1
|
Lin HY, Wang X, Tseng TS, Kao YH, Fang Z, Molina PE, Cheng CH, Berglund AE, Eeles RA, Muir KR, Pashayan N, Haiman CA, Brenner H, Consortium TP, Park JY. Alcohol Intake and Alcohol-SNP Interactions Associated with Prostate Cancer Aggressiveness. J Clin Med 2021; 10:553. [PMID: 33540941 PMCID: PMC7867322 DOI: 10.3390/jcm10030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Excessive alcohol intake is a well-known modifiable risk factor for many cancers. It is still unclear whether genetic variants or single nucleotide polymorphisms (SNPs) can modify alcohol intake's impact on prostate cancer (PCa) aggressiveness. The objective is to test the alcohol-SNP interactions of the 7501 SNPs in the four pathways (angiogenesis, mitochondria, miRNA, and androgen metabolism-related pathways) associated with PCa aggressiveness. We evaluated the impacts of three excessive alcohol intake behaviors in 3306 PCa patients with European ancestry from the PCa Consortium. We tested the alcohol-SNP interactions using logistic models with the discovery-validation study design. All three excessive alcohol intake behaviors were not significantly associated with PCa aggressiveness. However, the interactions of excessive alcohol intake and three SNPs (rs13107662 [CAMK2D, p = 6.2 × 10-6], rs9907521 [PRKCA, p = 7.1 × 10-5], and rs11925452 [ROBO1, p = 8.2 × 10-4]) were significantly associated with PCa aggressiveness. These alcohol-SNP interactions revealed contrasting effects of excessive alcohol intake on PCa aggressiveness according to the genotypes in the identified SNPs. We identified PCa patients with the rs13107662 (CAMK2D) AA genotype, the rs11925452 (ROBO1) AA genotype, and the rs9907521 (PRKCA) AG genotype were more vulnerable to excessive alcohol intake for developing aggressive PCa. Our findings support that the impact of excessive alcohol intake on PCa aggressiveness was varied by the selected genetic profiles.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xinnan Wang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tung-Sung Tseng
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yu-Hsiang Kao
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Kenneth R Muir
- Division of Population Health, Health Services Research, and Primary Care, University of Manchester, Oxford Road, Manchester, M139PT, UK
| | - Nora Pashayan
- Department of Applied Health Research, University College London, WC1E 7HB, London, UK
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90015, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - The Practical Consortium
- The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (PRACTICAL, http://practical.icr.ac.uk/), London SM2 5NG, UK. Additional members from The PRACTICAL Consortium were provided in the Supplement
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Distinctive roles of Abi1 in regulating actin-associated proteins during human smooth muscle cell migration. Sci Rep 2020; 10:10667. [PMID: 32606387 PMCID: PMC7326921 DOI: 10.1038/s41598-020-67781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle cell migration is essential for many diverse biological processes such as pulmonary/cardiovascular development and homeostasis. Abi1 (Abelson interactor 1) is an adapter protein that has been implicated in nonmuscle cell migration. However, the role and mechanism of Abi1 in smooth muscle migration are largely unknown. Here, Abi1 knockdown by shRNA reduced human airway smooth muscle cell migration, which was restored by Abi1 rescue. Abi1 localized at the tip of lamellipodia and its protrusion coordinated with F-actin at the leading cell edge of live cells. In addition, we identified profilin-1 (Pfn-1), a G-actin transporter, as a new partner for Abi1. Abi1 knockdown reduced the recruitment of Pfn-1 to the leading cell edge. Moreover, Abi1 knockdown reduced the localization of the actin-regulatory proteins c-Abl (Abelson tyrosine kinase) and N-WASP (neuronal Wiskott–Aldrich Syndrome Protein) at the cell edge without affecting other migration-related proteins including pVASP (phosphorylated vasodilator stimulated phosphoprotein), cortactin and vinculin. Furthermore, we found that c-Abl and integrin β1 regulated the positioning of Abi1 at the leading edge. Taken together, the results suggest that Abi1 regulates cell migration by affecting Pfn-1 and N-WASP, but not pVASP, cortactin and focal adhesions. Integrin β1 and c-Abl are important for the recruitment of Abi1 to the leading edge.
