1
|
Parikh K, Dimou A, Leventakos K, Mansfield AS, Shanshal M, Wan Y, Lin HM, Vincent S, Elliott J, Bonta IR. Impact of EML4-ALK Variants and Co-Occurring TP53 Mutations on Duration of First-Line ALK Tyrosine Kinase Inhibitor Treatment and Overall Survival in ALK Fusion-Positive NSCLC: Real-World Outcomes From the GuardantINFORM database. J Thorac Oncol 2024; 19:1539-1549. [PMID: 39019326 DOI: 10.1016/j.jtho.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) are first-line treatment options for ALK-positive (ALK+) NSCLC. Factors such as variant allele frequencies (VAFs), EML4-ALK fusion variant, and concurrent TP53 mutations (TP53mt) in circulating tumor DNA (ctDNA) may affect treatment outcomes. We evaluated their effects on time to discontinuation (TTD) of first-line treatment with next-generation ALK TKIs in a real-world setting. METHODS Adults with advanced or metastatic NSCLC and ctDNA-detected ALK fusion who received first-line next-generation ALK TKI monotherapy were identified in GuardantINFORM. Effects of ALK fusion VAF, EML4-ALK variants, and TP53mt detection on TTD were evaluated. RESULTS A total of 307 patients with ALK fusion in baseline ctDNA received first-line alectinib (n = 280), brigatinib (n = 15), lorlatinib (n = 9), or ceritinib (n = 3); 150 patients (49%) had ALK-fusion VAF greater than or equal to 1%. Among 232 patients with EML4-ALK fusions (v1, 50%; v3, 36%), TP53mt co-occurred with v1 in 42 (18%) and v3 in 32 (14%). Patients with VAF less than 1% versus greater than or equal to 1% had a median TTD of 32.2 (95% confidence interval [CI]: 20.7-not estimable [NE]) versus 14.7 months (10.4-19.9; hazard ratio [HR] = 1.57 [95% CI: 1.09-2.26]; p = 0.0146). Median TTD was 13.1 (9.5-19.9) versus 27.6 months (17.3-NE) in patients with versus without TP53mt detected (HR = 1.53 [1.07-2.19]; p = 0.0202) and 20.3 (14.4-NE) versus 11.5 months (7.4-31.1) in patients with v1 versus v3 (HR = 1.29 [0.83-2.01]; p = 0.2641). Patients with TP53mt and v3 had a median TTD of 7.4 months (95% CI: 4.2-31.1). CONCLUSION High ctDNA VAF, EML4-ALK v3, and TP53mt were associated with early discontinuation of first-line ALK TKIs.
Collapse
Affiliation(s)
- Kaushal Parikh
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | | | | | | | | | - Yin Wan
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Huamao M Lin
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Sylvie Vincent
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | | | | |
Collapse
|
2
|
Ranganathan K, Kurian NS, Goswami HM, Rishi KD, Veldore VH. Exploring the clinical utility of liquid biopsy with cfDNA in cancer: A systematic review. THE JOURNAL OF LIQUID BIOPSY 2024; 5:100150. [PMID: 40027943 PMCID: PMC11863880 DOI: 10.1016/j.jlb.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/05/2025]
Abstract
Various tumor cells may exhibit different genetic or phenotypic characteristics. This phenomenon of cancer cells, known as Tumor Heterogeneity, is responsible for multiple cancer sites caused in a single patient through metastases. It is possible that the biopsy of the most accessible metastasis will not provide enough information to reexamine tumor features and make therapeutic recommendations. Liquid biopsy is a diagnostic technique that probes metastatic deposits from biofluids like peripheral blood for cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) from cancer patients. This analysis provides researchers and oncologists a comprehensive insight into therapeutic targets and treatment resistance-causing gene alterations. Various studies have validated that cfDNA/ctDNA may be essential in tumor analysis, constituting the need for the identification of cancer cells that may reactivate and proliferate, causing the disease to reoccur. This detection is also called Minimal Residual Disease (MRD) and shares insights on the efficiency of the treatment regimen and if the cancer cells have developed resistance to a specific treatment regimen. In this review, the significance of cfDNA/ctDNA as a possible diagnostic, prognostic, or monitoring biomarker for solid tumors has been evaluated in recent studies, and its clinical relevance in routine cancer clinics in India has been reviewed.
Collapse
Affiliation(s)
| | | | - Hitesh M. Goswami
- 4baseCare, BHIVE Workspace Whitefield, 8th Floor, Whitefield Main Rd, Brigade Metropolis, Garudachar Palya, Mahadevapura, Bengaluru, Karnataka, 560048, India
| | - Kshitij D. Rishi
- 4baseCare, BHIVE Workspace Whitefield, 8th Floor, Whitefield Main Rd, Brigade Metropolis, Garudachar Palya, Mahadevapura, Bengaluru, Karnataka, 560048, India
| | - Vidya H. Veldore
- 4baseCare, BHIVE Workspace Whitefield, 8th Floor, Whitefield Main Rd, Brigade Metropolis, Garudachar Palya, Mahadevapura, Bengaluru, Karnataka, 560048, India
| |
Collapse
|
3
|
Kasi PM, Lee JK, Pasquina LW, Decker B, Vanden Borre P, Pavlick DC, Allen JM, Parachoniak C, Quintanilha JCF, Graf RP, Schrock AB, Oxnard GR, Lovly CM, Tukachinsky H, Subbiah V. Circulating Tumor DNA Enables Sensitive Detection of Actionable Gene Fusions and Rearrangements Across Cancer Types. Clin Cancer Res 2024; 30:836-848. [PMID: 38060240 PMCID: PMC10870120 DOI: 10.1158/1078-0432.ccr-23-2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.
Collapse
Affiliation(s)
- Pashtoon M. Kasi
- Weill Cornell Medicine, Englander Institute of Precision Medicine, New York Presbyterian Hospital, New York, New York
| | | | | | | | | | | | | | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Yang JCH, Liu G, Lu S, He J, Burotto M, Ahn MJ, Kim DW, Liu X, Zhao Y, Vincent S, Yin J, Ma X, Lin HM, Popat S. Brigatinib Versus Alectinib in ALK-Positive NSCLC After Disease Progression on Crizotinib: Results of Phase 3 ALTA-3 Trial. J Thorac Oncol 2023; 18:1743-1755. [PMID: 37574132 DOI: 10.1016/j.jtho.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION This open-label, phase 3 trial (ALTA-3; NCT03596866) compared efficacy and safety of brigatinib versus alectinib for ALK+ NSCLC after disease progression on crizotinib. METHODS Patients with advanced ALK+ NSCLC that progressed on crizotinib were randomized 1:1 to brigatinib 180 mg once daily (7-d lead-in, 90 mg) or alectinib 600 mg twice daily, aiming to test superiority. The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Interim analysis for efficacy and futility was planned at approximately 70% of 164 expected PFS events. RESULTS The population (N = 248; brigatinib, n = 125; alectinib, n = 123) was notable for long median duration of prior crizotinib (16.0-16.8 mo) and low rate of ALK fusion in baseline circulating tumor DNA (ctDNA; 78 of 232 [34%]). Median blinded independent review committee-assessed PFS was 19.3 months with brigatinib and 19.2 months with alectinib (hazard ratio = 0.97 [95% confidence interval: 0.66-1.42], p = 0.8672]). The study met futility criterion. Overall survival was immature (41 events [17%]). Exploratory analyses pooled across the treatment groups revealed median PFS of 11.1 versus 22.5 months in patients with versus without ctDNA-detectable ALK fusion at baseline (hazard ratio: 0.48 [95% confidence interval: 0.32-0.71]). Treatment-related adverse events in more than 30% of patients (brigatinib, alectinib) were elevated levels of blood creatine phosphokinase (70%, 29%), aspartate aminotransferase (53%, 38%), and alanine aminotransferase (40%, 36%). CONCLUSIONS Brigatinib was not superior to alectinib for PFS in crizotinib-pretreated ALK+ NSCLC. Safety was consistent with the well-established and unique profiles of each drug. The low proportion of patients with ctDNA-detectable ALK fusion may account for prolonged PFS with both drugs in ALTA-3.
Collapse
Affiliation(s)
- James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Geoffrey Liu
- Department of Medical Oncology, Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shun Lu
- Shanghai Chest Hospital, Shanghai, People's Republic of China
| | - Jianxing He
- Thoracic Cardio Surgery Department, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | | | - Myung-Ju Ahn
- Section of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, South Korea
| | - XiaoQing Liu
- Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Yanqiu Zhao
- Affiliated Cancer Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Sylvie Vincent
- Oncology Cell Therapy Precision and Translational Medicine, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Jiani Yin
- Oncology Statistics, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Xin Ma
- Clinical Science, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Huamao M Lin
- Global Evidence and Outcomes Oncology, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital, London, England, United Kingdom.
| |
Collapse
|
5
|
Fernandes G, Rodrigues A, Matos C, Barata F, Cirnes L, Ferreira L, Lopes JA, Felizardo M, Fidalgo P, Brito U, Parente B. Liquid biopsy in the management of advanced lung cancer: Implementation and practical aspects. Cancer Treat Res Commun 2023; 36:100725. [PMID: 37321073 DOI: 10.1016/j.ctarc.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide. In recent years, the discovery of actionable molecular alterations has changed the treatment paradigm of the disease. Tissue biopsies have been the gold standard for the identification of targetable alterations but present several limitations, calling for alternatives to detect driver and acquired resistance alterations. Liquid biopsies reveal great potential in this setting and also in the evaluation and monitoring of treatment response. However, several challenges currently hamper its widespread adoption in clinical practice. This perspective article evaluates the potential and challenges associated with liquid biopsy testing, considering a Portuguese expert panel dedicated to thoracic oncology point of view, and providing practical insights for its implementation based on the experience and applicability in the Portuguese context.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Pulmonology Department, Centro Hospitalar e Universitário de São João, EPE, Porto, Portugal, Faculdade de Medicina da Universidade do Porto, Porto, Portugal, IBMC/i3S - Instituto de Biologia Molecular e Celular/Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | | | - Cláudia Matos
- Lung Unit, Champalimaud Foundation, Lisboa, Portugal
| | - Fernando Barata
- Pulmonology Department, Centro Hospitalar e Universitário de Coimbra, EPE - Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | | | | | - José Albino Lopes
- Pulmonology Department, ULSAM, Viana do Castelo, Portugal; Unidade CUF de Oncologia, Hospital CUF Porto, Porto Portugal
| | | | - Paula Fidalgo
- Medical Oncology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ulisses Brito
- Pulmonology Department, Centro Hospitalar e Universitário do Algarve, Faro, Portugal
| | | |
Collapse
|
6
|
Maansson CT, Andersen ER, Ulhoi MP, Meldgaard P, Sorensen BS. DNAfusion: an R/Bioconductor package for increased sensitivity of detecting gene fusions in liquid biopsies. BMC Bioinformatics 2023; 24:131. [PMID: 37016288 PMCID: PMC10074784 DOI: 10.1186/s12859-023-05259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND EML4-ALK gene fusions are oncogenic drivers in non-small cell lung cancer (NSCLC), and liquid biopsies containing EML4-ALK fragments can be used to study tumor dynamics using next-generation sequencing (NGS). However, the sensitivity of EML4-ALK detection varies between pipelines and analysis tools. RESULTS We developed an R/Bioconductor package, DNAfusion, which can be applied to BAM files generated by commercially available NGS pipelines, such as AVENIO. Forty-eight blood samples from a training cohort consisting of 41 stage IV EML4-ALK-positive NSCLC patients and seven healthy controls were used to develop DNAfusion. DNAfusion detected EML4-ALK in significantly more samples (sensitivity = 61.0%) compared to AVENIO (sensitivity = 36.6%). The newly identified EML4-ALK-positive patients were verified using droplet digital PCR. DNAfusion was subsequently validated in a blinded validation cohort comprising 24 EML4-ALK-positive and 24 EML4-ALK-negative stage IV NSCLC patients. DNAfusion detected significantly more EML4-ALK individuals in the validation cohort (sensitivity = 62.5%) compared to AVENIO (sensitivity = 29.2%). DNAfusion demonstrated a specificity of 100% in both the training and validation cohorts. CONCLUSION Here we present DNAfusion, which increases the sensitivity of EML4-ALK detection in liquid biopsies and can be implemented downstream of commercially available NGS pipelines. The simplistic method of operating the R package makes it easy to implement in the clinical setting, enabling wider expansion of NGS-based diagnostics.
