1
|
Li X, Li R, Huang J, Hu Y, Fan C, Wang X, Yu H. Unleashing the Potential: Exploring the Application and Mechanism of Mesenchymal Stem Cells in Autoimmune Diseases. Stem Cells Int 2025; 2025:9440377. [PMID: 40264926 PMCID: PMC12014271 DOI: 10.1155/sci/9440377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune diseases (AIDs) occur when the immune system mistakenly attacks the body's own antigens. Traditionally, these conditions are treated with nonspecific immunosuppressive therapies, including corticosteroids, immunosuppressants, biological agents, and human immunoglobulins. However, these treatments often fail to achieve optimal outcomes, especially for patients with severe cases. Mesenchymal stem cells (MSCs) present a promising alternative due to their robust self-renewal capabilities and multidirectional differentiation potential. MSCs are easily accessible, exhibit low immunogenicity, and can help reduce graft rejection. MSCs can inhibit T cell proliferation, reduce proinflammatory T cells, inhibit B cell differentiation, induce macrophage polarization towards the anti-inflammatory M2 phenotype, and suppress activity of natural killer (NK) cells and dendritic cells (DCs). Additionally, MSCs can regulate T cells, macrophages, and fibroblast-like synoviocytes (FLS) by releasing microRNA (miRNA) through exosomes or extracellular vesicles (EVs), thus providing therapeutic benefits for various diseases. Numerous clinical trials have highlighted the therapeutic benefits of MSCs in treating various AIDs, leading to increased interest in MSC transplantation. This review summarizes the current applications and mechanisms of action of MSCs in the treatment of AIDs.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rongli Li
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Kim JH, Kim JE, Kang SJ, Yoon JK. Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy. Tissue Eng Regen Med 2025:10.1007/s13770-024-00695-5. [PMID: 39832066 DOI: 10.1007/s13770-024-00695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options. However, the efficacy of the therapy remains poorly understood. Also, the potential of exosome mimetics as alternatives to exosomes in skin therapy remains underexplored. METHODS Here, we reviewed the pathological features and current therapies of AD. Next, we reviewed the application of exosomes and exosome mimetics in regenerative medicine. Finally, we highlighted the therapeutic effects of exosomes based on their cell source and assessed whether exosome mimetics are viable alternatives. RESULTS AND CONCLUSION Exosome therapy may treat AD due to its skin regenerative properties, and exosome mimetics may offer an equally effective yet more efficient alternative. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options.
Collapse
Affiliation(s)
- Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
3
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:1-17. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
4
|
Oh SJ, Nguyen TT, Seo Y, Park HJ, Ahn JS, Shin YY, Kang BJ, Jang M, Park J, Jeong JH, Kim HS. Sustained release of stem cell secretome from nano-villi chitosan microspheres for effective treatment of atopic dermatitis. Int J Biol Macromol 2024; 277:134344. [PMID: 39089545 DOI: 10.1016/j.ijbiomac.2024.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Canine atopic dermatitis (AD) arises from hypersensitive immune reactions. AD symptoms entail severe pruritus and skin inflammation, with frequent relapses. Consequently, AD patients require continuous management, imposing financial burdens and mental fatigue on pet owners. In this study, we aimed to investigate the therapeutic relevance of secretome from canine adipose tissue-derived mesenchymal stem cells (MSCs), especially after encapsulation in nano-villi chitosan microspheres (CS-MS) to expect improved efficacy. Conditioned media (CM) from MSCs significantly inhibited the proliferation of splenocytes, induced the generation of regulatory T cells, and decreased mast cell degranulation. We found that beneficial soluble factors known to reduce AD symptoms, including transforming growth factor-beta 1, were detectable after sequential concentration and lyophilization of CM. The CS-MS, developed by a phase inversion regeneration method, showed high loading and sustained release of the secretome. Local injection of secretome-loaded CS-MS (ST/SC-MS) effectively reduced clinical severity compared to groups treated with secretome. Histological analysis revealed that ST/SC-MS potently suppressed epidermal hyperplasia, immunocyte infiltration and mast cell activation in the lesion. Taken together, this study presents a novel therapeutic approach exhibiting more potent and prolonged immunoregulatory efficacy of MSC secretome for canine AD treatment.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Jeong Park
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ye Young Shin
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Seoul 08590, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jang
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junhyeung Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
5
|
Guan J, Feng J, Xu M, Liu M, He Y, Lu F. Adipokine-Enriched Adipose Extract Restores Skin Barrier and Ameliorates Inflammatory Dysregulation in Atopic Dermatitis Mice. Plast Reconstr Surg 2024; 154:701e-712e. [PMID: 37872671 DOI: 10.1097/prs.0000000000011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic dermatosis with high incidence worldwide characterized by skin barrier abnormalities and immune dysregulation. Conventional therapies are usually limited by side effects and high cost. Given the antiinflammatory and repairing properties, adipokines are increasingly considered as promising therapeutic agents for dermatoses. Adipose collagen fragments (ACF), a novel adipokine-enriched product, may alleviate AD through modulating immune microenvironment and restoring skin barrier. METHODS ACF was extracted from adipose tissue by means of high-speed homogenization (10,000 rpm/min for 1 minute) and centrifugation (3000 g for 3 minutes). Ovalbumin-induced AD female BALB/c mice (6-week-old) were intradermally injected with 0.2 mL of ACF or phosphate-buffered saline (negative control), with normal mice being set as normal control ( n = 6). Dermatitis severity, inflammatory metrics (epidermal thickness, infiltrated mast cells, T helper cell [Th]-type cytokine expression), and skin barrier-related metrics (transepidermal water loss, skin barrier-related proteins expression) were evaluated after the AD induction period (day 50). ACF-derived bioactive components were also evaluated using proteomic analysis. RESULTS ACF-derived adipokines contained antiinflammatory, skin barrier- and lipid biosynthesis-related components. ACF treatment decreased dermatitis severity (6.2 ± 1.8 [ P < 0.0001]), epidermal thickness (25.7 ± 12.8 μm [ P = 0.0045]), infiltrated mast cells (31.3 ± 12.4 cells/field [ P = 0.0475]), and expression of Th-type cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-4, IL-4R, IL-13, and IL-17A [ P < 0.05]) in AD skins. Transepidermal water loss (29.8 ± 13.8 g/m 2 per hour [ P = 0.0306]) and skin barrier-related protein expression (filaggrin, 14,258 ± 4375 [ P = 0.0162]; loricrin, 6037 ± 1728 [ P = 0.0010]; claudin-1, 20,043 ± 6406 [ P = 0.0420]; and zonula occludens-1, 4494 ± 1114 [ P = 0.0134]) were also improved. CONCLUSIONS ACF improved AD in a murine model by ameliorating inflammatory dysregulation and skin barrier defects. Further validation is needed in more advanced animal models. CLINICAL RELEVANCE STATEMENT ACF is an injectable, adipose-derived collagen scaffold prepared from autologous harvested fat using fast and simple mechanical methods. ACF may reduce the limitations associated with health care regulatory issues and serve as a promising autologous therapeutic agent for skin disorders in clinics.
Collapse
Affiliation(s)
- Jingyan Guan
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Jingwei Feng
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Mimi Xu
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Meiqi Liu
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
6
|
Zhu X, Wu W. The causal relationship between immune cells and atopic dermatitis: A bidirectional Mendelian randomization study. Skin Res Technol 2024; 30:e13858. [PMID: 39196303 DOI: 10.1111/srt.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin condition whose origins remain unclear. Existing epidemiological evidence suggests that inflammation and immune factors play pivotal roles in the onset and progression of AD. However, previous research on the connection between immune inflammation and AD has yielded inconclusive results. METHODS To evaluate the causal relationship between immunological characteristics and AD, this study employed a bidirectional, two-sample Mendelian randomization (MR) approach. We utilized large-scale, publicly available genome-wide association studies to investigate the causal associations between 731 immunological feature cells and the risk of AD. RESULTS Significant associations were identified between six immune phenotypes and AD risk: increased Basophil %CD33dim HLA DR-CD66b-, CD25 on IgD+ CD24+, CD40 on monocytes, HLA DR on CD14+ CD16-monocytes, HLA DR on CD14+monocytes correlated with higher AD risk, while elevated CD3 on CD4 Treg was linked to lower risk. Reverse MR analysis revealed AD as a risk factor for IgD+ CD38br AC and IgD+ CD38br %B cell, but a protective factor against CD20 on IgD+ CD38- naive and CD8 on NKT. CONCLUSION Our findings elucidate the intricate interplay between immune cells and AD, informing future research into AD pathophysiology and therapeutics.
