1
|
Cheng J, Tian X, Wu C, Wang J, Liu H, Cheng S, Sun H. MiR- 146b-5p inhibits Candida albicans-induced inflammatory response through targeting HMGB1 in mouse primary peritoneal macrophages. Heliyon 2025; 11:e41464. [PMID: 39844980 PMCID: PMC11751530 DOI: 10.1016/j.heliyon.2024.e41464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background Candida albicans (C. albicans) is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in C. albicans infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in C. albicans infection. Methods Mouse primary peritoneal macrophages (MPMs) were isolated successfully. The optimum conditions for C. albicans infection were selected by Western blot and ELISA. The miRNA differential expression profiles of C. albicans infection were screened and verified by 6 miRNA gene chips and qRT-PCR. The direct regulation of the target gene HMGB1 by mmu-miR-146b-5p was confirmed through a dual-luciferase assay. The levels of mmu-miR-146b-5p, HMGB1, inflammatory mediators, p-IKK, IKK, p-IκBα, IκBα and NF-κB p65 were tested by qRT-PCR, Western blot, and ELISA. The nuclear and cytoplasm translocation of HMGB1 and NF-κB p65 were detected by Western blot and laser confocal microscopy. After siHMGB1 transfection, the expression levels of HMGB1, inflammatory mediators, p-IKK, IKK, p-IκBα, IκBα and NF-κB p65 were assessed using Western blot, qRT-PCR and ELISA. Results In our study, MPMs were successfully extracted and infected with C. albicans at optimum conditions of 1.5 × 107 CFU/mL for 36 h. Through miRNA gene chips analysis, 40 differential genes were screened. mmu-miR-146b-5p could directly and negatively regulate the expression and translocation of HMGB1, inhibit the expression of inflammatory mediators, and might participate in the NF-κB signaling pathway in a HMGB1-dependent manner under C. albicans infection. Conclusion mmu-miR-146b-5p may play an anti-inflammatory role in treating C. albicans infection and provide a novel target for it.
Collapse
Affiliation(s)
- Jing Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Health Care, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoxing Tian
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Chuanxin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huiling Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sha Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clin Microbiol Rev 2023; 36:e0001523. [PMID: 37909789 PMCID: PMC10732047 DOI: 10.1128/cmr.00015-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They have been implicated in the pathogenesis of cancer and neurological, cardiovascular, and autoimmune diseases. Several recent studies have suggested that miRNAs are key players in regulating the differentiation, maturation, and activation of immune cells, thereby influencing the host immune response to infection. The resultant upregulation or downregulation of miRNAs from infection influences the protein expression of genes responsible for the immune response and can determine the risk of disease progression. Recently, miRNAs have been explored as diagnostic biomarkers and therapeutic targets in various infectious diseases. This review summarizes our current understanding of the role of miRNAs during viral, fungal, bacterial, and parasitic infections from a clinical perspective, including critical functional mechanisms and implications for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Wajiha Gohir
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Jose F. Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
4
|
Shanzhiside methylester protects against depression by inhibiting inflammation via the miRNA-155-5p/SOCS1 axis. Psychopharmacology (Berl) 2022; 239:2201-2213. [PMID: 35294601 DOI: 10.1007/s00213-022-06107-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a key player in the regulation of depression. Shanzhiside methylester (SM) is an iridoid glycoside with strong anti-inflammatory properties. However, the antidepressant effect of SM remains unknown. The present study aimed to investigate whether SM protects against depression by targeting inflammation. A chronic unpredictable mild stress (CUMS)-induced mouse model of depression was established to assess the antidepressant effect of SM in vivo. In addition, an LPS plus ATP-induced cellular model of inflammation was used to explore the related inflammatory mechanism. We found that both SM and miRNA-155-5p sponge markedly remedied CUMS-induced depression-like behaviors in the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST), accompanied by decreased Iba1 expression and the production of TNF-α, IL-1β, and IL-6. Moreover, SM and miRNA-155-5p sponge upregulated the protein levels of SOCS1 and downregulated the protein expression of p-JAK2 and p-STAT3 in the hippocampus of CUMS-exposed mice. miRNA-155-5p expression was also decreased following SM and miRNA-155-5p sponge administration. Furthermore, SM repressed LPS- and ATP-induced inflammatory responses in BV2 cells by regulating the SOCS1/JAK2/STAT3 signaling pathway, which was similar to the anti-inflammatory effects induced by the miRNA-155-5p sponge. Collectively, these findings suggested that SM exerted antidepressant actions by targeting the miRNA-155-5p/SOCS1 axis.