Collapse
Affiliation(s)
- Christoffer Trier Maansson
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200, Århus N, Denmark
- Department of Clinical Medicine, Aarhus University, Århus N, Denmark
| | - Emma Roger Andersen
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200, Århus N, Denmark
- Department of Clinical Medicine, Aarhus University, Århus N, Denmark
| | - Maiken Parm Ulhoi
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200, Århus N, Denmark
- Department of Clinical Medicine, Aarhus University, Århus N, Denmark
- Department of Oncology, Aarhus University Hospital, Århus N, Denmark
| | - Peter Meldgaard
- Department of Clinical Medicine, Aarhus University, Århus N, Denmark
- Department of Oncology, Aarhus University Hospital, Århus N, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Faculty of Health, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200, Århus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Århus N, Denmark.
| |
Collapse
|
7
|
Zhou KI, Vashistha V, Guo A, Ahmed S, Kelley MJ. Real-world Experience With Neurotrophic Tyrosine Receptor Kinase Fusion-positive Tumors and Tropomyosin Receptor Kinase Inhibitors in Veterans. JCO Precis Oncol 2023; 7:e2200692. [PMID: 36926986 DOI: 10.1200/po.22.00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE Neurotrophic tyrosine receptor kinase 1-3 (NTRK1-3) gene fusions are found in a broad range of tumor types. Clinical trials demonstrated high response rates to tropomyosin receptor kinase (TRK) inhibitors in NTRK fusion-positive cancers, but few reports have described real-world experience with these targeted agents. We evaluated the prevalence of NTRK fusions and the outcomes with TRK inhibitor therapy in a real-world population of patients in the Veterans Health Administration. METHODS Patients with NTRK fusions or rearrangements were identified from the Veterans Affairs (VA) National Precision Oncology Program (NPOP), and patients who were prescribed TRK inhibitors were identified from the Corporate Data Warehouse. Baseline data and clinical outcomes were obtained by retrospective review of medical records. RESULTS A total of 33 patients with NTRK fusions or rearrangements were identified, including 25 patients comprising 0.12% of all patients with solid tumors sequenced through VA NPOP. Twelve patients with NTRK fusions or rearrangements were treated with TRK inhibitors, none of whom had objective responses. Eight patients experienced toxicities leading to drug interruption, dose reduction, or discontinuation. CONCLUSION In this retrospective study of VA patients, NTRK fusions and rearrangements were less common than in previous studies, and objective responses to TRK inhibitors were not observed. Real-world experience with TRK inhibitors differs markedly from clinical trial findings, possibly due to differences in patient demographics, tumor types, and sequencing methods. Our findings highlight the need to study TRK inhibitors in the real-world setting and in populations underrepresented in clinical trials.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Vishal Vashistha
- Section of Hematology-Oncology, New Mexico VA Medical Center, Albuquerque, NM
| | - Aixia Guo
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| | - Sara Ahmed
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| | - Michael J Kelley
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
- National Oncology Program, Department of Veterans Affairs, Durham, NC
| |
Collapse
|
8
|
Xu C, Si L, Wang W, Li Z, Song Z, Wang Q, Liu A, Yu J, Fang W, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Lei L, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Hu X, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Luo J, Jia H, Dong X, Pang F, Wang K, Wang L, Zhu Y, Xie Y, Lin X, Cai J, Wei J, Lan F, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Wan B, Lv D, Wei Q, Kang J, Zhang J, Zhang C, Yu G, Ou J, Shi L, Li Z, Liu Z, Liu J, Yang N, Wu L, Wang H, Jin G, Yang L, et alXu C, Si L, Wang W, Li Z, Song Z, Wang Q, Liu A, Yu J, Fang W, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Lei L, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Hu X, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Luo J, Jia H, Dong X, Pang F, Wang K, Wang L, Zhu Y, Xie Y, Lin X, Cai J, Wei J, Lan F, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Wan B, Lv D, Wei Q, Kang J, Zhang J, Zhang C, Yu G, Ou J, Shi L, Li Z, Liu Z, Liu J, Yang N, Wu L, Wang H, Jin G, Yang L, Wang G, Fang M, Fang Y, Li Y, Wang X, Zhang Y, Ma S, Wang B, Zhang X, Song Y, Lu Y. Expert consensus on the diagnosis and treatment of NTRK gene fusion solid tumors in China. Thorac Cancer 2022; 13:3084-3097. [PMID: 36127731 PMCID: PMC9626341 DOI: 10.1111/1759-7714.14644] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Gene fusions can drive tumor development for multiple types of cancer. Currently, many drugs targeting gene fusions are being approved for clinical application. At present, tyrosine receptor kinase (TRK) inhibitors targeting neurotrophic tyrosine receptor kinase (NTRK) gene fusions are among the first "tumor agnostic" drugs approved for pan-cancer use. Representative TRK inhibitors, including larotrectinib and entrectinib, have shown high efficacy for many types of cancer. At the same time, several second-generation drugs designed to overcome first-generation drug resistance are undergoing clinical development. Due to the rarity of NTRK gene fusions in common cancer types and technical issues regarding the complexity of fusion patterns, effectively screening patients for TRK inhibitor treatment in routine clinical practice is challenging. Different detection methods including immunohistochemistry, fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, and (DNA and/or RNA-based) next-generation sequencing have pros and cons. As such, recommending suitable tests for individual patients and ensuring the quality of tests is essential. Moreover, at present, there is a lack of systematic review for the clinical efficacy and development status of first- and second-generation TRK inhibitors. To resolve the above issues, our expert group has reached a consensus regarding the diagnosis and treatment of NTRK gene fusion solid tumors, aiming to standardize clinical practice with the goal of benefiting patients with NTRK gene fusions treated with TRK inhibitors.
Collapse
Affiliation(s)
- Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouPeople's Republic of China,Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and SarcomaPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingPeople's Republic of China
| | - Aijun Liu
- Senior Department of PathologyThe 7th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Jinpu Yu
- Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Wenfeng Fang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaPeople's Republic of China
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunPeople's Republic of China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Xiuyu Cai
- Department of VIP InpatientSun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang UniversityHangzhouPeople's Republic of China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Liyun Miao
- Department of Respiratory MedicineAffiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouPeople's Republic of China
| | - Yu Chen
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical AreaAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Rongbo Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan HospitalPeking UniversityBeijingPeople's Republic of China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboPeople's Republic of China
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouPeople's Republic of China
| | - Zongyang Yu
- Department of Respiratory Medicine, The 900th Hospital of the Joint Logistics Team (The Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouPeople's Republic of China
| | - Lei Lei
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingPeople's Republic of China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiPeople's Republic of China
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of MedicineXiamen UniversityXiamenPeople's Republic of China
| | - Rui Zhang
- Department of Medical OncologyCancer Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduPeople's Republic of China
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation OncologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Fan Xia
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingPeople's Republic of China
| | - Rui Ge
- Department of General SurgeryHuadong Hospital Affiliated to Fudan UniversityShanghaiPeople's Republic of China
| | - Enyong Dai
- Department of Oncology and HematologyChina‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yu Han
- Department of Gastrointestinal OncologyHarbin Medical University Cancer HospitalHarbinPeople's Republic of China
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingPeople's Republic of China
| | - Jiancheng Luo
- Aiyi Technology Co., LtdBeijingPeople's Republic of China
| | - Hongtao Jia
- Aiyi Technology Co., LtdBeijingPeople's Republic of China
| | - Xiaowei Dong
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Fei Pang
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Kai Wang
- Department of PathologyShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouPeople's Republic of China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingPeople's Republic of China
| | - Yanru Xie
- Department of OncologyLishui Municipal Central HospitalLishuiPeople's Republic of China
| | - Xinqin Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Jia Wei
- Department of the Comprehensive Cancer CenterAffiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang UniversityHangzhouPeople's Republic of China
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouPeople's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiPeople's Republic of China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiPeople's Republic of China
| | - Qing Wei
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Chao Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Genhua Yu
- Department of Radiation OncologyZhebei Mingzhou HospitalHuzhouPeople's Republic of China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Jing Liu
- Department of Oncology, Ruijin HospitalShanghai Jiao tong University School of MedicineShanghaiPeople's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaPeople's Republic of China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Huijuan Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Gu Jin
- Department of Bone and Soft‐Tissue SurgeryChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeHangzhouPeople's Republic of China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao HospitalThird Military Medical UniversityChongqingPeople's Republic of China
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouPeople's Republic of China
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Xiaojia Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology, Research of Zhejiang ProvinceAffiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical OncologyFudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan UnviersityShanghaiPeople's Republic of China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal OncologyPeking University Cancer Hospital and InstituteBeijingPeople's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
9
|
Mo Y, Lin L, Zhang J, Zhong Y, Zhang T, Zhong C, Yan J, Kuang J, Guo Q, Tan J, Li D, Wu M. Confirmation of lung adenocarcinoma as the primary cancer with detection of EML4-ALK rearrangement using next-generation sequencing: a case study. Pathol Res Pract 2022; 238:154105. [PMID: 36099717 DOI: 10.1016/j.prp.2022.154105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
We report a female patient, who presented as a carcinoma of unknown primary site with multiple tumors in breast, lung, stomach, and ovary, was confirmed to be lung adenocarcinoma as primary cancer through detecting EML4-ALK rearrangement by the next generation sequencing (NGS). The patient was treated with crizotinib and resulted in significant regression of the primary and metastatic tumors, but resistance to crizotinib was developed 5 months after the treatment. Targeted therapy was, therefore, switched to alectinib, one of the second-generation of anaplastic lymphoma kinase (ALK) inhibitors, with excellent therapeutic response till November 16th, 2021. This study suggested that NGS be recommended to detect ALK rearrangement in the patients with carcinoma of unknown primary site, and that resistance to targeted therapy with ALK inhibitors should be considered for personalized precision medicine.