Collapse
Affiliation(s)
- Xu Zhu
- Department of dermatology, Shenzhen Second People's Hospital. The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wenzhong Wu
- Department of dermatology, Shenzhen Second People's Hospital. The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
He K, Zang J, Ren T, Feng S, Liu M, Zhang X, Sun W, Chu J, Xu D, Liu F. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Atopic Dermatitis. J Inflamm Res 2024; 17:5783-5800. [PMID: 39224661 PMCID: PMC11368146 DOI: 10.2147/jir.s479444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense itchiness that is highly prevalent worldwide.The pathogenesis of AD is complex and closely related to genetic factors, immunopathogenic factors, environmental factors, and skin infections. Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells derived from the mesenchymal stroma. They have anti-inflammatory, anti-apoptotic, and regenerative properties. Numerous studies demonstrate that MSCs can play a therapeutic role in AD by regulating various immune cells, maintaining immune homeostasis, and promoting the repair of damaged tissues. The key mediators for their biological functions are extracellular vesicles (MSC-Evs) and soluble cytokines derived from MSCs. The safety and efficacy of MSCs have been demonstrated in clinical Phase I / IIa trials for AD. This paper provides a comprehensive review of the pathogenesis of AD and the currently published studies on the function of MSCs and MSC-Evs in AD, primarily including the pathogenesis and the immunomodulatory impacts of MSCs and MSC-Evs, along with advancements in clinical studies. It provides insights for comprehending AD pathogenesis and investigating treatments based on MSCs.
Collapse
Affiliation(s)
- Kang He
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Tingting Ren
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mohan Liu
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jinjin Chu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
8
|
Abdollahi A, Aghayan HR, Mousivand Z, Motasadizadeh H, Maghsoudian S, Abdorashidi M, Ostad SN, Larijani B, Raoufi M, Javar HA. Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing. Stem Cell Res Ther 2024; 15:262. [PMID: 39148112 PMCID: PMC11328517 DOI: 10.1186/s13287-024-03772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-based treatment strategy has shown promise in bolstering the healing process of chronic wounds in diabetic patients, who are at risk of amputation and mortality. To overcome the drawbacks of suboptimal cell retention and diminished cell viability at the injury site, a novel nanofibrous biomaterial-based scaffold was developed by using a controlled extrusion of a polymeric solution to deliver the cells (human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs)) locally to the animal model of diabetic ulcers. METHODS The physicochemical and biological properties of the nano-bioscaffold were characterized in terms of microscopic images, FTIR spectroscopy, tensile testing, degradation and swelling tests, contact angle measurements, MTT assay, and cell attachment evaluation. To evaluate the therapeutic efficacy, a study using an excisional wound model was conducted on diabetic rats. RESULTS The SEM and AFM images of scaffolds revealed a network of uniform nanofibers with narrow diameters between 100-130 nm and surface roughness less than 5 nm, respectively. ADMSCs and PLMSCs had a typical spindle-shaped or fibroblast-like morphology when attached to the scaffold. Desired characteristics in terms of swelling, hydrophilicity, biodegradation rate, and biocompatibility were achieved with the CS70 formulation. The wound healing process was accelerated according to wound closure rate assay upon treatment with MSCs loaded scaffold resulting in increased re-epithelialization, neovascularization, and less inflammatory reaction. Our findings unequivocally demonstrated that the cell-loaded nano-bioscaffold exhibited more efficacy compared with its acellular counterpart. In summation, our study underscores the potential of this innovative cellular scaffold as a viable solution for enhancing the healing of diabetic ulcers. CONCLUSION The utilization of MSCs in a nanofibrous biomaterial framework demonstrates significant promise, providing a novel avenue for advancing wound care and diabetic ulcer management.
Collapse
Affiliation(s)
- Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mousivand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmohsen Abdorashidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Szűcs D, Monostori T, Miklós V, Páhi ZG, Póliska S, Kemény L, Veréb Z. Licensing effects of inflammatory factors and TLR ligands on the regenerative capacity of adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1367242. [PMID: 38606318 PMCID: PMC11007080 DOI: 10.3389/fcell.2024.1367242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1β, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.
Collapse
Affiliation(s)
- Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | | | - Zoltán G. Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Biobank, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
12
|
Kang KM, Han JH, Kim KS, Kim EK, Shin Y, Park JH, Kim H, Kim NY, Kim YG, Kim H, Park H, Kim YM, Kee SJ, Kim SJ, Kim HS, Kim YC. Chlorophyll a and novel synthetic derivatives alleviate atopic dermatitis by suppressing Th2 cell differentiation via IL-4 receptor modulation. Clin Immunol 2024; 258:109852. [PMID: 38029848 DOI: 10.1016/j.clim.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Atopic dermatitis (AD) treatment has largely relied on non-specific broad immunosuppressants despite their long-term toxicities until the approval of dupilumab, which blocks IL-4 signaling to target Th2 cell responses. Here, we report the discovery of compound 4aa, a novel compound derived from the structure of chlorophyll a, and the efficacy of chlorophyll a to alleviate AD symptoms by oral administration in human AD patients. 4aa downregulated GATA3 and IL-4 in differentiating Th2 cells by potently blocking IL-4 receptor dimerization. In the murine model, oral administration of 4aa reduced the clinical severity of symptoms and scratching behavior by 76% and 72%, respectively. Notably, the elevated serum levels of Th2 cytokines reduced to levels similar to those in the normal group after oral administration of 4aa. Additionally, the toxicological studies showed favorable safety profiles and good tolerance. In conclusion, 4aa may be applied for novel therapeutic developments for patients with AD.
Collapse
Affiliation(s)
- Koon Mook Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jung-Hyun Han
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun Kyung Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Youna Shin
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyeon Kim
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Na Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Hyunjun Kim
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Hyunjin Park
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - Seong-Jin Kim
- Department of Dermatology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Kim DK, Lee HJ, Lee IH, Lee JJ. Immunomodulatory Effects of Primed Tonsil-Derived Mesenchymal Stem Cells on Atopic Dermatitis via B Cell Regulation. Cells 2023; 13:80. [PMID: 38201284 PMCID: PMC10777933 DOI: 10.3390/cells13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) ameliorate T-and B cell-mediated immune responses. In particular, tonsil-MSCs (T-MSCs) are attractive candidates for practical and clinical applications because of their ease of acquisition and relatively low immunogenicity compared with other MSC sources. The use of MSCs as a therapeutic tool in atopic dermatitis (AD) has been investigated, but that of T-MSCs remains to be explored. Therefore, we investigated the immunomodulatory effects of primed T-MSCs in AD pathogenesis. In our animal study, primed T-MSCs showed greater immunological suppressive effects than naïve T-MSCs. Additionally, in vitro, the proliferation of B cells was downregulated by the addition of primed T-MSCs compared with naïve T-MSCs. The activation of B cells to differentiate into antibody-secreting cells and produce IgE was also reduced when primed T-MSCs were added. Moreover, under CD40-knockdown conditions, we found that CD40 in primed T-MSCs played a critical role as a regulator of B cell activation and was mediated by the non-canonical NF-κB pathway. Therefore, our findings suggest a promising role for primed T-MSCs in the treatment of AD by regulating B cell-mediated inflammatory responses, which are dependent on CD40 expression on primed T-MSCs mediated through the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyun-Joo Lee
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jae-Jun Lee
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
14
|
Mohanan MM, Shetty R, Bang-Berthelsen CH, Mudnakudu-Nagaraju KK. Role of Mesenchymal Stem Cells and Short Chain Fatty Acids in Allergy: A Prophylactic Therapy for Future. Immunol Lett 2023:S0165-2478(23)00096-2. [PMID: 37271295 DOI: 10.1016/j.imlet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Allergic diseases are broadly classified as IgE-mediated type-I hypersensitivity immune reactions due to exposure to typically harmless substances known as allergens. These allergenic substances activate antigen presenting cells, which further triggers T-helper 2 cells immune response and class switch B-cells for synthesis of allergen-specific IgE, followed by classical activation of inflammatory mast cells and eosinophils, which releases preformed mediators involved in the cascade of allergic symptoms. However, the role of Mesenchymal stem cells (MSCs) in tissue repair ability and immunomodulation, makes them as an appropriate tool for treatment of various allergic diseases. Several clinical and preclinical studies show that MSCs could be a promising alternative therapy to allergic diseases. Further, short chain fatty acids, produced from gut microbes by breaking down complex fibre-rich foods, acts through G-coupled receptor mediated activation of MSCs, and their role as key players involved in amelioration of allergic inflammation needs further investigation. Therefore, there is a need for understating the role of SCFAs on the activation of MSCs, which might shed light on the development of new therapeutic regime in allergy treatment. In summary, this review focuses on the underlying of therapeutic role of MSCs in different allergic diseases and the prospects of SCFA and MSC therapy.
