1
|
Hamy AS, Grandal B, Jochum F, Dumas É, Sella N, Kassara A, Barraud S, Dubois T, Ballesta A, Everhard S, Lemonnier J, Sauzey M, Bertaut A, Blay JY, Cottu P, Tredan O, Joly F, Gougis P, Asselain B, Latouche A, Vaz Luis I, Andre F, Reyal F. Causal analyses of the impact of comorbid conditions and concomitant medications on response to neoadjuvant chemotherapy in breast cancer: analysis of a multicenter prospective cohort study (CANTO). ESMO Open 2025; 10:104507. [PMID: 40378528 DOI: 10.1016/j.esmoop.2025.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND The incidence of breast cancer (BC) increases with age, together with the frequency of comorbid conditions and chronic concomitant medications. However, little evidence is available regarding their impact on response to treatment in the neoadjuvant setting. MATERIALS AND METHODS The aim of the study was to describe the comorbid conditions and concomitant medications in a population of BC patients and to assess whether the use of concomitant medications modifies the pathological complete response (pCR) rates to neoadjuvant chemotherapy (NAC) in a causal manner. Patients with invasive stage I-III BC from the French multicenter longitudinal prospective cohort CANcer TOxicities (CANTO) (NCT01993498) were included. Chronic concomitant medication intakes during NAC were binary-categorized at level 2 of the Anatomical Therapeutic Chemical (ATC) classification system. The average causal effect of concomitant medication on pCR was estimated using a doubly robust estimator (targeted maximum likelihood estimation) after adjustment on clinical and pathological factors, including notably chronic comorbid conditions. RESULTS Out of 1420 patients with BC treated by NAC included in the study, 662 patients (46.6%) had at least one chronic comorbid condition and 355 patients (25.0%) declared at least one chronic concomitant medication. After causal analyses, several drug classes were significantly associated with pCR: drugs used in diabetes and lipid-modifying agents were significantly associated with increased response to NAC [odds ratio (OR) 1.86, 95% confidence interval (CI) 1.03-3.27, P < 0.001 and OR 1.58, 95% CI 1.16-2.13, P < 0.001, respectively], while the use of cardiac therapy and diuretics was significantly associated with decreased response to NAC (OR 0.55, 95% CI 0.35-0.84, P < 0.001 and OR 0.43, 95% CI 0.21-0.85, P < 0.001, respectively). CONCLUSIONS The use of several classes of concomitant medication during NAC can be associated with changes in pCR rates. Further research is needed on the interactions between NAC and chronic non-anticancer drug use.
Collapse
Affiliation(s)
- A-S Hamy
- Department of Medical Oncology, Institut Curie, Université Paris Cité, Paris, France; Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France
| | - B Grandal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France; Department of Breast, Gynecological and Reconstructive Surgery, Institut Curie, Université Paris Cité, Paris, France.
| | - F Jochum
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France; Department of Gynecology, Strasbourg University Hospital, Strasbourg, France
| | - É Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France; INSERM, U900, Paris, France
| | - N Sella
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France
| | - A Kassara
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France
| | - S Barraud
- Department of Medical Oncology, Institut Curie, Université Paris Cité, Paris, France; Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France
| | - T Dubois
- Translational Research Department, Breast Cancer Biology Group, Institut Curie, PSL Research University, Paris, France
| | - A Ballesta
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, Saint-Cloud, France
| | | | | | - M Sauzey
- Department of Breast, Gynecological and Reconstructive Surgery, Institut Curie, Université Paris Cité, Paris, France
| | - A Bertaut
- Methodology and Biostatistics Unit, Centre Georges François Leclerc, Dijon, France
| | - J-Y Blay
- Department of Medical Oncology, Centre Léon Berard, Lyon, France
| | - P Cottu
- Department of Medical Oncology, Institut Curie, Université Paris Cité, Paris, France
| | - O Tredan
- Department of Medical Oncology, Centre Léon Berard, Lyon, France
| | - F Joly
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - P Gougis
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France; Department of Medical Oncology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance Publique-Hôpitaux de Paris (AP-HP), Clinical Investigation Center (CIC-1901), Department of Pharmacology, Pitié-Salpêtrière Hospital, Paris, France
| | - B Asselain
- Department of Biostatistics, Unicancer, Paris, France
| | - A Latouche
- INSERM, U900, Paris, France; INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, Saint-Cloud, France; Conservatoire National des Arts et Métiers, Paris, France
| | - I Vaz Luis
- INSERM U981, Gustave Roussy, Villejuif, France; Interdisciplinary Department for the Organization of Patient Pathways (DIOPP), Gustave Roussy, Villejuif, France
| | - F Andre
