1
|
Najari P, Akbarzadeh S, Rajabi A, Tayefeh-Gholami S, Abbaslou EM, Ghasemzadeh T, Hosseinpourfeizi M, Safaralizadeh R. Evaluation of LncRNAs CBR3-AS1 and PCA3 expression in Gastric cancer and their correlation to clinicopathological variables. Genes Cancer 2025; 16:18-25. [PMID: 40356687 PMCID: PMC12068319 DOI: 10.18632/genesandcancer.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a multifactorial disease with a high death rate due to the unknown mechanisms involved in the developing, progressing, and late diagnosing GC. Several cancers have been linked to Long non-coding RNAs (lncRNAs), including GC, through differential expression. They play a crucial role in tumorigenesis pathways as modulatory factors, making them intriguing clinical and diagnostic biomarkers for many malignancies. This study's objective is to compare the lncRNAs CBR3-AS1 and PCA3 expression levels in tumoral tissues to marginal tissues and the clinicopathological features of patients. METHODS AND RESULTS 100 GC patients' tumoral and marginal tissue samples from Tabriz's Valiasr Hospital were gathered for this case-control research. To determine the expression level of PCA3 and CBR3-AS1 lncRNAs in GC, total RNA was extracted, and the qRT-PCR technique was employed. Compared to adjacent marginal tissues, the tumor tissue of patients with GC showed a significant increase in the expression levels of PCA3 and CBR3-AS1 (P < 0.0001). The expression ratio of lncRNA CBR3-AS1 and PCA3 did not significantly correlate with clinicopathological variables. The ROC curve's findings lead to the conclusion that the genes lncRNAs PCA3 and CBR3-AS1, with AUC values of 0.68 and 0.79, respectively, suggest that they could play carcinogenic roles in GC and may act as moderate diagnostic biomarkers for GC. CONCLUSIONS In GC, CBR3-AS1 and PCA3 may be utilized as therapeutic targets and prognostic biomarkers, respectively.
Collapse
Affiliation(s)
- Parisa Najari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sama Akbarzadeh
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Samaneh Tayefeh-Gholami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Elaheh Malek Abbaslou
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Tooraj Ghasemzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Ożga K, Stepuch P, Maciejewski R, Sadok I. Promising Gastric Cancer Biomarkers-Focus on Tryptophan Metabolism via the Kynurenine Pathway. Int J Mol Sci 2025; 26:3706. [PMID: 40332338 PMCID: PMC12027761 DOI: 10.3390/ijms26083706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, gastric cancer treatment remains an enormous challenge and requires a multidisciplinary approach. Globally, the incidence and prevalence of gastric cancer vary, with the highest rates found in East Asia, Central Europe, and Eastern Europe. Early diagnosis is critical for successful surgical removal of gastric cancer, but the disease often develops asymptomatically. Therefore, many cases are diagnosed at an advanced stage, resulting in poor survival. Metastatic gastric cancer also has a poor prognosis. Therefore, it is urgent to identify reliable molecular disease markers and develop an effective medical treatment for advanced stages of the disease. This review summarizes potential prognostic or predictive markers of gastric cancer. Furthermore, the role of tryptophan metabolites from the kynurenine pathway as prognostic, predictive, and diagnostic factors of gastric cancer is discussed, as this metabolic pathway is associated with tumor immune resistance.
Collapse
Affiliation(s)
- Kinga Ożga
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Paweł Stepuch
- II Department of Oncological Surgery with Subdivision of Minimal Invasive Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| | - Ilona Sadok
- Department of Biomedical and Analytical Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| |
Collapse
|
3
|
Liu W, Li H, Botos I, Kumkhaek C, Zhu J, Rodgers GP. Olfactomedin 4 promotes gastric cancer cell G2/M progression and serves as a therapeutic target in gastric adenocarcinoma. Carcinogenesis 2025; 46:bgaf010. [PMID: 40056162 PMCID: PMC12013284 DOI: 10.1093/carcin/bgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Olfactomedin 4 (OLFM4) is a member of the olfactomedin domain-containing olfactomedin glycoprotein family and plays important roles in innate immunity, inflammation, and cancer. It exhibits increased expression in gastric cancer patient tissues and has been shown to regulate proliferation and apoptosis in gastric cancer cells. However, the molecular mechanism(s) underlying OLFM4's role in gastric cancer remain unknown. In this study, we found that OLFM4 knockdown significantly inhibited YCC3 gastric cancer cell proliferation and induced G2/M cell cycle arrest. Yeast two-hybridization screening revealed that OLFM4 directly interacts with cyclin B1 interacting protein 1 (CCNB1IP1), an E3 ubiquitin protein ligase. In YCC3 cells, OLFM4 co-immunoprecipitated and colocalized with CCNB1IP1 and underwent cell cycle phase-specific nucleo-cytoplasmic shuttling. OLFM4 knockdown decreased both cyclin B1 protein levels and CDK1 activity in YCC3 cells. Screening of a cohort of OLFM4-targeted microRNAs (miRNAs) for their impact on cell proliferation identified several that significantly downregulated OLFM4 protein levels and inhibited YCC3 cell proliferation in vitro. Rescue experiments demonstrated that these miRNAs' inhibitory effect on cell proliferation was partially related to their downregulation of OLFM4. When three of these miRNAs were individually administered intratumorally to nude mice bearing YCC3 cell xenografts, tumor growth was significantly inhibited when compared with tumors treated with a negative control miRNA. These results suggest that OLFM4 promotes cell cycle progression and cell proliferation in gastric cancer cells and may have utility as a therapeutic target in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Asghariazar V, Makaremi S, Amani N, Zare E, Kadkhodayi M, Eterafi M, Golmohammadi MG, Safarzadeh E. MicroRNA 320a-3p up-regulation reduces PD-L1 expression in gastric cancer cells: an experimental and bioinformatic study. Sci Rep 2025; 15:8239. [PMID: 40065071 PMCID: PMC11894147 DOI: 10.1038/s41598-025-92537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Growing evidence suggests that dysregulated microRNAs were critical in the development of tumors and the progression number of malignancies. This research aimed to check the effect of microRNA 320a-3p transfection on gastric cancer (GC) cell lines. Following transfection, the efficacy was determined by the RT-PCR method. After that, MTT, scratch assay, DAPI staining, RT-PCR, and flow cytometry were used respectively. The results demonstrated that the viability of GC cells considerably decreased following transfection. Moreover, microRNA 320a-3p transfection significantly suppressed cell migration and induced apoptosis in these cells. We found that transfection of microRNA 320a-3p remarkably decreased PD-L1 gene expression and influenced epithelial-mesenchymal transition (EMT)-related and apoptotic gene expressions. The findings propose that microRNA 320a-3p could decrease cell proliferation and migration and induce apoptosis by increasing TP53 and CASP3 expression levels in GC cells. Notably, microRNA 320a-3p might be a potential target in GC immunotherapy by suppressing the PD-L1 gene expression.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Negin Amani
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Ghasem Golmohammadi
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5166614711, Iran.
| |
Collapse
|
6
|
Li X, Liu C, Gao Y. SUV39H1 Regulates Gastric Cancer Progression via the H3K9me3/ALDOB Axis. Cell Biochem Biophys 2025; 83:919-928. [PMID: 39302619 DOI: 10.1007/s12013-024-01524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.