Collapse
Affiliation(s)
- Mrudula M Mohanan
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kongens, Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kongens, Lyngby, Denmark.
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India..
| |
Collapse
|
15
|
Shi C, Pei S, Ding Y, Tao C, Zhu Y, Peng Y, Li W, Yi Y. Exosomes with overexpressed miR 147a suppress angiogenesis and infammatory injury in an experimental model of atopic dermatitis. Sci Rep 2023; 13:8904. [PMID: 37264030 PMCID: PMC10235063 DOI: 10.1038/s41598-023-34418-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023] Open
Abstract
Atopic dermatitis is defined as an intensely systemic inflammation among skin diseases. Exosomes derived from adipose-derived stem cells may be a novel cell-free therapeutic strategy for atopic dermatitis treatment. This study aims to elucidate the possible underlying mechanism of adipose-derived stem cells-exosomes harboring microRNA-147a in atopic dermatitis pathogenesis. BALB/c mice treated with Dermatophagoides farinae extract/2,4-dinitrochlorobenzene were defined as a mouse model of atopic dermatitis, either with inflamed HaCaT cells and HUVECs exposed with TNF-α/IFN-γ stimulation were applied for a cell model of atopic dermatitis. The concentrations of IL-1β and TNF-α in the supernatants were examined by ELISA. Cell viability and migration were assessed by MTT and Transwell assay. The apoptosis was examined using flow cytometry and TUNEL staining. The tube formation assay was employed to analyzed angiogenesis. The molecular regulations among miR-147a, MEF2A, TSLP and VEGFA were confirmed using luciferase reporter assay, either with ChIP. microRNA-147a was markedly downregulated in the serum and skin samples of atopic dermatitis mice, of which overexpression remarkably promoted HaCaT cell proliferation, meanwhile inhibiting inflammatory response and cell apoptosis. microRNA-147a in adipose-derived stem cells was subsequently overexpressed, and exosomes (Exos-miR-147a mimics) were collected. Functionally, exos-microRNA-147a mimics attenuated TNF-α/IFN-γ-induced HaCaT cell inflammatory response and apoptosis, and suppressed HUVECs angiogenesis. Encouraging, molecular interaction experiments revealed that exosomal microRNA-147a suppressed TNF-α/IFN-γ-induced HUVECs angiogenesis by targeting VEGFA, and exosomal microRNA-147a repressed HaCaT cells inflammatory injury through the MEF2A-TSLP axis. Mechanistically, exosomal microRNA-147a repressed pathological angiogenesis and inflammatory injury during atopic dermatitis progression by targeting VEGFA and MEF2A-TSLP axis. microRNA-147a-overexpressing adipose-derived stem cells-derived exosomes suppressed pathological angiogenesis and inflammatory injury in atopic dermatitis by targeting VEGFA and MEF2A-TSLP axis.
Collapse
Affiliation(s)
- Chenlong Shi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Sujun Pei
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ying Ding
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Congmin Tao
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuanzheng Zhu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ying Peng
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wei Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yangyan Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
16
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
17
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Najera J, Hao J. Recent advance in mesenchymal stem cells therapy for atopic dermatitis. J Cell Biochem 2023; 124:181-187. [PMID: 36576973 DOI: 10.1002/jcb.30365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells found in a variety of tissues in the body, including but not limited to bone marrow, adipose tissue, umbilical cord, and umbilical cord blood. Given their immunomodulatory effect and ability to be readily isolated from several tissues, they have great potential to be used as a therapeutic agent in a variety of immune-mediated disorders. Atopic dermatitis (AD) is a persistent and relapsing immune skin condition that has recently become more common in several species such as humans, canines, equines, and felines. The use of MSCs to treat AD has piqued the great interest of researchers in recent years. In this article, we review the recent understanding of AD pathology and advances in preclinical and clinical studies of MSCs, MSCs-derived conditional media and exosomes as therapeutic tools to treat AD.
Collapse
Affiliation(s)
- Jonathan Najera
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA.,Department of Biology, College of Science, California State University Polytechnic University, Pomona, California, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
19
|
Zhang T, Zhang M, Yang L, Gao L, Sun W. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Front Immunol 2023; 14:1032355. [PMID: 36761779 PMCID: PMC9904240 DOI: 10.3389/fimmu.2023.1032355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pulmonary fibrosis is an irreversible disease, and its mechanism is unclear. The lung is a vital organ connecting the respiratory tract and the outside world. The changes in lung microbiota affect the progress of lung fibrosis. The latest research showed that lung microbiota differs in healthy people, including idiopathic pulmonary fibrosis (IPF) and acute exacerbation-idiopathic pulmonary fibrosis (AE-IPF). How to regulate the lung microbiota and whether the potential regulatory mechanism can become a necessary targeted treatment of IPF are unclear. Some studies showed that immune response and lung microbiota balance and maintain lung homeostasis. However, unbalanced lung homeostasis stimulates the immune response. The subsequent biological effects are closely related to lung fibrosis. Core fucosylation (CF), a significant protein functional modification, affects the lung microbiota. CF regulates immune protein modifications by regulating key inflammatory factors and signaling pathways generated after immune response. The treatment of immune regulation, such as antibiotic treatment, vitamin D supplementation, and exosome micro-RNAs, has achieved an initial effect in clearing the inflammatory storm induced by an immune response. Based on the above, the highlight of this review is clarifying the relationship between pulmonary microbiota and immune regulation and identifying the correlation between the two, the impact on pulmonary fibrosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Tao Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Min Zhang
- Department of Geriatric Endocrinology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Liqing Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Lingyun Gao
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,Guanghan People's Hospital, Guanghan, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| |
Collapse
|
20
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
21
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
22
|
Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022; 13:1048113. [PMID: 36425795 PMCID: PMC9679024 DOI: 10.3389/fneur.2022.1048113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.
Collapse
Affiliation(s)
- Nana Tan
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Huang
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Lee J, Park L, Kim H, Rho BI, Han RT, Kim S, Kim HJ, Na HS, Back SK. Adipose-derived stem cells decolonize skin Staphylococcus aureus by enhancing phagocytic activity of peripheral blood mononuclear cells in the atopic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:287-295. [PMID: 35766006 PMCID: PMC9247705 DOI: 10.4196/kjpp.2022.26.4.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Staphylococcus aureus (S. aureus) is known to induce apoptosis of host immune cells and impair phagocytic clearance, thereby being pivotal in the pathogenesis of atopic dermatitis (AD). Adipose-derived stem cells (ASCs) exert therapeutic effects against inflammatory and immune diseases. In the present study, we investigated whether systemic administration of ASCs restores the phagocytic activity of peripheral blood mononuclear cells (PBMCs) and decolonizes cutaneous S. aureus under AD conditions. AD was induced by injecting capsaicin into neonatal rat pups. ASCs were extracted from the subcutaneous adipose tissues of naïve rats and administered to AD rats once a week for a month. Systemic administration of ASCs ameliorated AD-like symptoms, such as dermatitis scores, serum IgE, IFN-γ+/IL-4+ cell ratio, and skin colonization by S. aureus in AD rats. Increased FasL mRNA and annexin V+/7-AAD+ cells in the PBMCs obtained from AD rats were drastically reversed when co-cultured with ASCs. In contrast, both PBMCs and CD163+ cells bearing fluorescent zymosan particles significantly increased in AD rats treated with ASCs. Additionally, the administration of ASCs led to an increase in the mRNA levels of antimicrobial peptides, such as cathelicidin and β-defensin, in the skin of AD rats. Our results demonstrate that systemic administration of ASCs led to decolonization of S. aureus by attenuating apoptosis of immune cells in addition to restoring phagocytic activity. This contributes to the improvement of skin conditions in AD rats. Therefore, administration of ASCs may be helpful in the treatment of patients with intractable AD.