Collapse
|
5
|
Chu Y, Teng J, Feng P, Liu H, Wang F, Wang H. Dexmedetomidine Attenuates Hypoxia/Reoxygenation Injury of H9C2 Myocardial Cells by Upregulating miR-146a Expression via the MAPK Signal Pathway. Pharmacology 2021; 107:14-27. [PMID: 34718238 DOI: 10.1159/000506814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND OBJECTIVE Dexmedetomidine (Dex) and a number of miRNAs contribute to ischemia/reperfusion injury. We aimed to explore the role of Dex and miR-146a on myocardial cells injured by hypoxia/reoxygenation (H/R). METHOD H9C2 cells were injured by H/R. Cell viability was tested using the cell counting kit-8. Lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were determined using commercial kits. Flow cytometry was performed to determine apoptosis rate and reactive oxygen species (ROS) level. Protein and mRNA levels were assessed using Western blot and qPCR. RESULTS miR-146a expression and cell viability of H9C2 cells were downregulated under the circumstance of H/R injury. The tendency could be reversed by Dex, which could also upregulate SOD activity and decrease apoptosis, LDH activity, MDA, 78-kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP) levels of H9C2 cells. GRP78, CHOP levels, and cell viability were negatively modulated by miR-146a. Dex elevated cell viability, catalase, MnSOD, and NAD(P)H dehydrogenase (NQO1) levels but suppressed apoptosis rate, GRP78, and CHOP levels by increasing miR-146a expression and downregulating ROS, phosphorylation of p38, and extracellular signal-regulated kinases 1/2 levels. By using SB203580 (SB), the p38 mitogen-activated protein kinase (MAPK) inhibitor, Dex or the inhibition of miR-146 upregulated cell viability but downregulated GRP78 and CHOP levels. CONCLUSION Dex might regulate miR-146a expression, which could further modulate the endoplasmic reticulum stress and oxidative stress and eventually affect the cell viability and apoptosis of myocardial cells injured by H/R via the MAPK signal pathway.
Collapse
Affiliation(s)
- Yi Chu
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Jiwei Teng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Pin Feng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hui Liu
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Fangfang Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Tong J, Duan Z, Zeng R, Du L, Xu S, Wang L, Liu Y, Chen Q, Chen X, Li M. MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages. Mycopathologia 2021; 186:341-354. [PMID: 34089172 DOI: 10.1007/s11046-021-00538-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus fumigatu (A. fumigatus) is one of the most common important fungal pathogens that cause life-threatening infectious disease in immunocompromised individuals. However, the host immune response against this pathogenic mold is not fully understood. MicroRNAs (miRNAs) play essential roles in regulating innate immunity. Thus, we investigated the function of miR-146a in inflammatory responses in macrophages after A. fumigatus stimulation in this study. We found that TNF-α and IL-6 were increased in THP-1 macrophage-like cells treated with A. fumigatus at both the mRNA and protein levels. The interaction between THP-1 macrophage-like cells and A. fumigatus resulted in a long-lasting increase in miR-146a expression dependent on p38 MAPK and NF-κB signaling. In A. fumigatus-challenged THP-1 macrophage-like cells, overexpression of miR-146a by miR-146a mimics decreased TNF-α and IL-6 production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced the level of TNF-α and IL-6. Our study demonstrates that the crosstalk between miR-146a and the inflammation-regulating p38 MAPK and NF-κB pathways might be a fine-tuning mechanism in the modulation of the inflammatory response in macrophages infected with A. fumigatus. Our findings illuminate the crucial role of miR-146a in the pathogenesis of human diseases associated with A. fumigatus infection.