Collapse
Affiliation(s)
- Xueyong Li
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Cuixia Liu
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Yi Gao
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
7
|
Cui H, Liu Z, Peng L, Liu L, Xie X, Zhang Y, Gao Z, Zhang C, Yu X, Hu Y, Liu J, Shang L, Li L. A novel 5'tRNA-derived fragment tRF-Tyr inhibits tumor progression by targeting hnRNPD in gastric cancer. Cell Commun Signal 2025; 23:88. [PMID: 39953522 PMCID: PMC11829405 DOI: 10.1186/s12964-025-02086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Transfer RNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), constitute a novel class of small noncoding RNAs (sncRNAs). tsRNAs have been linked to tumorigenesis and the progression of carcinogenesis; however, the precise molecular mechanism through which tRFs act in gastric cancer (GC) remains unknown. METHODS tRF-Tyr is a potential GC tumor suppressor that was identified through high-throughput sequencing technology. The expression and subcellular localization of tRF-Tyr in GC were detected by via qRT‒PCR and FISH. RNA pull-down, mass spectrometry, RNA immunoprecipitation (RIP), dual-luciferase reporter and rescue assays were performed to explore the regulatory mechanisms through which tRF-Tyr acts in GC. RESULTS tRF-Tyr was significantly downregulated and the downregulation of its mainly concentrated in the nuclei of GC cells. Functionally, tRF-Tyr inhibited the proliferation, invasiveness and migration of GC cells and promoted GC cells apoptosis in vitro; meanwhile, tRF-Tyr inhibited tumor growth in vivo. Mechanistically, tRF-Tyr bound directly to the hnRNPD protein and competitively inhibited the binding of hnRNPD to the c-Myc 3'UTR, thereby, regulating the c-Myc/Bcl2/Bax pathway and ultimately inhibiting the progression of GC. CONCLUSIONS This study focused on a novel GC suppressor, tRF-Tyr, and revealed a previously undiscovered mechanism that tRF-Tyr inhibits tumor progression by targeting hnRNPD. These findings provide new insight into the involvement of tRFs in GC and suggest a novel target for GC treatment.
Collapse
Affiliation(s)
- Huaiping Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| | - Zhaodong Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Lijun Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Yudi Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Zi Gao
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Chi Zhang
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Xinshuai Yu
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Yonghao Hu
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| |
Collapse
|
8
|
Chen Y, Tang Z, Tang Z, Fu L, Liang G, Zhang Y, Tao C, Wang B. Identification of core immune-related genes CTSK, C3, and IFITM1 for diagnosing Helicobacter pylori infection-associated gastric cancer through transcriptomic analysis. Int J Biol Macromol 2025; 287:138645. [PMID: 39667460 DOI: 10.1016/j.ijbiomac.2024.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To identify diagnostic genes and mechanisms linking Helicobacter pylori (H. pylori) infection to gastric cancer. METHODS Gene expression profiles from GEO were analyzed using differential expression gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), and functional enrichment. A random forest (RF) model assessed immune-related diagnostic genes, examining their expression, diagnostic performance, prognostic value, and immune cell relationships. Expression patterns of core genes were evaluated with single-cell RNA sequencing (scRNA-seq), and a regulatory network involving miRNA, mRNA, and transcription factors was built. RESULTS We identified 75 genes and developed an RF model including 15 immune-related genes, notably CTSK, NR4A3, C3, and IFITM1. Except for NR4A3, these genes showed higher expression in datasets, confirmed by in vitro tests. Their diagnostic performance had an AUC > 0.7, enhancing to >0.85 in a multi-gene model. Survival analysis linked gene upregulation to poorer prognosis, and scRNA-seq and immune cell infiltration analysis underscored their roles in immune dysregulation and pathogenicity in H. pylori-related gastric cancer. CONCLUSIONS CTSK, C3, and IFITM1 are crucial in H. pylori-related gastric cancer, forming a robust diagnostic model and guiding future diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Tang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifa Fu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Nashtahosseini Z, Nejatollahi M, Fazilat A, Zarif Fakoor E, Emamvirdizadeh A, Bahadori K, Hadian NS, Valilo M. The crosstalk between exosomal miRNA and ferroptosis: A narrative review. Biol Cell 2025; 117:e2400077. [PMID: 39853758 DOI: 10.1111/boc.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.
Collapse
Affiliation(s)
| | - Masoumeh Nejatollahi
- Research center for high school students, Education System Zanjan Province, Zanjan, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | | | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Bahadori
- Health center of Bahar, Hamadan University of Medical Science& Health Services, Hamadan, Iran
| | | | - Mohammad Valilo
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Liu M, Song X, Sun Y, Zhang T. LncRNA OIP5-AS1 Targets the miR-140-5p/UBR5 Cascade to Promote the Development of Gastric Cancer. Mol Biotechnol 2024; 66:3583-3596. [PMID: 38112962 DOI: 10.1007/s12033-023-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Gastric cancer (GC) is a malignant tumor with the highest incidence among all kinds of malignant tumors in China. Long noncoding RNAs (LncRNAs) have been reported to act as microRNA (miRNAs) sponges and thus play key roles in biological processes and pathogenesis. Thus, this study aimed to investigate the functional effects and the regulatory mechanism of lncRNA opa interacting protein 5-antisense 1 (OIP5-AS1) in gastric cancer cells. The expression of OIP5-AS1, miR-140-5p, Ubiquitin protein ligase E3 component n-recognin 5 (UBR5) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were assessed using Cell-Counting Kit-8 (CCK-8), Flow cytometry, and Transwell assays. UBR5 protein level was detected by Western blot. Binding between miR-140-5p and OIP5-AS1 or UBR5 was predicted by Starbasev2.0 and TargetScan, and verified using Dual-luciferase reporter assays and RNA pull-down assay. A xenograft mice model was used to evaluate the effects of OIP5-AS1 on tumor growth in vivo. OIP5-AS1 was upregulated in GC cancer and cells. OIP5-AS1 knockdown inhibited cell proliferation, migration, invasion, but induced cell apoptosis in GC. In mechanism, OIP5-AS1 might serve as a sponge for miR-140-5p to enhance UBR5 expression. Moreover, overexpression of miR-140-5p or UBR5 partly reversed the effects of OIP5-AS1 depletion on the progression of GC cells. Furthermore, OIP5-AS1 depletion also suppressed tumor growth in vivo. OIP5-AS1 silencing might suppress proliferation, migration, invasion, and induced apoptosis in GC cells by regulating the miR-140-5p/UBR5 axis.