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - F Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, Paris, France; Department of Breast, Gynecological and Reconstructive Surgery, Institut Curie, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Smith KA, Batatinha H, Niemiro GM, Baker FL, Zúñiga TM, Diak D, Mylabathula PL, Kistner TM, Davini D, Hoffman E, Colombo JN, Seckeler M, Bond RA, Katsanis E, Simpson RJ. Exercise-induced β 2-adrenergic receptor activation enhances effector lymphocyte mobilization in humans and suppresses lymphoma growth in mice through NK-cells. Brain Behav Immun 2025:S0889-1591(25)00176-X. [PMID: 40311885 DOI: 10.1016/j.bbi.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/06/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
Signaling through the β2-adrenergic receptor (β2-AR) mobilizes immune cells during exercise and is implicated in tumor lymphocyte infiltration. We investigated mechanisms governing immune cell mobilization in humans and the role of adrenergic signaling in anti-cancer responses to a murine lymphoma. Human studies included double-blind, placebo-controlled, crossover trials with beta blocker drugs and a phosphodiesterase inhibitor during steady-state and graded exercise. β1 + β2-AR blockade reduced lymphocyte and NK-cell mobilization during steady-state exercise, while β1-AR blockade enhanced the mobilization of NK-cells. Combining a β1-AR antagonist with a phosphodiesterase-4 (PDE4) inhibitor during graded exercise further increased mobilization of CD8 + T-cells, γδ T-cells, and monocytes. Isoproterenol infusion also elevated lymphocyte and NK-cell levels similarly to exercise at 70 % VO2max. Single cell RNA sequencing revealed complex signaling downstream of cAMP that relate to lymphocyte activation and effector function. In murine models of voluntary wheel running, β2-AR signaling and NK-cells were critical for exercise-induced protection against B-cell lymphoma, as β2-AR blockade or NK-cell depletion abrogated these effects. These findings highlight the pivotal role of β2-AR signaling in mobilizing cytotoxic immune cells and protecting against tumor progression through exercise, suggesting potential therapeutic strategies combining exercise with adrenergic modulation to enhance immune responses.
Collapse
Affiliation(s)
- Kyle A Smith
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA
| | - Helena Batatinha
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA
| | - Grace M Niemiro
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA; Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Forrest L Baker
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA; Department of Pediatrics, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Tiffany M Zúñiga
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA
| | - Douglass Diak
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA
| | | | - Timothy M Kistner
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Dan Davini
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Emely Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jamie N Colombo
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, AZ, USA
| | - Michael Seckeler
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, AZ, USA
| | - Richard A Bond
- College of Pharmacy, Science, and Engineering Research Center, University of Houston, Houston, TX, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, USA; Department of Pediatrics, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Sharma AE, Chan S, Komorowski AS, Cao X, Gao Y, Kshatri K, Desai K, Kuksis M, Rosen M, Sachdeva A, Kojundzic I, Samari S, Michael IP, Abdel-Qadir H, Jerzak KJ. The Impact of Beta Blockers on Survival in Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2025; 17:1357. [PMID: 40282534 PMCID: PMC12026060 DOI: 10.3390/cancers17081357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Beta adrenergic signaling has been implicated in cancer progression, leading to interest in repurposing beta blockers (BBs) as adjunctive anti-cancer agents. However, clinical findings are inconsistent. This systematic review and meta-analysis evaluates the association between BB use and survival outcomes in cancer patients. METHODS A systematic search of OVID Medline, EMBASE, and CENTRAL was conducted through 13 September 2023, for studies comparing survival outcomes in solid tumor patients using BBs versus non-users. Eligible studies reported hazard ratios (HRs) for overall survival (OS), progression-free survival (PFS), or cancer-specific survival (CSS). Perioperative studies and those without BB-specific HRs were excluded. Data extraction and quality assessment were performed in duplicate using ROBINS-I. A random-effects model was used, with heterogeneity assessed by the I2 statistic. RESULTS Seventy-nine studies (492,381 patients) met the inclusion criteria; 2.5% were prospective. The most frequently studied cancers were breast (n = 33), ovarian (n = 30), and colorectal (n = 28). BB use was associated with improved PFS (HR 0.78, 95% CI: 0.66-0.92, I2 = 79.8%), with significance maintained after excluding high-bias studies (HR 0.74, 95% CI: 0.61-0.91, I2 = 36.6%). No significant associations were observed for OS (HR 0.99, 95% CI: 0.94-1.04, I2 = 84.9%) or CSS (HR 0.95, 95% CI: 0.91-1.00, I2 = 77.4%). CONCLUSIONS BB use may be associated with longer PFS in cancer patients, but findings are limited by study design and heterogeneity; high-quality prospective studies are needed.