Collapse
Affiliation(s)
- Jianbo Tong
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.,Department of Dermatology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330001, People's Republic of China
| | - Zhimin Duan
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Rong Zeng
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Leilei Du
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Liwei Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Yuzhen Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Zhang M, Xia Z, Yang X, Ao J, Yang R. Specific microRNA/mRNA expression profiles and novel immune regulation mechanisms are induced in THP-1 macrophages by in vitro exposure to Trichosporon asahii. Mycoses 2021; 64:831-840. [PMID: 33715213 DOI: 10.1111/myc.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichosporon asahii is considered the most prominent species associated with invasive trichosporonosis, but little is known about the pathogenesis of T. asahii infection in the host. MicroRNAs (miRNAs) are a class of noncoding endogenous small RNAs that play vital roles by manipulating immune responses against pathogenic microorganisms. Nevertheless, the exact functions of miRNAs in T. asahii infection are still unknown. OBJECTIVE To investigate the interactions involved in the miRNA immune response in THP-1 macrophages following in vitro exposure to T. asahii. METHODS We utilized next-generation sequencing to detect differentially expressed (DE) miRNAs and mRNAs in THP-1 cells after 24 h of in vitro exposure to T. asahii. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify the sequencing results. The miRNA-mRNA regulatory network was constructed with the DE miRNAs and DE mRNAs. We performed Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the predicted targeting mRNAs in the miRNA-mRNA network. A dual-luciferase reporter assay and enzyme-linked immunosorbent assay (ELISA) were utilized to demonstrate the reliability of the miR-342-3p/Dectin-1 pair. RESULTS A total of 120 DE miRNAs and 588 DE mRNAs were identified after 24 h of in vitro exposure to T. asahii. The miRNA-mRNA regulatory network was constructed with 39 DE miRNAs and 228 DE mRNAs. KEGG pathway analysis revealed that the up-regulated DE mRNAs in the complex interaction network were mainly involved in immune-related pathways. In addition, we verified the target relationship between miR-342-3p and Dectin-1 and found that miR-342-3p could promote the expression of TNF-α and IL-6 by negatively regulating Dectin-1. CONCLUSIONS This study evaluated the expression profiles of miRNA/mRNA and revealed the immunological consequences of THP-1 macrophages in response to T. asahii exposure. Moreover, our data suggest that miR-342-3p can indirectly promote inflammatory responses and may be a potential therapeutic target against trichosporonosis.
Collapse
Affiliation(s)
- Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junhong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Zhang S, Hong Y, Liu H, Wang Q, Xu J, Zhang Y, Zhao X, Yao Y, Zhou K, Ding X. miR-584 and miR-146 are candidate biomarkers for acute respiratory distress syndrome. Exp Ther Med 2021; 21:445. [PMID: 33747181 DOI: 10.3892/etm.2021.9873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have important roles in inflammation and infections, which are common manifestations of acute respiratory distress syndrome (ARDS). The present study aimed to assess whether serum miRNAs are potential diagnostic biomarkers for human ARDS. For this, two sets of serum samples from healthy individuals and patients with ARDS were analysed by high-throughput sequencing to identify differentially expressed genes in ARDS. A total of 679 valid sequences were identified as differentially expressed (P<0.05). Of these, five differentially expressed miRNAs were subjected to reverse transcription-quantitative PCR validation. Finally, two miRNAs (miR-584 and miR-146a) were successfully verified. These two miRNAs were significantly downregulated in the serum of patients with ARDS. Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that their target transcripts were implicated in a broad range of biological processes and various metabolic pathways, including involvement in the regulation of various inflammatory factors. The present study provided a framework for understanding the molecular mechanisms of ARDS and suggested that miR-584 and miR-146a are associated with ARDS and may be potential therapeutic targets.
