1
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Korte B, Mathios D. Innovation in Non-Invasive Diagnosis and Disease Monitoring for Meningiomas. Int J Mol Sci 2024; 25:4195. [PMID: 38673779 PMCID: PMC11050588 DOI: 10.3390/ijms25084195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Meningiomas are tumors of the central nervous system that vary in their presentation, ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA, extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically approved liquid biopsy test for meningiomas does not exist. This review provides a discussion of current research and the challenges of implementing liquid biopsy techniques for advancing meningioma patient care.
Collapse
Affiliation(s)
- Brianna Korte
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Halder A, Biswas D, Chauhan A, Saha A, Auromahima S, Yadav D, Nissa MU, Iyer G, Parihari S, Sharma G, Epari S, Shetty P, Moiyadi A, Ball GR, Srivastava S. A large-scale targeted proteomics of serum and tissue shows the utility of classifying high grade and low grade meningioma tumors. Clin Proteomics 2023; 20:41. [PMID: 37770851 PMCID: PMC10540342 DOI: 10.1186/s12014-023-09426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Meningiomas are the most prevalent primary brain tumors. Due to their increasing burden on healthcare, meningiomas have become a pivot of translational research globally. Despite many studies in the field of discovery proteomics, the identification of grade-specific markers for meningioma is still a paradox and requires thorough investigation. The potential of the reported markers in different studies needs further verification in large and independent sample cohorts to identify the best set of markers with a better clinical perspective. METHODS A total of 53 fresh frozen tumor tissue and 51 serum samples were acquired from meningioma patients respectively along with healthy controls, to validate the prospect of reported differentially expressed proteins and claimed markers of Meningioma mined from numerous manuscripts and knowledgebases. A small subset of Glioma/Glioblastoma samples were also included to investigate inter-tumor segregation. Furthermore, a simple Machine Learning (ML) based analysis was performed to evaluate the classification accuracy of the list of proteins. RESULTS A list of 15 proteins from tissue and 12 proteins from serum were found to be the best segregator using a feature selection-based machine learning strategy with an accuracy of around 80% in predicting low grade (WHO grade I) and high grade (WHO grade II and WHO grade III) meningiomas. In addition, the discriminant analysis could also unveil the complexity of meningioma grading from a segregation pattern, which leads to the understanding of transition phases between the grades. CONCLUSIONS The identified list of validated markers could play an instrumental role in the classification of meningioma as well as provide novel clinical perspectives in regard to prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aparna Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Adrita Saha
- Motilal Nehru National Institute of Technology, Allahabad, 211004, UP, India
| | - Shreeman Auromahima
- Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Deeksha Yadav
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Mehar Un Nissa
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Gayatri Iyer
- Koita Centre for Digital Health, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Shashwati Parihari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Centre, Mumbai, India
| | | | - Graham Roy Ball
- Medical Technology Research Centre, Anglia Ruskin University, Cambridge Campus, East Rd, Cambridge, CB1 1PT, UK
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 185 Berry St., Suite 290, San Francisco, CA, 94107, USA.
| |
Collapse
|
4
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
5
|
Ferdinandov D, Kostov V, Hadzhieva M, Shivarov V, Petrov P, Bussarsky A, Pashov AD. Reactivity Graph Yields Interpretable IgM Repertoire Signatures as Potential Tumor Biomarkers. Int J Mol Sci 2023; 24:ijms24032597. [PMID: 36768923 PMCID: PMC9917253 DOI: 10.3390/ijms24032597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Combining adaptive and innate immunity induction modes, the repertoire of immunoglobulin M (IgM) can reflect changes in the internal environment including malignancies. Previously, it was shown that a mimotope library reflecting the public IgM repertoire of healthy donors (IgM IgOme) can be mined for efficient probes of tumor biomarker antibody reactivities. To better explore the interpretability of this approach for IgM, solid tumor-related profiles of IgM reactivities to linear epitopes of actual tumor antigens and viral epitopes were studied. The probes were designed as oriented planar microarrays of 4526 peptide sequences (as overlapping 15-mers) derived from 24 tumor-associated antigens and 209 cancer-related B cell epitopes from 30 viral antigens. The IgM reactivity in sera from 21 patients with glioblastoma multiforme, brain metastases of other tumors, and non-tumor-bearing neurosurgery patients was thus probed in a proof-of-principle study. A graph representation of the binding data was developed, which mapped the cross-reactivity of the mixture of IgM (poly)specificities, delineating different antibody footprints in the features of the graph-neighborhoods and cliques. The reactivity graph mapped the major features of the IgM repertoire such as the magnitude of the reactivity (titer) and major cross-reactivities, which correlated with blood group reactivity, non-self recognition, and even idiotypic specificities. A correlation between an aspect of this image of the IgM IgOme, namely, small cliques reflecting rare self-reactivities and the capacity of subsets of the epitopes to separate the diagnostic groups studied was found. In this way, the graph representation helped the feature selection in its filtering step and provided reduced feature sets, which, after recursive feature elimination, produced a classifier containing 51 peptide reactivities separating the three diagnostic groups with an unexpected efficiency. Thus, IgM IgOme approaches to repertoire studies is greatly augmented when self/viral antigens are used and the data are represented as a reactivity graph. This approach is most general, and if it is applicable to tumors in immunologically privileged sites, it can be applied to any solid tumors, for instance, breast or lung cancer.
