1
|
Shao Y, Zhang S, Pan Y, Peng Z, Dong Y. miR-135b: A key role in cancer biology and therapeutic targets. Noncoding RNA Res 2025; 12:67-80. [PMID: 40124960 PMCID: PMC11930451 DOI: 10.1016/j.ncrna.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
miR-135b, a microRNA, is consistently up-regulated in various cancer tissues and cells, promoting cancer progression. By inhibiting one or more target genes, miR-135b regulates phenotypes such as cancer growth, apoptosis, migration, invasion, drug resistance, and angiogenesis, establishing it as a critical driver of cancer progression. Additionally, miR-135b is regulated by various oncogenes and therapeutic drugs, highlighting its complexity and therapeutic potential. Significant progress has been made in understanding miR-135b's impact on cancer cell behavior, establishing it as a promising biomarker for cancer diagnosis and prognosis, as well as a potential target for future cancer therapies. However, despite the extensive research on this topic, there has been no comprehensive review summarizing its role and mechanisms across different cancer types. This review aims to provide a detailed overview of the biological characteristics of miR-135b, its regulatory targets, upstream signaling pathways, and its therapeutic potential, including its influence on cancer chemoresistance. The review also addresses key controversies surrounding miR-135b in cancer research, aiming to deepen the understanding of its role, promote the transformation of its clinical application, and provide a theoretical foundation for developing more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yingchun Shao
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yuxin Pan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhan Peng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Machado-Paula LA, Romanowska J, Lie RT, Hovey L, Doolittle B, Awotoye W, Dunlay L, Xie XJ, Zeng E, Butali A, Marazita ML, Murray JC, Moreno-Uribe LM, Petrin AL. Genetic-epigenetic interactions (meQTLs) in orofacial clefts etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.09.25321494. [PMID: 39990564 PMCID: PMC11844571 DOI: 10.1101/2025.02.09.25321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Objectives Nonsyndromic orofacial clefts (OFCs) etiology involves multiple genetic and environmental factors with over 60 identified risk loci; however, they account for only a minority of the estimated risk. Epigenetic factors such as differential DNA methylation (DNAm) are also associated with OFCs risk and can alter risk for different cleft types and modify OFCs penetrance. DNAm is a covalent addition of a methyl (CH3) group to the nucleotide cytosine that can lead to changes in expression of the targeted gene. DNAm can be affected by environmental influences and genetic variation via methylation quantitative loci (meQTLs). We hypothesize that aberrant DNAm and the resulting alterations in gene expression play a key role in the etiology of OFCs, and that certain common genetic variants that affect OFCs risk do so by influencing DNAm. Methods We used genotype from 10 cleft-associated SNPs and genome-wide DNA methylation data (Illumina 450K array) for 409 cases with OFCs and 456 controls and identified 23 cleft-associated meQTLs. We then used an independent cohort of 362 cleft-discordant sib pairs for replication. We used methylation-specific qPCR to measure methylation levels of each CpG site and combined genotypic and methylation data for an interaction analysis of each SNP-CpG pair using the R package MatrixeQTL in a linear model. We also performed a Paired T-test to analyze differences in DNA methylation between each member of the sibling pairs. Results We replicated 9 meQTLs, showing interactions between rs13041247 (MAFB) - cg18347630 (PLCG1) (P=0.04); rs227731 (NOG) - cg08592707 (PPM1E) (P=0.01); rs227731 (NOG) - cg10303698 (CUEDC1) (P=0.001); rs3758249 (FOXE1) - cg20308679 (FRZB) (P=0.04); rs8001641 (SPRY2) - cg19191560 (LGR4) (P=0.04); rs987525(8q24) - cg16561172(MYC) (P=0.00000963); rs7590268(THADA) - cg06873343 (TTYH3) (P=0.04); rs7078160 (VAX1) - cg09487139 (P=0.05); rs560426 (ABCA4/ARHGAP29) - cg25196715 (ABCA4/ARHGAP29) (P=0,03). Paired T-test showed significant differences for cg06873343 (TTYH3) (P=0.04); cg17103269 (LPIN3) (P=0.002), and cg19191560 (LGR4) (P=0.05). Conclusions Our results confirm previous evidence that some of the common non-coding variants detected through GWAS studies can influence the risk of OFCs via epigenetic mechanisms, such as DNAm, which can ultimately affect and regulate gene expression. Given the large prevalence of non-coding SNPs in most OFCs genome wide association studies, our findings can potentially address major knowledge gaps, like missing heritability, reduced penetrance, and variable expressivity associated with OFCs phenotypes.
Collapse
Affiliation(s)
- L A Machado-Paula
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | | | - R T Lie
- University of Bergen, Bergen, Norway
| | - L Hovey
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - B Doolittle
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - W Awotoye
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - L Dunlay
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - X J Xie
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - E Zeng
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - A Butali
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - J C Murray
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - L M Moreno-Uribe
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - A L Petrin
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
3
|
Zhang J, You Q, Wang Y, Ji J. LncRNA GAS5 Modulates the Progression of Glioma Through Repressing miR-135b-5p and Upregulating APC. Biologics 2024; 18:129-142. [PMID: 38817552 PMCID: PMC11137960 DOI: 10.2147/btt.s454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Purpose The main purpose of this paper is to explore the interaction between GAS5 and miR-135b-5p to understand their function in the metastasis, invasion, and proliferation of glioma. This may provide new ideas for the pathogenesis and treatment of glioma. Patients and Methods Western blotting assays and RT‑qPCR were employed to investigate the expression of related genes in glioma tissues or cell lines. CCK-8 was used to examine the impact of GAS5 on cell viability. Motile activities were adopted by the transwell and wound healing experiments. A double luciferase experiment was performed to elucidate transcriptional regulation. Results GAS5 showed low expression in glioma cells and tissues, and up-regulation of GAS5 could depress the invasion, proliferation, and metastasis of glioma. GAS5 negatively regulates miR-135b-5p, which can counteract the cellular effects caused by GAS5. APC was the target of miR-135b-5p, and GAS5 can regulate the expression of APC by sponging miR-135b-5p. APC overexpression reversed the effects of miR-135b-5p promotion on glioma cells, while miR-135b-5p has the opposite function. As a downstream target gene of GAS5, miR-135b-5p was negatively regulated by GAS5. The restoration of miR-135b-5p can remarkably reverse the impact of GAS5 on glioma cells. In addition, GAS5 increased the expression of APC in glioma cells by inhibiting miR-135b-5p. Conclusion GAS5 increased APC expression by restraining miR-135b-5p and partially blocked the progression of glioma, suggesting that it could be an advantageous therapeutic target for glioma intervention.