Collapse
Affiliation(s)
- Siquan Zhang
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Yinuo Hong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Huafeng Liu
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Qianpeng Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Juan Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yujuan Zhang
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xi Zhao
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Yan Yao
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Kexing Zhou
- Intensive Care Unit, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
10
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
11
|
Guo Q, Zhu X, Wei R, Zhao L, Zhang Z, Yin X, Zhang Y, Chu C, Wang B, Li X. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol 2020; 236:2008-2022. [PMID: 32853398 DOI: 10.1002/jcp.29987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Polarized macrophages can be broadly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2) in response to the microenvironment signals. Interferon regulatory factor 1 (IRF1) has been demonstrated to play a critical role in macrophage polarization. However, the mechanisms underlying the regulation of IRF1 expression in macrophage polarization still remain unclear. In this study, IRF1 expression was significantly increased in interferon-γ (IFN-γ) and lipopolysaccharide (LPS)-treated RAW264.7 cells. Moreover, miR-130b-3p was decreased and negatively associated with Irf1 in M1 macrophages. miR-130b-3p repressed M1 polarization by inhibiting IRF1 and subsequently reducing the levels of the targets of IRF1, C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 10 (CXCL10), inducible NO synthase (iNOS), and tumor necrosis factor (TNF). Consistent with these data, overexpressed miR-130b-3p in LPS-treated mice suppressed M1 macrophage polarization in lung macrophages and peritoneal macrophages by inhibiting Irf1 expression and alleviated the inflammation in mouse lung tissues. Furthermore, the predicted binding site between the Irf1 messenger RNA 3'-untranslated region (3'-UTR) and miR-130b-3p was confirmed by the dual-luciferase reporter assay. In conclusion, our research gave the first evidence that miR-130b-3p affected the polarization of M1 macrophages by directly inhibiting Irf1. The miR-130b-3p/IRF1 pathway may be a potential target for regulating macrophage polarization.
Collapse
Affiliation(s)
- Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xunqiang Yin
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yunhong Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Liang J, Zhang JJ, Huang HI, Kanayama M, Youssef N, Jin YJ, Reyes EY, Abram CL, Yang S, Lowell CA, Wang D, Shao L, Shinohara ML, Zhang JY, Hammer GE. The Ubiquitin-Modifying Enzyme A20 Terminates C-Type Lectin Receptor Signals and Is a Suppressor of Host Defense against Systemic Fungal Infection. Infect Immun 2020; 88:e00048-20. [PMID: 32540868 PMCID: PMC7440764 DOI: 10.1128/iai.00048-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023] Open
Abstract
C-type lectin receptors (CLRs) play key roles in antifungal defense. CLR-induced NF-κB is central to CLR functions in immunity, and thus, molecules that control the amplitude of CLR-induced NF-κB could profoundly influence host defense against fungal pathogens. However, little is known about the mechanisms that negatively regulate CLR-induced NF-κB, and molecules which act on the CLR family broadly and which directly regulate acute CLR-signaling cascades remain unidentified. Here, we identify the ubiquitin-editing enzyme A20 as a negative regulator of acute NF-κB activation downstream of multiple CLR pathways. Absence of A20 suppression results in exaggerated CLR responses in cells which are A20 deficient and also cells which are A20 haplosufficient, including multiple primary immune cells. Loss of a single allele of A20 results in enhanced defense against systemic Candida albicans infection and prolonged host survival. Thus, A20 restricts CLR-induced innate immune responses in vivo and is a suppressor of host defense against systemic fungal infection.