Collapse
Affiliation(s)
- Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lina Lin
- School of Nursing, Guangzhou Xinhua University, Guangzhou, China.
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chenghua Zhong
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jun Yan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mengxi Wu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
10
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
11
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
12
|
Sankar K, Zeinali M, Nagrath S, Ramnath N. Molecular biomarkers and liquid biopsies in lung cancer. Semin Oncol 2022; 49:275-284. [PMID: 35820969 DOI: 10.1053/j.seminoncol.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
Liquid biopsy refers to the identification of tumor-derived materials in body fluids including in blood circulation. In the age of immunotherapy and targeted therapies used for the treatment of advanced malignancies, molecular analysis of the tumor is considered a crucial step to guide management. In lung cancer, the concept of liquid biopsies is particularly relevant given the invasiveness of tumor biopsies in certain locations, and the potential risks of biopsy in a patient population with significant co-morbidities. Liquid biopsies have many advantages including non-invasiveness, lower cost, potential for genomic testing, ability to monitor tumor evolution through treatment, and the ability to overcome spatial and temporal intertumoral heterogeneity. The potential clinical applications of liquid biopsy are vast and include screening, detection of minimal residual disease and/or early relapse after curative intent treatment, monitoring response to immunotherapy, and identifying mutations that might be targetable or can confer resistance. Herein, we review the potential role of circulating tumor DNA and circulating tumor cells as forms of liquid biopsies and blood biomarkers in non-small cell lung cancer. We discuss the methodologies/platforms available for each, clinical applications, and limitations/challenges in incorporation into clinical practice. We additionally review emerging forms of liquid biopsies including tumor educated platelets, circular RNA, and exosomes.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Nithya Ramnath
- Division of Medical Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI.
| |
Collapse
|
13
|
Maniar A, Wei AZ, Dercle L, Bien HH, Fojo T, Bates SE, Schwartz LH. Assessing Outcomes in NSCLC: Radiomic analysis, kinetic analysis and circulating tumor DNA. Semin Oncol 2022; 49:298-305. [PMID: 35914982 DOI: 10.1053/j.seminoncol.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Current radiographic methods of measuring treatment response for patients with nonsmall cell lung cancer have significant limitations. Recently, new modalities using standard of care images or minimally invasive blood-based DNA tests have gained interest as methods of evaluating treatment response. This article highlights three emerging modalities: radiomic analysis, kinetic analysis and serum-based measurement of circulating tumor DNA, with a focus on the clinical evidence supporting these methods. Additionally, we discuss the possibility of combining these modalities to develop a robust biomarker with strong correlation to clinically meaningful outcomes that could impact clinical trial design and patient care. At Last, we focus on how these methods specifically apply to a Veteran population.
Collapse
Affiliation(s)
- Ashray Maniar
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Alexander Z Wei
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Laurent Dercle
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| | - Harold H Bien
- Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY
| | - Tito Fojo
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; James J. Peters Bronx VA Medical Center, Division of Hematology and Oncology, Bronx, NY
| | - Susan E Bates
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY.
| | - Lawrence H Schwartz
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| |
Collapse
|
14
|
Conde E, Rojo F, Gómez J, Enguita AB, Abdulkader I, González A, Lozano D, Mancheño N, Salas C, Salido M, Salido-Ruiz E, de Álava E. Molecular diagnosis in non-small-cell lung cancer: expert opinion on ALK and ROS1 testing. J Clin Pathol 2022; 75:145-153. [PMID: 33875457 PMCID: PMC8862096 DOI: 10.1136/jclinpath-2021-207490] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
The effectiveness of targeted therapies with tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) depends on the accurate determination of the genomic status of the tumour. For this reason, molecular analyses to detect genetic rearrangements in some genes (ie, ALK, ROS1, RET and NTRK) have become standard in patients with advanced disease. Since immunohistochemistry is easier to implement and interpret, it is normally used as the screening procedure, while fluorescence in situ hybridisation (FISH) is used to confirm the rearrangement and decide on ambiguous immunostainings. Although FISH is considered the most sensitive method for the detection of ALK and ROS1 rearrangements, the interpretation of results requires detailed guidelines. In this review, we discuss the various technologies available to evaluate ALK and ROS1 genomic rearrangements using these techniques. Other techniques such as real-time PCR and next-generation sequencing have been developed recently to evaluate ALK and ROS1 gene rearrangements, but some limitations prevent their full implementation in the clinical setting. Similarly, liquid biopsies have the potential to change the treatment of patients with advanced lung cancer, but further research is required before this technology can be applied in routine clinical practice. We discuss the technical requirements of laboratories in the light of quality assurance programmes. Finally, we review the recent updates made to the guidelines for the determination of molecular biomarkers in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Department of Pathology and Laboratory of Therapeutic Targets & CIBERONC, HM Hospitales, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Hospital Universitario Fundacion Jiménez Díaz, Madrid, Spain
| | - Javier Gómez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
- Instituto de Investigación Sanitaria Valdecilla IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Ana Belén Enguita
- Department of Pathology, Clínica Dermatológica Internacional, Madrid, Spain
| | - Ihab Abdulkader
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana González
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Dolores Lozano
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Nuria Mancheño
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Comunidad Valenciana, Spain
| | - Clara Salas
- Department of Pathology, Hospital Universitario Puerta del Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Eduardo Salido-Ruiz
- Department of Pathology, Hospital Universitario de Canarias, La Laguna, Canarias, Spain
| | - Enrique de Álava
- Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
15
|
Hechtman JF. NTRK insights: best practices for pathologists. Mod Pathol 2022; 35:298-305. [PMID: 34531526 PMCID: PMC8860742 DOI: 10.1038/s41379-021-00913-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
Since the discovery of an oncogenic tropomyosin-receptor kinase (TRK) fusion protein in the early 1980s, our understanding of neurotrophic tropomyosin-receptor kinase (NTRK) fusions, their unique patterns of frequency in different tumor types, and methods to detect them have grown in scope and depth. Identification of these molecular alterations in the management of patients with cancer has become increasingly important with the emergence of histology-agnostic, US Food and Drug Administration-approved, effective TRK protein inhibitors. Herein, we review the biology of TRK in normal and malignant tissues, as well as the prevalence and enrichment patterns of these fusions across tumor types. Testing methods currently used to identify NTRK1-3 fusions will be reviewed in detail, with attention to newer assays including RNA-based next-generation sequencing. Recently proposed algorithms for NTRK fusion testing will be compared, and practical insights provided on how testing can best be implemented and communicated within the multidisciplinary healthcare team.
Collapse
Affiliation(s)
- Jaclyn F Hechtman
- Molecular Pathologist, Neogenomics 9490 NeoGenomics Way, Fort Myers, FL, 33912, USA.
| |
Collapse
|
16
|
Herath S, Sadeghi Rad H, Radfar P, Ladwa R, Warkiani M, O’Byrne K, Kulasinghe A. The Role of Circulating Biomarkers in Lung Cancer. Front Oncol 2022; 11:801269. [PMID: 35127511 PMCID: PMC8813755 DOI: 10.3389/fonc.2021.801269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer morbidity and mortality worldwide and early diagnosis is crucial for the management and treatment of this disease. Non-invasive means of determining tumour information is an appealing diagnostic approach for lung cancers as often accessing and removing tumour tissue can be a limiting factor. In recent years, liquid biopsies have been developed to explore potential circulating tumour biomarkers which are considered reliable surrogates for understanding tumour biology in a non-invasive manner. Most common components assessed in liquid biopsy include circulating tumour cells (CTCs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), microRNA and exosomes. This review explores the clinical use of circulating tumour biomarkers found in liquid biopsy for screening, early diagnosis and prognostication of lung cancer patients.
Collapse
|
17
|
Fernandes MGO, Cruz-Martins N, Machado JC, Costa JL, Hespanhol V. The value of cell-free circulating tumour DNA profiling in advanced non-small cell lung cancer (NSCLC) management. Cancer Cell Int 2021; 21:675. [PMID: 34915883 PMCID: PMC8680243 DOI: 10.1186/s12935-021-02382-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
AbstractLiquid biopsy (LB) has boosted a remarkable change in the management of cancer patients by contributing to tumour genomic profiling. Plasma circulating cell-free tumour DNA (ctDNA) is the most widely searched tumour-related element for clinical application. Specifically, for patients with lung cancer, LB has revealed valuable to detect the diversity of targetable genomic alterations and to detect and monitor the emergence of resistance mechanisms. Furthermore, its non-invasive nature helps to overcome the difficulty in obtaining tissue samples, offering a comprehensive view about tumour diversity. However, the use of the LB to support diagnostic and therapeutic decisions still needs further clarification. In this sense, this review aims to provide a critical view of the clinical importance of plasma ctDNA analysis, the most widely applied LB, and its limitations while anticipating concepts that will intersect the present and future of LB in non-small cell lung cancer patients.
Graphical Abstract
Collapse
|
18
|
Villa M, Sharma GG, Manfroni C, Cortinovis D, Mologni L. New Advances in Liquid Biopsy Technologies for Anaplastic Lymphoma Kinase (ALK)-Positive Cancer. Cancers (Basel) 2021; 13:5149. [PMID: 34680298 PMCID: PMC8534237 DOI: 10.3390/cancers13205149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are characterized by high genetic instability, that favors tumor relapse. The identification of the genetic causes of relapse can direct next-line therapeutic choices. As tumor tissue rebiopsy at disease progression is not always feasible, noninvasive alternative methods are being explored. Liquid biopsy is emerging as a non-invasive, easy and repeatable tool to identify specific molecular alterations and monitor disease response during treatment. The dynamic follow-up provided by this analysis can provide useful predictive information and allow prompt therapeutic actions, tailored to the genetic profile of the recurring disease, several months before radiographic relapse. Oncogenic fusion genes are particularly suited for this type of analysis. Anaplastic Lymphoma Kinase (ALK) is the dominant driver oncogene in several tumors, including Anaplastic Large-Cell Lymphoma (ALCL), Non-Small Cell Lung Cancer (NSCLC) and others. Here we review recent findings in liquid biopsy technologies, including ctDNA, CTCs, exosomes, and other markers that can be investigated from plasma samples, in ALK-positive cancers.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Geeta G. Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Chiara Manfroni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Diego Cortinovis
- Department of Oncology, San Gerardo Hospital, 20900 Monza, Italy;
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| |
Collapse
|
19
|
Zhou W, Gao M, Liang C, Lin B, Wu Q, Chen R, Xiong X, Chen X, Wang S, Wu L, Wu Y, Li H, Fu X, Hong W. Systematic Understanding of the Mechanism of Baicalin against Gastric Cancer Using Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5521058. [PMID: 34337018 PMCID: PMC8315853 DOI: 10.1155/2021/5521058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the most common type of cancer. It is highly malignant and is characterized by rapid and uncontrolled growth. The antitumour activity of Baicalin was studied in multiple cancers. However, its mechanism of action has not been fully elucidated. We provided a systematic understanding of the mechanism of action of baicalin against GC using a transcriptome analysis of RNA-seq. METHODS Human GC cells (SGC-7901) were exposed to 200 μg/ml baicalin for 24 h. RNA-seq with a transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify the antitumour effects of baicalin on SGC-7901 cells in vitro. A protein-protein interaction (PPI) network of differentially expressed genes (DEGs) was constructed. A competitive endogenous RNA (ceRNA) network was constructed and further analysed after validation using qRT-PCR. RESULTS A total of 68 lncRNAs, 20 miRNAs, and 1648 mRNAs were differentially expressed in baicalin-treated SGC-7901 GC cells. Three lncRNAs, 6 miRNAs, and 7 mRNAs were included in the ceRNA regulatory network. GO analysis revealed that the main DEGs were involved in the biological processes of the cell cycle and cell death. KEGG pathway analysis further suggested that the p53 signalling pathway was involved in the baicalin-induced antitumour effect on SGC-7901 cells. Further confirmation using qPCR indicated that baicalin induced an antitumour effect on SGC-7901 cells, which is consistent with the results of the sequencing data. CONCLUSIONS In summary, the mechanism of baicalin against GC involves multiple targets and signalling pathways. These results provide new insight into the antitumour mechanism of baicalin and help the development of new strategies to cure GC.
