U. Kim
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas,Department of Internal Medicine, Biomedical Research
Institute, Pusan National University Hospital, Pusan National University School of
Medicine, Busan, Korea
| | - F. Anthony San Lucas
- Department of Epidemiology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Jonathan Castillo
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Kelvin Allenson
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas,Department of Surgical Oncology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Feven C. Mulu
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Bret M. Stephens
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Jonathan Huang
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Alexander Semaan
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Paola A. Guerrero
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Nabiollah Kamyabi
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Mark W. Hurd
- Sheikh Ahmed Pancreatic Cancer Research Center, The
University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, Texas
| | - Cullen M. Taniguchi
- Department of Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, Texas
| | - Joseph M. Herman
- Department of Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Wolff
- Department of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew Katz
- Department of Surgical Oncology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| | - Gauri Varadhachary
- Department of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas,Sheikh Ahmed Pancreatic Cancer Research Center, The
University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hector A. Alvarez
- Department of Hematopathology, The University of Texas MD
Anderson Cancer Center, Houston, Texas
| |
Collapse
|