Collapse
Affiliation(s)
- Jie Liang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Junyi J Zhang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hsin-I Huang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Masashi Kanayama
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Estefany Y Reyes
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Shigao Yang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Donghai Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ling Shao
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gianna Elena Hammer
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Gohir W, Klement W, Singer LG, Palmer SM, Mazzulli T, Keshavjee S, Husain S. Identifying host microRNAs in bronchoalveolar lavage samples from lung transplant recipients infected with Aspergillus. J Heart Lung Transplant 2020; 39:1228-1237. [PMID: 32771440 DOI: 10.1016/j.healun.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs of ∼22 nucleotides that play a crucial role in post-transcriptional regulation of gene expression. Dysregulation of miRNA expression has been shown during microbial infections. We sought to identify miRNAs that distinguish invasive aspergillosis (IA) from non-IA in lung transplant recipients (LTRs). METHODS We used NanoString nCounter Human miRNA, version 3, panel to measure miRNAs in bronchoalveolar lavage (BAL) samples from LTRs with Aspergillus colonization (ASP group) (n = 10), those with Aspergillus colonization and chronic lung allograft dysfunction (CLAD) (ASPCLAD group) (n = 7), those with IA without CLAD (IA group) (n = 10), those who developed IA with CLAD (IACLAD group) (n = 9), and control patients (controls) (n = 9). The miRNA profile was compared using the permutation test of 100,000 trials for each of the comparisons. We used mirDIP to obtain their gene targets and pathDIP to determine the pathway enrichment. RESULTS We performed pairwise comparisons between patient groups to identify differentially expressed miRNAs. A total of 5 miRNAs were found to be specific to IA, including 4 (miR-145-5p, miR-424-5p, miR-99b-5p, and miR-4488) that were upregulated and the pair (miR-4454 + miR-7975) that was downregulated in IA group vs controls. The expression change for these miRNAs was specific to patients with IA; they were not significantly differentiated between IACLAD and IA groups. Signaling pathways associated with an immunologic response to IA were found to be significantly enriched. CONCLUSIONS We report a set of 5 differentially expressed miRNAs in the BAL of LTRs with IA that might help in the development of diagnostic and prognostic tools for IA in LTRs. However, further investigation is needed in a larger cohort to validate the findings.
Collapse
Affiliation(s)
- Wajiha Gohir
- Transplant Infectious Diseases, Ajmera Family Transplant Centre
| | - William Klement
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Scott M Palmer
- Division of Pulmonary and Critical Care Medicine, Duke University, Durham, North Carolina; Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Family Transplant Centre.
| |
Collapse
|
14
|
Straumfors A, Duale N, Foss OAH, Mollerup S. Circulating miRNAs as molecular markers of occupational grain dust exposure. Sci Rep 2020; 10:11317. [PMID: 32647120 PMCID: PMC7347934 DOI: 10.1038/s41598-020-68296-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Dust from grain and feed production may cause adverse health effects in exposed workers. In this study we explored circulating miRNAs as potential biomarkers of occupational grain dust exposure. Twenty-two serum miRNAs were analyzed in 44 grain dust exposed workers and 22 controls. Exposed workers had significantly upregulated miR-18a-5p, miR-124-3p and miR-574-3p, and downregulated miR-19b-3p and miR-146a-5p, compared to controls. Putative target genes for the differentially expressed miRNAs were involved in a range of Kyoto Encyclopedia of Genes and Genomes signaling pathways, and ‘Pathways in cancer’ and ‘Wnt signaling pathway’ were common for all the five miRNAs. MiRNA-diseases association analysis showed a link between the five identified miRNAs and several lung diseases terms. A positive correlation between miR-124-3p, miR-18a-5p, and miR-574-3p and IL-6 protein level was shown, while miR-19b-3p was inversely correlated with CC-16 and sCD40L protein levels. Receiver-operating characteristic analysis of the five miRNA showed that three miRNAs (miR-574-3p, miR-124-3p and miR-18a-5p) could distinguish the grain dust exposed group from the control group, with miR-574-3p as the strongest predictor of grain dust exposure. In conclusion, this study identified five signature miRNAs as potential novel biomarkers of grain dust exposure that may have potential as early disease markers.