Collapse
Affiliation(s)
- Jidong Zhang
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Qiuxiang You
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Yutao Wang
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| | - Jianwen Ji
- Center for Neurological Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People’s Republic of China
| |
Collapse
|
4
|
Tseng DY, Wang ST, Ballantyne R, Liu CH. Adenosine 5'-monophosphate-activated protein kinase (AMPK) negatively regulates the immunity and resistance to Vibrio alginolyticus of white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108884. [PMID: 37302677 DOI: 10.1016/j.fsi.2023.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Shrimp immunology is vital in establishing prophylactic and therapeutic strategies for controlling pathological problems that threaten shrimp production. Apart from dietary treatments, the adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulatory enzyme that restores cellular energy balance during metabolic and physiological stress, is known to have therapeutic potential to improve shrimp's defense mechanism. Despite this, studies targeting the AMPK pathway in shrimp exposed to stressful conditions are vastly limited. In this study, AMPK was knocked down to assess the immunological changes and white shrimp, Penaeus vannamei resistance to Vibrio alginolyticus infection. Shrimps were injected individually and simultaneously with dsRNA targeting specific genes such as AMPK, Rheb, and TOR, after which the hepatopancreas was analyzed for the different gene expressions. The gene expressions of AMPK, Rheb, and TOR were effectively suppressed after being treated with dsRNAs. The Western blot analysis further confirmed a reduction in the protein concentration of AMPK and Rheb in the hepatopancreas. The suppression of AMPK gene led to a robust increase in the shrimp's resistance to V. alginolyticus, whereas the activation of AMPK by metformin decreased the shrimp's disease resistance. Among the mTOR downstream targets, the HIF-1α expression in shrimp treated with dsAMPK significantly increased at 48 h but returned to normal levels when shrimp were treated with dsAMPK and either dsRheb or dsTOR. Immune responses such as respiratory burst, lysozyme activity, and phagocytic activity increased, while superoxide dismutase activity decreased following the knockdown of the AMPK gene compared to the control group. However, co-injection with dsAMPK and dsTOR or dsRheb restored immune responses to normal levels. Collectively, these results demonstrate that the inactivation of AMPK may ameliorate shrimp's innate immune response to recognize and defend against pathogens via the AMPK/mTOR1 pathway.
Collapse
Affiliation(s)
- Deng-Yu Tseng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
5
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang J, Zhang Z, Nie X, Liu Y, Qi Y, Wang J. Deregulated RNAs involved in sympathetic regulation of sepsis-induced acute lung injury based on whole transcriptome sequencing. BMC Genomics 2022; 23:836. [PMID: 36526959 PMCID: PMC9758828 DOI: 10.1186/s12864-022-09073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Sympathetic nerves play essential roles in the regulation of lung inflammation, and we investigated the effect of sympathetic denervation (SD) on sepsis-induced acute lung injury (ALI) in mice. Mice were randomized to the control, SD, ALI and SD + ALI, groups. SD and ALI were established through intratracheal 6-hydroxydopamine and intraperitoneal lipopolysaccharide, respectively. Models and gene expressions levels were evaluated by HE staining, ELISA, Western blotting and RT-qPCR. RNA extraction, whole transcriptome sequencing and subsequent biostatistical analysis were performed. Sympathetic denervation in the lungs significantly attenuated lung TNF-ɑ and norepinephrine expression, alleviated sepsis-induced acute lung injury and inhibited NF-κB signaling. Compared with the ALI group, the SD + ALI group exhibited 629 DE circRNAs, 269 DE lncRNAs,7 DE miRNAs and 186 DE mRNAs, respectively. Some DE RNAs were validated by RT-qPCR. CircRNA-miRNA-mRNA regulatory networks in the SD + ALI group revealed enrichment of the B-cell receptor signaling pathway, IL-17 signaling pathway, neuroactive ligand-receptor interaction, CAM, primary immunodeficiency, and cytokine-cytokine receptor interaction terms. The lncRNA-miRNA-mRNA network also revealed inflammation-related signaling pathways. Taken together, based on the successfully established models of SD and ALI, we show here that sympathetic nerves may regulate sepsis-induced ALI supposedly by affecting the expression of circRNAs, lncRNAs, miRNAs, and mRNAs in the lungs. These results may allow for further exploration of the roles of pulmonary sympathetic nerves in sepsis-induced ALI.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Zhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinran Nie
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yingli Liu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Beaumont JEJ, Beelen NA, Wieten L, Rouschop KMA. The Immunomodulatory Role of Hypoxic Tumor-Derived Extracellular Vesicles. Cancers (Basel) 2022; 14:4001. [PMID: 36010994 PMCID: PMC9406714 DOI: 10.3390/cancers14164001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor-associated immune cells frequently display tumor-supportive phenotypes. These phenotypes, induced by the tumor microenvironment (TME), are described for both the adaptive and the innate arms of the immune system. Furthermore, they occur at all stages of immune cell development, up to effector function. One major factor that contributes to the immunosuppressive nature of the TME is hypoxia. In addition to directly inhibiting immune cell function, hypoxia affects intercellular crosstalk between tumor cells and immune cells. Extracellular vesicles (EVs) play an important role in this intercellular crosstalk, and changes in both the number and content of hypoxic cancer-cell-derived EVs are linked to the transfer of hypoxia tolerance. Here, we review the current knowledge about the role of these hypoxic cancer-cell-derived EVs in immunosuppression. In addition, we provide an overview of hypoxia-induced factors (i.e., miRNA and proteins) in tumor-derived EVs, and their role in immunomodulation.
Collapse
Affiliation(s)
- Joel E. J. Beaumont
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
8
|
Huang J, Xu C. LncRNA MALAT1-deficiency restrains lipopolysaccharide (LPS)-induced pyroptotic cell death and inflammation in HK-2 cells by releasing microRNA-135b-5p. Ren Fail 2021; 43:1288-1297. [PMID: 34503385 PMCID: PMC8439250 DOI: 10.1080/0886022x.2021.1974037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) participate in the regulation of chronic kidney disease (CKD), and acute kidney injury (AKI) is identified as an important risk factor for CKD. This study investigated the involvement of a novel LncRNA MALAT1 in regulating lipopolysaccharide (LPS)-induced cell pyroptosis and inflammation in the human renal tubular epithelial HK-2 cells. Here, the HK-2 cells were subjected to LPS (2 μg/mL) treatment to establish cellular AKI models in vitro, and we validated that LPS triggered NLRP3-mediated pyroptotic cell death, promoted cell apoptosis and inflammation-associated cytokines secretion to induce HK-2 cell injury. Then, a novel LncRNA MALAT1/miRNA (miRNA)-135b-5p axis was verified to rescue cell viability in LPS treated HK-2 cells by targeting NLRP3. Mechanistically, miRNA-135b-5p bound to LncRNA MALAT1, and LncRNA MALAT1 positively regulated NLRP3 through acting as RNA sponger for miRNA-135b-5p. Further gain- and loss-of-function experiments evidenced that both LncRNA MALAT1 ablation and miRNA-135b-5p overexpression reversed LPS-induced cell pyroptosis, apoptosis, and inflammation in the HK-2 cells, and the protective effects of LncRNA MALAT1 knock-down on LPS-treated HK-2 cells were abrogated by silencing miRNA-135b-5p. In general, our study firstly investigated the role of the LncRNA MALAT1/ miRNA-135b-5p/NLRP3 signaling cascade in regulating LPS-induced inflammatory death in HK-2 cells.