Collapse
|
3
|
Díaz-Valdivia NI, Díaz J, Contreras P, Campos A, Rojas-Celis V, Burgos-Ravanal RA, Lobos-González L, Torres VA, Perez VI, Frei B, Leyton L, Quest AFG. The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene 2020; 39:3693-3709. [PMID: 32152405 PMCID: PMC7190567 DOI: 10.1038/s41388-020-1242-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Caveolin-1 (CAV1) enhanced migration, invasion, and metastasis of cancer cells is inhibited by co-expression of the glycoprotein E-cadherin. Although the two proteins form a multiprotein complex that includes β-catenin, it remained unclear how this would contribute to blocking the metastasis promoting function of CAV1. Here, we characterized by mass spectrometry the protein composition of CAV1 immunoprecipitates from B16F10 murine melanoma cells expressing or not E-cadherin. The novel protein tyrosine phosphatase PTPN14 was identified by mass spectrometry analysis exclusively in co-immunoprecipitates of CAV1 with E-cadherin. Interestingly, PTPN14 is implicated in controlling metastasis, but only few known PTPN14 substrates exist. We corroborated by western blotting experiments that PTPN14 and CAV1 co-inmunoprecipitated in the presence of E-cadherin in B16F10 melanoma and other cancer cells. Moreover, the CAV1(Y14F) mutant protein was shown to co-immunoprecipitate with PTPN14 even in the absence of E-cadherin, and overexpression of PTPN14 reduced CAV1 phosphorylation on tyrosine-14, as well as suppressed CAV1-enhanced cell migration, invasion and Rac-1 activation in B16F10, metastatic colon [HT29(US)] and breast cancer (MDA-MB-231) cell lines. Finally, PTPN14 overexpression in B16F10 cells reduced the ability of CAV1 to induce metastasis in vivo. In summary, we identify here CAV1 as a novel substrate for PTPN14 and show that overexpression of this phosphatase suffices to reduce CAV1-induced metastasis.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - América Campos
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Victoria Rojas-Celis
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Renato A Burgos-Ravanal
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana I Perez
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Balz Frei
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Scagliotti GV, Gaafar R, Nowak AK, Nakano T, van Meerbeeck J, Popat S, Vogelzang NJ, Grosso F, Aboelhassan R, Jakopovic M, Ceresoli GL, Taylor P, Orlandi F, Fennell DA, Novello S, Scherpereel A, Kuribayashi K, Cedres S, Sørensen JB, Pavlakis N, Reck M, Velema D, von Wangenheim U, Kim M, Barrueco J, Tsao AS. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): a double-blind, randomised, placebo-controlled phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2019; 7:569-580. [DOI: 10.1016/s2213-2600(19)30139-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023]
|
5
|
Tsao A, Nakano T, Nowak AK, Popat S, Scagliotti GV, Heymach J. Targeting angiogenesis for patients with unresectable malignant pleural mesothelioma. Semin Oncol 2019; 46:145-154. [PMID: 31280996 DOI: 10.1053/j.seminoncol.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a global health issue, the principal cause of which is exposure to asbestos. The prevalence is anticipated to rise over the next 2 decades, particularly in developing countries, due to the 30-50-year latency period between exposure to asbestos and carcinogenic development. Unresectable MPM has a poor prognosis and limited treatment options and, as such, there is a broad range of therapeutic targets of interest, including angiogenesis, immune checkpoints, mesothelin, as well as chemotherapeutic agents. Recently, the results of several randomized trials in the first-line setting combining antiangiogenic agents with chemotherapy have been reported. This review examines the scientific rationale for targeting angiogenesis in the treatment of unresectable MPM and analyzes recent clinical results with antiangiogenic agents in development (bevacizumab, nintedanib, and cediranib) for the management of MPM.