Collapse
Affiliation(s)
- Mei Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Xiujun Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Yinyin Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Tieshan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
11
|
Zhao BW, Su XR, Yang Y, Li DX, Li GD, Hu PW, Luo X, Hu L. A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA-miRNA interactions. Comput Struct Biotechnol J 2024; 23:2924-2933. [PMID: 39963422 PMCID: PMC11832017 DOI: 10.1016/j.csbj.2024.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 02/20/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are closely related to the treatment of human diseases. Traditional biological experiments often require time-consuming and labor-intensive in their search for mechanisms of disease. Computational methods are regarded as an effective way to predict unknown lncRNA-miRNA interactions (LMIs). However, most of them complete their tasks by mainly focusing on a single lncRNA-miRNA network without considering the complex mechanism between biomolecular in life activities, which are believed to be useful for improving the accuracy of LMI prediction. To address this, a heterogeneous information network (HIN) learning model with neighborhood-level structural representation, called HINLMI, to precisely identify LMIs. In particular, HINLMI first constructs a HIN by integrating nine interactions of five biomolecules. After that, different representation learning strategies are applied to learn the biological and network representations of lncRNAs and miRNAs in the HIN from different perspectives. Finally, HINLMI incorporates the XGBoost classifier to predict unknown LMIs using final embeddings of lncRNAs and miRNAs. Experimental results show that HINLMI yields a best performance on the real dataset when compared with state-of-the-art computational models. Moreover, several analysis experiments indicate that the simultaneous consideration of biological knowledge and network topology of lncRNAs and miRNAs allows HINLMI to accurately predict LMIs from a more comprehensive perspective. The promising performance of HINLMI also reveals that the utilization of rich heterogeneous information can provide an alternative insight for HINLMI to identify novel interactions between lncRNAs and miRNAs.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- College of Computer and Information Science, School of Software, Southwest University, Chongqing 400715, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yue Yang
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dong-Xu Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Luo
- College of Computer and Information Science, School of Software, Southwest University, Chongqing 400715, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
12
|
Zhang H, Liang F, Wang F, Xu Q, Qiu Y, Lu X, Jiang L, Jian K. miR-148-3p inhibits gastric cancer cell malignant phenotypes and chemotherapy resistance by targeting Bcl2. Bioengineered 2024; 15:2005742. [PMID: 34783293 PMCID: PMC10841002 DOI: 10.1080/21655979.2021.2005742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer in the world. This work was designed to explore the biological effects of miR-148-3p on GC. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was utilized to analyze the mRNA expression of miR-148-3p in GC cell lines. The mimics and inhibitors of miR-148-3p were carefully transfected into GC cells to up-regulate or down-regulate miR-148-3p expression. Observe the effect on miR-148-3p expression change to GC cell proliferation, colony formation, tumorigenesis, chemotherapy sensitivity, transwell migration, and invasion. Use online database tool to predict the miR-148-3p promising targets, and can be verified via RT-qPCR, Western blot, and luciferase report. We found that miR-148-3p expression level in GC cells was markedly down-regulated (P < 0.05), as compared with human normal gastric mucosal cells GES-1. Otherwise, miR-148-3p overexpression could effectively inhibit the cell proliferation, cell cycle progress, colony formation, anti-apoptosis, anti-migration and anti-invasion in gastric cancer cells, whereas miR-148-3p inhibition exhibited the opposite phenomenon (P < 0.05). Further research revealed that Bcl2 set as a direct downstream target of miR-148-3p. Our study firstly confirmed that, miR-148-3p might play a crucial role in tumorigenesis, as well as development of gastric cancer by targeting Bcl2, and could become a promising target for gastric cancer treatment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Oncology, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Feng Liang
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Fei Wang
- Department of Oncology, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Qianru Xu
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Yuxuan Qiu
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Xin Lu
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Lin Jiang
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| | - Kaiyu Jian
- Department of General Surgery, The Seventh Medical Center of Pla General Hospital, Beijing, China
| |
Collapse
|
13
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Yin X, Xing W, Yi N, Zhou Y, Chen Y, Jiang Z, Ma C, Xia C. Comprehensive analysis of lactylation-related gene sets and mitochondrial functions in gastric adenocarcinoma: implications for prognosis and therapeutic strategies. Front Immunol 2024; 15:1451725. [PMID: 39478860 PMCID: PMC11521809 DOI: 10.3389/fimmu.2024.1451725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Gastric adenocarcinoma (STAD) is characterized by high heterogeneity and aggressiveness, leading to poor prognostic outcomes worldwide. This study explored the prognostic significance of lactylation-related gene sets and mitochondrial functions in STAD by integrating large-scale genomic datasets, including TCGA and several GEO datasets. We utilized Spatial transcriptomics and single-cell RNA sequencing to delineate the tumor microenvironment and assess the heterogeneity of cellular responses within the tumor. Additionally, the study identified distinct molecular subtypes within STAD that correspond with unique survival outcomes and immune profiles, enhancing the molecular classification beyond current paradigms. Prognostic models incorporating these molecular markers demonstrated superior predictive capabilities over existing models across multiple validation datasets. Furthermore, our analysis of immune landscapes revealed that variations in lactylation could influence immune cell infiltration and responsiveness, pointing towards novel avenues for tailored immunotherapy approaches. These comprehensive insights provide a foundation for targeted therapeutic strategies and underscore the potential of metabolic and immune modulation in improving STAD treatment outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Cunbing Xia
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Dziki Ł, Grywalska E. Immunological Strategies in Gastric Cancer: How Toll-like Receptors 2, -3, -4, and -9 on Monocytes and Dendritic Cells Depend on Patient Factors? Cells 2024; 13:1708. [PMID: 39451226 PMCID: PMC11506270 DOI: 10.3390/cells13201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Introduction: Toll-like receptors (TLRs) are key in immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In gastric cancer (GC), TLR2, TLR3, TLR4, and TLR9 are crucial for modulating immune response and tumor progression. (2) Objective: This study aimed to assess the percentage of dendritic cells and monocytes expressing TLR2, TLR3, TLR4, and TLR9, along with the concentration of their soluble forms in the serum of GC patients compared to healthy volunteers. Factors such as disease stage, tumor type, age, and gender were also analyzed. (3) Materials and Methods: Blood samples from newly diagnosed GC patients and healthy controls were immunophenotyped using flow cytometry to assess TLR expression on dendritic cell subpopulations and monocytes. Serum-soluble TLRs were measured by ELISA. Statistical analysis considered clinical variables such as tumor type, stage, age, and gender. (4) Results: TLR expression was significantly higher in GC patients, except for TLR3 on classical monocytes. Soluble forms of all TLRs were elevated in GC patients, with significant differences based on disease stage but not tumor type, except for serum TLR2, TLR4, and TLR9. (5) Conclusions: Elevated TLR expression and soluble TLR levels in GC patients suggest a role in tumor pathogenesis and progression, offering potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Bojarski
- General Surgery Department, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
16
|
Yang X, Liu C, Li Z, Wen J, He J, Lu Y, Liao Q, Wang T, Tang H, Yang X, Zeng L. Paclitaxel hyperthermia suppresses gastric cancer migration through MiR-183-5p/PPP2CA/AKT/GSK3β/β-catenin axis. J Cancer Res Clin Oncol 2024; 150:416. [PMID: 39249161 PMCID: PMC11383839 DOI: 10.1007/s00432-024-05923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Gastric cancer (GC), a prevalent malignant tumor which is a leading cause of death from malignancy around the world. Peritoneal metastasis accounts for the major cause of mortality in patients with GC. Despite hyperthermia intraperitoneal chemotherapy (HIPEC) improves the therapeutic effect of GC, it's equivocal about the mechanism under HIPEC. METHODS MiR-183-5p expression was sifted from miRNA chip and detected in both GC patients and cell lines by qRT-PCR. Gene interference and rescue experiments were performed to identified biological function in vitro and vivo. Next, we affirmed PPP2CA as targeted of miR-183-5p by dual luciferase reporter assay. Finally, the potential relationship between HIPEC and miR-183-5p was explored. RESULTS MiR-183-5p is up-regulated in GC and associated with advanced stage and poor prognosis. MiR-183-5p accelerate GC migration in vitro which is influenced by miR-183-5p/PPP2CA/AKT/GSK3β/β-catenin Axis. HIPEC exerts migration inhibition via attenuating miR-183-5p expression. CONCLUSION MiR-183-5p can be used as a potential HIPEC biomarker in patients with CC.
Collapse
Affiliation(s)
- Xiansheng Yang
- Department of Anus and Intestine Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Chang Liu
- Medical Affair Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zheng Li
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Juncai Wen
- Department of Medical Oncology, Puning People's Hospital, Puning, 515300, China
| | - Jinfu He
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yunxin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Quanxing Liao
- First Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Tian Wang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hongsheng Tang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Xianzi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lisi Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
17
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
18
|
Zhao LL, Xiang Y, Wang JX, Shen C, Liu H, Zong QB, Zhang HM, Li JP, Wang C, Sun F, Liao XH. The effect of LNCRNA SHANK3 on the malignant development of gastric cancer cells by regulating the miR-4530/MNX1. Transl Oncol 2024; 46:102000. [PMID: 38852278 PMCID: PMC11220521 DOI: 10.1016/j.tranon.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024] Open
Abstract
Gastric cancer (GC) has become the first malignant tumor with highest incidence rate and mortality of cancer in China, finding therapeutic targets for gastric cancer is of great significant for improving the survival rate of patients with GC. Recently, many of studies have shown that LncRNAs is involved in multiple biological progresses in the development of GC. This study, we screened for abnormally high expression of LncSHANK3 in GC through the TCGA database, and found that LncSHANK3 sponge adsorbs miR-4530, further competing with MNX1 and binding to miR-4530. We demonstrated the interaction between LncSHANK3 and miR-4530 through luciferase reporting analysis, with miR-4530 negatively regulating MNX1.Through CCK8, colony formation, transwell, and wound healing assays, it was found that LncSHANK3 affects the occurrence of GC through cell proliferation, migration and invasion. In conclusion, LncSHANK3/miR-4530/MNX1 axis is a potential mechanism for the treatment of GC.