Collapse
Affiliation(s)
- Jie Huang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| | - Chen Xu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| |
Collapse
|
9
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
10
|
Zhang X, Lu J, Zhang Q, Luo Q, Liu B. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol Res 2021; 54:11. [PMID: 33757583 PMCID: PMC7986494 DOI: 10.1186/s40659-021-00335-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Atherosclerosis (AS) is the most common type in cardiovascular disease. Due to its complex pathogenesis, the exact etiology of AS is unclear. circRNA has been shown to play an essential role in most diseases. However, the underlying mechanism of circRNA in AS has been not understood clearly. Methods Quantitative Real-Time PCR assay was used to detect the expression of circRSF1, miR-135b-5p and histone deacetylase 1 (HDAC1). Western blot was applied to the measure of protein expression of HDAC1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), cleaved-caspase-3, vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule-1 (ICAM1) and E-selectin. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Dual luciferase reporter assay and RIP assay was used to determine the relationship among circRSF1, miR-135b-5p and HDAC1. Besides, an ELISA assay was performed to measure the levels of IL-1β, IL-6, TNF-α and IL-8. Results In this study, ox-LDL inhibited circRSF1 and HDAC1 expression while upregulated miR-135b-5p expression in Human umbilical vein endothelial cells (HUVECs). Importantly, ox-LDL could inhibit HUVECs growth. Moreover, promotion of circRSF1 or inhibition of miR-135b-5p induced cell proliferation while inhibited apoptosis and inflammation of ox-LDL-treated HUVECs, which was reversed by upregulating miR-135b-5p or downregulating HDCA1 in ox-LDL-treated HUVECs. More than that, we verified that circRSF1 directly targeted miR-135b-5p and HDAC1 was a target mRNA of miR-135b-5p in HUVECs. Conclusion CircRSF1 regulated ox-LDL-induced vascular endothelial cell proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in AS, providing new perspectives and methods for the treatment and diagnosis of AS.
Collapse
Affiliation(s)
- Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China
| | - Junying Lu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qinghua Zhang
- Respiratory and Critical Illness Department, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, China.
| |
Collapse
|
11
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Liu Y, Huo SG, Xu L, Che YY, Jiang SY, Zhu L, Zhao M, Teng YC. MiR-135b Alleviates Airway Inflammation in Asthmatic Children and Experimental Mice with Asthma via Regulating CXCL12. Immunol Invest 2020; 51:496-510. [PMID: 33203292 DOI: 10.1080/08820139.2020.1841221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To clarify the possible influence of miR-135b on CXCL12 and airway inflammation in children and experimental mice with asthma. METHODS The expressions of miR-135b and CXCL12 were detected using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in the serum of asthmatic children. Besides, the experimental asthmatic mice were established by aerosol inhalation of ovalbumin (OVA) followed by the treatment with agomiR-135b and antagomir-135b. Pathological changes of lung tissues were observed via HE staining and PAS staining. Besides, the airway hyperresponsiveness of mice was elevated and bronchoalveolar lavage fluid (BALF) was isolated for cell categorization and counting. The inflammatory cytokines in BALF were determined by enzyme-linked immunosorbent assay (ELISA), and the infiltration of Th17 cells in lung tissues was measured using flow cytometry. RESULTS MiR-135b was downregulated and CXCL12 was upregulated in asthmatic children and mice. Overexpression of miR-135b may down-regulate CXCL12 expression in the lung of OVA mice, resulting in significant decreases in inflammatory infiltration, hyperplasia of goblet cell, airway hyperresponsiveness, cell quantity, as well as the quantity of eosinophilic granulocytes, neutrophils and lymphocytes in BALF. Also, the levels of inflammatory cytokines (IL-4, IL-5, IL-13 and IL-17) and the ratio of Th17 cells and IL-17 levels in lung tissues were decreased. However, miR-135b downregulation reversed these changes in OVA mice. CONCLUSION MiR-135b may inhibit immune responses of Th17 cells to alleviate airway inflammation and hyperresponsiveness in asthma possibly by targeting CXCL12, showing the potential value in asthma treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Shi-Guang Huo
- Department of Pediatric, Liaocheng Second People's Hospital, Linqing, China
| | - Ling Xu
- Shandong Rizhao Port Hospital
| | - Yuan-Yuan Che
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | | | - Li Zhu
- Department of Pediatrics, Caoxian people's Hospital, Heze City, Shandong Province, China
| | - Min Zhao
- Department of Pediatrics, Shanxian Central Hospital, Heze City, Shandong Province, China
| | - Yue-Chun Teng
- Department of Pediatrics, Liaocheng People's Hospital
| |
Collapse
|
13
|
Rab5a Promotes Cytolethal Distending Toxin B-Induced Cytotoxicity and Inflammation. Infect Immun 2020; 88:IAI.00132-20. [PMID: 32747601 DOI: 10.1128/iai.00132-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/25/2020] [Indexed: 12/27/2022] Open
Abstract
The cytolethal distending toxin B subunit (CdtB) induces significant cytotoxicity and inflammation in many cell types that are involved in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS). However, the underlying mechanisms remain unclear. This study tested the potential role of Rab small GTPase 5a (Rab5a) in the process. We tested mRNA and protein expression of proinflammatory cytokines (interleukin-1β [IL-1β] and IL-6) in THP-1 macrophages by quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs), respectively. In the primary colonic epithelial cells, Cdt treatment induced a CdtB-Rab5a-cellugyrin association. Rab5a silencing, by target small hairpin RNAs (shRNAs), largely inhibited CdtB-induced cytotoxicity and apoptosis in colon epithelial cells. CRISPR/Cas9-mediated Rab5a knockout also attenuated CdtB-induced colon epithelial cell death. Conversely, forced overexpression of Rab5a intensified CdtB-induced cytotoxicity. In THP-1 human macrophages, Rab5a shRNA or knockout significantly inhibited CdtB-induced mRNA expression and production of proinflammatory cytokines (IL-1β and IL-6). Rab5a depletion inhibited activation of nuclear factor-κB (NF-κB) and Jun N-terminal protein kinase (JNK) signaling in CdtB-treated THP-1 macrophages. Rab5a appears essential for CdtB-induced cytotoxicity in colonic epithelial cells and proinflammatory responses in THP-1 macrophages.