Collapse
Affiliation(s)
- Dilyan Ferdinandov
- Clinic of Neurosurgery, St. Ivan Rilski University Hospital, 1431 Sofia, Bulgaria
| | - Viktor Kostov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya Hadzhieva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University—Pleven, 5800 Pleven, Bulgaria
| | - Peter Petrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Assen Bussarsky
- Clinic of Neurosurgery, St. Ivan Rilski University Hospital, 1431 Sofia, Bulgaria
| | - Anastas Dimitrov Pashov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
6
|
Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int J Mol Sci 2023; 24:ijms24021411. [PMID: 36674927 PMCID: PMC9866115 DOI: 10.3390/ijms24021411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.
Collapse
|
7
|
Aksoy O, Hantusch B, Kenner L. Emerging role of T3-binding protein μ-crystallin (CRYM) in health and disease. Trends Endocrinol Metab 2022; 33:804-816. [PMID: 36344381 DOI: 10.1016/j.tem.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Thyroid hormones are essential metabolic and developmental regulators that exert a huge variety of effects in different organs. Triiodothyronine (T3) and thyroxine (T4) are synthesized in the thyroid gland and constitute unique iodine-containing hormones that are constantly regulated by a homeostatic feedback mechanism. T3/T4 activity in cells is mainly determined by specific transporters, cytosolic binding proteins, deiodinases (DIOs), and nuclear receptors. Modulation of intracellular T3/T4 level contributes to the maintenance of this regulatory feedback. μ-Crystallin (CRYM) is an important intracellular high-affinity T3-binding protein that buffers the amount of T3 freely available in the cytosol, thereby controlling its action. In this review, we focus on the molecular and pathological properties of CRYM in thyroid hormone signaling, with emphasis on its critical role in malignancies.
Collapse
Affiliation(s)
- Osman Aksoy
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Unit for Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
9
|
Brunasso L, Bonosi L, Costanzo R, Buscemi F, Giammalva GR, Ferini G, Valenti V, Viola A, Umana GE, Gerardi RM, Sturiale CL, Albanese A, Iacopino DG, Maugeri R. Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why? Cancers (Basel) 2022; 14:cancers14174163. [PMID: 36077700 PMCID: PMC9454707 DOI: 10.3390/cancers14174163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Meningioma is still the most common adult tumor of the CNS, most of which are slow-growing, benign tumors and could even be accidentally diagnosed; nonetheless, they sometimes show more aggressive behavior with higher recurrence rates and relatively reduced overall survival. Assuming this, in recent years, scientific research has been accelerated, looking for new insights and applications that could improve preoperative investigation, tailor surgical planning, and strongly impact meningioma patients’ prognosis. Many fields have been developed, and the detection of brain invasion has firmly gained its potential role, leading to the revised version of WHO for CNS tumors in 2016 as a further criterion for defining atypia. Further studies are still ongoing to assess a widely accepted application of BI evaluation in intracranial meningioma management. Abstract Several recent studies are providing increasing insights into reliable markers to improve the diagnostic and prognostic assessment of meningioma patients. The evidence of brain invasion (BI) signs and its associated variables has been focused on, and currently, scientific research is investing in the study of key aspects, different methods, and approaches to recognize and evaluate BI. This paradigm shift may have significant repercussions for the diagnostic, prognostic, and therapeutic approach to higher-grade meningioma, as long as the evidence of BI may influence patients’ prognosis and inclusion in clinical trials and indirectly impact adjuvant therapy. We intended to review the current knowledge about the impact of BI in meningioma in the most updated literature and explore the most recent implications on both clinical practice and trials and future directions. According to the PRISMA guidelines, systematic research in the most updated platform was performed in order to provide a complete overview of characteristics, preoperative applications, and potential implications of BI in meningiomas. Nineteen articles were included in the present paper and analyzed according to specific research areas. The detection of brain invasion could represent a crucial factor in meningioma patients’ management, and research is flourishing and promising.