Collapse
Affiliation(s)
- Jaehee Lee
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Hyeyoung Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Rafael Taeho Han
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Sewon Kim
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Mirae Campus, Wonju 26493, Korea
| | - Heung Sik Na
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
24
|
Baek J, Ryu B, Kim J, Lee SG, Oh MS, Hong KS, Kim EY, Kim CY, Chung HM. Immunomodulation of Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Rotator Cuff Tears Model. Biomedicines 2022; 10:biomedicines10071549. [PMID: 35884853 PMCID: PMC9312476 DOI: 10.3390/biomedicines10071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Rotator cuff tears (RCTs) induce chronic muscle weakness and shoulder pain. Treatment of RCT using surgery or drugs causes lipid infiltration and fibrosis, which hampers tissue regeneration and complete recovery. The pluripotent stem cell-derived multipotent mesenchymal stem cells (M-MSCs) represent potential candidate next-generation therapies for RCT. Methods: The difference between M-MSCs and adult-MSCs was compared and analyzed using next-generation sequencing (NGS). In addition, using a rat model of RCT, the muscle recovery ability of M-MSCs and adult-MSCs was evaluated by conducting a histological analysis and monitoring the cytokine expression level. Results: Using NGS, it was confirmed that M-MSC was suitable for transplantation because of its excellent ability to regulate inflammation that promotes tissue repair and reduced apoptosis and rejection during transplantation. In addition, while M-MSCs persisted for up to 8 weeks in vivo, they significantly reduced inflammation and adipogenesis-related cytokine levels in rat muscle. Significant differences were also confirmed in histopathological remission. Conclusions: M-MSCs remain in the body longer to modulate immune responses in RCTs and have a greater potential to improve muscle recovery by alleviating acute inflammatory responses. This indicates that M-MSCs could be used in potential next-generation RCT therapies.
Collapse
Affiliation(s)
- Jieun Baek
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
| | - Bokyeong Ryu
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seul-Gi Lee
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
| | - Min-Seok Oh
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Ki-Sung Hong
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
| | - Eun-Young Kim
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Correspondence: (C.-Y.K.); (H.-M.C.); Tel.: +82-10-9140-0136 (C.-Y.K.); +82-10-7190-1926 (H.-M.C.); Fax: +82-2-455-9012 (C.-Y.K. & H.-M.C.)
| | - Hyung-Min Chung
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
- Correspondence: (C.-Y.K.); (H.-M.C.); Tel.: +82-10-9140-0136 (C.-Y.K.); +82-10-7190-1926 (H.-M.C.); Fax: +82-2-455-9012 (C.-Y.K. & H.-M.C.)
| |
Collapse
|
25
|
Zhou L, Zhu H, Bai X, Huang J, Chen Y, Wen J, Li X, Wu B, Tan Y, Tian M, Ren J, Li M, Yang Q. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther 2022; 13:195. [PMID: 35551643 PMCID: PMC9096773 DOI: 10.1186/s13287-022-02876-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in the world. Currently, most patients cannot choose intravenous thrombolysis or intravascular mechanical thrombectomy because of narrow therapeutic windows and severe complications. Stem cell transplantation is an emerging treatment and has been studied in various central nervous system diseases. Animal and clinical studies showed that transplantation of mesenchymal stem cells (MSCs) could alleviate neurological deficits and bring hope for ischemic stroke treatment. This article reviewed biological characteristics, safety, feasibility and efficacy of MSCs therapy, potential therapeutic targets of MSCs, and production process of Good Manufacturing Practices-grade MSCs, to explore the potential therapeutic targets of MSCs in the process of production and use and provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xue Bai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, The First People's Hospital of Neijiang, Sichuan, 64100, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bowen Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mengxia Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
26
|
Guan J, Li Y, Lu F, Feng J. Adipose-derived stem cells ameliorate atopic dermatitis by suppressing the IL-17 expression of Th17 cells in an ovalbumin-induced mouse model. Stem Cell Res Ther 2022; 13:98. [PMID: 35255962 PMCID: PMC8900338 DOI: 10.1186/s13287-022-02774-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have therapeutic potential for atopic dermatitis (AD) owing to their immunoregulatory effects. However, the underlying mechanisms associated with the therapeutic efficacy of MSCs on AD are diverse and related to both cell type and delivery method. Objectives This study investigated the therapeutic effect and mechanisms of adipose-derived stem cells (ADSCs) on AD using an ovalbumin (OVA)-induced AD mouse model. Methods AD mice were subcutaneously injected with mouse ADSCs, cortisone, or PBS, and the therapeutic effects were determined by gross and histological examinations and serum IgE levels. Additionally, qPCR, RNA-sequencing analyses of skin samples and co-culture of ADSCs and Th17 cells were conducted to explore the underlying therapeutic mechanisms. Results ADSCs treatment attenuated the AD pathology, decreased the serum IgE levels, and decreased mast cells infiltration in the skin of the model mice. Moreover, tissue levels of IL-4R and Th17-relevant products (IL-17A, CCL20, and MMP12) were suppressed in the ADSC- and cortisone-treated groups. Genomics and bioinformatics analyses demonstrated significant enrichment of inflammation-related pathways in the downregulated genes of the ADSC- and cortisone-treated groups, specifically the IL-17 signaling pathway. Co-culture experiments revealed that ADSCs significantly suppressed the proliferation of Th17 cells and the expression of proinflammatory cytokines (IL-17A and RORγT). Furthermore, expression levels of PD-L1, TGF-β, and PGE2 were significantly upregulated in co-cultured ADSCs relative to those in monocultured ADSCs. Conclusion ADSCs ameliorate OVA-induced AD in mice mainly by downregulating IL-17 secretion of Th17 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02774-7.
Collapse
Affiliation(s)
- Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111592. [PMID: 34769021 PMCID: PMC8584240 DOI: 10.3390/ijms222111592] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.
Collapse
|
28
|
Liu Q, Zhang J, Tang Y, Ma Y, Xue Z, Wang J. The effects of human umbilical cord mesenchymal stem cell transplantation on female fertility restoration in mice. Curr Gene Ther 2021; 22:319-330. [PMID: 34649485 DOI: 10.2174/1566523221666211014165341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Female fertility refers to the capacity to produce oocytes and achieve fertilization and pregnancy, and it is impaired by age, disease, environment and social pressure. However, no effective therapy that restores female reproductive ability has been established. Mesenchymal stromal cells (MSCs) exhibit multilineage differentiation potential and have attracted considerable attention as a tool for restoring female fertility. METHODS This study used human umbilical cord-MSCs (Huc-MSCs) to restore fertility in aging female mice and mice with chemotherapy-induced damage through the rescue of ovarian function and reconstruction of the fallopian tubes and uterus. In our study, two mouse models were generated: aging mice (35 weeks of age) and mice with chemotherapy-induced damage. RESULTS The effect of MSCs on the ovaries, fallopian tubes and uterus was evaluated by analyzing gonadal hormone levels and by performing morphological and statistical analyses. The levels of estradiol (E2) and follicle-stimulating hormone (FSH) exhibited significant recovery after Huc-MSC transplantation in both aging mice and chemotherapy-treated mice. Huc-MSC treatment also increased the number of primordial, developing and preovulatory follicles in the ovaries of mice. Moreover, MSCs were shown to rescue the morphology of the fallopian tubes and uterus through mechanisms such as cilia regeneration in the fallopian tubes and reformation of glands and endometrial tissue in the uterus. CONCLUSION Huc-MSCs may represent an effective treatment for restoring female fertility through recovery from chemotherapy-induced damage and rescue of female reproductive organs from the effects of aging.
Collapse
Affiliation(s)
- Qiwei Liu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100010. China
| | - Junhui Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui. China
| | - Yong Tang
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai. China
| | - Yuanyuan Ma
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100010. China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai. China
| | - Jinjuan Wang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100010. China
| |
Collapse
|
29
|
Kim EY, Kim HS, Hong KS, Chung HM, Park SP, Noh G. Mesenchymal stem/stromal cell therapy in atopic dermatitis and chronic urticaria: immunological and clinical viewpoints. Stem Cell Res Ther 2021; 12:539. [PMID: 34635172 PMCID: PMC8503727 DOI: 10.1186/s13287-021-02583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.