Collapse
Affiliation(s)
- Wenqu Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong, China
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ruikun Chen
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shijie Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liting Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yiling Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiqing Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Park S, Lee JC, Choi CM. Clinical Applications of Liquid Biopsy in Non-Small Cell Lung Cancer Patients: Current Status and Recent Advances in Clinical Practice. J Clin Med 2021; 10:2236. [PMID: 34064038 PMCID: PMC8196764 DOI: 10.3390/jcm10112236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/10/2023] Open
Abstract
Recent advances in targeted and immune therapies have enabled tailored treatment strategies for advanced lung cancer. Identifying and understanding the genomic alterations that arise in the course of tumor evolution has become hugely valuable, but tissue biopsies are often insufficient for representing the whole cancer genome due to tumor heterogeneity. A liquid biopsy refers to the isolation and analysis of any tumor-derived material in the blood, and recent studies of this material have mostly focused on cell-free tumor DNA (ctDNA) in plasma. Indeed, liquid biopsy analysis is now expected to expand in utility and scope in clinical practice. In this review, we assess the biology and technical aspects of ctDNA analysis and discuss how it is currently applied in the clinic. Key points: Liquid biopsy is a potentially powerful tool in the era of personalized medicine for guiding targeted therapies in non-small cell lung cancer.
Collapse
Affiliation(s)
- Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea;
| | - Jae-Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
21
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Minimal Disease Monitoring in Pediatric Non-Hodgkin's Lymphoma: Current Clinical Application and Future Challenges. Cancers (Basel) 2021; 13:cancers13081907. [PMID: 33921029 PMCID: PMC8071445 DOI: 10.3390/cancers13081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Minimal residual disease (MRD) detection is established routine practice for treatment stratification in leukemia and used for treatment optimization in adult lymphomas. Minimal disease studies in childhood non-Hodgkin lymphomas are challenged by stratified treatment in different subtypes, high cure rates, low patient numbers, limited initial tumor material, and early progression. Current clinical applications differ between the subtypes. A prognostic value of minimal disseminated disease (MDD) could not yet be clearly established for lymphoblastic lymphoma using flow cytometry and PCR-based methods for T-cell receptor (TCR) or immunoglobulin (IG) rearrangements. MYC-IGH fusion sequences or IG rearrangements enable minimal disease detection in Burkitt lymphoma and -leukemia. An additional prognostic value of MDD in Burkitt lymphoma and early MRD in Burkitt leukemia is implicated by single studies with risk-adapted therapy. MDD and MRD determined by PCR for ALK-fusion transcripts are independent prognostic parameters for patients with ALK-positive anaplastic large cell lymphoma (ALCL). They are introduced in routine clinical practice and used for patient stratification in clinical studies. Early MRD might serve as an endpoint for clinical trials and for guiding individual therapy. Validation of MDD and MRD as prognostic parameters is required for all subtypes but ALCL. Next-generation sequencing-based methods may provide new options and applications for minimal disease evaluation in childhood lymphomas.
Collapse
|
23
|
Chen X, Li K, Liu Z, Gai F, Zhu G, Lu S, Che N. Multigene PCR using both cfDNA and cfRNA in the supernatant of pleural effusion achieves accurate and rapid detection of mutations and fusions of driver genes in patients with advanced NSCLC. Cancer Med 2021; 10:2286-2292. [PMID: 33656807 PMCID: PMC7982639 DOI: 10.1002/cam4.3769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
Background Pleural effusion from patients with advanced non‐small cell lung cancer (NSCLC) has been proved valuable for molecular analysis, especially when the tissue sample not available. However, simultaneous detection of multiple driver gene alterations especially the fusions is still challenging. Methods In this study, 77 patients with advanced NSCLC and pleural effusion were enrolled, 49 of whom had matched tumor tissues. Supernatants, cell sediments, and cell blocks were prepared from pleural effusion samples for detection of driver alterations by a PCR‐based 9‐gene mutation detection kit. Results Mutations in EGFR, KRAS, and HER2 were detected in DNA and cfDNA, fusions in ALK was detected in RNA and cfRNA. Compared with matched tumor tissue, the supernatant showed the highest overall sensitivity (81.3%), with 81.5% for SNV/Indels by cfDNA and 80% for fusions by cfRNA, followed by cell blocks (71.0%) and the cell sediments (66.7%). Within the group of treatment‐naïve patients or malignant cells observed in the cell sediments, supernatant showed higher overall sensitivity (89.5% and 92.3%) with both 100% for fusions. Conclusions CfDNA and cfRNA derived from pleural effusion supernatant have been successfully tested with a PCR‐based multigene detection kit. Pleural effusion supernatant seems a preferred material for detection of multigene alterations to guide treatment decision of advanced NSCLC.
Collapse
Affiliation(s)
- Xuejing Chen
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis And Thoracic Tumor Research Institute, Beijing, China
| | - Kun Li
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis And Thoracic Tumor Research Institute, Beijing, China
| | - Zichen Liu
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis And Thoracic Tumor Research Institute, Beijing, China
| | - Fei Gai
- Medical Department, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Guanshan Zhu
- Medical Department, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Shun Lu
- Department of Oncology, Shanghai Chest Hospital Shanghai Jiaotong University, Shanghai, China
| | - Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis And Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
24
|
Pinzani P, D'Argenio V, Del Re M, Pellegrini C, Cucchiara F, Salvianti F, Galbiati S. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med 2021; 59:1181-1200. [PMID: 33544478 DOI: 10.1515/cclm-2020-1685] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Despite advances in screening and therapeutics cancer continues to be one of the major causes of morbidity and mortality worldwide. The molecular profile of tumor is routinely assessed by surgical or bioptic samples, however, genotyping of tissue has inherent limitations: it represents a single snapshot in time and it is subjected to spatial selection bias owing to tumor heterogeneity. Liquid biopsy has emerged as a novel, non-invasive opportunity of detecting and monitoring cancer in several body fluids instead of tumor tissue. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), RNA (mRNA and microRNA), microvesicles, including exosomes and tumor "educated platelets" were recently identified as a source of genomic information in cancer patients which could reflect all subclones present in primary and metastatic lesions allowing sequential monitoring of disease evolution. In this review, we summarize the currently available information concerning liquid biopsy in breast cancer, colon cancer, lung cancer and melanoma. These promising issues still need to be standardized and harmonized across laboratories, before fully adopting liquid biopsy approaches into clinical practice.
Collapse
Affiliation(s)
- Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valeria D'Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Galbiati
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
25
|
Dagogo-Jack I, Ritterhouse LL. The role of plasma genotyping in ALK- and ROS1-rearranged lung cancer. Transl Lung Cancer Res 2020; 9:2557-2570. [PMID: 33489818 PMCID: PMC7815348 DOI: 10.21037/tlcr-2019-cnsclc-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023]
Abstract
Several subsets of non-small cell lung cancer (NSCLC) are defined by the presence of oncogenic rearrangements that result in constitutive activation of a chimeric fusion protein. In NSCLCs that harbor ALK or ROS1 rearrangements, aberrant signaling from these fusion proteins can be overcome by potent and selective tyrosine kinase inhibitors (TKIs). These targeted therapies can induce durable responses and significantly improve prognostic outcomes. Historically, analysis of tissue biopsies was the primary approach to identifying key activating rearrangements. In recent years, non-invasive genotyping of tumor-derived nucleic acids in the circulation has gained ground as a strategy for determining the genetic composition of NSCLCs at diagnosis and throughout the disease course based on prospective and retrospective studies validating the utility of plasma analysis in heterogeneous populations of patients with metastatic NSCLC. Notably, these practice-changing studies predominantly included patients with NSCLCs with oncogenic mutations. Compared to other types of molecular alterations such as mutations and insertions/deletions, oncogenic rearrangements are more complex as they incorporate a variety of fusion partners and diverse breakpoints. Because of this structural complexity, detecting oncogenic rearrangements with plasma assays is more challenging than identifying disease-defining point mutations. In this review, we discuss technical aspects of plasma genotyping strategies and summarize findings from studies exploring plasma genotyping (including ctDNA analysis and profiling of nucleic acids contained in other plasma components) in two rearrangement-driven NSCLC subsets (ALK-rearranged and ROS1-rearranged).
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren L. Ritterhouse
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Cecchini MJ, Yi ES. Liquid biopsy is a valuable tool in the diagnosis and management of lung cancer. J Thorac Dis 2020; 12:7048-7056. [PMID: 33282410 PMCID: PMC7711358 DOI: 10.21037/jtd.2020.04.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid biopsy refers to the use of various body fluids to test for circulating biological elements derived from the tumor. Liquid biopsy has taken on an increasingly important role in lung cancer diagnosis, molecular characterization, surveillance, monitoring, and determining mechanisms of resistance. These assays can utilize various sources of cell-free DNA (cfDNA) including blood, pleural fluid, urine, and others to detect tumor associated alterations. With the increasing power of next-generation sequencing technologies and the development of assays such as digital droplet PCR, rare tumor alleles can be detected in cfDNA to determine key characteristics of the tumor. Current assays, while effective, are still challenged by limited sensitivity and capacity to single genes or small panels of genes, though this is rapidly expanding. Nevertheless, testing of cfDNA has been shown to be valuable in detecting resistance to targeted inhibitors, particularly for detection of T790M in EGFR and monitoring response to therapy. With the continued development of more powerful and sensitive assays, these techniques will empower clinicians to better characterize early stage disease and can be used in the screening of high-risk patients, which may eliminate the requirement for tissue diagnosis in some settings. That said, since the majority of these alterations are not specific to lung cancer, there will continue to be a need for tissue in at least the initial diagnosis. Used in conjugation with tissue sampling, these assays will assist the treating clinician and the pathologist to better characterize individual tumors, even in the setting of limited tissue.