Collapse
|
14
|
Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol 2019; 146:25-35. [PMID: 31843619 DOI: 10.1016/j.ijbiomac.2019.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Bone healing is thought to be closely related to macrophages. Irisin, a cleaved hormone-like myokine, is well known to participate in immunoregulation and regulates bone metabolism. However, whether irisin could influence osteogenesis by affecting macrophage polarization is remain unknown. Here, the present study aims to investigate the potential immunomodulatory role of irisin on macrophages polarization and its subsequent impact on osteogenesis. We demonstrated that irisin increased cell viability without toxic effect in both Raw264.7 macrophages and MC3T3-E1 cells. Furthermore, irisin treatment polarized M0 and M1 macrophages towards M2 phenotype, with increased expression of CD206-APC, ARG-1 and TGF-β1, and decreased expression of CD86-PE and TNF-α. In addition, the direct co-cultured test of Raw264.7 macrophages and pre-osteoblastic MC3T3-E1 cells showed that irisin-treated M0 and M1 macrophages promoted osteogenesis with obvious formation of mineralized particles. Interestingly, irisin exposure robustly activated AMPK-α signaling, as manifested by increased expression of phosphorylated AMPK-α. Knockdown of AMPK-α by siRNA significantly suppressed the phosphorylation of AMPK-α, abrogated irisin-induced polarization of M2 phenotype, and inhibited the osteogenic ability of Raw264.7 macrophages. Taken together, our findings showed that irisin-induced M2 polarization enhanced osteogenesis in osteoblasts, and this effect might be associated with activation of AMPK.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Jiangze Wang
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China; Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University, Munich, Germany.
| | - Zhenqi Ding
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China.
| |
Collapse
|
15
|
Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med 2019; 19:1042-1050. [PMID: 32010267 PMCID: PMC6966120 DOI: 10.3892/etm.2019.8278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis (OP) is an age-related bone disease occurring worldwide. Osteoporotic fracture is one of the leading causes of disability and death in elderly patients. MicroRNAs (miRNAs/miRs) are key molecular regulatory factors in bone remodeling processes. The present study investigated the expression and mechanism of miR-135b-5p in patients with osteoporosis. The present results suggested that miR-135b-5p was upregulated in bone tissue fragments of patients with osteoporosis compared with the control patients. MC3T3-E1 cells were used to perform osteogenic differentiation induction. Reverse transcription-quantitative PCR and western blot assay were used to detect the mRNA and protein expression levels of the osteogenic markers osteocalcin (OC), Osterix and alkaline phosphatase (ALP). A specific kit was used for detecting ALP activity. The present results indicated that the mRNA expression levels of OC, Osterix and ALP significantly increased on the 7 and 14th day after osteogenic differentiation induction compared with the control group. Protein expression levels of OC, Osterix and ALP also increased on the 7 and 14th day after induction. ALP assay showed that ALP activity was significantly increased on the 7 and 14th day after induction. In addition, the present study found that miR-135b-5p was downregulated in MC3T3-E1 cells 7 and 14 days after osteogenic differentiation induction. The results of TargetScan analysis and dual luciferase reporter gene assay indicated that runt-related transcription factor 2 (RUNX2) was a direct target gene of miR-135b-5p. RUNX2 was upregulated in MC3T3-E1 cells on the 7 and 14th day after induction. Moreover, the present study found that compared with the osteogenic differentiation induction group, miR-135b-5p mimic significantly decreased OC, Osterix and ALP expression, and reduced ALP activity in MC3T3-E1 cells. However, these reductions were reversed following overexpression of RUNX2. The present results showed that miR-135b-5p mimic significantly reduced cell viability in MC3T3-E1 cells and induced cell apoptosis, and these effects were significantly reversed following RUNX2 overexpression. In summary, the present results suggested that miR-135-5p participated in the occurrence and development of osteoporosis via inhibition of osteogenic differentiation and osteoblast growth by targeting RUNX2. The present study suggested a novel potential target that may faciliate the treatment of osteoporosis, and further study is required to examine this possibility.
Collapse
|
16
|
Xie Z, Zhang H, Wang J, Li Z, Qiu C, Sun K. LIN28B-AS1-IGF2BP1 association is required for LPS-induced NFκB activation and pro-inflammatory responses in human macrophages and monocytes. Biochem Biophys Res Commun 2019; 519:525-532. [PMID: 31537384 DOI: 10.1016/j.bbrc.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 2 (IGF2) mRNA-binding protein 1 (IGF2BP1) mediates lipopolysaccharide (LPS)-induced NFκB activation and pro-inflammatory cytokines production in human macrophages. Recent studies have identified a novel IGF2BP1-binding LncRNA LIN28B-AS1. In the present study we show that LPS induced LIN28B-AS1-IGF2BP1 association in THP-1 macrophages, required for LPS-induced IGF2BP1-p65-p52 association and NFκB activation. LIN28B-AS1 silencing, by targeted shRNAs, potently inhibited LPS-induced activation of NFκB, as well as expression and productions of key pro-inflammatory cytokines, inducing IL-1β, IL-6 and TNF-α. Conversely, ectopic overexpression of LIN28B-AS1 in THP-1 macrophages potentiated NFκB activation and pro-inflammatory cytokines production by LPS. Significantly, LIN28B-AS1 shRNA was ineffective on LPS-induced pro-inflammatory responses in IGF2BP1-knockout THP-1 macrophages. In ex vivo cultured primary human peripheral blood mononuclear cells (PBMCs), LPS-induced IL-1β expression and production were attenuated by LIN28B-AS1 shRNA, but augmented with forced LIN28B-AS1 overexpression. Collectively, we show that LIN28B-AS1, binding to IGF2BP1, is required for LPS-induced NFκB activation and pro-inflammatory responses in human macrophages.
Collapse
Affiliation(s)
- Zichen Xie
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhimin Li
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Xie J, Li Q, Zhu XH, Gao Y, Zhao WH. IGF2BP1 promotes LPS-induced NFκB activation and pro-inflammatory cytokines production in human macrophages and monocytes. Biochem Biophys Res Commun 2019; 513:820-826. [DOI: 10.1016/j.bbrc.2019.03.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022]
|
18
|
LncRNA GAS8-AS1 suppresses papillary thyroid carcinoma cell growth through the miR-135b-5p/CCND2 axis. Biosci Rep 2019; 39:BSR20181440. [PMID: 30429236 PMCID: PMC6328895 DOI: 10.1042/bsr20181440] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the potential role of GAS8 antisense RNA 1 (GAS8-AS1) in papillary thyroid carcinoma (PTC). PcDNA3.1-GAS8-AS1 and si-GAS8-AS1, miR-135b-5p mimic and si-CCND2 were transfected into PTC cells. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8). QRT-PCR was used to determine expressions of GAS8-AS1, miR-135b-5p, and CCND2, and Western blot were detected protein level of CCND2. The miRNA target gene prediction site TargetScan was used to predict potential targets of GAS8-AS1 and miR-135b-5p. Cell cycle progression was analyzed by flow cytometry. We found that GAS8-AS1 was down-regulated in PTC cell lines and inhibited proliferation and cycle of PTC cell. GAS8-AS1 directly targets miR-135b-5p, and GAS8-AS1 could regulate a downstream target of miR-135b-5p, Cyclin G2 (CCNG2), in an miR-135b-5p-mediated manner. In addition, we also proved that overexpressed GAS8-AS1 inhibited tumor formation in vivo. GAS8-AS1 suppresses PTC cell growth through the miR-135b-5p/CCND2 axis.