Collapse
Affiliation(s)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, The Graduate School of Dong-A University, Busan, Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | | | - Hyung-Min Chung
- Miraecellbio Co., Ltd., Seoul, Korea.,Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Miraecellbio Co., Ltd., Seoul, Korea. .,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Doreongno 65, Jeju-si, 63127, Jeju Special Self-Governing Province, Korea.
| |
Collapse
|
30
|
Shin N, Jung N, Lee SE, Kong D, Kim NG, Kook MG, Park H, Choi SW, Lee S, Kang KS. Pimecrolimus interferes the therapeutic efficacy of human mesenchymal stem cells in atopic dermatitis by regulating NFAT-COX2 signaling. Stem Cell Res Ther 2021; 12:482. [PMID: 34454603 PMCID: PMC8399851 DOI: 10.1186/s13287-021-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) therapy has recently been considered a promising treatment for atopic dermatitis (AD) due to their immunomodulation and tissue regeneration ability. In our previous studies, we demonstrated that hMSCs alleviate allergic inflammation in murine AD model by inhibiting the activation of mast cells and B cells. Also our phase I/IIa clinical trial showed clinical efficacy and safety of hMSCs in moderate-to-severe adult AD patients. However, hMSCs therapy against atopic dermatitis have had poor results in clinical field. Therefore, we investigated the reason behind this result. We hypothesized that drug–cell interaction could interfere with the therapeutic efficacy of stem cells, and investigated whether coadministration with pimecrolimus, one of the topical calcineurin inhibitors, could influence the therapeutic potential of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in AD. Methods hUCB-MSCs were subcutaneously injected to AD-induced mice with or without pimecrolimus topical application. To examine whether pimecrolimus influenced the immunomodulatory activity of hUCB-MSCs, hUCB-MSCs were treated with pimecrolimus. Results Pimecrolimus disturbed the therapeutic effect of hUCB-MSCs when they were co-administered in murine AD model. Moreover, the inhibitory functions of hUCB-MSCs against type 2 helper T (Th2) cell differentiation and mast cell activation were also deteriorated by pimecrolimus treatment. Interestingly, we found that pimecrolimus decreased the production of PGE2, one of the most critical immunomodulatory factors in hUCB-MSCs. And we demonstrated that pimecrolimus downregulated COX2-PGE2 axis by inhibiting nuclear translocation of NFAT3. Conclusions Coadministration of pimecrolimus with hMSCs could interfere with the therapeutic efficacy of hMSCs in atopic dermatitis, and this is the first study that figured out the interaction of hMSCs with other drugs in cell therapy of atopic dermatitis. Therefore, this study might give rise to improvement of the clinical application of hMSCs therapy and facilitate the widespread application of hMSCs in clinical field. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02547-8.
Collapse
Affiliation(s)
- Nari Shin
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myung Geun Kook
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwanhee Park
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea.
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res Ther 2021; 12:447. [PMID: 34372921 PMCID: PMC8351374 DOI: 10.1186/s13287-021-02516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Radiation-induced dermatitis is a serious side effect of radiotherapy, and very few effective treatments are currently available for this condition. We previously demonstrated that apoptosis is an important feature of radiation-induced dermatitis and adipose-derived stem cells (ADSCs) are one of the most promising types of stem cells that have a protective effect on acute radiation-induced dermatitis. Cathepsin F (CTSF) is a recently discovered protein that plays an important role in apoptosis. In this study, we investigated whether ADSCs affect chronic radiation-induced dermatitis, and the underlying mechanisms involved. Methods ADSCs were isolated from male Sprague-Dawley (SD) rats and characterized. For in vivo studies, rats were randomly divided into control and ADSC-treated groups, and cultured ADSCs were transplanted into radiation-induced dermatitis model rats. The effects of ADSC transplantation were determined by skin damage scoring, histopathological analysis, electron microscopy, immunohistochemical staining, and western blotting analysis of apoptosis-related proteins. To evaluate the effects of ADSCs in vitro, radiation-induced apoptotic cells were treated with ADSC culture supernatant, and apoptosis-related protein expression was investigated by TUNEL staining, flow cytometry, and western blotting. Results In the in vivo studies, skin damage, inflammation, fibrosis, and apoptosis were reduced and hair follicle and sebaceous gland regeneration were enhanced in the ADSC group compared with the control group. Further, CTSF and downstream pro-apoptotic proteins (Bid, BAX, and caspase 9) were downregulated, while anti-apoptotic proteins (Bcl-2 and Bcl-XL) were upregulated. In vitro, ADSCs markedly attenuated radiation-induced apoptosis, downregulated CTSF and downstream pro-apoptotic proteins, and upregulated anti-apoptotic proteins. Conclusion ADSCs protect against radiation-induced dermatitis by exerting an anti-apoptotic effect through inhibition of CTSF expression. ADSCs may be a good therapeutic candidate to prevent the development of radiation-induced dermatitis.
Collapse
|
32
|
Jung H, Son GM, Lee JJ, Park HS. Therapeutic Effects of Tonsil-derived Mesenchymal Stem Cells in an Atopic Dermatitis Mouse Model. In Vivo 2021; 35:845-857. [PMID: 33622877 DOI: 10.21873/invivo.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Mesenchymal stem cells (MSCs) have been suggested as an alternative therapeutic option in atopic dermatitis. Palatine tonsils are lymphoepithelial tissue located around the oropharynx and have been proposed as one of the important alternative sources of MSCs. The purpose of this study was to evaluate the protective and therapeutic effects of tonsil-derived MSCs (TMSCs) in a 2,4-dinitrofluorobenzene (DNFB)-induced mouse model of atopic dermatitis (AD). MATERIALS AND METHODS The effect of TMSCs was evaluated in 20 C57BL/6J mice that were randomly divided into four groups (normal, DNFB-PBS, DNFB-TMSC7, and DNFB-TMSC16 group). TMSCs were subcutaneously injected into DNFB-sensitized mice on day 7 (DNFB-TMSC7 group) and day 16 (DNFB-TMSC16 group). Several parameters of inflammation were assessed. RESULTS Subcutaneously injected TMSCs significantly improved the inflammatory symptoms in a DNFB-induced AD model mice, particularly showing therapeutic effects rather than protective effects. TMSC treatment inhibited T-cell-mediated inflammatory responses by decreasing the levels of IL-6, IL-1β, TNF-α (Th1 cell marker), IL-4 (Th2 cell marker), and B-cell-mediated serum IgE. In contrast, TMSCs enhanced the anti-inflammatory cytokine TGF-β. CONCLUSION In vitro and in vivo results suggest that TMSC treatment improved inflammatory skin lesions in the DNFB-induced AD mice model via immunomodulatory effects of the TMSCs. TMSCs inhibit T-cell and B-cell mediated responses, and enhance the anti-inflammatory responses.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea
| | - Gil Myeong Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hae Sang Park
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, Chuncheon, Republic of Korea; .,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
33
|
Tang WY, Liu JH, Peng CJ, Liao Y, Luo JS, Sun X, Tang YL, Luo XQ. Functional Characteristics and Application of Mesenchymal Stem Cells in Systemic Lupus Erythematosus. Arch Immunol Ther Exp (Warsz) 2021; 69:7. [PMID: 33713197 DOI: 10.1007/s00005-021-00603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a rare, heterogeneous autoimmune and autoinflammatory disease that affects both sexes and all races, although this disease exhibits its highest incidence/prevalence among the black population and shows a predilection for women of reproductive age. Although SLE has no cure, treatment can help decrease its signs and symptoms. Thus, we should focus primarily on personalized treatment. Mesenchymal stem/stromal cells (MSCs), which are multipotent cells capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myoblasts, among other cell types, are potential candidates for use in a promising strategy to treat severe and refractory SLE. MSCs have an immunomodulatory function that can suppress the proliferation and activities of many immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, macrophages and dendritic cells. Substantial progress has recently been made in MSC therapy, and experimental and clinical data suggest that such a therapy is a promising strategy for the treatment of severe and refractory SLE. In this review, we highlight the effects of MSCs on different immune cell types, describe the mechanisms underlying MSC-mediated immunoregulation, and discuss the treatment of SLE with MSCs from different sources in various animal models and clinical applications.