Collapse
Affiliation(s)
- Matthew J Cecchini
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Eunhee S Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
27
|
Sebastião MM, Ho RS, de Carvalho JPV, Nussbaum M. Diagnostic Accuracy of Next Generation Sequencing Panel using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2020; 7:158-163. [PMID: 33043062 PMCID: PMC7539761 DOI: 10.36469/jheor.2020.17088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVES Until now, no meta-analysis has been published to evaluate the diagnostic performance of next-generation sequencing (NGS) panel using circulating tumor (ctDNA) in patients with advanced non-small cell lung cancer (aNSCLC). The aim of the study was to carry out a systematic review and a meta-analysis in order to determine the accuracy of NGS of ctDNA to detect six oncogenic driver alterations: epidermal growth factor receptor (EGFR); anaplastic lymphoma kinase (ALK); ROS proto-oncogene 1, receptor tyrosine kinase (ROS-1); serine/threonine-protein kinase B-RAF (BRAF); RET proto-oncogene (RET); and MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 in patients with aNSCLC. METHODS MEDLINE/PubMed, Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), and Centre for Reviews and Dissemination databases and articles obtained from other sources were searched for relevant studies that evaluate the accuracy (sensitivity and specificity) of NGS using ctDNA in patients with aNSCLC. The studies were eligible when NGS of ctDNA was compared with tissue tests to detect at least one of the six oncogenic driver alterations. Diagnostic measures (sensitivity and specificity) were pooled with a bivariate diagnostic random effect. All statistical analyses were performed with software R, v.4.0.0. RESULTS Ten studies were eligible for data extraction. The overall pooled estimates of sensitivity and specificity were 0.766 (95% CI: 0.678-0.835); 0.999 (95% CI: 0.990-1.000), respectively. CONCLUSIONS The analysis has demonstrated that the NGS panel using ctDNA has a high accuracy to identify the six actionable oncogenic driver alterations in patients with aNSCLC. Therefore, it can be considered a reliable alternative to guide the patients with aNSCLC to the right treatment who cannot undergo an invasive procedure or have insufficient tissue material for molecular tests.
Collapse
|
28
|
Yan J, Zhou X, Pan D. A case of one lung adenocarcinoma patient harboring a novel FAM179A-ALK (F1, A19) rearrangement responding to lorlatinib treatment. Lung Cancer 2020; 147:26-29. [PMID: 32652371 DOI: 10.1016/j.lungcan.2020.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
The FAM179A gene has recently been screened as a new fusion partner fusing to the anaplastic lymphoma kinase gene (ALK) in plasma cell-free DNA (cfDNA) of patients with non-small-cell lung cancer (NSCLC). However, the response of patients with NSCLC harboring the FAM179A-ALK fusion to ALK inhibitors remains unknown. In this study we report a novel FAM179A-ALK rearrangement variant (F1, A19) identified by next-generation sequencing in an NSCLC patient with multiple brain metastases (M1c). This patient responded sensitively to lorlatinib as evaluated by brain MRI and chest CT, followed up using plasma cfDNA. The conclusion is that we found a novel FAM179A-ALK rearrangement variant (F1, A19) and provided evidence of its sensitivity to ALK inhibitors.
Collapse
Affiliation(s)
- Jing Yan
- Department of Oncology, The 904 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Wuxi, Jiangsu, 214044, PR China
| | - Xijian Zhou
- Department of Oncology, The 904 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Wuxi, Jiangsu, 214044, PR China
| | - Dejian Pan
- Department of Oncology, The 904 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Wuxi, Jiangsu, 214044, PR China.
| |
Collapse
|
29
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
30
|
Peng R, Zhang R, Zhang J, Tan P, Han Y, Zhang K, Lin G, Xie J, Li J. Continual Improvement of the Reliability of EML4-ALK Rearrangement Detection in Non-Small-Cell Lung Cancer: A Long-Term Comparison of ALK Detection in China. J Mol Diagn 2020; 22:876-884. [PMID: 32302779 DOI: 10.1016/j.jmoldx.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 12/01/2022] Open
Abstract
The results of EML4-ALK testing are critical to manage ALK tyrosine kinase receptor inhibitor treatment. Thus, the accurate detection of ALK rearrangement is increasingly becoming a matter of serious concern. To address this issue, a long-term EML4-ALK proficiency testing (PT) scheme was launched in China in 2015, serving as an educational tool for assessing and improving the testing quality of EML4-ALK fusion detection. Responses across 20 different PT samples interrogating three different variants and wild-type samples were collected between 2015 and 2019. Performance was analyzed by evaluating the detection methods, kits, and pre-analytic practices used to further display the landscape of changing conditions of the reliability of EML4-ALK testing. During the 5 years, 3224 results reported from 988 laboratories were evaluated, with an overall error rate of 5.36%. Along with an increasing number of participating laboratories, the error rate within each of the different methods showed a significantly downward trend over the years. No obvious differences in the error rates were found regarding the testing methods or kit manufacturers. Moreover, the individual performance of the laboratories improved when they participated in more PT scheme rounds. The data demonstrated that the performance of individual Chinese laboratories for EML4-ALK testing continuously improved over time by participating PT schemes, regardless of their method. However, care must be taken in standardized operations and validations.
Collapse
Affiliation(s)
- Rongxue Peng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiehong Xie
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
31
|
Brisudova A, Skarda J. Gene rearrangement detection by next-generation sequencing in patients with non-small cell lung carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:127-132. [PMID: 32284620 DOI: 10.5507/bp.2020.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths worldwide. Various molecular markers in NSCLC patients have been developed, including gene rearrangements, currently used in therapeutic strategies. With increasing number of these molecular biomarkers of NSCLC, there is a demand for highly efficient methods for detecting mutations and translocations in treatable targets. Those currently available U.S. Food and Drug Administration (FDA) approved approaches, for example imunohistochemisty (IHC) and fluorescence in situ hybridization (FISH), are inadequate, due to sufficient quantity of material and long time duration. Next-generation massive parallel sequencing (NGS), with the ability to perform and capture data from millions of sequencing reactions simultaneously could resolve the problem. Thanks to gradual NGS introduction into clinical laboratories, screening time should be considerably shorter, which is very important for patients with advanced NSCLC. Moreover, only a minimum sample input is needed for achieving adequate results. NGS was compared to the current detection methods of ALK, ROS1, c-RET and c-MET rearrangements in NSCLC and a significant match, between IHC, FISH and NGS results, was found. Recent available researches have been carried out on a small numbers of patients. Verifying these results on larger patients cohort is important. This review sumarizes the literature on this subject and compares current possibilities of predictive gene rearrangements detection in patients with NSCLC.
Collapse
Affiliation(s)
- Aneta Brisudova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
32
|
Mezquita L, Swalduz A, Jovelet C, Ortiz-Cuaran S, Howarth K, Planchard D, Avrillon V, Recondo G, Marteau S, Benitez JC, De Kievit F, Plagnol V, Lacroix L, Odier L, Rouleau E, Fournel P, Caramella C, Tissot C, Adam J, Woodhouse S, Nicotra C, Auclin E, Remon J, Morris C, Green E, Massard C, Pérol M, Friboulet L, Besse B, Saintigny P. Clinical Relevance of an Amplicon-Based Liquid Biopsy for Detecting ALK and ROS1 Fusion and Resistance Mutations in Patients With Non-Small-Cell Lung Cancer. JCO Precis Oncol 2020; 4:PO.19.00281. [PMID: 32923908 PMCID: PMC7448797 DOI: 10.1200/po.19.00281] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Liquid biopsy specimen genomic profiling is integrated in non-small-cell lung cancer (NSCLC) guidelines; however, data on the clinical relevance for ALK /ROS1 alterations are scarce. We evaluated the clinical utility of a targeted amplicon-based assay in a large prospective cohort of patients with ALK/ROS1-positive NSCLC and its impact on outcomes. PATIENTS AND METHODS Patients with advanced ALK/ROS1-positive NSCLC were prospectively enrolled in the study by researchers at eight French institutions. Plasma samples were analyzed using InVisionFirst-Lung and correlated with clinical outcomes. RESULTS Of the 128 patients included in the study, 101 were positive for ALK and 27 for ROS1 alterations. Blood samples (N = 405) were collected from 29 patients naïve for treatment with tyrosine kinase inhibitors (TKI) or from 375 patients under treatment, including 105 samples collected at disease progression (PD). Sensitivity was 67% (n = 18 of 27) for ALK/ROS1 fusion detection. Higher detection was observed for ALK fusions at TKI failure (n = 33 of 74; 46%) versus in patients with therapeutic response (n = 12 of 109; 11%). ALK-resistance mutations were detected in 22% patients (n = 16 of 74) overall; 43% of the total ALK-resistance mutations identified occurred after next-generation TKI therapy. ALK G1202R was the most common mutation detected (n = 7 of 16). Heterogeneity of resistance was observed. ROS1 G2032R resistance was detected in 30% (n = 3 of 10). The absence of circulating tumor DNA mutations at TKI failure was associated with prolonged median overall survival (105.7 months). Complex ALK-resistance mutations correlated with poor overall survival (median, 26.9 months v NR for single mutation; P = .003) and progression-free survival to subsequent therapy (median 1.7 v 6.3 months; P = .003). CONCLUSION Next-generation, targeted, amplicon-based sequencing for liquid biopsy specimen profiling provides clinically relevant detection of ALK/ROS1 fusions in TKI-naïve patients and allows for the identification of resistance mutations in patients treated with TKIs. Liquid biopsy specimens from patients treated with TKIs may affect clinical outcomes and capture heterogeneity of TKI resistance, supporting their role in selecting sequential therapy.
Collapse
Affiliation(s)
- Laura Mezquita
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Aurélie Swalduz
- Department of Medical Oncology, Centre Léon Bérard Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69008 Lyon, France
| | - Cécile Jovelet
- Plateforme de Génomique, Module de Biopathologie Moléculaire et Centre de Ressources Biologiques, AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Sandra Ortiz-Cuaran
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69008 Lyon, France
| | | | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | | | - Gonzalo Recondo
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Solène Marteau
- Department of Medical Oncology, Centre Léon Bérard Lyon, France
| | | | | | | | - Ludovic Lacroix
- Plateforme de Génomique, Module de Biopathologie Moléculaire et Centre de Ressources Biologiques, AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Luc Odier
- Department of Pneumology, Hôpital Nord-Ouest Villefranche, Villefranche Sur Saône, France
| | - Etienne Rouleau
- Plateforme de Génomique, Module de Biopathologie Moléculaire et Centre de Ressources Biologiques, AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Pierre Fournel
- Department of Medical Oncology, Institut de Cancérologie de la Loire, Saint-Priest-en-Jarez, France
| | | | - Claire Tissot
- Department of Pneumology, CHU Nord Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Julien Adam
- Pathology Department, Gustave Roussy, Villejuif, France
| | | | - Claudio Nicotra
- Early Drug Development Department, Gustave Roussy, Villejuif, France
| | - Edouard Auclin
- Medical Oncology Department, George Pompidou Hospital, Paris, France
| | | | | | | | - Christophe Massard
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Early Drug Development Department, Gustave Roussy, Villejuif, France
| | - Maurice Pérol
- Department of Medical Oncology, Centre Léon Bérard Lyon, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Paris-Sud University, Orsay, France
| | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69008 Lyon, France
| |
Collapse
|
33
|
Guibert N, Pradines A, Favre G, Mazieres J. Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages. Eur Respir Rev 2020; 29:190052. [PMID: 32051167 PMCID: PMC9488537 DOI: 10.1183/16000617.0052-2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Liquid biopsy refers to the analysis of any tumour-derived material circulating in the blood or any other body fluid. This concept is particularly relevant in lung cancer as the tumour is often difficult to reach and may need an invasive and potentially harmful procedure. Moreover, the multitude of anticancer drugs and their sequential use underline the importance of conducting an iterative assessment of tumour biology. Liquid biopsies can noninvasively detect any targetable genomic alteration and guide corresponding targeted therapy, in addition to monitoring response to treatment and exploring the genetic changes at resistance, overcoming spatial and temporal heterogeneity.In this article, we review the available data in the field, which suggest the potential of liquid biopsy in the area of lung cancer, with a particular focus on cell-free DNA and circulating tumour cells. We discuss their respective applications in patient selection and monitoring through targeted therapy, as well as immune checkpoint inhibitors. The current data and future applications of liquid biopsy in the early stage setting are also investigated.Liquid biopsy has the potential to help manage nonsmall cell lung cancer throughout all stages of lung cancer: screening, minimal residual disease detection to guide adjuvant treatment, early detection of relapse, systemic treatment initiation and monitoring of response (targeted or immune therapy), and resistance genotyping.