Collapse
Affiliation(s)
- Lara Brunasso
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-0916554656
| | - Lapo Bonosi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Roberta Costanzo
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Felice Buscemi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy
| | - Vito Valenti
- Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy
| | - Anna Viola
- Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy
| | - Giuseppe Emmanuele Umana
- Gamma Knife Center, Trauma Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy
| | - Rosa Maria Gerardi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Carmelo Lucio Sturiale
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy
| | - Alessio Albanese
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Takase H, Yamamoto T. Bone Invasive Meningioma: Recent Advances and Therapeutic Perspectives. Front Oncol 2022; 12:895374. [PMID: 35847854 PMCID: PMC9280135 DOI: 10.3389/fonc.2022.895374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Meningioma is the most common primary neoplasm of the central nervous system (CNS). Generally, these tumors are benign and have a good prognosis. However, treatment can be challenging in cases with aggressive variants and poor prognoses. Among various prognostic factors that have been clinically investigated, bone invasion remains controversial owing to a limited number of assessments. Recent study reported that bone invasion was not associated with WHO grades, progression, or recurrence. Whereas, patients with longer-recurrence tended to have a higher incidence of bone invasion. Furthermore, bone invasion may be a primary preoperative predictor of the extent of surgical resection. Increasing such evidence highlights the potential of translational studies to understand bone invasion as a prognostic factor of meningiomas. Therefore, this mini-review summarizes recent advances in pathophysiology and diagnostic modalities and discusses future research directions and therapeutic strategies for meningiomas with bone invasion.
Collapse
Affiliation(s)
- Hajime Takase
- Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- *Correspondence: Hajime Takase, ; orcid.org/0000-0001-5813-1386
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
He S, Yang L, Xiao Z, Tang K, Xu D. Identification of key carcinogenic genes in Wilms' tumor. Genes Genet Syst 2021; 96:141-149. [PMID: 34334530 DOI: 10.1266/ggs.21-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to probe carcinogenic genes and pathways associated with Wilms' tumor (WT) onset and malignancy progression. After screening, three datasets acquired from the Gene Expression Omnibus database were analyzed. Differentially expressed genes (DEGs) were identified and GO functional enrichment, KEGG pathway enrichment and protein-protein interaction (PPI) were analyzed. The DEGs with top fold change values or top protein interaction scores were used to analyze overall survival based on the TARGET WT dataset. Together, 866 up-regulated genes in GDS1791, 585 up-regulated genes in GDS2010, and 277 down-regulated genes in GDS4802 were found, from which 46 key DEGs were selected for further analysis. In the PPI network, hub positions included COL5A1, COL4A1, ARPP21, SPARCL1, CD86, LY96 and PPP1R12B. The top DEGs (ARPP21, SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were selected for survival analysis, and they consistently showed a significantly positive correlation with poor survival. Together, five key carcinogenic genes (SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were highly associated with WT onset and patient survival. These risk genes, interaction networks and enrichments should improve our understanding of the complex molecular mechanisms in WT development and help clinical applications.