Collapse
Affiliation(s)
- Li-Li Zhao
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Yuan Xiang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China
| | - Jin-Xuan Wang
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Chao Shen
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Hui Liu
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Qi-Bei Zong
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China.
| | - Cong Wang
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China.
| | - Fan Sun
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life Science and Health, Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Hubei, 430081, PR China.
| |
Collapse
|
19
|
Boicean A, Boeras I, Birsan S, Ichim C, Todor SB, Onisor DM, Brusnic O, Bacila C, Dura H, Roman-Filip C, Ognean ML, Tanasescu C, Hasegan A, Bratu D, Porr C, Roman-Filip I, Neamtu B, Fleaca SR. In Pursuit of Novel Markers: Unraveling the Potential of miR-106, CEA and CA 19-9 in Gastric Adenocarcinoma Diagnosis and Staging. Int J Mol Sci 2024; 25:7898. [PMID: 39063140 PMCID: PMC11277351 DOI: 10.3390/ijms25147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer stands as the fourth leading cause of cancer-related deaths globally, primarily comprising adenocarcinomas, categorized by anatomic location and histologic type. Often diagnosed at advanced stages, gastric cancer prognosis remains poor. To address the critical need for accurate tumoral markers for gastric cancer diagnosis, we conducted a study to assess classical markers like CEA and CA-19-9 alongside the novel marker miR-106. Our investigation revealed distinct dynamics of these markers compared to non-cancerous groups, although no disparities were observed across different disease stages. Univariable and multivariable logistic regression analyses demonstrated that elevated levels of miR-106, CEA and CA 19-9 were predictive of a positive histopathological exam, with the respective odds ratios of 12.032 (95% CI: 1.948-74.305), 30 (95% CI: 3.141-286.576), and 55.866 (95% CI: 4.512-691.687). Subsequently, we utilized predicted probabilities from regression models to construct receiver operating characteristic (ROC) curves, identifying CA 19-9 as the optimal predictor for gastric adenocarcinoma diagnosis when considering age and gender, with an area under the curve (AUC) of 0.936 (p < 0.001). Hence, classical markers exhibit superior performance compared to the novel marker miR-106 in predicting gastric adenocarcinoma.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Ioana Boeras
- Molecular Biology Laboratory of the Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Danusia Maria Onisor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (D.M.O.); (O.B.)
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (D.M.O.); (O.B.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Ciprian Tanasescu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Corina Porr
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Bogdan Neamtu
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania;
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| |
Collapse
|
20
|
Wang Q, Bi P, Luo D, Cao P, Chen W, Yang B. Identification of Long Noncoding RNAs Expression Profiles Between Gallstone and Gallbladder Cancer Using Next-Generation Sequencing Analysis. Int J Gen Med 2024; 17:2417-2431. [PMID: 38813241 PMCID: PMC11135568 DOI: 10.2147/ijgm.s442379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Background Gallstone disease (GS) is an important risk factor for Gallbladder cancer (GBC). However, the mechanisms of the progression of GS to GBC remain unclear. Long non-coding RNA (lncRNA), modulates DNA/RNA/proteins at epigenetic, pre-transcriptional, transcriptional and posttranscriptional levels, and plays a potential therapeutic role in various diseases. This study aims to identify lncRNAs that have a potential impact on GS-promoted GBC progression. Methods and Results Six GBC patients without GS, six normal gallbladder tissues, nine gallstones and nine GBC patients with GS were admitted to our hospital. The next-generation RNA-sequencing was performed to analyze differentially expressed (DE) lncRNA and messenger RNA (mRNA) in four groups. Then overlapping and specific molecular signatures were analyzed. We identified 29 co-DEGs and 500 co-DElncRNAs related to gallstone or GBC. The intersection and concatenation of co-DEGs and co-DElncRNA functionally involved in focal adhesion, Transcriptional misregulation in cancers, Protein digestion and absorption, and ECM-receptor interaction signaling pathways may contribute to the development of gallbladder cancer. Further exploration is necessary for early diagnosis and the potential treatment of GBC. FXYD2, MPZL1 and PAH were observed in both co-DEGs and co-DElncRNA and validated by qRT-PCR. Conclusion Our data identified a series of DEGs and DElncRNAs, which were involved in the progression of GBC and GS-related metabolism pathways. Compared to GBC, the GS profile was more similar to para-tumor tissues in transcriptome level and lower risk of cancer. Further exploration is necessary from GBC patients with different periods of follow-up gallstone.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ding Luo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Bin Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
21
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
22
|
Lin Y, He J, Mou Z, Chen H, You W, Guan T, Chen L. Ferroptosis-related genes, a novel therapeutic target for focal segmental glomerulosclerosis. BMC Nephrol 2024; 25:58. [PMID: 38368317 PMCID: PMC10874534 DOI: 10.1186/s12882-024-03490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Recent studies have suggested that ferroptosis participates in various renal diseases. However, its effect on focal segmental glomerulosclerosis remains unclear. This study analyzed the GSE125779 and GSE121211 datasets to identify the differentially expressed genes (DEGs) in renal tubular samples with and without FSGS. The Cytoscape was used to construct the protein-protein interaction network. Moreover, the ferroptosis-related genes (FRGs) were obtained from the ferroptosis database, while ferroptosis-related DEGs were obtained by intersection with DEGs. The target genes were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The GSE108112 dataset was used to verify the expression of target FRGs. Besides, we built the mRNA-miRNA network regarding FRGs using the NetworkAnalyst database, and circRNAs corresponding to key miRNAs were predicted in the ENCORI database. In this study, 16 ferroptosis-related DEGs were identified between FSGS and healthy subjects, while five co-expressed genes were obtained by three topological algorithms in Cytoscape. These included the most concerned Hub genes JUN, HIF1A, ALB, DUSP1 and ATF3. The KEGG enrichment analysis indicated that FRGs were associated with mitophagy, renal cell carcinoma, and metabolic pathways. Simultaneously, the co-expressed hub genes were analyzed to construct the mRNA-miRNA interaction network and important miRNAs such as hsa-mir-155-5p, hsa-mir-1-3p, and hsa-mir-124-3p were obtained. Finally, 75 drugs targeting 54 important circRNAs and FRGs were predicted. This study identified the Hub FRGs and transcriptomic molecules from FSGS in renal tubules, thus providing novel diagnostic and therapeutic targets for FSGS.
Collapse
Affiliation(s)
- Yanbin Lin
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxuan He
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | | | | | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Medical University, Fuzhou, China.
- Xiamen Municipal Health Commission, Xiamen, China.