Collapse
Affiliation(s)
- Anne Straumfors
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway.
| | - Nur Duale
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Oda A H Foss
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Steen Mollerup
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| |
Collapse
|
15
|
Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang L, Sun P, Mu H. MicroRNA-146a inhibits NF-κB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp Ther Med 2019; 18:3078-3084. [PMID: 31572547 PMCID: PMC6755493 DOI: 10.3892/etm.2019.7881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-146a levels are reduced in peripheral blood mononuclear cells of patients with systemic lupus erythematosus (SLE); however, its function is not well understood. The present study investigated the role of miR-146a in the regulation of lipopolysaccharide (LPS)-induced inflammation in THP-1 cells. A miR-146a mimic and an inhibitor were used to overexpress and downregulate miR-146a expression, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to evaluate interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) expression, and western blot analysis was applied to assess nuclear factor-κB activation by analyzing p65 subunit levels in the nucleus. To investigate the effects of miR-146a on LPS-induced inflammation, IL-6 and tumor necrosis factor-α (TNF-α) levels were also measured using ELISA. The results of the present study revealed thatmiR-146a overexpression significantly reduced IRAK1 expression, reduced p65 levels in the nucleus and reduced IL-6 and TNF-α levels in the supernatant of the cell culture medium of THP-1 cells following LPS treatment. Luciferase assays confirmed IRAK1 to be a direct target of miR-146a in THP-1 cells. In conclusion, miR-146a may regulate IRAK1 expression and inhibit the activation of inflammatory signals and secretion of pro-inflammatory cytokines. The present study revealed, at least in part, the mechanisms by which miR-146a regulate the inflammatory response in SLE.
Collapse
Affiliation(s)
- Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Lan Zhao
- Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300193, P.R. China
| | - Kai Wang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qianru Qi
- Department of Medical Laboratory, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Meng Wang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Lei Yang
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ping Sun
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hong Mu
- Department of Medical Laboratory, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
16
|
Forrester MA, Wassall HJ, Hall LS, Cao H, Wilson HM, Barker RN, Vickers MA. Similarities and differences in surface receptor expression by THP-1 monocytes and differentiated macrophages polarized using seven different conditioning regimens. Cell Immunol 2018; 332:58-76. [PMID: 30077333 DOI: 10.1016/j.cellimm.2018.07.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Macrophages are key in orchestrating immune responses to micro-environmental stimuli, sensed by a complex set of surface receptors. The human cell line THP-1 has a monocytic phenotype, including the ability to differentiate into macrophages, providing a tractable, standardised surrogate for human monocyte-derived macrophages. Here we assessed the expression of 49 surface markers including Fc, complement, C-type lectin and scavenger receptors; TIMs; Siglecs; and co-stimulatory molecules by flow cytometry on both THP-1 monocytes and macrophages and following macrophage activation with seven standard conditioning/polarizing stimuli. Of the 34 surface markers detected on macrophages, 18 altered expression levels on activation. From these, expression of 9 surface markers were consistently altered by all conditioning regimens, while 9 were specific to individual polarizing stimuli. This study provides a resource for the study of macrophages and highlights that macrophage polarization states share much in common and the differences do not easily fit a simple classification system.