Collapse
Affiliation(s)
- Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Takashi Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Otemae Hospital, Osaka, Japan
| | - Anna K Nowak
- School of Medicine, Faculty of Health and Medical Science, University of Western Australia, Crawley, Western Australia, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | | | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Chiang TS, Lin MC, Tsai MC, Chen CH, Jang LT, Lee FJS. ADP-ribosylation factor-like 4A interacts with Robo1 to promote cell migration by regulating Cdc42 activation. Mol Biol Cell 2019; 30:69-81. [PMID: 30427759 PMCID: PMC6337904 DOI: 10.1091/mbc.e18-01-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cell migration is a highly regulated event that is initiated by cell membrane protrusion and actin reorganization. Robo1, a single-pass transmembrane receptor, is crucial for neuronal guidance and cell migration. ADP-ribosylation factor (Arf)-like 4A (Arl4A), an Arf small GTPase, functions in cell morphology, cell migration, and actin cytoskeleton remodeling; however, the molecular mechanisms of Arl4A in cell migration are unclear. Here, we report that the binding of Arl4A to Robo1 modulates cell migration by promoting Cdc42 activation. We found that Arl4A interacts with Robo1 in a GTP-dependent manner and that the Robo1 amino acid residues 1394-1398 are required for this interaction. The Arl4A-Robo1 interaction is essential for Arl4A-induced cell migration and Cdc42 activation but not for the plasma membrane localization of Robo1. In addition, we show that the binding of Arl4A to Robo1 decreases the association of Robo1 with the Cdc42 GTPase-activating protein srGAP1. Furthermore, Slit2/Robo1 binding down-regulates the Arl4A-Robo1 interaction in vivo, thus attenuating Cdc42-mediated cell migration. Therefore, our study reveals a novel mechanism by which Arl4A participates in Slit2/Robo1 signaling to modulate cell motility by regulating Cdc42 activity.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ming-Chieh Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Meng-Chen Tsai
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chieh-Hsin Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Ting Jang
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
7
|
Grosso F, Steele N, Novello S, Nowak AK, Popat S, Greillier L, John T, Leighl NB, Reck M, Taylor P, Planchard D, Sørensen JB, Socinski MA, von Wangenheim U, Loembé AB, Barrueco J, Morsli N, Scagliotti G. Nintedanib Plus Pemetrexed/Cisplatin in Patients With Malignant Pleural Mesothelioma: Phase II Results From the Randomized, Placebo-Controlled LUME-Meso Trial. J Clin Oncol 2017; 35:3591-3600. [DOI: 10.1200/jco.2017.72.9012] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose LUME-Meso is a phase II/III randomized, double-blind trial designed to assess efficacy and safety of nintedanib plus chemotherapy as first-line treatment of malignant pleural mesothelioma (MPM). Phase II results are reported here. Patients and Methods Chemotherapy-naïve patients with unresectable, nonsarcomatoid MPM (Eastern Cooperative Oncology Group performance status 0 to 1), stratified by histology (epithelioid or biphasic), were randomly assigned in a 1:1 ratio to up to six cycles of pemetrexed and cisplatin plus nintedanib (200 mg twice daily) or placebo followed by nintedanib plus placebo monotherapy until progression. The primary end point was progression-free survival (PFS). Results Eighty-seven patients were randomly assigned. The median number of pemetrexed and cisplatin cycles was six; the median treatment duration for nintedanib was 7.8 months and 5.3 months for placebo. Primary PFS favored nintedanib (hazard ratio [HR], 0.56; 95% CI, 0.34 to 0.91; P = .017), which was confirmed in updated PFS analyses (HR, 0.54; 95% CI, 0.33 to 0.87; P = .010). A trend toward improved overall survival also favored nintedanib (HR, 0.77; 95% CI, 0.46 to 1.29; P = .319). Benefit was evident in epithelioid histology, with a median overall survival gain of 5.4 months (HR, 0.70; 95% CI, 0.40 to 1.21; P = .197; median [nintedanib v placebo], 20.6 months v 15.2 months) and median PFS gain of 4.0 months (HR, 0.49; 95% CI, 0.30 to 0.82; P = .006; median [nintedanib v placebo], 9.7 v 5.7 months). Neutropenia was the most frequent grade ≥ 3 adverse event (AE; nintedanib 43.2% v placebo 12.2%); rates of febrile neutropenia were low (4.5% in nintedanib group v 0% in placebo group). AEs leading to discontinuation were reported in 6.8% of those receiving nintedanib versus 17.1% of those in the placebo group. Conclusion Addition of nintedanib to pemetrexed plus cisplatin resulted in PFS improvement. AEs were manageable. The clinical benefit was evident in patients with epithelioid histology. The confirmatory phase III part of the study is ongoing.