| |
Collapse
|
23
|
Yuan M, Gu Y, Chen J, Jiang Y, Qian J, Cao S. LINC00665: A Promising Biomarker in Gastrointestinal Tumors. Curr Mol Med 2024; 24:51-59. [PMID: 36464865 DOI: 10.2174/1566524023666221201141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
An increasing volume of studies has reported that long non-codingRNAs (lncRNAs) are involved in the carcinogenesis of many different cancers. Especially in gastrointestinal tumors, lncRNAs are found to participate in various physiological and pathological processes. LncRNAs can regulate gene expression at multiple levels, including transcriptional, post-transcription, translational, and post-translational levels. Long intergenic non-protein coding RNA 665(LINC00665), a novel cancer-related lncRNA, is frequently dysregulated in multiple gastrointestinal tumors, including gastric and colorectal cancers, hepatocellular carcinoma, and so on. In this review, we analyzed the expression and prognostic value of LINC00665 in human gastrointestinal tumors, systematically summarized the current literature about the clinical significance of this lncRNA, and explored the regulatory mechanisms of LINC00665 as a competing endogenous RNA (ceRNA) in tumor progression. Consequently, we concluded that LINC00665 might act as a prognostic biomarker and a potential target for gastrointestinal tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuyang Gu
- Department of Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiawen Chen
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Yibin Jiang
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Jing Qian
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China
| | - Shuguang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
24
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
25
|
Chen J, Wang W, Zhang Y, Wang C, Wang W, Zheng A. OIP5-AS1/CD147/TRPM7 axis promotes gastric cancer metastasis by regulating apoptosis related PI3K-Akt signaling. Front Oncol 2023; 13:1221445. [PMID: 38156103 PMCID: PMC10753821 DOI: 10.3389/fonc.2023.1221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background To explore the mechanism of OIP5-AS1/CD147/TRPM7 axis to gastric cancer (GC) metastasis. Methods Bioinformatic analysis was performed to pick up the candidate genes associated with regulation GC metastasis. Using GC cell lines, AGS and MKN-45 as research objects, identify the effect of candidate genes on GC metastasis, judge cell proliferation status by MTT assay and cell clone number, and detect cell migration by Transwell and Wound-healing assay. The molecular mechanism of CD147/OIP5/TRPM7 axis regulating GC metastasis was further explored by RNA sequencing. The key signaling pathways were subsequently verified by flow cytometry and WB. Results Bioinformatic analysis suggested OIP5-AS1/CD147/TRPM7 axis may be involving in GC metastasis. The RNA interference experiment proved that after gene interference, the proliferation ability of GC cells decreased significantly (P<0.05), which was manifested in the reduction of the number of cell clones. In addition, the migration ability of GC cells was also affected, which was based on the results of Wound Healing (P<0.05). CD147, OIP5-AS1 and TRPM7 all have harmful effects on GC cells. The relationship between OIP5-AS1 and CD147/TRPM7 was detected by RNA immunoprecipitation. Moreover, the RNA sequencing data indicated that CD147/OIP5-AS1/TRPM7 may coordinately regulate the PI3K-AKT pathway related to GC cell apoptosis, thereby affecting the proliferation and migration of GC cells. After RNA interference, the level of apoptosis increased both in AGS and MKN-45 cells. Meanwhile, the expression of pro-apoptotic proteins Caspase9 and BAX were up-regulated (P<0.05). In addition, the expression of PI3K and AKT proteins was reduced (P<0.05). The mouse tumorigenesis experiment corroborated the results of the in vitro study. Conclusion OIP5-AS1/CD147/TRPM7 axis reduces GC cell proliferation by regulating apoptosis associated with PI3K-AKT signaling, further affecting cancer metastasis.
Collapse
Affiliation(s)
- Jianpeng Chen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Wang
- Department of Oncology, Dongying Hospital of Traditional Chinese Medicine, Dongying, China
| | - Yujie Zhang
- Department of Outpatient, Guangzhou University, Guangzhou, China
| | - Caixia Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Aiming Zheng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
27
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
29
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
30
|
Akhavanfar R, Shafagh SG, Mohammadpour B, Farahmand Y, Lotfalizadeh MH, Kookli K, Adili A, Siri G, Eshagh Hosseini SM. A comprehensive insight into the correlation between ncRNAs and the Wnt/β-catenin signalling pathway in gastric cancer pathogenesis. Cell Commun Signal 2023; 21:166. [PMID: 37386429 PMCID: PMC10308667 DOI: 10.1186/s12964-023-01092-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/26/2023] [Indexed: 07/01/2023] Open
Abstract
During the past decades, gastric cancer (GC) has emerged as one of the most frequent malignancies with a growing rate of prevalence around the world. Despite considerable advances in therapeutic methods, the prognosis and management of patients with gastric cancer (GC) continue to be poor. As one of the candidate molecular targets in the treatment of many types of cancer, the Wnt/β-catenin pathway includes a family of proteins that have important functions in adult tissue homeostasis and embryonic development. The aberrant regulation of Wnt/β-catenin signaling is strongly correlated with the initiation and development of numerous cancers, including GC. Therefore, Wnt/β-catenin signaling has been identified as one of the main targets for extending therapeutic approaches for GC patients. Non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, are important components of epigenetic mechanisms in gene regulation. They play vital roles in various molecular and cellular processes and regulate many signaling pathways, such as Wnt/β-catenin pathways. Insights into these regulatory molecules involved in GC development may lead to the identification of potential targets for overcoming the limitations of current therapeutic approaches. Consequently, this review aimed to provide a comprehensive overview of ncRNAs interactions involved in Wnt/β-catenin pathway function in GC with diagnostic and therapeutic perspectives. Video Abstract.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
31
|
Zhang P, Gong S, Li S, Yuan Z. PVT1 alleviates hypoxia-induced endothelial apoptosis by enhancing autophagy via the miR-15b-5p/ATG14 and miR-424-5p/ATG14 axis. Biochem Biophys Res Commun 2023; 671:1-9. [PMID: 37290278 DOI: 10.1016/j.bbrc.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Endothelial dysfunction plays a crucial role in the pathogenesis of vascular disease. Long noncoding RNA (lncRNA) and microRNA (miRNA) play important roles in various cellular processes and are involved in several vascular endothelial cells (VECs) biological processes, including cell growth, migration, autophagy, and apoptosis. The functions of plasmacytoma variant translocation 1 (PVT1) in VECs have been progressively investigated in recent years, mainly with regard to proliferation and migration of endothelial cells (ECs). However, the mechanism underlying the regulation of autophagy and apoptosis in human umbilical vein endothelial cells (HUVEC) by PVT1 remains unclear. The present study showed that PVT1 knockdown accelerated apoptosis induced by oxygen and glucose deprivation (OGD) through suppression of cellular autophagy. Bioinformatic prediction of PVT1 target miRNAs revealed that PVT1 interacts with miR-15b-5p and miR-424-5p. The study further showed that miR-15b-5p and miR-424-5p inhibit the functions of autophagy related 14 (ATG14) and suppress cellular autophagy. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy by competitive binding, which down-regulates apoptosis. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy through competitive binding, which down-regulates apoptosis. The study provides insight into a novel therapeutic target that may be explored in the future for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ping Zhang
- Hengyang Medical College, University of South China, 421001, Hengyang, Hunan, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Shenghui Gong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China; School of Life Science, Beijing University of Chinese Medicine, 100105, Beijing, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China.