Collapse
Affiliation(s)
- Nicolas Guibert
- Thoracic Oncology Dept, Hôpital Larrey, University Hospital of Toulouse, Toulouse, France
- Cancer Research Centre of Toulouse (CRCT), Inserm, University of Toulouse III - Paul Sabatier, National Scientific Research Centre (CNRS), Toulouse, France
- University of Toulouse III - Paul Sabatier, Toulouse, France
| | - Anne Pradines
- Cancer Research Centre of Toulouse (CRCT), Inserm, University of Toulouse III - Paul Sabatier, National Scientific Research Centre (CNRS), Toulouse, France
- Medical Laboratory, Claudius Regaud Institute, Toulouse University Cancer Institute (IUCT-O), Toulouse, France
| | - Gilles Favre
- Cancer Research Centre of Toulouse (CRCT), Inserm, University of Toulouse III - Paul Sabatier, National Scientific Research Centre (CNRS), Toulouse, France
- University of Toulouse III - Paul Sabatier, Toulouse, France
- Medical Laboratory, Claudius Regaud Institute, Toulouse University Cancer Institute (IUCT-O), Toulouse, France
| | - Julien Mazieres
- Thoracic Oncology Dept, Hôpital Larrey, University Hospital of Toulouse, Toulouse, France
- Cancer Research Centre of Toulouse (CRCT), Inserm, University of Toulouse III - Paul Sabatier, National Scientific Research Centre (CNRS), Toulouse, France
- University of Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
Sánchez-Herrero E, Provencio M, Romero A. Clinical utility of liquid biopsy for the diagnosis and monitoring of EML4-ALK NSCLC patients. ADVANCES IN LABORATORY MEDICINE 2020; 1:20190019. [PMID: 37362555 PMCID: PMC10197761 DOI: 10.1515/almed-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 06/28/2023]
Abstract
Background Genomic rearrangement in anaplastic lymphoma kinase (ALK) gene occurs in 3-7% of patients with non-small-cell lung cancer (NSCLC). The detection of this alteration is crucial as ALK positive NSCLC patients benefit from ALK inhibitors, which improve both the patient's quality of life and overall survival (OS) compared to traditional chemotherapy. Content In routine clinical practice, ALK rearrangements are detected using tissue biopsy. Nevertheless, the availability of tumor tissue is compromised in NSCLC patients due to surgical complications or difficult access to the cancer lesion. In addition, DNA quality and heterogeneity may impair tumor biopsies testing. These limitations can be overcome by liquid biopsy, which refers to non-invasive approaches for tumor molecular profiling. In this paper we review currently available technology for non-invasive ALK testing, in NSCLC patients, based on the analysis of circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), circulating tumor cells (CTCs), tumor-educated platelets (TEPs) and extracellular vesicles (EVs) such as exosomes. Summary and outlook Non-invasive tumor molecular profiling is crucial to improve outcomes and quality of life of NSCLC patients whose tumors harbor a translocation involving ALK locus.
Collapse
Affiliation(s)
- Estela Sánchez-Herrero
- Molecular Oncology Laboratory, Biomedical Sciences Research Institute Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Puerta de Hierro Majadahonda University Hospital, C/ Manuel de Falla 1, Majadahonda, Madrid 28222, Spain
| | - Atocha Romero
- Medical Oncology Department, Puerta de Hierro Majadahonda University Hospital, C/ Manuel de Falla 1, Majadahonda, Madrid 28222, Spain
| |
Collapse
|
35
|
Said R, Guibert N, Oxnard GR, Tsimberidou AM. Circulating tumor DNA analysis in the era of precision oncology. Oncotarget 2020; 11:188-211. [PMID: 32010431 PMCID: PMC6968778 DOI: 10.18632/oncotarget.27418] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal genomic heterogeneity of various tumor types and advances in technology have stimulated the development of circulating tumor DNA (ctDNA) genotyping. ctDNA was developed as a non-invasive, cost-effective alternative to tumor biopsy when such biopsy is associated with significant risk, when tumor tissue is insufficient or inaccessible, and/or when repeated assessment of tumor molecular abnormalities is needed to optimize treatment. The role of ctDNA is now well established in the clinical decision in certain alterations and tumors, such as the epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer and the v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer. The role of ctDNA analysis in other tumor types remains to be validated. Evolving data indicate the association of ctDNA level with tumor burden, and the usefulness of ctDNA analysis in assessing minimal residual disease, in understanding mechanisms of resistance to treatment, and in dynamically guiding therapy. ctDNA analysis is increasingly used to select therapy. Carefully designed clinical trials that use ctDNA analysis will increase the rate of patients who receive targeted therapy, will elucidate our understanding of evolution of tumor biology and will accelerate drug development and implementation of precision medicine. In this article we provide a critical overview of clinical trials and evolving data of ctDNA analysis in specific tumors and across tumor types.
Collapse
Affiliation(s)
- Rabih Said
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, St. George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
- Co-authorship
| | - Nicolas Guibert
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Thoracic Oncology, Toulouse University Hospital, Toulouse, France
- Co-authorship
| | - Geoffrey R. Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Liquid Biopsy in Non-Small Cell Lung Cancer: Highlights and Challenges. Cancers (Basel) 2019; 12:cancers12010017. [PMID: 31861557 PMCID: PMC7017364 DOI: 10.3390/cancers12010017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer is one leading cause of death worldwide, and patients would greatly benefit from an early diagnosis. Since targeted and immunotherapies have emerged as novel approaches for more tailored treatments, repeated assessments of the tumor biology have become pivotal to drive clinical decisions. Currently, tumor tissue biopsy is the gold standard to investigate potentially actionable biomarkers, but this procedure is invasive and may prove inadequate to represent the whole malignancy. In this regard, liquid biopsy represents a minimally invasive and more comprehensive option for early detection and investigation of this tumor. Today, cell-free DNA is the only approved circulating marker to select patients for a targeted therapy. Conversely, the other tumor-derived markers (i.e., circulating tumor cells, miRNAs, exosomes, and tumor educated platelets) are still at a pre-clinical phase, although they show promising results for their application in screening programs or as prognostic/predictive biomarkers. The main challenges for their clinical translation are the lack of reliable cutoffs and, especially for miRNAs, the great variability among the studies. Moreover, no established tool has been approved for circulating tumor cells and exosome isolation. Finally, large prospective clinical trials are mandatory to provide evidence of their clinical utility.
Collapse
|
37
|
Guibert N, Hu Y, Feeney N, Kuang Y, Plagnol V, Jones G, Howarth K, Beeler JF, Paweletz CP, Oxnard GR. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann Oncol 2019; 29:1049-1055. [PMID: 29325035 DOI: 10.1093/annonc/mdy005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Genomic analysis of plasma cell-free DNA is transforming lung cancer care; however, available assays are limited by cost, turnaround time, and imperfect accuracy. Here, we study amplicon-based plasma next-generation sequencing (NGS), rather than hybrid-capture-based plasma NGS, hypothesizing this would allow sensitive detection and monitoring of driver and resistance mutations in advanced non-small cell lung cancer (NSCLC). Patients and methods Plasma samples from patients with NSCLC and a known targetable genotype (EGFR, ALK/ROS1, and other rare genotypes) were collected while on therapy and analyzed blinded to tumor genotype. Plasma NGS was carried out using enhanced tagged amplicon sequencing of hotspots and coding regions from 36 genes, as well as intronic coverage for detection of ALK/ROS1 fusions. Diagnostic accuracy was compared with plasma droplet digital PCR (ddPCR) and tumor genotype. Results A total of 168 specimens from 46 patients were studied. Matched plasma NGS and ddPCR across 120 variants from 80 samples revealed high concordance of allelic fraction (R2 = 0.95). Pretreatment, sensitivity of plasma NGS for the detection of EGFR driver mutations was 100% (30/30), compared with 87% for ddPCR (26/30). A full spectrum of rare driver oncogenic mutations could be detected including sensitive detection of ALK/ROS1 fusions (8/9 detected, 89%). Studying 25 patients positive for EGFR T790M that developed resistance to osimertinib, 15 resistance mechanisms could be detected including tertiary EGFR mutations (C797S, Q791P) and mutations or amplifications of non-EGFR genes, some of which could be detected pretreatment or months before progression. Conclusions This blinded analysis demonstrates the ability of amplicon-based plasma NGS to detect a full range of targetable genotypes in NSCLC, including fusion genes, with high accuracy. The ability of plasma NGS to detect a range of preexisting and acquired resistance mechanisms highlights its potential value as an alternative to single mutation digital PCR-based plasma assays for personalizing treatment of TKI resistance in lung cancer.