Collapse
Affiliation(s)
- Alisha E. Sharma
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Stephanie Chan
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Adam S. Komorowski
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xingshan Cao
- Department of Research Design and Biostatistics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Yizhuo Gao
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Kushal Kshatri
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Kairavi Desai
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON L8P 1H6, Canada
| | - Markus Kuksis
- Department of Family Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Michael Rosen
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Anjali Sachdeva
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | | | - Saif Samari
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | - Husam Abdel-Qadir
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Katarzyna J. Jerzak
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
- Division of Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
4
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
5
|
Elebyary TT, Sultan AA, Abu-Risha SE, El Maghraby GM, Amin M. Bilosomal Co-Encapsulated Tamoxifen and Propranolol for Potentiated Anti-Breast Cancer Efficacy: In Vitro and In Vivo Investigation. Pharmaceutics 2025; 17:123. [PMID: 39861770 PMCID: PMC11768151 DOI: 10.3390/pharmaceutics17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM. The work probed bilosomes versus standard noisome for simultaneous oral and intratumor delivery of TAM and PRO. Methods: Bilosomes comprising Span60, cholesterol, and increasing concentrations of bile salts were prepared together with bile salts containing free standard niosomes. The vesicular size and morphology were characterized. The entrapment and release efficiencies of TAM and PRO from the tailored vesicles were determined. The in vivo investigations of anti-tumor activity of TAM with or without PRO employed the solid Ehrlich carcinoma model. Results: The vesicles of all fabricated dispersions were spherical and negatively charged, with a size ranging from 104 to 182 nm. The entrapment efficiency depended on the nature of the drug, recording values ranging from 87.5% to 97.8% for TAM and from 31.0% to 46.8% for PRO. Incorporation of bile salts into vesicles increased TAM and PRO release compared to standard niosomes. Oral administration of combined TAM/PRO bilosomes showed a significant reduction in tumor growth volume compared to that recorded following naked drug administration. Histopathological investigations reflected a significant decline in tumor giant cells and mitotic figures, implying the in vivo capability of the TAM/PRO combination to interfere with cancer cell proliferation and persistence. Conclusions: The overall results demonstrated the impact of repurposed PRO to enhance the anti-breast cancer activity of TAM when both were co-encapsulated into bilosomes.