Collapse
Affiliation(s)
- Federica Grosso
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Nicola Steele
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Silvia Novello
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Anna K. Nowak
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Sanjay Popat
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Laurent Greillier
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Thomas John
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Natasha B. Leighl
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Martin Reck
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Paul Taylor
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - David Planchard
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Jens Benn Sørensen
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Mark A. Socinski
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Ute von Wangenheim
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Arsène Bienvenu Loembé
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - José Barrueco
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Nassim Morsli
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| | - Giorgio Scagliotti
- Federica Grosso, Azienda Ospedaliera SS Antonio e Biagio General Hospital, Alessandria; Silvia Novello and Giorgio Scagliotti, L’università di Torino, Azienda Sanitaria Ospedale San Luigi Gonzaga, Turin, Italy; Anna K. Nowak, University of Western Australia, Crawley, and Sir Charles Gairdner Hospital, Nedlands, Western Australia; Thomas John, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia; Sanjay Popat, The Royal Marsden Hospital National Health Service
| |
Collapse
|
8
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
9
|
Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumour Biol 2015; 36:8943-8951. [PMID: 26081620 DOI: 10.1007/s13277-015-3651-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/07/2015] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that miR-219-5p is dysregulated and exerts tumor-suppressive effects in cancer development and progression. However, the molecular function and mechanism of miR-219-5p in glioblastoma growth and invasion are still unclear. In the present study, we show that miR-219-5p was downregulated in a panel of glioma tissues with different grades and in all the human glioma cell lines examined. Ectopic expression of miR-219-5p inhibited proliferation and invasion and induced apoptosis in vitro, and xenograft formation in vivo. ROBO1 was found to be a direct target of miR-219-5p, and when overexpressed in miR-219-5p-expressing glioma cells, was able to restore proliferative and invasive ability. Finally, in vivo investigation confirmed that miR-219-5p was a tumor suppressor that regulated ROBO1 expression. Taken together, these studies demonstrate that miR-219-5p inhibited cancer cell growth and invasion by direct targeting ROBO1, implicating miR-219-5p as an attractive candidate for cancer therapy.