| |
Collapse
|
32
|
Liu Y, Liu Y, Ye S, Feng H, Ma L. A new ferroptosis-related signature model including messenger RNAs and long non-coding RNAs predicts the prognosis of gastric cancer patients. J Transl Int Med 2023; 11:145-155. [PMID: 38025952 PMCID: PMC10680379 DOI: 10.2478/jtim-2023-0089] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Gastric cancer (GC) is among the most malignant tumor types, which causes heavy healthy and economic burden to the people and societies all around the world. Establishment of an effective set of prognostic marker will benefit a lot to the treatment of GC patients clinically. Ferroptosis is a newly identified regulated cell death modality, with tight relevance with GC development. However, its application in the prognosis of GC has not been studied in detail. Deregulated messenger RNA (mRNA) and long non-coding RNA (lncRNA) expression profile in tumor can serve as novel prognostic marker for predicting the survival and cancer relapse in patients. METHODS We downloaded ferroptosis-related gene expression microarray data, clinicopathologic information and a list of 259 ferroptosis-related genes from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Ferroptosis database, respectively. Then, correlation analysis, univariate and multivariate Cox regression analysis were used to construct a novel prognostic model for GC. Then, we validated the model in the GEO datasets. Finally, we evaluated the differences in immune microenvironment between high- and low-risk groups. RESULTS We utilized the ferroptosis-related mRNA and lncRNA profile to successfully construct a prognostic model (incorporating 2 mRNAs and 15 lncRNAs) in GC. Our model, integrating diverse clinical traits and critical factors of GC, showed desirable efficacy in the prognosis of GC patients. This model also manifested effectively in validation by using external patients' data. CONCLUSIONS Our study developed a novel ferroptosis-related signature to predict the prognosis of gastric cancer patients. The ferroptosis-related signature had a favorable predictive ability. This model may greatly boost the treatment of GC patients in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun130033, Jilin Province, China
| | - Yanqing Liu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York10032, NY, USA
| | - Shujun Ye
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun130033, Jilin Province, China
| | - Huijin Feng
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York10032, NY, USA
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun130033, Jilin Province, China
| |
Collapse
|
33
|
Wang K, Chen Z, Qiao X, Zheng J. LncRNA NORAD regulates the mechanism of the miR-532-3p/Nectin-4 axis in pancreatic cancer cell proliferation and angiogenesis. Toxicol Res (Camb) 2023; 12:425-432. [PMID: 37397924 PMCID: PMC10311138 DOI: 10.1093/toxres/tfad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgound Pancreatic cancer (PC) is one of the deadliest cancers worldwide, and cell proliferation and angiogenesis play an important role in its occurrence and development. High levels of lncRNANORAD have been detected in many tumors, including PC, yet the effect and mechanism of lncRNA NORAD on PC cell angiogenesis are unexplored. Methods qRT.PCR was applied to quantify lncRNA NORAD and miR-532-3p expression in PC cells, and a dual luciferase reporter gene was used to verify the targeting effects of NORAD, miR-532-3p and Nectin-4. Then, we regulated NORAD and miR-532-3p expression in PC cells and detected their effects on PC cell proliferation and angiogenesis using cloning experiments and HUVEC tube formation experiments. Results LncRNA NORAD was upregulated and miR-532-3p was downregulated in PC cells compared with normal cells. Knockdown of NORAD inhibited PC cell proliferation and angiogenesis. LncRNA NORAD and miR-532-3p competitively bound to promote the expression of the miR-532-3p target gene Nectin-4, thereby promoting proliferation and angiogenesis of PC cells in vitro. Conclusion LncRNA NORAD promotes the proliferation and angiogenesis of PC cells by regulating the miR-532-3p/Nectin-4 axis, which may be a potential biological target in the diagnosis and treatment of clinical PC.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan Provincial People’s Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| |
Collapse
|
34
|
Fazaeli H, Sheikholeslami A, Ghasemian F, Amini E, Sheykhhasan M. The Emerging Role of LncRNA FENDRR in Multiple Cancers: A Review. Curr Mol Med 2023; 23:606-629. [PMID: 35579154 DOI: 10.2174/1566524022666220509122505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are prominent as crucial regulators of tumor establishment and are repeatedly dysregulated in multiple cancers. Therefore, lncRNAs have been identified to play an essential function in carcinogenesis and progression of cancer at genetic and epigenetic levels. FENDRR (fetal-lethal noncoding developmental regulatory RNA) as a LncRNA is a hallmark of various malignancies. FENDRR is crucial for multiple organs' development, such as the lung and heart. The effects of FENDRR under signaling pathways in different cancers have been identified. In addition, it has been verified that FENDRR can affect the development and progression of various cancers. In addition, FENDRR expression has been associated with epigenetic regulation of target genes participating in tumor immunity. Furthermore, FENDRR downregulation was observed in various types of cancers, including colorectal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, liver cancer, gallbladder cancer, lung cancer, breast cancer, endometrial cancer, prostate cancer, chronic myeloid leukemia, osteosarcoma, and cutaneous malignant melanoma cells. Here, we review the biological functions and molecular mechanisms of FENDRR in several cancers, and we will discuss its potential as a cancer biomarker and as a probable option for cancer treatment.
Collapse
Affiliation(s)
- Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Elaheh Amini
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Li J, Pei M, Xiao W, Liu X, Hong L, Yu Z, Peng Y, Zhang J, Yang P, Lin J, Wu X, Lin Z, Tang W, Zhi F, Li G, Xiang L, Li A, Liu S, Chen Y, Wang J. The HOXD9-mediated PAXIP1-AS1 regulates gastric cancer progression through PABPC1/PAK1 modulation. Cell Death Dis 2023; 14:341. [PMID: 37225681 DOI: 10.1038/s41419-023-05862-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been functionally characterised in various diseases. LncRNA PAX-interacting protein 1-antisense RNA 1 (PAXIP1-AS1) has reportedly been associated with cancer development. However, its role in gastric cancer (GC) remains poorly understood. Here, we showed that PAXIP1-AS1 was transcriptionally repressed by homeobox D9 (HOXD9) and was significantly downregulated in GC tissues and cells. Decreased expression of PAXIP1-AS1 was positively correlated with tumour progression, while PAXIP1-AS1 overexpression inhibited cell growth and metastasis both in vitro and in vivo. PAXIP1-AS1 overexpression significantly attenuated HOXD9-enhanced epithelial-to-mesenchymal transition (EMT), invasion and metastasis in GC cells. Poly(A)-binding protein cytoplasmic 1 (PABPC1), an RNA-binding protein, was found to enhance the stability of PAK1 mRNA, leading to EMT progress and GC metastasis. PAXIP1-AS1 was found to directly bind to and destabilise PABPC1, thereby regulating EMT and metastasis of GC cells. In summary, PAXIP1-AS1 suppressed metastasis, and the HOXD9/PAXIP1-AS1/PABPC1/PAK1 signalling axis may be involved in the progression of GC.
Collapse
Affiliation(s)
- Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wushuang Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
36
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
37
|
Lv H, Zhou D, Liu G. PVT1/miR-16/CCND1 axis regulates gastric cancer progression. Open Med (Wars) 2023; 18:20220550. [PMID: 36760720 PMCID: PMC9896163 DOI: 10.1515/med-2022-0550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been reported to be a vital modulator in tumorigenesis of gastric cancer (GC). However, the detailed regulatory mechanism of PVT1 in GC remains largely unclear. In this work, the expressions of PVT1 and microRNA-16 (miR-16) were detected by quantitative real-time PCR (qRT-PCR) in GC tissues and cell lines. GC cell lines NCI-N87 and MKN45 cell lines were chosen for the following assays. After PVT1 was overexpressed or depleted, CCK-8 and Transwell assays were performed to examine the cell viability and invasive capacity. Cell cycle was analyzed by flow cytometry. The expression of cyclin D1 (CCND1) at mRNA and protein levels was measured by qRT-PCR and western blot. The competitive endogenous RNA molecular mechanism among PVT1, miR-16 and CCND1 was verified by bioinformatics analysis, luciferase-reporter gene assay and RNA immunoprecipitation assay. In the present study, it was revealed that PVT1 expression was remarkably evaluated in GC tissues and cell lines than that in the corresponding control group. PVT1 positively regulated the proliferation, migration and cell cycle progression of GC cells. Besides, miR-16 was identified as a target of PVT1, and CCND1 was identified as a target of miR-16. The depletion of PVT1 promoted the expression of miR-16 and suppressed CCND1 expression. Moreover, either miR-16 inhibitor or CCND1 overexpression plasmid could reverse the promoting effects of PVT1 on the malignant biological behaviors of GC cells. In conclusion, PVT1 promoted CCND1 expression by negatively regulating miR-16 expression to enhance the viability, invasion and cell cycle progression of GC cells.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai People’s Hospital, Xining810007, Qinghai, China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai People’s Hospital, Xining810007, Qinghai, China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai People’s Hospital, Republic Road No. 2, Xining810007, Qinghai, China