Collapse
|
19
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ, Silva AE. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol 2018; 24:5351-5365. [PMID: 30598580 PMCID: PMC6305535 DOI: 10.3748/wjg.v24.i47.5351] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the effect of Fusobacterium nucleatum (F. nucleatum) on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and microRNAs (miRNAs).
METHODS Levels of F. nucleatum DNA, cytokine gene mRNA (TLR2, TLR4, NFKB1, TNF, IL1B, IL6 and IL8), and potentially interacting miRNAs (miR-21-3p, miR-22-3p, miR-28-5p, miR-34a-5p, miR-135b-5p) were measured by quantitative polymerase chain reaction (qPCR) TaqMan® assays in DNA and/or RNA extracted from the disease and adjacent normal fresh tissues of 27 colorectal adenoma (CRA) and 43 colorectal cancer (CRC) patients. KRAS mutations were detected by direct sequencing and microsatellite instability (MSI) status by multiplex PCR. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.
RESULTS Overabundance of F. nucleatum in neoplastic tissue compared to matched normal tissue was detected in CRA (51.8%) and more markedly in CRC (72.1%). We observed significantly greater expression of TLR4, IL1B, IL8, and miR-135b in CRA lesions and TLR2, IL1B, IL6, IL8, miR-34a and miR-135b in CRC tumours compared to their respective normal tissues. Only two transcripts for miR-22 and miR-28 were exclusively downregulated in CRC tumour samples. The mRNA expression of IL1B, IL6, IL8 and miR-22 was positively correlated with F. nucleatum quantification in CRC tumours. The mRNA expression of miR-135b and TNF was inversely correlated. The miRNA:mRNA interaction network suggested that the upregulation of miR-34a in CRC proceeds via a TLR2/TLR4-dependent response to F. nucleatum. Finally, KRAS mutations were more frequently observed in CRC samples infected with F. nucleatum and were associated with greater expression of miR-21 in CRA, while IL8 was upregulated in MSI-high CRC.
CONCLUSION Our findings indicate that F. nucleatum is a risk factor for CRC by increasing the expression of inflammatory mediators through a possible miRNA-mediated activation of TLR2/TLR4.
Collapse
Affiliation(s)
- Marcela Alcântara Proença
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Joice Matos Biselli
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Maysa Succi
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, Univ. Estadual Paulista, Campus of Botucatu, Botucatu, São Paulo 18618-687, Brazil
| | | | - Alaor Caetano
- Endoscopy Center of Rio Preto, São José do Rio Preto, São Paulo 15015-700, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
- Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Campus Gualtar, Braga 4710-057, Portugal
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ana Elizabete Silva
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
20
|
Li P, Wu YH, Zhu YT, Li MX, Pei HH. Requirement of Rab21 in LPS-induced TLR4 signaling and pro-inflammatory responses in macrophages and monocytes. Biochem Biophys Res Commun 2018; 508:169-176. [PMID: 30471852 DOI: 10.1016/j.bbrc.2018.11.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide (LPS) induces macrophage/monocyte activation and pro-inflammatory cytokines production by activating Toll-like receptor 4 (TLR-4) signaling. Rab GTPase 21 (Rab21) is a member of the Rab GTPase subfamily. In the present study, we show that LPS induced TLR4 and Rab21 association and endosomal translocation in murine bone marrow-derived macrophages (BMDMs) and primary human peripheral blood mononuclear cells (PBMCs). In BMDMs, shRNA-mediated stable knockdown of Rab21 inhibited LPS-induced expression and production of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Conversely, forced overexpression of Rab21 by an adenovirus construct potentiated LPS-induced IL-1β, IL-6 and TNF-α production in BMDMs. Further studies show that LPS-induced TLR4 endosomal traffic and downstream c-Jun and NFκB (nuclear factor-kappa B) activation were significantly inhibited by Rab21 shRNA, but intensified with Rab21 overexpression in BMDMs. Finally, in the primary human PBMCs, siRNA-induced knockdown of Rab21 significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production. Taken together, we suggest that Rab21 regulates LPS-induced pro-inflammatory responses by promoting TLR4 endosomal traffic and downstream signaling activation.
Collapse
Affiliation(s)
- Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yong-Hong Wu
- Lab of Clinical Immunology and Pathogen Detection, Xi'an Medical University, Xi'an, China
| | - Yan-Ting Zhu
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Man-Xiang Li
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| | - Hong-Hong Pei
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| |
Collapse
|
21
|
Kawasaki T, Kawai T. Discrimination Between Self and Non-Self-Nucleic Acids by the Innate Immune System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:1-30. [PMID: 30798985 PMCID: PMC7105031 DOI: 10.1016/bs.ircmb.2018.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During viral and bacterial infections, the innate immune system recognizes various types of pathogen-associated molecular patterns (PAMPs), such as nucleic acids, via a series of membrane-bound or cytosolic pattern-recognition receptors. These include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), AIM2-like receptors (ALRs), and cytosolic DNA sensors. The binding of PAMPs to these receptors triggers the production of type I interferon (IFN) and inflammatory cytokines. Type I IFN induces the expression of interferon stimulated genes (ISGs), which protect surrounding cells from infection. Some ISGs are nucleic acids-binding proteins that bind viral nucleic acids and suppress their replication. As nucleic acids are essential components that store and transmit genetic information in every species, infectious pathogens have developed systems to escape from the host nucleic acid recognition system. Host cells also have their own nucleic acids that are frequently released to the extracellular milieu or the cytoplasm during cell death or stress responses, which, if able to bind pattern-recognition receptors, would induce autoimmunity and inflammation. Therefore, host cells have acquired mechanisms to protect themselves from contact with their own nucleic acids. In this review, we describe recent research progress into the nucleic acid recognition mechanism and the molecular bases of discrimination between self and non-self-nucleic acids.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.