Collapse
Affiliation(s)
- Toka T. Elebyary
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Educational Hospital, Tanta University, Tanta 31527, Egypt
| | - Amal A. Sultan
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39911, Saudi Arabia
| | - Sally E. Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Faculty of Pharmacy, Alsalam University, Tanta 31527, Egypt
| | - Manna Amin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
6
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
7
|
Sever N, Yunusov E, Çelebi A, Yaşar A, Majidova N, Kocaaslan E, Erel P, Ağyol Y, Güren AK, Işık S, Arıkan R, Ercelep Ö, Köstek O, Bayoğlu İV, Sarıc M. Impact of renin angiotensin system inhibitors on survival of patients with metastatic non-small cell lung cancer. Ann Saudi Med 2025; 45:18-24. [PMID: 39929787 PMCID: PMC11810880 DOI: 10.5144/0256-4947.2025.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND We aimed to explore the correlation between anti-hypertensive treatment and survival rates in patients with metastatic non-small cell lung cancer (mNSCLC). OBJECTIVE In this study, we analyzed the correlation between antihypertensive treatment and survival in 300 patients with mNSCLC. DESIGN Retrospective. SETTINGS Medical faculty hospital. PATIENTS AND METHODS We investigated the relationship between antihypertensive treatment and survival in 300 patients who were diagnosed with mNSCLC. We also examined the relationship between histological type, performance status, gender, age and type of antihypertensive medication used and survival. MAIN OUTCOMES AND MEASURES Survival difference between mNSCLC patients with and without antihypertensive treatment. SAMPLE SIZE 300 patients with mNSCLC. RESULTS Among patients receiving concomitant antihypertensive treatment, 107 (35.7%) were prescribed angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARB), 64 (21.3%) beta-blockers and 36 (11%) calcium channel blockers. The study found that the overall survival rates for all patients at 36 and 60 months were 11.5% and 7%, respectively. However, the ACEi/ARB group had higher survival rates at 18.1% and 12% for 36 and 60 months, respectively, compared to the non-ACEi/ARB group with rates of 8.7% and 5% (P<.05). CONCLUSION These results strongly suggest that renin-angiotension system (RAS) inhibitors hold great promise as potential adjunctive therapies for mNSCLC due to their significant inhibitory effects on cell proliferation, angiogenesis and tumor progression. LIMITATIONS Retrospective and non-randomized nature. Additionally, the retrospective analysis did not allow for verification of the duration or regularity of drug use, which made it infeasible to examine dose-response relationships with reliability.
Collapse
Affiliation(s)
- Nadiye Sever
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Emil Yunusov
- From the Department of Internal Medicine, Marmara University Hospital, İstanbul, Turkey
| | - Abdussamet Çelebi
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Alper Yaşar
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Nargiz Majidova
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Erkam Kocaaslan
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Pınar Erel
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Yeşim Ağyol
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Ali Kaan Güren
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Selver Işık
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Rukiye Arıkan
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Özlem Ercelep
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Osman Köstek
- From the Department of Internal Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - İbrahim Vedat Bayoğlu
- From the Division of Medical Oncology, Department of Internal Medicine, Marmara, University Hospital, İstanbul, Turkey
| | - Murat Sarıc
- From the Department of Internal Medicine, Istanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
8
|
Varshini MS, Krishnamurthy PT, Reddy RA, Wadhwani A, Chandrashekar VM. Insights into the Emerging Therapeutic Targets of Triple-negative Breast Cancer. Curr Cancer Drug Targets 2025; 25:3-25. [PMID: 38385495 DOI: 10.2174/0115680096280750240123054936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Triple-negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, is characterized by the non-appearance of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Clinically, TNBC is marked by its low survival rate, poor therapeutic outcomes, high aggressiveness, and lack of targeted therapies. Over the past few decades, many clinical trials have been ongoing for targeted therapies in TNBC. Although some classes, such as Poly (ADP Ribose) Polymerase (PARP) inhibitors and immunotherapies, have shown positive therapeutic outcomes, however, clinical effects are not much satisfiable. Moreover, the development of drug resistance is the major pattern observed in many targeted monotherapies. The heterogeneity of TNBC might be the cause for limited clinical benefits. Hence,, there is a need for the potential identification of new therapeutic targets to address the above limitations. In this context, some novel targets that can address the above-mentioned concerns are emerging in the era of TNBC therapy, which include Hypoxia Inducible Factor (HIF-1α), Matrix Metalloproteinase 9 (MMP-9), Tumour Necrosis Factor-α (TNF-α), β-Adrenergic Receptor (β-AR), Voltage Gated Sodium Channels (VGSCs), and Cell Cycle Regulators. Currently, we summarize the ongoing clinical trials and discuss the novel therapeutic targets in the management of TNBC.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Ramakamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
- Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas, 73304, Mauritius
| | - V M Chandrashekar
- Department of Pharmacology, HSK College of Pharmacy, Bagalkot, 587101, Karnataka, India
| |
Collapse
|
9
|
Zhang J, Deng YT, Liu J, Gan L, Jiang Y. Role of transforming growth factor-β1 pathway in angiogenesis induced by chronic stress in colorectal cancer. Cancer Biol Ther 2024; 25:2366451. [PMID: 38857055 PMCID: PMC11168221 DOI: 10.1080/15384047.2024.2366451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Chronic stress can induce stress-related hormones; norepinephrine (NE) is considered to have the highest potential in cancer. NE can stimulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is associated with vascular endothelial growth factor (VEGF) secretion and tumor angiogenesis. However, the underlying mechanisms are poorly understood. METHODS Tumor-bearing mice were subjected to chronic restraint stress and treated with normal saline, human monoclonal VEGF-A neutralizing antibody bevacizumab, or β-adrenergic receptor (β-AR) antagonist (propranolol). Tumor growth and vessel density were also evaluated. Human colorectal adenocarcinoma cells were treated with NE, propranolol, or the inhibitor of transforming growth factor-β (TGF-β) receptor Type I kinase (Ly2157299) in vitro. TGF-β1 in mouse serum and cell culture supernatants was quantified using ELISA. The expression of HIF-1α was measured using Real time-PCR and western blotting. Cell migration and invasion were tested. RESULTS Chronic restraint stress attenuated the efficacy of bevacizumab and promoted tumor growth and angiogenesis in a colorectal tumor model. Propranolol blocked this effect and inhibited TGF-β1 elevation caused by chronic restraint stress or NE. NE upregulated HIF-1α expression, which was reversed by propranolol or Ly2157299. Propranolol and Ly2157199 blocked NE-stimulated cancer cell migration and invasion. CONCLUSIONS Our results demonstrate the effect of NE on tumor angiogenesis and the critical role of TGF-β1 signaling during this process. In addition, β-AR/TGF-β1 signaling/HIF-1α/VEGF is a potential signaling pathway. This study also indicates that psychosocial stress might be a risk factor which weakens the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lu Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Park HJ, Lee SC, Park SH. Norepinephrine stimulates M2 macrophage polarization via β2-adrenergic receptor-mediated IL-6 production in breast cancer cells. Biochem Biophys Res Commun 2024; 741:151087. [PMID: 39616942 DOI: 10.1016/j.bbrc.2024.151087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Previous studies have demonstrated that norepinephrine (NE) released during chronic stress promotes breast cancer (BC) metastasis via adrenergic receptors (ARs). However, the effect of NE on tumor-associated macrophage polarization and the underlying mechanisms remain largely unknown. In this study, we aimed to investigate the influence of NE on M2 macrophage polarization, with a particular focus on the crosstalk between macrophages and BC cells. Our results demonstrated that, although NE alone did not directly induce the expression of M2 macrophage markers, conditioned medium from NE-treated MDA-MB-231 human BC cells (NE CM) significantly promoted M2 macrophage polarization in THP-1 macrophages. We found that NE stimulated IL-6 production in MDA-MB-231 cells via β2-AR/NF-κB pathway, which activated STAT3 in THP-1 cells to induce M2 macrophage polarization. NE failed to induce IL-6 production and NF-κB activation when ADRB2 was knocked down in MDA-MB-231 cells. Furthermore, ADRB2 knockdown in cancer cells suppressed NE CM-induced M2 macrophage polarization, as well as M2 macrophage-induced cancer cell migration. Taken together, our results suggest that NE stimulates M2 macrophage polarization by inducing IL-6 secretion from BC cells through a β2-AR-dependent mechanism, which subsequently promotes cancer cell migration. Targeting β2-AR may represent a promising strategy to prevent chronic stress-induced BC metastasis.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Su-Chan Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea.
| |
Collapse
|
11
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 PMCID: PMC12123372 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Cavalu S, Saber S, Amer AE, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Abdelhamid AM. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders. FASEB J 2024; 38:e23813. [PMID: 38976162 DOI: 10.1096/fj.202400725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Beta-blockers are commonly used medications that antagonize β-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed E Amer
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
13
|
Jung R, Trivedi CM. Congenital Vascular and Lymphatic Diseases. Circ Res 2024; 135:159-173. [PMID: 38900856 PMCID: PMC11192239 DOI: 10.1161/circresaha.124.323181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Over the past several centuries, the integration of contemporary medical techniques and innovative technologies, like genetic sequencing, have played a pivotal role in enhancing our comprehension of congenital vascular and lymphatic disorders. Nonetheless, the uncommon and complex characteristics of these disorders, especially considering their formation during the intrauterine stage, present significant obstacles in diagnosis and treatment. Here, we review the intricacies of these congenital abnormalities, offering an in-depth examination of key diagnostic approaches, genetic factors, and therapeutic methods.