| |
Collapse
|
38
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
39
|
Askari N, Salek Esfahani B, Parvizpour S, Shafieipour S, Hadizadeh M. Long non-coding RNAs as potential biomarkers or therapeutic targets in gastric cancer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2023; 16:297-306. [PMID: 37767321 PMCID: PMC10520387 DOI: 10.22037/ghfbb.v16i2.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/14/2023] [Indexed: 09/29/2023]
Abstract
Aim This study aimed to find lncRNAs and mRNAs that were expressed differently by combining microarray datasets from different studies. This was done to find important target genes in gastric cancer for anti-cancer therapy. Background Gastric cancer (GC) is the fourth most frequent and second-most deadly malignancy worldwide. Thus, genetic diagnosis and treatment should focus on genetic and epigenetic variables. Based on several studies, disordered expression of non-coding RNAs (ncRNAs), such as lncRNAs, regulate gastric cancer invasion and metastasis. Besides, lncRNAs cooperatively regulate gene expression and GC progression. Methods We obtained differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) from three GC tissue microarray datasets by meta-analysis and screened genes using the "Limma" package. Then, using the RNAInter database, we allocated DEmRNAs to each DElncRNA. ClusterProfiler and GOplot programs were used to analyze function enrichment pathways and gene ontologies for final DEmRNAs. Results A total of 9 differentially expressed lncRNAs (DElncRNAs) (5 up-regulated and 4 down-regulated), and 856 DEmRNAs (451 up-regulated and 405 down-regulated) between tumor and adjacent normal samples were found. Finally, 117 differentially expressed mRNAs were predicted as interactors of six DElncRNAs (H19, WT1-AS, EMX2OS, HOTAIR, ZEB1-AS1, and LINC00261). Conclusion In order to promote cancer therapeutics and give knowledge on the process of carcinogenesis, our study projected a network of drug-gene interactions for discovered genes and presented relevant prospective biomarkers for the prognosis of patients with stomach cancer.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, End of Haft Bagh-e-Alavi Highway, Kerman, Iran
| | - Behnaz Salek Esfahani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
40
|
Lin X, Li G, Yan X, Fu W, Ruan J, Ding H, Yu H, Chen X, Lan L, Dai Y, Pan K, Liu X, Zhang H. Long non-coding RNA BC002811 Promotes Gastric Cancer Metastasis by Regulating SOX2 Binding to the PTEN Promoter. Int J Biol Sci 2023; 19:967-980. [PMID: 36778127 PMCID: PMC9909995 DOI: 10.7150/ijbs.76407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) are involved in the pathogenesis and progression of gastric cancer (GC), however, the underlying mechanisms remain poorly understood. In this study, we identified lncRNA BC002811 as a critical regulator of GC development and progression. BC002811 was upregulated in GC tissues and cell lines, and that high expression of BC002811 was indicative of a reduction in overall survival of GC patients. Our research reveals that BC002811 promoted GC cell proliferation, migration, invasion, and inhibition of apoptosis in vitro, as well as accelerated tumor growth and metastasis in vivo. We also found that BC002811 upregulated MMP2 and MMP9 and promoted GC cell metastasis partially through downregulating PTEN expression. BC002811 may act as a molecular decoy for the transcription factor SOX2, thereby inhibiting the transcription of PTEN by blocking SOX2 binding to the PTEN promoter. Our study advances the understanding of the role of BC002811 in the pathogenesis of GC and provides new molecular targets for therapeutic intervention against GC metastasis.
Collapse
Affiliation(s)
- Xiaocong Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Guodan Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Xiuwen Yan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Weiyu Fu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jie Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Hang Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Huajun Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Liubo Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Kai Pan
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Haitao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
41
|
Sheykhhasan M, Tanzadehpanah H, Ahmadieh Yazdi A, Mahaki H, Seyedebrahimi R, Akbari M, Manoochehri H, Kalhor N, Dama P. FLVCR1-AS1 and FBXL19-AS1: Two Putative lncRNA Candidates in Multiple Human Cancers. Noncoding RNA 2022; 9:1. [PMID: 36649030 PMCID: PMC9844485 DOI: 10.3390/ncrna9010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Mounting evidence supports the idea that one of the most critical agents in controlling gene expression could be long non-coding RNAs (lncRNAs). Upregulation of lncRNA is observed in the different processes related to pathologies, such as tumor occurrence and development. Among the crescent number of lncRNAs discovered, FLVCR1-AS1 and FBXL19-AS1 have been identified as oncogenes in many cancer progression and prognosis types, including cholangiocarcinoma, gastric cancer, glioma and glioblastoma, hepatocellular carcinoma, lung cancer, ovarian cancer, breast cancer, colorectal cancer, and osteosarcoma. Therefore, abnormal FBXL19-AS1 and FLVCR1-AS1 expression affect a variety of cellular activities, including metastasis, aggressiveness, and proliferation; (2) Methods: This study was searched via PubMed and Google Scholar databases until May 2022; (3) Results: FLVCR1-AS1 and FBXL19-AS1 participate in tumorigenesis and have an active role in impacting several signaling pathways that regulate cell proliferation, migration, invasion, metastasis, and EMT; (4) Conclusions: Our review focuses on the possible molecular mechanisms in a variety of cancers regulated by FLVCR1-AS1 and FBXL19-AS1. It is not surprising that there has been significant interest in the possibility that these lncRNAs might be used as biomarkers for diagnosis or as a target to improve a broader range of cancers in the future.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom 3716986466, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Amirhossein Ahmadieh Yazdi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom 3715614566, Iran
| | - Mohammad Akbari
- General Physician, Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran 4684161167, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom 3716986466, Iran
| | - Paola Dama
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
42
|
Villanueva JW, Kwong L, Han T, Martinez SA, Shanahan MT, Kanke M, Dow LE, Danko CG, Sethupathy P. Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics 2022; 23:792. [DOI: 10.1186/s12864-022-09018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
AbstractSomatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.
Collapse
|
43
|
Chen Y, Ouyang C, Liao L, Zhou Y, Meng F, Liu Y, Ye J. Upregulation of lncRNA HITT promotes cell apoptosis by suppressing the maturation of miR-602 in gastric cancer. Histol Histopathol 2022; 37:1143-1150. [PMID: 35852131 DOI: 10.14670/hh-18-495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has been reported that HITT can inhibit colon cancer. However, the role of HITT in gastric cancer (GC) is unknown. Our preliminary sequencing data revealed the altered expression of HITT in GC and its close correlation with miR-602, suggesting the involvement of HITT and its potential interaction with miR-602 in GC. This study explored the role of HITT and its crosstalk with miR-602 in GC. In this study, the expression of HITT, premature and mature miR-602 in paired GC and normal tissues (62 patients) was detected by RT-qPCR. RNA pull-down assay was performed to evaluate the direct interaction between HITT and mature miR-602. The subcellular location of HITT was assessed by nuclear fractionation assay. The role of HITT in regulating miR-602 maturation was explored by overexpression assay. Cell apoptosis was analyzed by flow cytometry. Our data illustrated that HITT was highly upregulated and mature miR-602 was downregulated in GC. No alteration in premature miR-602 in GC was observed. HITT was located in both nucleus and cytoplasm, and it can directly interact with miR-602. In addition, overexpression of HITT in GC cells increased the expression levels of mature miR-602 but not premature miR-602. Overexpression of HITT further increased GC cell apoptosis and suppressed the role of miR-602 in inhibiting GC cell apoptosis. In conclusion, HITT may promote GC cell apoptosis by suppressing the maturation of miR-602.
Collapse
Affiliation(s)
- Yun Chen
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Canhui Ouyang
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Lingyun Liao
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Yun Zhou
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Fan Meng
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Yao Liu
- Department of Gastroenterology, The first Affiliated Hospital of Gannan Medical College, Ganzhou City, Jiangxi Province, PR China
| | - Jing Ye
- Office of Academic Affairs of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, PR China.