Collapse
Affiliation(s)
- Wen-Yan Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jia-Hua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Chun-Jin Peng
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yao Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Jie-Si Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| | - Yan-Lai Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Xue-Qun Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
34
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
35
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
36
|
Yang JW, Seo Y, Shin TH, Ahn JS, Oh SJ, Shin YY, Kang MJ, Lee BC, Lee S, Kang KS, Hur J, Kim YS, Kim TY, Kim HS. Extracellular Vesicles from SOD3-Transduced Stem Cells Exhibit Improved Immunomodulatory Abilities in the Murine Dermatitis Model. Antioxidants (Basel) 2020; 9:E1165. [PMID: 33238520 PMCID: PMC7700433 DOI: 10.3390/antiox9111165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The immunoregulatory abilities of mesenchymal stem cells (MSCs) have been investigated in various autoimmune and allergic diseases. However, the therapeutic benefits observed in preclinical settings have not been reproducible in clinical trials. This discrepancy is due to insufficient efficacy of MSCs in harsh microenvironments, as well as batch-dependent variability in potency. Therefore, to achieve more beneficial and uniform outcomes, novel strategies are required to potentiate the therapeutic effect of MSCs. One of simple strategies to augment cellular function is genetic manipulation. Several studies showed that transduction of antioxidant enzyme into cells can increase anti-inflammatory effects. Therefore, we evaluated the immunoregulatory abilities of MSCs introduced with extracellular superoxide dismutase 3 (SOD3) in the present study. SOD3-overexpressed MSCs (SOD3-MSCs) reduced the symptoms of murine model of atopic dermatitis (AD)-like inflammation, as well as the differentiation and activation of various immune cells involved in AD progression. Interestingly, extracellular vesicles (EVs) isolated from SOD3-MSCs delivered SOD3 protein. EVs carrying SOD3 also exerted improved therapeutic efficacy, as observed in their parent cells. These results suggest that MSCs transduced with SOD3, an antioxidant enzyme, as well as EVs isolated from modified cells, might be developed as a promising cell-based therapeutics for inflammatory disorders.
Collapse
Affiliation(s)
- Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.-H.S.); (B.-C.L.)
| | - Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Min-Jung Kang
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.-H.S.); (B.-C.L.)
| | - Seunghee Lee
- Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Korea; (S.L.); (K.-S.K.)
| | - Kyung-Sun Kang
- Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Korea; (S.L.); (K.-S.K.)
- Adult Stem Cell Research Center and Research, Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea;
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, Daejeon 34134, Korea;
| | - Tae-Yoon Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| |
Collapse
|
37
|
Ryu B, Baek J, Kim H, Lee JH, Kim J, Jeong YH, Lee SG, Kang KR, Oh MS, Kim EY, Kim CY, Chung HM. Anti-Inflammatory Effects of M-MSCs in DNCB-Induced Atopic Dermatitis Mice. Biomedicines 2020; 8:biomedicines8100439. [PMID: 33096640 PMCID: PMC7589030 DOI: 10.3390/biomedicines8100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease caused by an imbalance between Th1 and Th2 cells. AD patients suffer from pruritus, excessive dryness, red or inflamed skin, and complications such as sleep disturbances and depression. Although there are currently many AD treatments available there are insufficient data on their long-term stability and comparative effects. Moreover, they have limitations due to various side effects. Multipotent mesenchymal stem cells (M-MSCs) might have potential for next-generation AD therapies. MSCs are capable of immune function regulation and local inflammatory response inhibition. M-MSCs, derived from human embryonic stem cells (hESC), additionally have a stable supply. In L507 antibody array, M-MSCs generally showed similar tendencies to bone marrow-derived mesenchymal stem cells (BM-MSCs), although the immunoregulatory function of M-MSCs seemed to be superior to BM-MSCs. Based on the characteristics of M-MSCs on immunoregulatory functions, we tested a M-MSC conditioned media concentrate (MCMC) in mice with AD lesions on their dorsal skin. MCMC significantly decreased RNA expression levels of inflammatory cytokines in the mouse dorsal skin. It also suppressed serum IgE levels. In addition, significant histopathologic alleviation was identified. In conclusion, secretions of M-MSCs have the potential to effectively improve AD-related inflammatory lesions. M-MSCs showed potential for use in next-generation AD treatment.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Hana Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | | | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Mireacellbio Co., Ltd., Seoul 04795, Korea;
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| |
Collapse
|
38
|
de Oliveira Ramos F, Malard PF, Brunel HDSS, Paludo GR, de Castro MB, da Silva PHS, da Cunha Barreto-Vianna AR. Canine atopic dermatitis attenuated by mesenchymal stem cells. J Adv Vet Anim Res 2020; 7:554-565. [PMID: 33005683 PMCID: PMC7521806 DOI: 10.5455/javar.2020.g453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
Objective: To evaluate the use of mesenchymal stem cells (MSCs) in the attenuation of canine atopic dermatitis (AD). Materials and methods: Sixteen dogs were selected and divided into three groups, mild, moderate, and severe, according to the Canine Atopic Dermatitis Extent and Severity Index (CADESI-4). They were evaluated for 82 days. The protocol recommended in this experiment was to inject 2 × 106/kg bodyweight of MSC’s in all groups by the intravenous route with intervals of applications of 21 days. The degree of pruritus was evaluated by examining the visual analog scale, the CADESI-4, the histopathology of the skin, hematological and biochemical parameters, the pyogenic effect of MSCs, and the thickness of the epidermis. Results: There was a significant difference in the reduction of epidermal thickness in the moderate and severe groups. Hematological, biochemical, and body temperature parameters remained within normal limits for the species with no side effects Conclusion: MSCs attenuated the clinical signs of AD.
Collapse
Affiliation(s)
| | | | | | - Giane Regina Paludo
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | |
Collapse
|
39
|
Liu J, Liu Q, Chen X. The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Front Immunol 2020; 11:1843. [PMID: 32922398 PMCID: PMC7456948 DOI: 10.3389/fimmu.2020.01843] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated in many preclinical and clinical studies. This potential is dominantly based on the immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC transplantation are still not fully characterized, accumulating evidence has revealed that B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The immunosuppressive effects of Bregs have been demonstrated, and these cells are being evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable of educating B cells and inducing regulatory B cell production via cell-to-cell contact, soluble factors, and extracellular vesicles (EVs). These cells thus have the potential to complement each other's immunomodulatory functions, and a combined approach may enable synergistic effects for the treatment of immunological diseases. However, compared with investigations regarding other immune cells, investigations into how MSCs specifically regulate Bregs have been superficial and insufficient. In this review, we discuss the current findings related to the immunomodulatory effects of MSCs on regulatory B cells and provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Park HH, Lee S, Yu Y, Yoo SM, Baek SY, Jung N, Seo KW, Kang KS. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells 2020; 38:904-916. [PMID: 32277785 DOI: 10.1002/stem.3183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (MSCs) are promising therapeutics for autoimmune diseases due to their immunomodulatory effects. In particular, human umbilical cord blood-derived MSCs (hUCB-MSCs) have a prominent therapeutic effect on atopic dermatitis (AD). However, the underlying mechanism is unclear. This study investigated the role of transforming growth factor-beta (TGF-β) in the therapeutic effect of hUCB-MSCs on AD. Small interfering RNA (siRNA)-mediated depletion of TGF-β disrupted the therapeutic effect of hUCB-MSCs in a mouse model of AD by attenuating the beneficial changes in histopathology, mast cell infiltration, tumor necrosis factor-alpha (TNF-α) expression, and the serum IgE level. To confirm that hUCB-MSCs regulate secretion of TNF-α, we investigated whether they inhibit TNF-α secretion by activated LAD2 cells. Coculture with hUCB-MSCs significantly inhibited secretion of TNF-α by LAD2 cells. However, this effect was abolished by siRNA-mediated depletion of TGF-β in hUCB-MSCs. TNF-α expression in activated LAD2 cells was regulated by the extracellular signal-related kinase signaling pathway and was suppressed by TGF-β secreted from hUCB-MSCs. In addition, TGF-β secreted by hUCB-MSCs inhibited maturation of B cells. Taken together, our findings suggest that TGF-β plays a key role in the therapeutic effect of hUCB-MSCs on AD by regulating TNF-α in mast cells and maturation of B cells.