Collapse
Affiliation(s)
- Roy Jung
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605 USA
| | - Chinmay M. Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School; Worcester, MA 01605 USA
| |
Collapse
|
14
|
Abdul Rahman H, Zaim SNN, Suhaimei US, Jamain AA. Prognostic Factors Associated with Breast Cancer-Specific Survival from 1995 to 2022: A Systematic Review and Meta-Analysis of 1,386,663 Cases from 30 Countries. Diseases 2024; 12:111. [PMID: 38920543 PMCID: PMC11203054 DOI: 10.3390/diseases12060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the fifth-ranked cancer globally. Despite early diagnosis and advances in treatment, breast cancer mortality is increasing. This meta-analysis aims to examine all possible prognostic factors that improve/deteriorate breast cancer-specific survival. MEDLINE, PubMed, ScienceDirect, Ovid, and Google Scholar were systematically searched until September 16, 2023. The retrieved studies from 1995 to 2022 accumulated 1,386,663 cases from 30 countries. A total of 13 out of 22 prognostic factors were significantly associated with breast cancer-specific survival. A random-effects model provided a pooled estimate of the top five poorest prognostic factors, including Stage 4 (HR = 12.12; 95% CI: 5.70, 25.76), followed by Stage 3 (HR = 3.42, 95% CI: 2.51, 4.67), a comorbidity index ≥ 3 (HR = 3.29; 95% CI: 4.52, 7.35), the poor differentiation of cancer cell histology (HR = 2.43; 95% CI: 1.79, 3.30), and undifferentiated cancer cell histology (HR = 2.24; 95% CI: 1.66, 3.01). Other survival-reducing factors include positive nodes, age, race, HER2-receptor positivity, and overweight/obesity. The top five best prognostic factors include different types of mastectomies and breast-conserving therapies (HR = 0.56; 95% CI: 0.44, 0.70), medullary histology (HR = 0.62; 95% CI: 0.53, 0.72), higher education (HR = 0.72; 95% CI: 0.68, 0.77), and a positive estrogen receptor status (HR = 0.78; 95% CI: 0.65, 0.94). Heterogeneity was observed in most studies. Data from developing countries are still scarce.
Collapse
Affiliation(s)
- Hanif Abdul Rahman
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Tungku Link Road, Gadong BE1410, Brunei; (S.N.N.Z.); (U.S.S.); (A.A.J.)
| | | | | | | |
Collapse
|
15
|
Tabassum M, Chikermane SG, Johnson C, Abdulkareem NM, Wang EM, Johnson ML, Trivedi MV. Comparing the effects of various β-blockers on cardiovascular mortality in breast cancer patients. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:17. [PMID: 38532523 PMCID: PMC10964697 DOI: 10.1186/s40959-024-00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Cardiovascular (CV) disease is a leading cause of death in breast cancer (BC) patients due to the increased age and treatments. While individual β-blockers have been investigated to manage CV complications, various β-blockers have not been compared for their effects on CV death in this population. We aimed to compare CV mortality in older BC patients taking one of the commonly used β-blockers. METHODS This retrospective cohort study was conducted using the Surveillance, Epidemiology and End Results (SEER) - Medicare data (2010-2015). Patients of age 66 years or older at BC diagnosis receiving metoprolol, atenolol, or carvedilol monotherapy were included. The competing risk regression model was used to determine the risk of CV mortality in the three β-blocker groups. The multivariable model was adjusted for demographic and clinical covariates. The adjusted hazard ratio (HR) and 95% confidence intervals (CI) were reported for the risk of CV mortality. RESULTS The study cohort included 6,540 patients of which 55% were metoprolol users, 30% were atenolol users, and 15% were carvedilol users. Metoprolol was associated with a 37% reduced risk of CV mortality (P = 0.03) compared to carvedilol after adjusting for the covariates (HR = 0.63; 95% CI 0.41-0.96). No significant difference in the risk of CV mortality between atenolol and carvedilol users was observed (HR = 0.74; 95% CI 0.44-1.22). CONCLUSIONS Our findings suggest that metoprolol is associated with a reduced risk of CV mortality in BC patients. Future studies are needed to confirm these findings and understand the mechanism of action.