| |
Collapse
|
22
|
Li XF, Li SY, Dai CM, Li JC, Huang DR, Wang JY. PP2A inhibition by LB-100 protects retinal pigment epithelium cells from UV radiation via activation of AMPK signaling. Biochem Biophys Res Commun 2018; 506:73-80. [PMID: 30340831 DOI: 10.1016/j.bbrc.2018.10.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022]
Abstract
AMP-activated protein kinase (AMPK) signaling activation can inhibit Ultra-violet (UV) radiation (UVR)-induced retinal pigment epithelium (RPE) cell injuries. LB-100 is a novel inhibitor of protein phosphatase 2A (PP2A), the AMPKα1 phosphatase. Here, our results demonstrated that LB-100 significantly inhibited UVR-induced viability reduction, cell death and apoptosis in established ARPE-19 cells and primary murine RPE cells. LB-100 activated AMPK, nicotinamide adenine dinucleotide phosphate (NADPH) and Nrf2 (NF-E2-related factor 2) signalings, inhibiting UVR-induced oxidative injuries and DNA damage in RPE cells. Conversely, AMPK inhibition, by AMPKα1-shRNA, -CRISPR/Cas9 knockout or -T172A mutation, almost blocked LB-100-induced RPE cytoprotection against UVR. Importantly, CRISPR/Cas9-mediated PP2A knockout mimicked and nullified LB-100-induced anti-UVR activity in RPE cells. Collectively, these results show that PP2A inhibition by LB-100 protects RPE cells from UVR via activation of AMPK signaling.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Ophthalmology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shu-Yan Li
- Department of Ophthalmology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chang-Ming Dai
- Department of Ophthalmology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jian-Chang Li
- Department of Ophthalmology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Da-Rui Huang
- Department of Ophthalmology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jun-Ying Wang
- Department of ENT, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
23
|
Wang Q, Zhou X, Zhao Y, Xiao J, Lu Y, Shi Q, Wang Y, Wang H, Liang Q. Polyphyllin I Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response in Macrophages Through the NF-κB Pathway. Front Immunol 2018; 9:2091. [PMID: 30319603 PMCID: PMC6170622 DOI: 10.3389/fimmu.2018.02091] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by an increased number of M1-like macrophages in the joints. Polyphyllin I (PPI), one of the main components in the Rhizoma of Paris polyphyllin, displays a selective inhibitory effect on various tumor cells. Here we sought to investigate the anti-rheumatoid arthritis effects and mechanisms of PPI on macrophages in vivo and in vitro. Materials and Methods:In vitro, primary bone marrow-derived macrophages (BMMs) and peritoneal elucidated macrophages (PEMs) were stimulated by lipopolysaccharide (LPS) and Interferon (IFN)-γ and then treated with PPI. We determined the degree of activation of IKKα/β and p65, two key mediators of the NF-κB-mediated inflammatory pathway, by measuring their phosphorylated forms by Western blot. The p65 nuclear localization was detected by immunofluorescent staining. Further, a NF-κB-linked luciferase reporter plasmid, as well as those expressing key mediators of the Toll-like receptor 4 pathway, such as myeloid differentiation primary response 88 (MYD88), interleukin-1 receptor (IL-1R) associated kinase (IRAK)-1, TNF receptor associated factors (TRAF)-6, Transforming growth factor-b–activated kinase 1 (TAK1) and p65, were used to identify the mechanism by which PPI achieves its inhibitory effects on macrophage-mediated inflammation. Moreover, a NF-κB inhibitor, p65-targeted siRNAs, and a p65 plasmid were further used to validate the anti-inflammatory mechanism of PPI. In vivo, PPI (1 mg/kg) was administered intragastrically one time a day for 7 weeks starting on the 42nd day after the first immunization with collagen in a collagen-induced arthritis (CIA) mouse model. Micro-computed Tomography scanning, histological examination, F4/80 and iNOS double immunofluorescent staining and CD4 immunohistochemical staining were performed to determine the effect of PPI treatment on joint structure and inflammation in this model. Results: PPI reduced the inflammatory cytokines production of PEMs stimulated by LPS/IFN-γ, inhibited the phosphorylation of IKKα/β and p65, and prevented p65 nuclear localization. The NF-κB luciferase assay showed that the target of PPI was closely related to the NF-κB pathway. Moreover, NF-κB inhibition, siRNA-mediated knockdown of p65, and p65 overexpression eliminated PPI's inhibitory effect. In addition, PPI attenuated the bone erosion and synovitis, as well as M1-like macrophage and T cell infiltration, in the ankle joint of the CIA model. Conclusion: PPI demonstrated effective amelioration of synovial inflammation in the ankle joint of CIA mice while suppressing NF-κB-mediated production of pro-inflammatory effectors in activated macrophages.
Collapse
Affiliation(s)
- Qiong Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
24
|
Duan Q, Sun W, Yuan H, Mu X. MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 2018; 14:735-744. [PMID: 30002689 PMCID: PMC6040137 DOI: 10.5114/aoms.2017.71076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as critical regulators in the pathological process of cerebral ischemia/reperfusion injury. miRNAs play an important role in regulating neuronal survival. miR-135b-5p has been reported as an important miRNA in regulating cell apoptosis. However, the role of miR-135b-5p in regulating neuronal survival remains poorly understood. Here, we aimed to investigate the role of miR-135b-5p in cerebral ischemia/ reperfusion using an in vitro model of oxygen-glucose deprivation and reoxygenation-(OGD/R) induced neuron injury. MATERIAL AND METHODS miRNA, mRNA and protein expression was detected by real-time quantitative polymerase chain reaction and Western blot. Cell viability was detected by cell counting kit-8 and lactate dehydrogenase assays. Cell apoptosis was detected by caspase-3 activity assay. Oxidative stress was determined using commercial kits. The target of miR-135b-5p was confirmed by dual-luciferase reporter assay. RESULTS We found that miR-135b-5p expression was significantly decreased in hippocampal neurons receiving OGD/R treatment. Overexpression of miR-135b-5p markedly alleviated OGD/R-induced cell injury and oxidative stress, whereas suppression of miR-135b-5p showed the opposite effects. We observed that miR-135b-5p directly targeted the 3'-untranslated region of glycogen synthase kinase-3β (GSK-3β). We found that miR-135b-5p negatively regulates the expression of GSK-3β in hippocampal neurons. Moreover, miR-135b-5p overexpression promotes activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling. However, the restoration of GSK-3β expression significantly reversed the protective effects of miR-135b-5p overexpression. CONCLUSIONS Overall, our results suggest that miR-135b-5p protects neurons against OGD/R-induced injury through downregulation of GSK-3β and promotion of the Nrf2/ARE signaling pathway-mediated antioxidant responses.