Collapse
Affiliation(s)
- Hwan Hee Park
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Sae Mi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kwang-Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
41
|
Daltro SRT, Meira CS, Santos IP, Ribeiro dos Santos R, Soares MBP. Mesenchymal Stem Cells and Atopic Dermatitis: A Review. Front Cell Dev Biol 2020; 8:326. [PMID: 32478072 PMCID: PMC7240073 DOI: 10.3389/fcell.2020.00326] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are stromal-derived non-hematopoietic progenitor cells that reside in and can be expanded from various tissues sources of adult and neonatal origin, such as the bone marrow, umbilical cord, umbilical cord blood, adipose tissue, amniotic fluid, placenta, dental pulp and skin. The discovery of the immunosuppressing action of MSCs on T cells has opened new perspectives for their use as a therapeutic agent for immune-mediated disorders, including allergies. Atopic dermatitis (AD), a chronic and relapsing skin disorder that affects up to 20% of children and up to 3% of adults worldwide, is characterized by pruritic eczematous lesions, impaired cutaneous barrier function, Th2 type immune hyperactivation and, frequently, elevation of serum immunoglobulin E levels. Although, in the dermatology field, the application of MSCs as a therapeutic agent was initiated using the concept of cell replacement for skin defects and wound healing, accumulating evidence have shown that MSC-mediated immunomodulation can be applicable to the treatment of inflammatory/allergic skin disorders. Here we reviewed the pre-clinical and clinical studies and possible biological mechanisms of MSCs as a therapeutic tool for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | - Ricardo Ribeiro dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Seo Y, Shin TH, Ahn JS, Oh SJ, Shin YY, Yang JW, Park HY, Shin SC, Kwon HK, Kim JM, Sung ES, Park GC, Lee BJ, Kim HS. Human Tonsil-Derived Mesenchymal Stromal Cells Maintain Proliferating and ROS-Regulatory Properties via Stanniocalcin-1. Cells 2020; 9:cells9030636. [PMID: 32155780 PMCID: PMC7140534 DOI: 10.3390/cells9030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) from various sources exhibit different potential for stemness and therapeutic abilities. Recently, we reported a unique MSCs from human palatine tonsil (TMSCs) and their superior proliferation capacity compared to MSCs from other sources. However, unique characteristics of each MSC are not yet precisely elucidated. We investigated the role of stanniocalcin-1 (STC1), an anti-oxidative hormone, in the functions of TMSCs. We found that STC1 was highly expressed in TMSC compared with MSCs from bone marrow or adipose tissue. The proliferation, senescence and differentiation of TMSCs were assessed after the inhibition of STC1 expression. STC1 inhibition resulted in a significant decrease in the proliferation of TMSCs and did not affect the differentiation potential. To reveal the anti-oxidative ability of STC1 in TMSCs themselves or against other cell types, the generation of mitochondrial reactive oxygen species (ROS) in TMSC or ROS-mediated production of interleukin (IL)-1β from macrophage-like cells were detected. Interestingly, the basal level of ROS generation in TMSCs was significantly elevated after STC1 inhibition. Moreover, down-regulation of STC1 impaired the inhibitory effect of TMSCs on IL-1β production in macrophages. Taken together, these findings indicate that STC1 is highly expressed in TMSCs and plays a critical role in proliferating and ROS-regulatory abilities.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - Hee Young Park
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (T.-H.S.); (H.Y.P.)
| | - Sung-Chan Shin
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Hyun-Keun Kwon
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Ji Min Kim
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan 50612, Korea;
| | - Gi Cheol Park
- Department of Otolaryngology – Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Byung-Joo Lee
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (S.-C.S.); (H.-K.K.); (J.M.K.)
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.S.); (J.-S.A.); (S.-J.O.); (Y.Y.S.); (J.W.Y.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (B.-J.L.); (H.-S.K.); Tel.: +82-51-240-7675 (B.-J.L.); +82-51-510-8231 (H.-S.K.)
| |
Collapse
|
43
|
Campione E, Lanna C, Diluvio L, Cannizzaro MV, Grelli S, Galluzzo M, Talamonti M, Annicchiarico-Petruzzelli M, Mancini M, Melino G, Candi E, Schiavone G, Wang Y, Shi Y, Bianchi L. Skin immunity and its dysregulation in atopic dermatitis, hidradenitis suppurativa and vitiligo. Cell Cycle 2020; 19:257-267. [PMID: 31905036 DOI: 10.1080/15384101.2019.1707455] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While the epidermis is the frontline defense against infections and indeed, it is a peripheral lymphoid organ, the same immunological mechanisms may initiate and sustain pathological conditions. Indeed, a deregulated action against exogenous pathogens could activate a T cell response in atopic dermatitis, hidradenitis suppurativa and vitiligo. Atopic dermatitis (AD) is a chronic inflammatory skin condition with a complex pathophysiology. Although T helper 2 immunity dysregulation is thought to be the main cause of AD etiopathogenesis, the triggering mechanism is not well understood, and the treatment is often difficult. As the AD, hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a dramatic impact on the quality of life of the affected patients. The exact pathophysiology of HS is still unclear, but many evidences report a follicular obstruction and subsequent inflammation with TNF-α, interleukin (IL)-1β, IL-10, and IL-17 involvement. Vitiligo is an autoimmune epidermal disorder which consists of melanocytes destruction and skin depigmentation. Melanocytes destruction is mainly due to their increased oxidative-stress sensitivity with a consequent activation of innate first and adaptative immunity (CD8+ T cells) later. The understanding of the triggering mechanisms of AD, HS and Vitiligo is pivotal to outline novel therapies aimed at regaining the physiological immune homeostasis of healthy skin. The aim of this review is to provide new insight on the pathogenesis of these skin diseases and to highlight on the new therapeutic approaches adopted in the treatment of AD, HS and Vitiligo.
Collapse
Affiliation(s)
- Elena Campione
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Diluvio
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Galluzzo
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marina Talamonti
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mara Mancini
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Schiavone
- Plastic Surgery and Regenerative Surgery Unit, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine and Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Luca Bianchi
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
44
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
45
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Mesenchymal Stem Cells Alleviate DHEA-Induced Polycystic Ovary Syndrome (PCOS) by Inhibiting Inflammation in Mice. Stem Cells Int 2019; 2019:9782373. [PMID: 31611920 PMCID: PMC6757294 DOI: 10.1155/2019/9782373] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in women of reproductive age. Chronic inflammation is considered to be the cause of ovarian dysfunction. Increasing evidence in animal studies and in preliminary clinical trials has demonstrated that MSCs possess immunomodulatory effects via their interaction with immune cells. However, their contribution to PCOS remains unclear. In this study, we showed that the administration of hUC-MSCs could efficiently improve the pathological changes of PCOS mice induced by dehydroepiandrosterone (DHEA), including ovarian histopathology and function. Moreover, we found that the administration of MSCs significantly downregulated the expression of proinflammatory factors (TNF-α, IL-1β, and IFN-γ) and fibrosis-related genes (CTGF) in ovarian and uterus tissues and affected the systemic inflammatory response. The percentage of peripheral neutrophils, M1 macrophages, and B cells was significantly reduced, while M2 macrophages and regulatory T cells (Tregs) were increased in hUC-MSC-treated mice. In the spleen, the percentage of neutrophils, M1 macrophages, IFN-γ+CD19+B cell, IFN-γ+CD4+T cells (Th1), and IL-17+CD4+T cells (Th17) was significantly decreased in hUC-MSC-treated mice. These results suggested that hUC-MSC treatment could alleviate ovarian dysfunction by inhibiting ovarian local and systemic inflammatory responses.
Collapse
|
47
|
Lee BC, Kim JJ, Lee JY, Kang I, Shin N, Lee SE, Choi SW, Cho JY, Kim HS, Kang KS. Disease-specific primed human adult stem cells effectively ameliorate experimental atopic dermatitis in mice. Am J Cancer Res 2019; 9:3608-3621. [PMID: 31281501 PMCID: PMC6587175 DOI: 10.7150/thno.32945] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Although human mesenchymal stem cells (hMSCs) hold considerable promise as an alternative therapeutic reagent for allergic disorders including atopic dermatitis (AD), the strategy for enhancing hMSC-based therapy remains challenging. We sought to investigate whether preconditioning with mast cell (MC) granules could enhance the therapeutic efficiency of human umbilical cord blood-derived MSCs (hUCB-MSCs) against AD. Methods: AD was experimentally induced in NC/Nga mice by repeated applications of 4% sodium dodecyl sulfate (SDS) and dermatophagoides farinae (Df) extract, and preconditioned hUCB-MSCs were subcutaneously injected. The therapeutic effect was determined by gross examination and additional ex vivo experiments performed using blood and skin samples to determine the resolution of allergic inflammation. To explore the underlying mechanisms, several co-culture assays with primary isolated immune cells and wound closure assays were conducted. Results: Pretreatment of MC granules enhanced the therapeutic effects of hUCB-MSCs by attenuating the symptoms of AD in an experimental animal model. MC granule-primed cells suppressed the activation of major disease-inducing cells, MCs and B lymphocytes more efficiently than naïve cells both in vitro and in vivo. Histamine-mediated upregulation of the COX-2 signaling pathway was shown to play a crucial role in suppression of the allergic immune response by MC-pretreated hUCB-MSCs. Moreover, MC pretreatment improved the wound healing ability of hUCB-MSCs. Conclusions: Our findings indicate that pre-exposure to MC granules improved the therapeutic effect of hUCB-MSCs on experimental AD by resolving the allergic immune reaction and accelerating the tissue regeneration process more efficiently than naïve cells, suggesting a potential enhancement strategy for stem cell-based therapy.