Collapse
Affiliation(s)
- N Guibert
- Translational Research Laborator, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA; Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Y Hu
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - N Feeney
- Translational Research Laborator, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA
| | - Y Kuang
- Translational Research Laborator, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA
| | | | - G Jones
- Inivata Ltd, Morrisville, USA
| | | | | | - C P Paweletz
- Translational Research Laborator, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, USA
| | - G R Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, USA; Harvard Medical School, Boston, USA.
| |
Collapse
|
38
|
Lu J, Zhong H, Wu J, Chu T, Zhang L, Li H, Wang Q, Li R, Zhao Y, Gu A, Wang H, Shi C, Xiong L, Zhang X, Zhang W, Lou Y, Yan B, Dong Y, Zhang Y, Li B, Zhang L, Zhao X, Li K, Han B. Circulating DNA-Based Sequencing Guided Anlotinib Therapy in Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900721. [PMID: 31592412 PMCID: PMC6774020 DOI: 10.1002/advs.201900721] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/20/2019] [Indexed: 06/04/2023]
Abstract
Anlotinib is a multitargeted antiangiogenic drug, and its clinical predictor for responsive non-small cell lung cancer (NSCLC) patients is still elusive. Here, tumor-specific target capture is used to profile the circulating DNA of ALTER0303 (evaluating NSCLC clinical antitumor efficacy through anlotinib therapy) study participants. The results indicate that patients receiving no benefit can be mainly excluded via analysis of ARID1A and BRCA2 genetic profiling. For patients with no durable benefit and durable clinical benefit patients, three predictors: germline and somatic mutation burden (G+S MB), nonsynonymous and synonymous mutation burden (N+S MB), and unfavorable mutation score of circulating DNA profiling are identified. Through integrating the advantages and disadvantages of three independent predictors, the tumor mutation index (TMI) is established as a prediction model and the patients who are very likely to benefit more from anlotinib therapy are identified. Furthermore, the IDH1 exon 4 mutation is identified as an unfavorable factor for anlotinib therapy under TMI-based stratification, and the TMI plus IDH1 exon 4 mutation status potentially predicts response to anlotinib. Collectively, this study provides a circulating DNA sequencing-based stratification method for identifying anlotinib responders via a noninvasive approach, and thus potentially improves the clinical outcome of NSCLC patients receiving third-line therapy.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Hua Zhong
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Jun Wu
- School of Life ScienceEast China Normal UniversityShanghai200241China
| | - Tianqing Chu
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Lele Zhang
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Hua Li
- Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Qiming Wang
- Department of Internal MedicineHenan Province Tumor HospitalZhengzhou UniversityHenan450008China
| | - Rong Li
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yizhuo Zhao
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Aiqin Gu
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Huimin Wang
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Chunlei Shi
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Liwen Xiong
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Xueyan Zhang
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yuqing Lou
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Bo Yan
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yu Dong
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yanwei Zhang
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Baolan Li
- General DepartmentBeijing Chest HospitalCapital Medical UniversityBeijing101149China
| | - Li Zhang
- Department of Respiratory MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100032China
| | - Xiaodong Zhao
- Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Kai Li
- Department of Thoracic OncologyNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin200030China
| | - Baohui Han
- Department of Pulmonary MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
39
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
40
|
Park CK, Kim JE, Kim MS, Kho BG, Park HY, Kim TO, Shin HJ, Cho HJ, Choi YD, Oh IJ, Kim YC. Feasibility of liquid biopsy using plasma and platelets for detection of anaplastic lymphoma kinase rearrangements in non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 145:2071-2082. [PMID: 31154543 PMCID: PMC6658417 DOI: 10.1007/s00432-019-02944-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE Fluorescence in situ hybridization (FISH) using tumor tissue is the gold standard for detection of anaplastic lymphoma kinase (ALK) rearrangement in non-small cell lung cancer (NSCLC). However, this method often is not repeatable due to difficulties in the acquisition of tumor tissues. Blood-based liquid biopsy using reverse transcription polymerase chain reaction (RT-PCR) is expected to be useful to overcome this limitation. Here, we investigated the feasibility of liquid biopsy using plasma and platelets for detection of ALK rearrangement and prediction of ALK inhibitor treatment outcomes. METHODS ALK-FISH assays were performed in 1128 tumor specimens of NSCLC between January 2015 and June 2018. We retrospectively analyzed formalin-fixed paraffin-embedded (FFPE) tissues from previously confirmed FISH-positive (n = 199) and -negative (n = 920) cases. We recruited patients who had available tissue specimens and agreed to venous sampling. RNA was extracted from FFPE blocks, plasma, and platelets. Fusion RNA of echinoderm microtubule-associated protein-like 4 (EML4)-ALK was detected by quantitative PCR. RESULTS Thirty-three FISH-positive and 28 FISH-negative patients were enrolled. In validation, data compared with FISH, RT-PCR using FFPE tissues showed 54.5% sensitivity, 78.6% specificity, and 75.5% accuracy. Liquid biopsy had higher sensitivity (78.8%), specificity (89.3%) and accuracy (83.6%). Higher positivity for liquid biopsy was shown in subgroups with delayed (≥ 6 months from diagnosis) blood sampling (plasma, 85.7%; platelets, 87.0%). In 26 patients treated with crizotinib, the platelet-positive subgroup showed longer median duration of treatment (7.2 versus 1.5 months), longer median progression-free survival (5.7 months versus 1.7 months), a higher overall response rate (70.6% versus 11.1%), and a higher disease control rate (88.2% versus 44.4%) than the platelet-negative subgroup. CONCLUSION Liquid biopsy could have applications in the diagnosis of ALK-positive NSCLC, even when using RT-PCR, and platelets can be useful for predicting treatment outcomes of ALK inhibitors.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Ji-Eun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Min-Seok Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Bo-Gun Kho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Ha-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Tae-Ok Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Hong-Joon Shin
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Hyun-Joo Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Yoo-Duk Choi
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea.
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| |
Collapse
|
41
|
Wu TH, Hsiue EHC, Yang JCH. Opportunities of circulating tumor DNA in lung cancer. Cancer Treat Rev 2019; 78:31-41. [PMID: 31326635 DOI: 10.1016/j.ctrv.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022]
Abstract
Current classification and treatment of lung cancer rely increasingly on molecular and genetic testing. Obtaining tumor tissue is not always feasible and multiple biopsies are undesirable. In response to the demand for non-invasive molecular and genetic testing in cancer care, several liquid biopsy technologies, including circulating DNA (ctDNA), have been developed. ctDNA analysis is now technically feasible to be carried out in large scales and integrated into clinical practice owing to the advances in technology. Despite the challenges in improving test accuracy and cost-effectiveness, there are huge potentials for ctDNA analysis in lung cancer management. This review focuses on the clinical utility of ctDNA analysis in lung cancer, including early detection, monitoring treatment response and detecting residual disease, identification of genetic determinants for targeted therapy, and predicting efficacy of immune checkpoint blockade.
Collapse
Affiliation(s)
- Ting-Hui Wu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, United States
| | | | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taiwan; Graduate Institute of Oncology, National Taiwan University, Taiwan.
| |
Collapse
|
42
|
Wu Z, Yang Z, Dai Y, Zhu Q, Chen LA. Update on liquid biopsy in clinical management of non-small cell lung cancer. Onco Targets Ther 2019; 12:5097-5109. [PMID: 31303765 PMCID: PMC6611714 DOI: 10.2147/ott.s203070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Lung cancer, a leading cause of cancer-related mortality, has a low rate of early diagnosis and a poor prognosis for advanced stages. Recent advances in further mastery of the biology of tumors promote the diagnosis and therapy, especially for non-small cell lung cancer (NSCLC). However, tumor tissue-based information is often not available in most cases due to the invasive and high risk nature of the tumor biopsy procedures. Liquid biopsy, based on the multiple liquid samples including circulating tumor cells (CTC), circulating tumor DNA (ctDNA), and tumor-derived exosome obtained from blood or urine as well as other body fluids, can also provide valuable tumor-related information, playing an important role in management of NSCLC in clinical practice. It is widely believed that concordance of detection for tumor by liquid samples in comparison with tissue biopsy for both early and advanced stage NSCLC patients is optimistic. We herein review the current and future clinical application of liquid biopsy, including early diagnosis and management of precise personalized treatment in lung cancer. The future directions of development for liquid biopsy are also discussed in this review.
Collapse
Affiliation(s)
- Zhen Wu
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhen Yang
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yu Dai
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Zhu
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Liang-An Chen
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
43
|
Zhao H, Wang Y, Ren X. Nicotine promotes the development of non-small cell lung cancer through activating LINC00460 and PI3K/Akt signaling. Biosci Rep 2019; 39:BSR20182443. [PMID: 31123168 PMCID: PMC6554215 DOI: 10.1042/bsr20182443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Nicotine, the main ingredient in tobacco, is identified to facilitate tumorigenesis and accelerate metastasis in tumor. Studies in recent years have reported that long intergenic non-protein coding RNA 460 (LINC00460) is strongly associated with lung cancer poor prognosis and nicotine dependence. Nonetheless, it is unclear whether nicotine promotes the development of lung cancer through activation of LINC00460. Methods: We determined that LINC00460 expression in lung cancer tissues and the prognosis in patients with non-small cell lung carcinoma (NSCLC) using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. Through in vitro experiments, we studied the effects of nicotine on LINC00460 in NSCLC cells lines using Cell Counting Kit-8 (CCK-8), transwell test, flow cytometry, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot assays. Results: We identified the significant up-regulated expression level of LINC00460 in NSCLC tissues and cell lines, especially, the negative correlation of LINC00460 expression level with overall survival (OS). In in vitro experiments, LINC00460 was overexpressed in NSCLC cell lines under nicotine stimulation. Nicotine could relieve the effect of LINC00460 knockdown on NSCLC cell proliferation, migration and apoptosis. The same influence was observed on PI3K/Akt signaling pathway. Conclusions: In summary, this is the first time to examine the potential roles of LINC00460 in lung cancer cell proliferation, migration and apoptosis induced by nicotine. This may help to develop novel therapeutic strategies for the prevention and treatment of metastatic tumors from cigarette smoke-caused lung cancer by blocking the nicotine-activated LINC00460 pathway.
Collapse
Affiliation(s)
- Hongying Zhao
- Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Yu Wang
- Department of Gerneral Surgery, Xuzhou Cancer Hospital, Xuzhou, 221000 Jiangsu, P.R. China
| | - Xiubao Ren
- Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
44
|
Solomon JP, Hechtman JF. Detection of NTRK Fusions: Merits and Limitations of Current Diagnostic Platforms. Cancer Res 2019; 79:3163-3168. [PMID: 31196931 DOI: 10.1158/0008-5472.can-19-0372] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Oncogenic fusions involving NTRK1, NTRK2, and NTRK3 with various partners are diagnostic of infantile fibrosarcoma and secretory carcinoma yet also occur in lower frequencies across many types of malignancies. Recently, targeted small molecular inhibitor therapy has been shown to induce a durable response in a high percentage of patients with NTRK fusion-positive cancers, which has made the detection of NTRK fusions critical. Several techniques for NTRK fusion diagnosis exist, including pan-Trk IHC, FISH, reverse transcription PCR, DNA-based next-generation sequencing (NGS), and RNA-based NGS. Each of these assays has unique features, advantages, and limitations, and familiarity with these assays is critical to appropriately screen for NTRK fusions. Here, we review the details of each existing methodology.