Collapse
Affiliation(s)
- Shaohua He
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | | | - Zhixiang Xiao
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Kunbin Tang
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Di Xu
- Department of Pediatric Surgery, Fujian Provincial Hospital
| |
Collapse
|
12
|
Sofela AA, McGavin L, Whitfield PC, Hanemann CO. Biomarkers for differentiating grade II meningiomas from grade I: a systematic review. Br J Neurosurg 2021; 35:696-702. [PMID: 34148477 DOI: 10.1080/02688697.2021.1940853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION There are a number of prognostic markers (methylation, CDKN2A/B) described to be useful for the stratification of meningiomas. However, there are currently no clinically validated biomarkers for the preoperative prediction of meningioma grade, which is determined by the histological analysis of tissue obtained from surgery. Accurate preoperative biomarkers would inform the pre-surgical assessment of these tumours, their grade and prognosis and refine the decision-making process for treatment. This review is focused on the more controversial grade II tumours, where debate still surrounds the need for adjuvant therapy, repeat surgery and frequency of follow up. METHODS We evaluated current literature for potential grade II meningioma clinical biomarkers, focusing on radiological, biochemical (blood assays) and immunohistochemical markers for diagnosis and prognosis, and how they can be used to differentiate them from grade I meningiomas using the post-2016 WHO classification. To do this, we conducted a PUBMED, SCOPUS, OVID SP, SciELO, and INFORMA search using the keywords; 'biomarker', 'diagnosis', 'atypical', 'meningioma', 'prognosis', 'grade I', 'grade 1', 'grade II' and 'grade 2'. RESULTS We identified 1779 papers, 20 of which were eligible for systematic review according to the defined inclusion and exclusion criteria. From the review, we identified radiological characteristics (irregular tumour shape, tumour growth rate faster than 3cm3/year, high peri-tumoural blood flow), blood markers (low serum TIMP1/2, high serum HER2, high plasma Fibulin-2) and histological markers (low H3K27me3, low SMARCE1, low AKAP12, high ARIDB4) that may aid in differentiating grade II from grade I meningiomas. CONCLUSION Being able to predict meningioma grade at presentation using the radiological and blood markers described may influence management as the likely grade II tumours will be followed up or treated more aggressively, while the histological markers may prognosticate progression or post-treatment recurrence. This to an extent offers a more personalised treatment approach for patients.
Collapse
Affiliation(s)
- Agbolahan A Sofela
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK.,South West Neurosurgery Centre, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth, UK
| | - Peter C Whitfield
- South West Neurosurgery Centre, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - C Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| |
Collapse
|
13
|
de Jonge H, Iamele L, Maggi M, Pessino G, Scotti C. Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues. Cancers (Basel) 2021; 13:813. [PMID: 33672007 PMCID: PMC7919283 DOI: 10.3390/cancers13040813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Auto-antibodies are classically associated with autoimmune diseases, where they are an integral part of diagnostic panels. However, recent evidence is accumulating on the presence of auto-antibodies against single or selected panels of auto-antigens in many types of cancer. Auto-antibodies might initially represent an epiphenomenon derived from the inflammatory environment induced by the tumor. However, their effect on tumor evolution can be crucial, as is discussed in this paper. It has been demonstrated that some of these auto-antibodies can be used for early detection and cancer staging, as well as for monitoring of cancer regression during treatment and follow up. Interestingly, certain auto-antibodies were found to promote cancer progression and metastasis, while others contribute to the body's defense against it. Moreover, auto-antibodies are of a polyclonal nature, which means that often several antibodies are involved in the response to a single tumor antigen. Dissection of these antibody specificities is now possible, allowing their identification at the genetic, structural, and epitope levels. In this review, we report the evidence available on the presence of auto-antibodies in the main cancer types and discuss some of the open issues that still need to be addressed by the research community.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (H.d.J.); (L.I.); (M.M.); (G.P.)
| |
Collapse
|
14
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
15
|
Garranzo-Asensio M, San Segundo-Acosta P, Povés C, Fernández-Aceñero MJ, Martínez-Useros J, Montero-Calle A, Solís-Fernández G, Sanchez-Martinez M, Rodríguez N, Cerón MÁ, Fernandez-Diez S, Domínguez G, de Los Ríos V, Peláez-García A, Guzmán-Aránguez A, Barderas R. Identification of tumor-associated antigens with diagnostic ability of colorectal cancer by in-depth immunomic and seroproteomic analysis. J Proteomics 2020; 214:103635. [PMID: 31918032 DOI: 10.1016/j.jprot.2020.103635] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years. Here, we employed an in-depth seroproteomic approach to identify proteins that elicit a humoral immune response in CRC patients. The seroproteomic approach relied on the immunoprecipitation with patient-derived autoantibodies of proteins from CRC cell lines with different metastatic properties followed by LC-MS/MS. After bioinformatics, we focused on 31 targets of CRC autoantibodies. After WB and IHC validation, ERP44 and TALDO1 showed potential to discriminate disease-free and metastatic CRC patients, and time to recurrence of CRC patients in stage II. Using plasma samples of 30 healthy individuals, 28 premalignant individuals, and 32 CRC patients, nine out of 13 selected targets for seroreactive analysis showed significant diagnostic ability to discriminate either CRC patients or premalignant subjects from controls. Our results suggest that the here defined panel of CRC autoantibodies and their target proteins should be included in CRC blood-based biomarker panels to get a clinically useful blood-based diagnostic signature for CRC detection. SIGNIFICANCE: Colorectal cancer is one of the deadliest cancer types mainly due to its late diagnosis. Its early diagnosis, therefore, is of great importance since it would significantly improve the survival of CRC patients. In our work, the in-depth seroproteomic analysis of colorectal cancer using isolated IgGs from colorectal cancer patients and controls and protein extract of colorectal cancer cells provide the identification of valuable biomarkers with diagnostic and prognostic ability of the disease.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Carmen Povés
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, E-28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | | | | | - Nuria Rodríguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046 Madrid, Spain
| | - María Ángeles Cerón
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Gemma Domínguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029 Madrid, Spain
| | | | | | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain.