Collapse
Affiliation(s)
- Megan A Forrester
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Heather J Wassall
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Lindsay S Hall
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Huan Cao
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Heather M Wilson
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Robert N Barker
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mark A Vickers
- Infection, Immunity & Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Scottish National Blood Transfusion Service, Aberdeen, UK.
| |
Collapse
|
17
|
Abstract
Over the last decade, invasive fungal infections have emerged as a growing threat to human health worldwide and novel treatment strategies are urgently needed. In this context, investigations into host-pathogen interactions represent an important and promising field of research. Antigen presenting cells such as macrophages and dendritic cells are strategically located at the frontline of defence against potential invaders. Importantly, these cells express germline encoded pattern recognition receptors (PRRs), which sense conserved entities from pathogens and orchestrate innate immune responses. Herein, we review the latest findings regarding the biology and functions of the different classes of PRRs involved in pathogenic fungal recognition. We also discuss recent literature on PRR collaboration/crosstalk and the mechanisms involved in inhibiting/regulating PRR signalling. Finally, we discuss how the accumulated knowledge on PRR biology, especially Dectin-1, has been used for the design of new immunotherapies against fungal infections.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
18
|
Croston TL, Lemons AR, Beezhold DH, Green BJ. MicroRNA Regulation of Host Immune Responses following Fungal Exposure. Front Immunol 2018; 9:170. [PMID: 29467760 PMCID: PMC5808297 DOI: 10.3389/fimmu.2018.00170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal bioaerosols are ubiquitous in the environment and human exposure can result in a variety of health effects ranging from systemic, subcutaneous, and cutaneous infections to respiratory morbidity including allergy, asthma, and hypersensitivity pneumonitis. Recent research has focused on the role of microRNAs (miRNAs) following fungal exposure and is overlooked, yet important, group of regulators capable of influencing fungal immune responses through a variety of cellular mechanisms. These small non-coding ribose nucleic acids function to regulate gene expression at the post-transcriptional level and have been shown to participate in multiple disease pathways including cancer, heart disease, apoptosis, as well as immune responses to microbial hazards and occupational allergens. Recent animal model studies have characterized miRNAs following the exposure to inflammatory stimuli. Studies focused on microbial exposure, including bacterial infections, as well as exposure to different allergens have shown miRNAs, such as miR-21, miR-146, miR-132, miR-155, and the let-7 family members, to be involved in immune and inflammatory responses. Interestingly, the few studies have assessed that the miRNA profiles following fungal exposure have identified the same critical miRNAs that have been characterized in other inflammatory-mediated and allergy-induced experimental models. Review of available in vitro, animal and human studies of exposures to Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Paracoccidioides brasiliensis, and Stachybotrys chartarum identified several miRNAs that were shared between responses to these species including miR-125 a/b (macrophage polarization/activation), miR-132 [toll-like receptor (TLR)2-mediated signaling], miR-146a (TLR mediated signaling, alternative macrophage activation), and miR-29a/b (natural killer cell function, C-leptin signaling, inhibition of Th1 immune response). Although these datasets provide preliminary insight into the role of miRNAs in fungal exposed models, interpretation of miRNA datasets can be challenging for researchers. To assist in navigating this rapidly evolving field, the aim of this review is to describe miRNAs in the framework of host recognition mechanisms and provide initial insight into the regulatory pathways in response to fungal exposure.