Collapse
Affiliation(s)
- Yongmei Jiang
- Department of Neurology, Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| | - Lin Yin
- Department of Neurology, Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| | - Huirong Jing
- Department of Neurology, Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| | - Hui Zhang
- Department of Neurology, Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| |
Collapse
|
10
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
11
|
Wang SJ, Cui HY, Liu YM, Zhao P, Zhang Y, Fu ZG, Chen ZN, Jiang JL. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells. Oncotarget 2015; 6:243-57. [PMID: 25428919 PMCID: PMC4381592 DOI: 10.18632/oncotarget.2801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 12/19/2022] Open
Abstract
Metastasis is considered a dynamic process in tumor development that is related to abnormal migration and invasion. Tumor cells can move as individual cells in two interconvertible modes: mesenchymal-type and amoeboid. Previously, we reported that the interaction between CD147 and Annexin II can inhibit the amoeboid movement in hepatocellular carcinoma (HCC) cells. However, the mechanism of CD147 involved in mesenchymal movement is still unclear. Notably, our results show overexpression of CD147 led to mesenchymal-type movement in HCC cells. Evidence indicated that the mesenchymal-type cell movement induced by CD147 was Src dependent, as observed by confocal microscopy and Rac1 activity assay. The phosphorylation of Src (pY416-Src) can be up-regulated by CD147, and this regulation is mediated by focal adhesion kinase (FAK). Next, we identified DOCK8 as a GEF for Rac1, a key molecule driving mesenchymal-type movement. We also found that Src promotes STAT3 phosphorylation and STAT3 facilitates DOCK8 transcription, thus enhancing DOCK8 expression and Rac1 activation. This study provides a novel mechanism of CD147 regulating mesenchymal-type movement in HCC cells.
Collapse
Affiliation(s)
- Shi-Jie Wang
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Hong-Yong Cui
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yan-Mei Liu
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Zhang
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Guang Fu
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jian-Li Jiang
- Cell Engineering Research Center & Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Li H, Luo J, Xu B, Luo K, Hou J. MicroRNA-29a inhibits cell migration and invasion by targeting Roundabout 1 in breast cancer cells. Mol Med Rep 2015; 12:3121-6. [PMID: 25955714 DOI: 10.3892/mmr.2015.3749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains a major gynecological problem, with a poor 5-year-survival rate due to distant metastases. The identification of microRNAs (miRNAs) may provide a novel avenue for diagnostic and treatment regimens for EOC. Several miRNAs have been reported to be involved in the progression of EOC, among which miRNA (miR)-137 has been observed to be downregulated in the ovarian tissues of patients with EOC. However, the functions of miR-137 in EOC cell apoptosis, migration and invasion remain to be elucidated. In the present study, the expression of miR-137 was measured in clinical ovarian cancer specimens and cell lines using reverse transcription-quantitative polymerase chain reaction. The role of miR-137 in the growth and survival of the SKOV3 human ovarian cancer cell line was determined using several in vitro approaches and in nude mouse models. The results demonstrated that the expression of miR-137 was downregulated in the ovarian cancer specimens and cell lines. It was also observed that enforced expression of miR-137 in the EOC cell lines decreased cell proliferation, clonogenicity, migration and invasion, and induced G1 arrest and cell apoptosis in vitro. Notably, the enforced expression of miR-137 suppressed tumor growth in the nude mice models. These findings suggested that miR-137 may act as a tumor suppressor and be used as a potential therapeutic agent for the treatment of EOC.
Collapse
Affiliation(s)
- Hui Li
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Jiashun Luo
- Institute of Medical Research, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Bin Xu
- Institute of Medical Research, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Kaijun Luo
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Juan Hou
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
13
|
Parray A, Siddique HR, Kuriger JK, Mishra SK, Rhim JS, Nelson HH, Aburatani H, Konety BR, Koochekpour S, Saleem M. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int J Cancer 2014; 135:2493-506. [PMID: 24752651 PMCID: PMC4610361 DOI: 10.1002/ijc.28919] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans.