Collapse
Affiliation(s)
- Qiang Duan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiang Mu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Chen MB, Liu YY, Cheng LB, Lu JW, Zeng P, Lu PH. AMPKα phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2018; 8:31288-31296. [PMID: 28423719 PMCID: PMC5458207 DOI: 10.18632/oncotarget.16126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of AMP-activated protein kinase (AMPK) is a valuable anti-cancer strategy. In the current study, we tested expression and potential function of Ca2+/calmodulin-dependent protein kinase phosphatase (Ppm1E), an AMPKα phosphatase, in human gastric cancers. Ppm1E expression was elevated in human gastric cancer tissues (vs. normal tissues), which was correlated with AMPK (p-AMPKα, Thr-172) dephosphorylation and mTOR complex 1 (mTORC1) activation. Ppm1E upregulation, AMPK inhibition and mTORC1 activation were also observed in human gastric cancer cell lines (AGS, HGC-27, and SNU601). Intriguingly, Ppm1E knockdown by shRNA induced AMPK activation, mTORC1 inactivation, and proliferation inhibition in AGS cells. On the other hand, forced over-expression of Ppm1E induced further AMPK inhibition and mTORC1 activation to enhance AGS cell proliferation. Remarkably, microRNA-135b-5p (“miR-135b-5p”), an anti-Ppm1E microRNA, was downregulated in both human gastric cancer tissues and cells. Reversely, miR-135b-5p exogenous expression caused Ppm1E depletion, AMPK activation, and AGC cell proliferation inhibition. Together, Ppm1E upregulation in human gastric cancer is important for cell proliferation, possible via regulating AMPK-mTOR signaling.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Li-Bo Cheng
- Department of Ophthalmology, Wuxi Second Hospital, Nanjing Medical University, Wu'xi, China
| | - Jian-Wei Lu
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Pei-Hua Lu
- Department of Radiotherapy and Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
26
|
Li ZW, Zhu YR, Zhou XZ, Zhuo BB, Wang XD. microRNA-135b expression silences Ppm1e to provoke AMPK activation and inhibit osteoblastoma cell proliferation. Oncotarget 2018; 8:26424-26433. [PMID: 28460435 PMCID: PMC5432269 DOI: 10.18632/oncotarget.15477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Forced-activation of AMP-activated protein kinase (AMPK) can possibly inhibit osteoblastoma cells. Here, we aim to provoke AMPK activation via microRNA silencing its phosphatase Ppm1e (protein phosphatase Mg2+/Mn2+-dependent 1e). We showed that microRNA-135b-5p (“miR-135b-5p”), the anti-Ppm1e microRNA, was significantly downregulated in human osteoblastoma tissues. It was correlated with Ppm1e upregulation and AMPKα1 de-phosphorylation. Forced-expression of miR-135b-5p in human osteoblastoma cells (MG-63 and U2OS lines) silenced Ppm1e, and induced a profound AMPKα1 phosphorylation (at Thr-172). Osteoblastoma cell proliferation was inhibited after miR-135b-5p expression. Intriguingly, Ppm1e shRNA knockdown similarly induced AMPKα1 phosphorylation, causing osteoblastoma cell proliferation. Reversely, AMPKα1 shRNA knockdown or dominant negative mutation almost abolished miR-135b-5p's actions in osteoblastoma cells. Further in vivo studies demonstrated that U2OS tumor growth in mice was dramatically inhibited after expressing miR-135b-5p or Ppm1e shRNA. Together, our results suggest that miR-135b-induced Ppm1e silence induces AMPK activation to inhibit osteoblastoma cell proliferation.
Collapse
Affiliation(s)
- Zheng-Wei Li
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Yun-Rong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The First People's Hospital of SuQian, SuQian, China
| | - Bao-Biao Zhuo
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiao-Dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
27
|
Functions and dysfunctions of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Arch Biochem Biophys 2018; 640:83-92. [DOI: 10.1016/j.abb.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
28
|
Weng Y, Lin J, Liu H, Wu H, Yan Z, Zhao J. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget 2017; 9:4511-4521. [PMID: 29435120 PMCID: PMC5796991 DOI: 10.18632/oncotarget.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.
Collapse
Affiliation(s)
- Yingfeng Weng
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jixian Lin
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhimin Yan
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Lu M, Huang Y, Sun W, Li P, Li L, Li L. miR-135b-5p promotes gastric cancer progression by targeting CMTM3. Int J Oncol 2017; 52:589-598. [PMID: 29345297 DOI: 10.3892/ijo.2017.4222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/30/2017] [Indexed: 11/06/2022] Open
Abstract
CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) is considered to be a tumor suppressor gene in multiple types of malignancies. Previous studies have indicated that CMTM3 suppresses metastasis and epithelial-mesenchymal transition (EMT) in gastric cancer. However, its role in gastric cancer cell proliferation has rarely been discussed. Moreover, the regulatory mechanisms of CMTM3 in gastric cancer remain unclear. In this study, RT‑qPCR and IHC were used to assess the expression of CMTM3 and miR‑135b‑5p in gastric cancer tissues and cell lines. We found that the expression of miR‑135b‑5p was negatively associated with CMTM3 in gastric cancer tissues, and we verified that miR‑135b‑5p directly targeted CMTM3 in gastric cancer cells by dual-luciferase reporter assay. CCK8 assay, Transwell assay and flow cytometric analysis were conducted to examine the functions of CMTM3 and miR‑135b‑5p in vitro. Our results demonstrated that the overexpression of CMTM3 or the suppression of miR‑135b‑5p using an inhibitor suppressed SGC‑7901 gastric cancer cell proliferation, invasion and cell cycle progression, and promoted SGC‑7901 cell apoptosis. Furthermore, a BALB/c nude mouse subcutaneous xenograft model was used to verify the function of miR‑135b‑5p and CMTM3. Our results revealed that miR‑135b‑5p inhibitor significantly suppressed SGC‑7901 cell tumorigenesis in vivo. In addition, IHC revealed that CMTM3 expression was markedly increased in tumors infected with miR‑135b‑5p inhibitor lentivirus. On the whole, the findings of the present study suggest that the overexpression of miR‑135b‑5p inhibits CMTM3 expression, and promotes gastric cancer progression and metastasis. Our findings provide a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Mingdong Lu
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, P.R. China
| | - Yingpeng Huang
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, P.R. China
| | - Weijian Sun
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical Univesity, Wenzhou, Zhejiang, P.R. China
| | - Pihong Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, P.R. China
| | - Liyi Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, P.R. China
| | - Leping Li
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, P.R. China
| |
Collapse
|
30
|
Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L, Pei H. miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother 2017; 96:1341-1348. [PMID: 29196101 DOI: 10.1016/j.biopha.2017.11.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms of metastasis for pancreatic cancer remain to be uncovered. This study aimed to elucidate the potential functional mechanism of miR-135b-5p in migration, invasion and epithelial-to-mesenchymal transition (EMT) of pancreatic cancer cells. By real-time PCR and analysis of GEO database, we determined the up-regulated expression of miR-135b-5p in pancreatic cancer tissues and cell lines. Clinically, highly expressed miR-135b-5p was closely related to advanced TNM stage, more lymph node metastasis, more distant metastasis and worse overall survival (OS) and disease-free survival (DFS). Functionally, Transwell assays indicated that miR-135b-5p was a promoter for migration and invasion of pancreatic cancer cells. Additionally, immunohistochemistry staining and Western blot showed that highly expressed miR-135b-5p accelerated EMT process of pancreatic cancer cells. Furthermore, a series of experiments and rescue experiments revealed that Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2) was the target of miR-135b-5p in pancreatic cancer cells, mediating the promotion effects of miR-135b-5p on the tumor cells migration, invasion and EMT. In conclusion, miR-135b-5p, maybe a novel therapeutic target for pancreatic cancer, promoted migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2.