Collapse
Affiliation(s)
- James P Solomon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
45
|
Lin C, Shi X, Yang S, Zhao J, He Q, Jin Y, Yu X. Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer 2019; 131:62-68. [PMID: 31027700 DOI: 10.1016/j.lungcan.2019.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/28/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Anaplastic lymphoma kinase (ALK) is now a validated kinase target in non-small cell lung cancer (NSCLC). We implemented three ALK laboratory methodologies: fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and next-generation sequencing (NGS) to detect EML4-ALK fusions and compared the predictive value for Crizotinib efficacy in ALK-positive patients. METHODS 55 ALK positive patients confirmed by at least one method were enrolled in the present study, of whom 45 cases were assessed by FISH, IHC and NGS concurrently, and another 10 cases only received IHC and NGS assessment for ALK status. RESULTS IHC presented the uppermost positive rate (94.5%), followed by NGS (92.7%) and FISH(82.4%), among which IHC and NGS had the highest concordance rate of 87.3%. No difference was detected in ORR, DCR and PFS of ALK positive cases defined in three groups. Notably, NGS positive patients were correlated with a higher DCR and longer PFS compared to NGS negative cases (P = 0.02 and P = 0.09), while FISH and IHC status were not distinguishing in predicting the outcome of Crizotinib. TP53 concurrent mutation might reduce responsiveness to Crizotinib and worsen prognosis in ALK-rearranged NSCLC. CONCLUSION FISH present a certain false-negative rate although considered the gold standard. Ventana-D5F3 IHC is qualified as a screening tool, while NGS positive may predict clinical benefit of Crizotinib more accurately, allowing efficient test for specific variants and concurrent genomic alterations.
Collapse
Affiliation(s)
- Chen Lin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Xun Shi
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Shao Yang
- Nanjing Geneseeq Technology Inc., Nangjing, China
| | - Jun Zhao
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Qiong He
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Ying Jin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Radiation Oncology, China.
| | - Xinmin Yu
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Diagnosis and Treatment Technology of Thoracic Oncology, China.
| |
Collapse
|
46
|
Saarenheimo J, Eigeliene N, Andersen H, Tiirola M, Jekunen A. The Value of Liquid Biopsies for Guiding Therapy Decisions in Non-small Cell Lung Cancer. Front Oncol 2019; 9:129. [PMID: 30891428 PMCID: PMC6411700 DOI: 10.3389/fonc.2019.00129] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted therapies have allowed for an individualized treatment approach in non-small-cell lung cancer (NSCLC). The initial therapeutic decisions and success of targeted therapy depend on genetic identification of personal tumor profiles. Tissue biopsy is the gold standard for molecular analysis, but non-invasive or minimally invasive liquid biopsy methods are also now used in clinical practice, allowing for later monitoring and optimization of the cancer treatment. The inclusion of liquid biopsy in the management of NSCLC provides strong evidence on early treatment response, which becomes a basis for determining disease progression and the need for changes in treatment. Liquid biopsies can drive the decision making for treatment strategies to achieve better patient outcomes. Cell-free DNA and circulating tumor cells obtained from the blood are promising markers for determining patient status. They may improve cancer treatments, allow for better treatment control, enable early interventions, and change decision making from reactive actions toward more predictive early interventions. This review aimed to present current knowledge on and the usefulness of liquid biopsy studies in NSCLC from the perspective of how it has allowed individualized treatments according to gene profiling and how the method may alter the treatment decisions in the future.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland.,Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Natalja Eigeliene
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersen
- Department of Pulmonology, Vasa Central Hospital, Vaasa, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Cao Z, Gao Q, Fu M, Ni N, Pei Y, Ou WB. Anaplastic lymphoma kinase fusions: Roles in cancer and therapeutic perspectives. Oncol Lett 2019; 17:2020-2030. [PMID: 30675269 PMCID: PMC6341817 DOI: 10.3892/ol.2018.9856] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) serves a crucial role in brain development. ALK is located on the short arm of chromosome 2 (2p23) and exchange of chromosomal segments with other genes, including nucleophosmin (NPM), echinoderm microtubule-associated protein-like 4 (EML4) and Trk-fused gene (TFG), readily occurs. Such chromosomal translocation results in the formation of chimeric X-ALK fusion oncoproteins, which possess potential oncogenic functions due to constitutive activation of ALK kinase. These proteins contribute to the pathogenesis of various hematological malignancies and solid tumors, including lymphoma, lung cancer, inflammatory myofibroblastic tumors (IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive tract cancer, breast cancer, leukemia and ovarian carcinoma. Targeting of ALK fusion oncoproteins exclusively, or in combination with ALK kinase inhibitors including crizotinib, is the most common therapeutic strategy. As is often the case for small-molecule tyrosine kinase inhibitors (TKIs), drug resistance eventually develops via an adaptive secondary mutation in the ALK fusion oncogene, or through engagement of alternative signaling mechanisms. The updated mechanisms of a variety of ALK fusions in tumorigenesis, proliferation and metastasis, in addition to targeted therapies are discussed below.
Collapse
Affiliation(s)
- Zhifa Cao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Qian Gao
- Emergency Department, Tianjin Fourth Central Hospital, Fourth Central Hospital Affiliated with Nankai University, Tianjin 300140, P.R. China
| | - Meixian Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuting Pei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, P.R. China
| |
Collapse
|
48
|
Yang W, Han J, Ma J, Feng Y, Hou Q, Wang Z, Yu T. Prediction of key gene function in spinal muscular atrophy using guilt by association method based on network and gene ontology. Exp Ther Med 2019; 17:2561-2566. [PMID: 30906446 PMCID: PMC6425128 DOI: 10.3892/etm.2019.7216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Guilt by association (GBA) algorithm has been widely used to predict gene functions statistically, and a network-based approach may increase the confidence and veracity of identifying molecular signatures for diseases. The aim of the present study was to suggest a gene ontology (GO)-based method by integrating the GBA algorithm and network, to identify key gene functions for spinal muscular atrophy (SMA). The inference of predicting key gene functions was comprised of four steps, preparing gene lists and sets; extracting differentially expressed genes (DEGs) using microarray data [linear models for microarray data (limma)] package; constructing a co-expression matrix on gene lists using the Spearman correlation coefficient method; and predicting gene functions by GBA algorithm. Ultimately, key gene functions were predicted according to the area under the curve (AUC) index for GO terms and the GO terms with AUC >0.7 were determined as the optimal gene functions for SMA. A total of 484 DEGs and 466 background GO terms were regarded as gene lists and sets for the subsequent analyses, respectively. The predicted results obtained from the network-based GBA approach showed 141 gene sets had a good classified performance with AUC >0.5. Most significantly, 3 gene sets with AUC >0.7 were denoted as seed gene functions for SMA, including cell morphogenesis, which is involved in differentiation and ossification. In conclusion, we have predicted 3 key gene functions for SMA compared with control utilizing network-based GBA algorithm. The findings may provide great insights to reveal pathological and molecular mechanism underlying SMA.
Collapse
Affiliation(s)
- Wenjiu Yang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jing Han
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinfeng Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yujie Feng
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qingxian Hou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhijie Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tengbo Yu
- Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
49
|
Cortinovis D, Canova S, Abbate MI, Colonese F, Cogliati V, Bidoli P. Challenges in ALK inhibition of ALK-positive non-small-cell lung cancer: from ALK positivity detection to treatment strategies after relapse. Future Oncol 2018; 14:2303-2317. [PMID: 30088419 DOI: 10.2217/fon-2018-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ALK positivity, despite representing only in a small proportion of patients with non-small-cell lung cancer, is worth researching at diagnosis given the possibility to treat these patients with some targeted ALK inhibitors, which are more potent than chemotherapy. Thanks to understanding the resistance mechanisms, newer and more selective inhibitors are now available in clinical practice. Hence, this disease represents, after EGFR inhibition, a largely effective precision medicine approach. However, there are still some clinical situations in which the targeted drug seems to be ineffective. This review discusses some uncertainty about such a 'precision medicine application', focusing on some weaknesses and giving perspectives and suggestions to improve the management of this specific population.
Collapse
Affiliation(s)
| | | | | | | | | | - Paolo Bidoli
- Medical Oncology Unit, ASST San Gerardo, Monza, Italy
| |
Collapse
|
50
|
Mlika M, Dziri C, Zorgati MM, Ben Khelil M, Mezni F. Liquid Biopsy as Surrogate to Tissue in Lung Cancer for Molecular Profiling: A Meta-Analysis. CURRENT RESPIRATORY MEDICINE REVIEWS 2018; 14:48-60. [PMID: 30271314 PMCID: PMC6128071 DOI: 10.2174/1573398x14666180430144452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Background: The accurate microscopic diagnosis of lung cancer has become insufficient due to the concept of personalized medicine. Tissue samples are used not only for microscopic diagnosis but also for the assessment of the different targets. Biopsies are performed in 80% of the patients and they are not sufficient for molecular diagnosis in 30% of the cases. Liquid biopsy (LB) has been reported as a possible surrogate to tissue samples and has been introduced in the management scheme of the patients since 2014. We aimed to highlight the diagnostic value of liquid biopsy in assessing the molecular profile of non small cell carcinomas in comparison with tissue biopsy. Methods: We retracted eligible articles from PubMed, Embase and Cochrane databases. We calculated the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area under curve (AUC) were used to evaluate the overall diagnostic performance using the Meta-Disc software 5.1.32. The heterogeneity was assessed using I square statistics. A meta-regression was performed in case of heterogeneity. In case of absence of covariates, a sensitivity analysis was done in order to assess publications that induced a statistical bias. Results: 39 eligible studies involving 4782 patients were included. The overall statistical studies showed heterogeneity in the SEN, SPE, PLR, NLR and DOR. No threshold effect was revealed. The meta-regression incorporating the ethnicity, the test, the technique used in tissue and plasma and the use of plasma or serum as covariates showed no impact of these factors. A sensitivity analysis allowed achieving the homogeneity in the SPE and DOR. The overall pooled SEN and SPE were 0.61 and 0.95 respectively. The PLR was 9.51, the NLR was 0.45 and DOR was 24.58. The SROC curve with AUC of 0,93 indicated that the liquid biopsy is capable of identifying wild type samples from mutated ones with a relatively high accuracy. Conclusion: This meta-analysis suggested that detection of molecular mutations by cfDNA is of adequate diagnostic accuracy in association to tissues. The high specificity and the moderate sensitivity highlight the value of LB as a screening test
Collapse
Affiliation(s)
- Mona Mlika
- 1Department of Pathology, Abderrahman Mami Hospital, Ariana, Tunisia; 2University Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; 3Department of General Surgery B, Charles Nicolle Hospital, Tunis, Tunisia; 4Medical Center of ABM, Military College, Qatar
| | - Chadli Dziri
- 1Department of Pathology, Abderrahman Mami Hospital, Ariana, Tunisia; 2University Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; 3Department of General Surgery B, Charles Nicolle Hospital, Tunis, Tunisia; 4Medical Center of ABM, Military College, Qatar
| | - Mohamed Majdi Zorgati
- 1Department of Pathology, Abderrahman Mami Hospital, Ariana, Tunisia; 2University Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; 3Department of General Surgery B, Charles Nicolle Hospital, Tunis, Tunisia; 4Medical Center of ABM, Military College, Qatar
| | - Mehdi Ben Khelil
- 1Department of Pathology, Abderrahman Mami Hospital, Ariana, Tunisia; 2University Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; 3Department of General Surgery B, Charles Nicolle Hospital, Tunis, Tunisia; 4Medical Center of ABM, Military College, Qatar
| | - Faouzi Mezni
- 1Department of Pathology, Abderrahman Mami Hospital, Ariana, Tunisia; 2University Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; 3Department of General Surgery B, Charles Nicolle Hospital, Tunis, Tunisia; 4Medical Center of ABM, Military College, Qatar
| |
Collapse
|