Collapse
Affiliation(s)
- Mantasha Tabassum
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, 4349 Martin Luther King Blvd, 77204, Houston, TX, USA
| | - Soumya G Chikermane
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Houston, TX, USA
| | - Camille Johnson
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Noor M Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, 4349 Martin Luther King Blvd, 77204, Houston, TX, USA
| | - Elisabeth M Wang
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Michael L Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Houston, TX, USA
| | - Meghana V Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, 4349 Martin Luther King Blvd, 77204, Houston, TX, USA.
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
16
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
17
|
Kwak S, Lee JY, Kim MJ, Lee HJ, Lee DK, Kang J, Kang WH, Son WC, Cruz DJM. Combination of PD-1 Checkpoint Blockade and Botulinum Toxin Type A1 Improves Antitumor Responses in Mouse Tumor Models of Melanoma and Colon Carcinoma. Immunol Invest 2023; 52:749-766. [PMID: 37403798 DOI: 10.1080/08820139.2023.2232403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tumor innervation has been shown to be utilized by some solid cancers to support tumor initiation, growth, progression, and metastasis, as well as confer resistance to immune checkpoint blockade through suppression of antitumor immunologic responses. Since botulinum neurotoxin type A1 (BoNT/A1) blocks neuronal cholinergic signaling, its potential use as an anticancer drug in combination with anti-PD-1 therapy was investigated in four different syngeneic mouse tumor models. METHODS Mice implanted with breast (4T1), lung (LLC1), colon (MC38), and melanoma (B16-F10) tumors were administered a single intratumoral injection of 15 U/kg BoNT/A1, repeated intraperitoneal injections of 5 mg/kg anti-PD-1 (RMP1-14), or both. RESULTS Compared to the single-agent treatments, anti-PD-1 and BoNT/A1 combination treatment elicited significant reduction in tumor growth among B16-F10 and MC38 tumor-bearing mice. The combination treatment also lowered serum exosome levels in these mice compared to the placebo control group. In the B16-F10 syngeneic mouse tumor model, anti-PD-1 + BoNT/A1 combination treatment lowered the proportion of MDSCs, negated the increased proportion of Treg cells, and elicited a higher number of tumor-infiltrating CD4+ and CD8+ T lymphocytes into the tumor microenvironment compared to anti-PD-1 treatment alone. CONCLUSION Our findings demonstrate the synergistic antitumor effects of BoNT/A1 and PD-1 checkpoint blockade in mouse tumor models of melanoma and colon carcinoma. These findings provide some evidence on the potential application of BoNT/A1 as an anticancer drug in combination with immune checkpoint blockade and should be further explored.