Collapse
|
48
|
Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci Rep 2019; 9:6623. [PMID: 31036853 PMCID: PMC6488580 DOI: 10.1038/s41598-019-42964-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord (UC-MSCs) have immunomodulatory properties. The aim of this study was to explore whether extracts of MSCs (MSC-Ex) could augment the low therapeutic efficacy of the whole cells in an Aspergillus fumigatus (Af)-induced atopic dermatitis (AD) model. LPS- or TNF-α/IFN-γ-stimulated keratinocytes (HaCaT cells) were treated with MSC-Ex, and the Af-induced AD model was established in BALB/c mice. In HaCaT cells, MSC-Ex treatment significantly reduced the inflammatory cytokine (IL-6, IL-1β, IL-4, IL-5 and TNF-α), iNOS and NF-κB levels, and upregulated the anti-inflammatory cytokines (IL-10 and TGF-β1). In the AD mice, the MSC-Ex group showed greatly reduced dermatitis, and lower clinical symptom scores and IgE levels. The histological dermatitis scores were also markedly lower in the MSC-Ex-treated animals compared with the MSC-treated group. Decreased levels of IFN-γ (Th1) and IL-17 (Th17), IL-4 and IL-13 (Th2) were detected in T cells and the skin tissue from the MSC-Ex treated AD mice. The therapeutic capacity of MSC-Ex was preserved after lyophilization and reconstitution. MSC-Ex treatment reproducibly suppresses dermatitis and inhibits the induction of inflammatory cytokines in the skin of AD mice. MSC-Ex is therefore a potential new treatment agent for AD.
Collapse
|
49
|
Sah SK, Agrahari G, Nguyen CT, Kim YS, Kang KS, Kim TY. Enhanced therapeutic effects of human mesenchymal stem cells transduced with superoxide dismutase 3 in a murine atopic dermatitis-like skin inflammation model. Allergy 2018; 73:2364-2376. [PMID: 30144097 DOI: 10.1111/all.13594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) has been proposed to treat various autoimmune diseases. However, effective strategies for treating atopic dermatitis (AD) are still lacking, and the mechanisms underlying stem cell therapy remain largely unknown. In this study, we sought to explore potential clinical application of superoxide dismutase 3-transduced MSCs (SOD3-MSCs) to experimental AD-like skin inflammation in in vitro and in vivo and its underlying anti-inflammatory mechanisms. METHODS SOD3-MSCs were administered subcutaneously to mice with AD, and associated symptoms and biologic changes were evaluated. Human keratinocytes, mast cells, and murine T helper (Th) 2 cells were cocultured in vitro with SOD3-MSCs to investigate potential therapeutic effects of SOD3-MSCs. RESULTS In mice with AD, SOD3-MSCs ameliorated AD pathology and enhanced the efficacy of MSC therapy by controlling activated immune cells, by reducing expression levels of proinflammatory mediators in the skin, and by inhibiting the histamine H4 receptor (H4R)-mediated inflammatory cascade and activation of Janus kinase signal transducer and activator of transcription pathways. Similarly, coculture of SOD3-MSCs with mast cells, keratinocytes, and Th2 cells effectively dampened H4R-dependent persistent inflammatory responses by multiple mechanisms. Moreover, we also showed that SOD3 interacts with H4R and IL-4 receptor α. The functional significance of this interaction could be a markedly reduced inflammatory response in keratinocytes and overall AD pathogenesis, representing a novel mechanism for SOD3's anti-inflammatory effects. CONCLUSION SOD3-MSCs can be potentially used as an effective and clinically relevant therapy for AD and other autoimmune disorders.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- Laboratory of Dermatology-Immunology; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Gaurav Agrahari
- Laboratory of Dermatology-Immunology; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Cuong Thach Nguyen
- Laboratory of Dermatology-Immunology; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Yeon-Soo Kim
- Department of New Drug Discovery and Development; Chungnam National University; Daejeon Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center; College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Tae-Yoon Kim
- Laboratory of Dermatology-Immunology; College of Medicine; The Catholic University of Korea; Seoul Korea
| |
Collapse
|
50
|
Kim M, Lee SH, Kim Y, Kwon Y, Park Y, Lee HK, Jung HS, Jeoung D. Human Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Atopic Dermatitis by Regulating the Expression of MIP-2, miR-122a-SOCS1 Axis, and Th1/Th2 Responses. Front Pharmacol 2018; 9:1175. [PMID: 30459600 PMCID: PMC6232252 DOI: 10.3389/fphar.2018.01175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to investigate the effect of human adipose tissue-derived mesenchymal stem cells (AdMSCs) on atopic dermatitis (AD) in the BALB/c mouse model. The AdMSCs attenuated clinical symptoms associated with AD, decreased numbers of degranulated mast cells (MCs), IgE level, amount of histamine released, and prostaglandin E2 level. Atopic dermatitis increased the expression levels of cytokines/chemokines, such as interleukin-5 (IL-5), macrophage inflammatory protein-1ß (MIP-1ß), MIP-2, chemokine (C-C motif) ligand 5 (CCL5), and IL-17, in BALB/c mouse. The AdMSCs showed decreased expression levels of these cytokines in the mouse model of AD. In vivo downregulation of MIP-2 attenuated the clinical symptoms associated with AD. Atopic dermatitis increased the expression levels of hallmarks of allergic inflammation, induced interactions of Fc𝜀RIβ with histone deacetylase 3 (HDAC3) and Lyn, increased ß-hexosaminidase activity, increased serum IgE level, and increased the amount of histamine released in an MIP-2-dependent manner. Downregulation of MIP-2 increased the levels of several miRNAs, including miR-122a-5p. Mouse miR-122a-5p mimic inhibited AD, while suppressor of cytokine signaling 1 (SOCS1), a predicted downstream target of miR-122a-5p, was required for AD. The downregulation of SOCS1 decreased the expression levels of MIP-2 and chemokine (C-X-C motif) ligand 13 (CXCL13) in the mouse model of AD. The downregulation of CXCL13 attenuated AD and allergic inflammation such as passive cutaneous anaphylaxis. The role of T cell transcription factors in AD was also investigated. Atopic dermatitis increased the expression levels of T-bet and GATA-3 [transcription factors of T-helper 1 (Th1) and T-helper 2 (Th2) cells, respectively] but decreased the expression of Foxp3, a transcription factor of regulatory T (Treg) cells, in an SOCS1-dependent manner. In addition to this, miR-122a-5p mimic also prevented AD from regulating the expression of T-bet, GATA-3, and Foxp3. Atopic dermatitis increased the expression of cluster of differentiation 163 (CD163), a marker of M2 macrophages, but decreased the expression of inducible nitric oxide synthase (iNOS), a marker of M1 macrophages. Additionally, SOCS1 and miR-122a-5p mimic regulated the expression of CD163 and iNOS in the mouse model of AD. Experiments employing conditioned medium showed interactions between MCs and macrophages in AD. The conditioned medium of AdMSCs, but not the conditioned medium of human dermal fibroblasts, negatively inhibited the features of allergic inflammation. In summary, we investigated the anti-atopic effects of AdMSCs, identified targets of AdMSCs, and determined the underlying mechanism for the anti-atopic effects of AdMSCs.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Sung-Hoon Lee
- Biotechnology Institute, EHL-BIO Co., Ltd., Uiwang, South Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Yeongseo Park
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hong-Ki Lee
- Biotechnology Institute, EHL-BIO Co., Ltd., Uiwang, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|