| |
Collapse
|
16
|
Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. Front Oncol 2019; 9:1031. [PMID: 31649887 PMCID: PMC6795693 DOI: 10.3389/fonc.2019.01031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.
Collapse
Affiliation(s)
- Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Sonntagbauer
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology, and Biophysics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| | - Fei Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
18
|
Pan J, Liu S, Zhu H, Qian J. AAgMarker 1.0: a resource of serological autoantigen biomarkers for clinical diagnosis and prognosis of various human diseases. Nucleic Acids Res 2019; 46:D886-D893. [PMID: 28977551 PMCID: PMC5753245 DOI: 10.1093/nar/gkx770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
Autoantibodies are produced to target an individual's own antigens (e.g. proteins). They can trigger autoimmune responses and inflammation, and thus, cause many types of diseases. Many high-throughput autoantibody profiling projects have been reported for unbiased identification of serological autoantigen-based biomarkers. However, a lack of centralized data portal for these published assays has been a major obstacle to further data mining and cross-evaluate the quality of these datasets generated from different diseases. Here, we introduce a user-friendly database, AAgMarker 1.0, which collects many published raw datasets obtained from serum profiling assays on the proteome microarrays, and provides a toolbox for mining these data. The current version of AAgMarker 1.0 contains 854 serum samples, involving 136 092 proteins. A total of 7803 (4470 non-redundant) candidate autoantigen biomarkers were identified and collected for 12 diseases, such as Alzheimer's disease, Bechet's disease and Parkinson's disease. Seven statistical parameters are introduced to quantitatively assess these biomarkers. Users can retrieve, analyse and compare the datasets through basic search, advanced search and browse. These biomarkers are also downloadable by disease terms. The AAgMarker 1.0 is now freely accessible at http://bioinfo.wilmer.jhu.edu/AAgMarker/. We believe this database will be a valuable resource for the community of both biomedical and clinical research.
Collapse
Affiliation(s)
- Jianbo Pan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sheng Liu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Xu L, Qi X, Zhu C, Wan L. Activation of IL-8 and its participation in cancer in schizophrenia patients: new evidence for the autoimmune hypothesis of schizophrenia. Neuropsychiatr Dis Treat 2018; 14:3393-3403. [PMID: 30587991 PMCID: PMC6298395 DOI: 10.2147/ndt.s188210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the autoimmune mechanisms of schizophrenia, we explored the relationship between schizophrenia and cancer using gene expression data of peripheral blood mononuclear cells from GSE27383 datasets. Gene screening and enrichment analysis using Gene Set Enrichment Analysis were applied to identify possible connections between schizophrenia and cancer. Real-time PCR (quantitative PCR), Western blotting and immunohistochemistry were performed on the brain tissue from both schizophrenia patients and normal controls. The genes for IL-8, as well as PTGS2, TPR, JUN, CXCL1, CXCL3, CXCL5 and PARD3 were highly expressed in schizophrenia patients. Cancer and chemokine signaling pathways were enriched in the schizophrenic group, related to the high expression of IL-8. Increased expression of IL-8 was further confirmed by quantitative PCR, Western blotting and immunohistochemistry results. Our results suggest that IL-8 may participate specifically in the pathophysiological changes that occur in schizophrenia. Additionally, our findings provide novel evidence supporting the autoimmune hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Lvzi Xu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China,
| | - Xiao Qi
- Department of Rehabilitation, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chi Zhu
- Department of Neurology, Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Wan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China,
| |
Collapse
|