Collapse
Affiliation(s)
- Tara L Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Angela R Lemons
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Donald H Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Brett J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
19
|
Ahn TK, Kim JO, Kumar H, Choi H, Jo MJ, Sohn S, Ropper AE, Kim NK, Han IB. Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. J Orthop Res 2018; 36:244-253. [PMID: 28741852 DOI: 10.1002/jor.23640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
Genetic factors have been shown to be a small but significant predictor for osteoporosis and osteoporotic fracture risk. We performed a case-control association study to determine the association between miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms and osteoporotic vertebral compression fracture (OVCF) susceptibility. In total, 286 unrelated postmenopausal Korean women (57 with OVCFs, 55 with non-OVCFs, and 174 healthy controls) were recruited. All subjects underwent dual energy X-ray absorptiometry to determine BMD at the lumbar spine and femoral neck. We focused on four single nucleotide polymorphisms (SNPs) of pre-miRNA sequences including miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444). Genotype frequencies of these four SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism analysis. The TT genotype of miR-149aT>C was less frequent in subjects with OVCFs, suggesting a protective effect against OVCF risk (Odds ratio [OR], 0.435; 95% confidence interval [CI], 0.22-0.85, p = 0.014), whereas the miR-146aCG/ miR-196a2TC combined genotype was more frequent in OVCF patients (OR, 5.163; 95%CI, 1.057-25.21, p = 0.043), suggesting an increase in OVCF risk. Additionally, combinations of miR-146a, -149, -196a2, and -449 showed a significant association with increased prevalence of OVCFs in postmenopausal women. In particular, the miR-146aG/-149T/-196a2C/-449G allele combination was significantly associated with an increased risk of OVCF (OR, 35.01; 95% CI, 1.919-638.6, p = 0.001). Our findings suggest that the TT genotype of miR-149aT>C may contribute to decreased susceptibility to OVCF in Korean postmenopausal women. Conversely, the miR-146aCG/ miR-196a2TC combined genotype and the miR-146aG/-149T/-196a2C/-449G allele combination may contribute to increased susceptibility to OVCF. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:244-253, 2018.
Collapse
Affiliation(s)
- Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Jung-Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Korea
| | - Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Hyemi Choi
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Min-Jae Jo
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| | | | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59 Yaptapro, Seongnam-si, 13496, South Korea
| |
Collapse
|
20
|
He X, Zheng Y, Liu S, Shi S, Liu Y, He Y, Zhang C, Zhou X. MiR-146a protects small intestine against ischemia/reperfusion injury by down-regulating TLR4/TRAF6/NF-κB pathway. J Cell Physiol 2017; 233:2476-2488. [PMID: 28771774 DOI: 10.1002/jcp.26124] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/01/2017] [Indexed: 01/25/2023]
Abstract
Previous studies reported that miR-146a was involved in small intestine ischemia-reperfusion (I/R) injury, but the mechanism is largely vague. Here, we aimed to identify the change of miR-146a in patients with mesenteric ischemia and explore the potential regulatory mechanism of miR-146a in intestine epithelial cells survival under ischemia and I/R injury. The plasma of 20 patients with mesenteric ischemia and 25 controls was collected to examine the miR-146a expression by qPCR. Rat intestinal epithelial cells (IEC-6) and 24 male Sprague-Dawley rats were included to build ischemia and I/R model in vitro and in vivo. The qPCR results showed that miR-146a decreased both in the plasma of patients with mesenteric ischemia and in IEC-6 cells and rat small intestine tissues in ischemia and I/R model compared to controls. Both the in vitro and in vivo results showed that I/R resulted in more severe apoptotic injury than ischemia. Cleaved-caspase 3, TLR4, TRAF6, and nuclear NF-κB p65 were up-regulated accompanying reduced XIAP and SOCS3 expression in intestinal ischemia and I/R injury. After up-regulation of miR-146a in IEC-6 cells, increased cell survival and decreased cell apoptosis were observed, concomitant with decreased cleaved-caspase 3 and down-regulated TLR4/TRAF6/NF-κB pathway. What is more, this protective effect was blocked by TRAF6 overexpression and increased nuclear NF-κB p65 nuclear. Taken together, this study revealed that miR-146a expression was decreased in small intestine ischemia and I/R injury. And miR-146a improves intestine epithelial cells survival under ischemia and I/R injury through inhibition TLR4, TRAF6, and p-IκBα, subsequently leading to decreased NF-κB p65 nuclear translocation.
Collapse
Affiliation(s)
- Xuemei He
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingqiang Zheng
- Department of Breast and Thyroid Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Shengzhi Liu
- Department of Vascular Surgery, The Second People's Hospital of Yibin, Yibin, China
| | - Sen Shi
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yanzheng He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiangyu Zhou
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|