Collapse
Affiliation(s)
- Zhengliang Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ni Yang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhenghai Bai
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Wu
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhao
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Honghong Pei
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
31
|
Wang J, Li Z, Gao L, Qi Y, Zhu H, Qin X. The regulation effect of AMPK in immune related diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 61:523-533. [PMID: 29127585 DOI: 10.1007/s11427-017-9169-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
|
32
|
Xu D, Zhu H, Wang C, Zhao W, Liu G, Bao G, Cui D, Fan J, Wang F, Jin H, Cui Z. SphK2 over-expression promotes osteosarcoma cell growth. Oncotarget 2017; 8:105525-105535. [PMID: 29285269 PMCID: PMC5739656 DOI: 10.18632/oncotarget.22314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
It is needed to explore novel biological markers for early diagnosis and treatment of human osteosarcoma. Sphingosine kinase 2 (SphK2) expression and potential functions in osteosarcoma were studied. We demonstrate that SphK2 is over-expressed in multiple human osteosarcoma tissues and established human osteosarcoma cell lines. Silence of SphK2 by targeted-shRNAs inhibited osteosarcoma cell growth, and induced cell apoptosis. On the other hand, exogenous over-expression of SphK2 could further promote osteosarcoma cell growth. Notably, microRNA-19a-3p ("miR-19a-3p") targets the 3' UTR (untranslated region) of SphK2 mRNA. Remarkably, forced-expression of miR-19a-3p silenced SphK2 and inhibited osteosarcoma cell growth. In vivo, SphK2 silence, by targeted-shRNA or miR-19a-3p, inhibited U2OS tumor growth in nude mice. These results suggest that SphK2 could be a novel and key oncotarget protein for OS cell progression.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Zhu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, China
| | - Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Genxiang Liu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Guofeng Bao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Daoran Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Huricha Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
33
|
Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget 2017; 8:86227-86239. [PMID: 29156790 PMCID: PMC5689680 DOI: 10.18632/oncotarget.21043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.
Collapse
|
34
|
Lu Z, Xia YH, Zhao M, Zhang B, Dai WT, Ding L, Hu LX, Bi JL, Jiang GL. DlgR2 knockdown boosts dendritic cell activity and inhibits hepatocellular carcinoma tumor in-situ growth. Oncotarget 2017; 8:54993-55002. [PMID: 28903397 PMCID: PMC5589636 DOI: 10.18632/oncotarget.18990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Tumor-specific hepatic stellate cells (tHSCs) positively participate in human hepatocellular carcinoma (HCC) tumorigenesis and progression. Our previous studies have shown that tHSCs co-culture with dendritic cells (DCs) induced DIgR2 (dendritic cell-derived immunoglobulin receptor 2) expression. The latter is a member of IgSF inhibitory receptor suppressing DCs-initiated antigen-specific T-cell responses. In the current study, we show that hepatic artery injection of DlgR2 siRNA significantly inhibited in-situ HCC xenograft growth in rat livers. Further, 5-FU-medied inhibition of in-situ HCC growth was dramatically sensitized with DlgR2 silence. DlgR2 siRNA injection indeed downregulated DlgR2 in ex-vivo cultured tumor-derived DCs (tDCs). More importantly, tDCs activity was boosted following DlgR2 siRNA. These cells presented with upregulated CD80, CD86 and MHC-II. Production of interleukin-12 and tumor necrosis factor-α was also increased in the DlgR2-silenced tDCs. We propose that DlgR2 knockdown likely boosts the activity of tumor-associated DCs, and inhibits growth of in-situ HCC xenografts.
Collapse
Affiliation(s)
- Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yun-Hong Xia
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Zhao
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Bing Zhang
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Wen-Ting Dai
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Lu Ding
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Li-Xia Hu
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Jin-Ling Bi
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Guo-Lin Jiang
- Key Laboratory of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F, Wang L. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/ NF-κB pathway. Exp Cell Res 2017; 360:74-80. [PMID: 28811129 DOI: 10.1016/j.yexcr.2017.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 01/17/2023]
Abstract
Akt activation in macrophages enhances lipopolysaccharide (LPS)-induced inflammatory responses through upregulation of the NF-κB signal pathway. Akt phosphorylation via microRNA (miR) caused the downregulation of Akt1. Here, we evaluated the role of miR-29a in LPS-triggered inflammatory responses. LPS stimulation of primary macrophages and RAW264.7 cells gradually increased the levels of miR-29a and was dependent on the LPS concentration. Overexpression of miR-29a in macrophages enhanced the expression of proinflammatory cytokines including IL-1β and IL-6, but not TNF-α. Conversely, knockdown of miR-29a diminished cytokine expression. Bioinformatics analyses indicated that Akt1 was a potential target of miR-29a through its interaction with the CDS region of Akt1. The miR-29a also enhanced LPS-induced NF-κB signaling through increased NF-κB transcriptional activity and phosphorylation of p65, and through binding to Akt1. Moreover, Akt1 silencing promoted the LPS-induced expression of IL-1β and IL-6, and upregulated the NF-κB pathway. Taken together, our results suggested that miR-29a participates in the regulation of inflammatory responses in LPS-stimulated macrophages by promoting NF-κB activation through targeting Akt1.
Collapse
Affiliation(s)
- Bufu Tang
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Xingchen Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, PR China
| | - Yanling Ren
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Jing Wang
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Di Xu
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Yiru Hang
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Tingting Zhou
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China
| | - Feng Li
- Department of Molecular Biological,Shanxi Cancer Hospital/InstituteAffiliated Cancer Hospital of Shanxi Medical University, No. 3 Zhigongxinjie Xinghualing District, Taiyuan, 030013 Shanxi Province, PR China.
| | - Ling Wang
- First Affiliated Hosp Dalian Med Univ, Dept Oncol, Dalian 116011, PR China.
| |
Collapse
|
36
|
Li P, Li X, Wu Y, Li M, Wang X. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production. Oncotarget 2017; 8:67218-67226. [PMID: 28978028 PMCID: PMC5620168 DOI: 10.18632/oncotarget.18365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Here, we found that hernandezine, a novel AMPK activator, inhibited LPS-induced TNFα expression/production in human macrophage cells (THP-1 and U937 lines). Activation of AMPK is required for hernandezine-induced anti-LPS response. AMPKα shRNA or dominant negative mutation (T172A) blocked hernandezine-induced AMPK activation, which almost completely reversed anti-LPS activity by hernandezine. Exogenous expression of the constitutively activate AMPKα (T172D, caAMPKα) also suppressed TNFα production by LPS. Remarkably, hernandezine was unable to further inhibit LPS-mediated TNFα production in caAMPKα-expressing cells. Hernandezine inhibited LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. Treatment of hernandezine in ex-vivo cultured primary human peripheral blood mononuclear cells (PBMCs) also largely attenuated LPS-induced TNFα production. Together, we conclude that AMPK activation by hernandezine inhibits LPS-induced TNFα production in macrophages/monocytes.
Collapse
Affiliation(s)
- Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Xiaofang Li
- Department of Gastroenterology, The Third People's Hospital of Xi'an, Xi'an, China
| | - Yonghong Wu
- Staff Room of Clinical Immunology and Pathogen Detection, Medical Technology Department, Xi'an Medical College, Xi'an, China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|