| |
Collapse
|
44
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
45
|
Zhang B, Yang Y, Tao R, Yao C, Zhou Z, Zhang Y. Exosomes loaded with miR-665 inhibit the progression of osteosarcoma in vivo and in vitro. Am J Transl Res 2022; 14:7012-7026. [PMID: 36398229 PMCID: PMC9641455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Osteosarcoma (OS) is the most common primary malignant bone tumor and has a poor prognosis. Recent research has suggested that miR-665 affects the progression of OS. Moreover, an exosome delivery system presents better targeting effects, higher permeability, and lower immunogenicity than other nano-delivery systems do. The purpose of this study is to explore whether an exosome loaded with the miR-665 delivery system can inhibit OS development. METHODS The miR-665 expression was detected through a quantitative real-time polymerase chain reaction assay. Transmission electron microscopy, nano-particle size analysis, and fluorescence microscope were utilized to observe exosomes. Cell growth was estimated by cell counting kit 8 and ethynyl deoxyuridine analyses. Assays of flow cytometry and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling were introduced to test apoptosis in vitro or in vivo, respectively. Cell migration and invasion were measured using scratch and transwell assays. Engineered exosomes were prepared using electroporation. H&E staining was employed to observe necrotic cells and the function of heart, liver, spleen, lung and kidney. The expression of proteins was estimated by immunoblot analysis. RESULTS This work documented that the expression of miR-665 was down-regulated in OS tissues. Additionally, we proved that the over-expression of miR-665 inhibited OS proliferation. Besides, we found that exosomes loaded with miR-665 had similar tumor-inhibiting effects in vivo and in vitro. Furthermore, we verified that the exosome delivery system exhibited good safety and target efficiency. CONCLUSION This work proved that exosomes loaded with miR-665 inhibited the progression of OS in vivo and in vitro in a safe manner.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Ran Tao
- Department of Orthopaedics, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Zhenyu Zhou
- Department of Orthopaedics, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
46
|
Overexpression of lncRNA TCLlnc1 in gastric cancer predicts postoperative distant recurrence and poor survival. Anticancer Drugs 2022; 33:999-1003. [PMID: 36066396 PMCID: PMC9575564 DOI: 10.1097/cad.0000000000001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
TCLlnc1 was characterized as a lncRNA with oncogenic roles in T cell lymphoma, whereas its role in other diseases is unknown. We then explored the involvement of TCLlnc1 in gastric cancer. Paired gastric cancer and nontumor tissues from 66 gastric cancer patients were used to extract total RNA samples, which were used to perform RT-qPCRs to determine the expression of TCLlnc1. Plasma samples from these 66 gastric cancer patients and 66 healthy controls were also used to detect circulating TCLlnc1. Correlations of TCLlnc1 in both plasma and tissue samples with patients’ clinical data were analyzed by chi-square t-test. The diagnostic value of TCLlnc1 for early-stage gastric cancer was analyzed with the receiver operating characteristic curve. A 5-year follow-up study was performed to explore the prognostic value of TCLlnc1 for the survival of gastric cancer patients. TCLlnc1 expression in tissue was increased in gastric cancer. Plasma TCLlnc1 was also increased in gastric cancer. Plasma TCLlnc1 was closely correlated with TCLlnc1 in gastric cancer tissues, but not TCLlnc1 in nontumor tissues. TCLlnc1 in plasma was only correlated with tumor distant metastasis, but not other clinical data. TCLlnc1 in plasma showed promising diagnostic value for stage I and II gastric cancer. Increased accumulation of TCLlnc1 was closely correlated with distant recurrence and poor survival during a 5-year follow-up. Therefore, TCLlnc1 is overexpressed in gastric cancer predicts postoperative distant recurrence and poor survival.
Collapse
|
47
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Xie G, Zhu Y, Lin Z, Sun Y, Gu G, Li J, Wang W. HBRWRLDA: predicting potential lncRNA-disease associations based on hypergraph bi-random walk with restart. Mol Genet Genomics 2022; 297:1215-1228. [PMID: 35752742 DOI: 10.1007/s00438-022-01909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/20/2022] [Indexed: 10/17/2022]
Abstract
Accumulating evidence indicates that the regulation of long non-coding RNAs (lncRNAs) is closely related to a variety of diseases. Identifying meaningful lncRNA-disease associations will help to contribute to the understanding of the molecular mechanisms underlying these diseases. However, only a limited number of associations between lncRNAs and diseases have been inferred from traditional biological experiments due to the high cost and highly specialized. Therefore, computational methods are increasingly used to reduce time of biological experiments and complement biological research. In this paper, a computational method called HBRWRLDA is proposed to predict lncRNA-disease associations. First, HBRWRLDA models the relationships between multiple nodes using hypergraphs, which allows HBRWRLDA to integrate the expression similarity of lncRNAs and the semantic similarity of diseases to construct hypergraphs. Then, a bi-random walk on hypergraphs is used to predict potential lncRNA-disease associations. HBRWRLDA achieves a higher area under the curve value of 0.9551 and [Formula: see text], respectively, compared with the other five advanced methods under the framework of one-leave cross validation (LOOCV) and five-fold cross-validation (5-fold CV). In addition, the prediction effect of HBRWRLDA was confirmed case studies of three diseases: renal cell carcinoma, gastric cancer, and hepatocellular carcinoma. Case studies demonstrates the capacity of HBRWRLDA to identify potentially disease-associated lncRNAs. Overall, HBRWRLDA is excellent at predicting potential lncRNA-disease associations and could be useful in conducting further biological experiments by helping researchers identify candidates of lncRNA-disease association.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Yinting Zhu
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhiyi Lin
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Yuping Sun
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guosheng Gu
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Jianming Li
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Weiming Wang
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
49
|
Kong S, Tian S, Wang Z, Shi Y, Zhang J, Zhuo H. Circular RNA circPFKP suppresses the proliferation and metastasis of gastric cancer cell via sponging miR-644 and regulating ADAMTSL5 expression. Bioengineered 2022; 13:12326-12337. [PMID: 35587154 PMCID: PMC9275984 DOI: 10.1080/21655979.2022.2073001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The treatment of gastric cancer (GC) is extremely challenging; however, the specific pathogenesis of GC remains unclear. Circular RNAs (CircRNAs) are non-coding RNAs that can regulate gene expression both transcriptionally and post-transcriptionally. However, little is known about the circRNAs that are important in the progression of GC. This study identified significantly dysregulated circRNAs by analyzing gastric cancer patients and normal control tissues. The target gene was predicted using online bioinformatics tools and verified using RNA pull-down and luciferase reporter assays. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to evaluate gene and protein expression. The malignant behavior of GC cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, wound healing assay, Transwell invasion assay, and flow cytometry. CircPFKP is downregulated in GC tissues, and overexpression of circPFKP inhibits malignant behavior in GC cells. Bioinformatics predicted that circPFKP could bind to miR-644, and miR-644 could target disintegrin-like and metalloprotease domain-containing thrombospondin type 1 motif-like 5 (ADAMTSL5). Overexpression of circPFKP enhances the expression of ADAMTSL5 by decreasing the expression of miR-644 to suppress the growth of xenograft GC tumors in vivo and in vitro. In conclusion, the circPFKP/miR-644/ADAMTSL5 regulatory pathway inhibited the malignant progression of GC. These findings may extend our understanding of the effects of circRNAs on cancer development and provide novel targets for the diagnosis of GC.
Collapse
Affiliation(s)
- Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shubo Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhu Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jizhun Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
50
|
PCAT19 Regulates the Proliferation and Apoptosis of Lung Cancer Cells by Inhibiting miR-25-3p via Targeting the MAP2K4 Signal Axis. DISEASE MARKERS 2022; 2022:2442094. [PMID: 35615401 PMCID: PMC9126706 DOI: 10.1155/2022/2442094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Both PCAT19 and miR-25-3p have been reported in lung cancer studies, but whether there is a correlation between the two and whether they jointly regulate the progress of lung cancer have not been reported yet. Therefore, this study carried out a further in-depth research. The expression of PCAT19 was detected in lung cancer (LC) tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of PCAT19 on tumor growth was detected in a tumor-bearing model of nude mice. PCAT19-transfected cells were treated with Honokiol and anisomycin. The effects of PCAT19 on proliferation, apoptosis, and cycle of LC cells were investigated by biomolecule experiments. The effects of PCAT19 on the expressions of mitogen-activated protein kinase- (MAPK-) related proteins were evaluated by western blotting. The expression of PCAT19 was decreased in LC tissues and related to patient survival, tumor size, and pathology. In addition, upregulation of PCAT19 hindered LC cell proliferation, miR-25-3p expression, and the activation of extracellular regulated protein kinases (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK), while facilitating LC cell apoptosis. Furthermore, upregulation of PCAT19 reversed the effects of Honokiol and anisomycin on promoting cell proliferation and inhibiting cell apoptosis. Collectively, our findings show that upregulated PCAT19 suppresses proliferation yet promotes the apoptosis of LC cells through modulating the miR-25-3p/MAP2K4 signaling axis.
Collapse
|