Collapse
MESH Headings
- Black or African American/statistics & numerical data
- Blotting, Western
- Cadherins/genetics
- Cadherins/metabolism
- Cell Movement
- Cell Proliferation
- Cohort Studies
- Disease Progression
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Immunoenzyme Techniques
- Male
- Neoplasm Metastasis
- Neoplasm Staging
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/ethnology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- White People/statistics & numerical data
- Wound Healing
- beta Catenin/genetics
- beta Catenin/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/metabolism
- Roundabout Proteins
Collapse
Affiliation(s)
- Aijaz Parray
- Section of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, MN
| | - Hifzur R. Siddique
- Section of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, MN
| | - Jacquelyn K. Kuriger
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Shrawan K. Mishra
- Section of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, MN
| | - Johng S. Rhim
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Heather H. Nelson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | - Badrinath R. Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Shahriar Koochekpour
- Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY
| | - Mohammad Saleem
- Section of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, MN
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol 2014; 27:82-8. [PMID: 24698714 DOI: 10.1016/j.conb.2014.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/20/2022]
Abstract
Slit repulsion, mediated by Robo receptors, is known to play a major role in axon guidance in the nervous system. However, recent studies have revealed that in the mammalian cortex these molecules are highly versatile and that their function extends far beyond axon guidance. They act at all phases of development to control neurogenesis, neuronal migration, axon patterning, dendritic outgrowth and spinogenesis. The expression of Robo receptors in cortical and thalamocortical axons (TCAs) is tightly regulated by a combination of transcription factors (TFs), proteases and activity. These findings also suggest that Slit and Robos have influenced the evolution of cortical circuits. Last, novel genetic evidence associates various neurological disorders, such as autism, to abnormal Slit/Robo signaling.
Collapse
Affiliation(s)
- Heike Blockus
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France
| | - Alain Chédotal
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France.
| |
Collapse
|
15
|
Cleary RA, Wang R, Waqar O, Singer HA, Tang DD. Role of c-Abl tyrosine kinase in smooth muscle cell migration. Am J Physiol Cell Physiol 2014; 306:C753-61. [PMID: 24477238 DOI: 10.1152/ajpcell.00327.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.
Collapse
Affiliation(s)
- Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | | | |
Collapse
|
16
|
Wang G, Li Y, Wang XY, Han Z, Chuai M, Wang LJ, Ho Lee KK, Geng JG, Yang X. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation. Exp Cell Res 2013; 319:1083-93. [PMID: 23438940 DOI: 10.1016/j.yexcr.2013.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 12/27/2022]
Abstract
Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1(+) migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug(+) pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1(+) migrating NCCs but reduced Pax7 expression and fewer Slug(+) pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly coordinating cell proliferation and differentiation during neurulation.
Collapse
Affiliation(s)
- Guang Wang
- Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
18
|
Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DDL, Ronai Z, Reed JC, Matsuzawa SI. Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 2011; 10:2592-602. [PMID: 21734459 DOI: 10.4161/cc.10.15.16912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p27(kip1) has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP (-/-) embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared to wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.
Collapse
Affiliation(s)
- Yoshito Nagano
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Zhang J, Banerjee S, Barnes L, Sajja V, Liu Y, Guo B, Du Y, Agarwal MK, Wald DN, Wang Q, Yang J. Sumoylation of vimentin354 is associated with PIAS3 inhibition of glioma cell migration. Oncotarget 2010; 1:620-627. [PMID: 21317457 PMCID: PMC3248133 DOI: 10.18632/oncotarget.196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/10/2010] [Indexed: 11/25/2022] Open
Abstract
The invasive phenotype of glioblastoma multiforme (GBM) is a hallmark of malignant process, yet the molecular mechanisms that dictate this locally invasive behavior remain poorly understood. Over-expression of PIAS3 effectively changes cell shape and inhibits GBM cell migration. We focused on the molecular target(s) of PIAS3 stimulated sumoylation, which play an important role in the inhibition of GBM cell motility. Here we report, through the immunoprecipitation with SUMO1 antibody, followed by proteomic analysis, the identification of vimentin (vimentin354), a nuclear component in GBM cells, as the main target of sumoylation promoted by PIAS3.
Collapse
Affiliation(s)
- Liming Wang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | | | - Sipra Banerjee
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Laura Barnes
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Venkateswara Sajja
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| | - Yiding Liu
- Department of Chemistry, Cleveland State University, Cleveland, USA
| | - Baochuan Guo
- Department of Chemistry, Cleveland State University, Cleveland, USA
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Qin Wang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
| | - Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, P. R. China
- Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|