Collapse
Affiliation(s)
- Seongsung Kwak
- Pharmacology and Toxicology Department, Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Ju Kim
- Pharmacology and Toxicology Department, Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Hyo Jin Lee
- Pharmacology and Toxicology Department, Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Dong-Kyu Lee
- Pharmacology and Toxicology Department, Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Jiyeon Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won-Ho Kang
- Medytox Korea Co. Ltd., Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deu John M Cruz
- Pharmacology and Toxicology Department, Medytox Gwanggyo R&D Center, Yeongtong-gu, Suwon-si, Republic of Korea
| |
Collapse
|
18
|
Yang J, Zhang S, Jiang W. Impact of Beta Blockers on Breast Cancer Incidence and Prognosis. Clin Breast Cancer 2023; 23:664-671.e21. [PMID: 37353431 DOI: 10.1016/j.clbc.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Several studies have investigated the link between beta blockers (BB) and breast cancer outcomes but have reported mixed results. Our aim was to investigate the relationship between BB and breast cancer outcomes. Literatures investigating the relationship between BB and breast cancer outcomes were searched through PubMed and Embase. A total 43 articles were included by meta-analysis. We found BB increased breast cancer risk (n = 22, RR: 1.169, 95% CI: 1.063-1.285). We also found BB were associated with a lower overall survival (OS, n = 19, RR: 1.125, 95% CI: 1.078-1.173) and a higher recurrence risk (n = 8, RR: 1.130, 95% CI: 1.040-1.227) for breast cancer. Interestingly, subgroup analyses found only selective BB increased breast cancer risk (n = 5, RR: 1.766, 95% CI: 1.148-2.718) and recurrence risk (n = 2, RR: 1.168 -, 95% CI: 1.026-1.328) while only nonselective BB were associated with a lower OS (n = 4, RR: 1.135, 95% CI: 1.073-1.202) for breast cancer. Moreover, we found BB were associated with a significantly lower OS (n = 3, RR: 2.751, 95% CI: 1.213-6.238) and higher recurrence (n = 2, RR: 1.284, 95% CI: 1.102-1.497) only in luminal breast cancer while with a higher PFS (n = 2, RR: 0.585, 95% CI: 0.343-0.997) in Her2+ breast cancer. No significant differences in terms of CSM (n = 19, RR: 1.009, 95% CI: 0.947-1.077), PFS (n = 4, RR: 0.932, 95% CI: 0.616-1.305), and DFS (n = 2, RR: 0.776, 95% CI: 0.512-1.176) were observed. Our results provide evidence of the relationship between BB and breast cancer incidence and prognosis.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China.
| |
Collapse
|
19
|
Mitsou JD, Tseveleki V, Dimitrakopoulos FI, Konstantinidis K, Kalofonos H. Radical Tumor Denervation Activates Potent Local and Global Cancer Treatment. Cancers (Basel) 2023; 15:3758. [PMID: 37568574 PMCID: PMC10417359 DOI: 10.3390/cancers15153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
This preliminary study seeks to determine the effect of R&P denervation on tumor growth and survival in immunocompetent rats bearing an aggressive and metastatic breast solid tumor. A novel microsurgical approach was applied "in situ", aiming to induce R&P denervation through the division of every single nerve fiber connecting the host with the primary tumor via its complete detachment and re-attachment, by resecting and reconnecting its supplying artery and vein (anastomosis). This preparation, known as microsurgical graft or flap, is radically denervated by definition, but also effectively delays or even impedes the return of innervation for a significant period of time, thus creating a critical and therapeutic time window. Mammary adenocarcinoma cells (HH-16.cl4) were injected into immunocompetent Sprague Dawley adult rats. When the tumors reached a certain volume, the subjects entered the study. The primary tumor, including a substantial amount of peritumoral tissue, was surgically isolated on a dominant artery and vein, which was resected and reconnected using a surgical microscope (orthotopic tumor auto-transplantation). Intending to simulate metastasis, two or three tumors were simultaneously implanted and only one was treated, using the surgical technique described herein. Primary tumor regression was observed in all of the microsurgically treated subjects, associated with a potent systemic anticancer effect and prolonged survival. In stark contrast, the subjects received a close to identical surgical operation; however, with the intact neurovascular connection, they did not achieve the therapeutic result. Animals bearing multiple tumors and receiving the same treatment in only one tumor exhibited regression in both the "primary" and remote- untreated tumors at a clinically significant percentage, with regression occurring in more than half of the treated subjects. A novel therapeutic approach is presented, which induces the permanent regression of primary and, notably, remote tumors, as well as, evidently, the naturally occurring metastatic lesions, at a high rate. This strategy is aligned with the impetus that comes from the current translational research data, focusing on the abrogation of the neuro-tumoral interaction as an alternative treatment strategy. More data regarding the clinical significance of this are expected to come up from a pilot clinical trial that is ongoing.
Collapse
Affiliation(s)
- John D. Mitsou
- Department of Plastic and Reconstructive Surgery, Athens Medical Center, 15125 Maroussi, Greece
| | - Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504 Rio, Greece;
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| | - Konstantinos Konstantinidis
- Department of General Robotic, Laparoscopic and Oncologic Surgery, Athens Medical Center, 15125 Maroussi, Greece;
| | - Haralabos Kalofonos
- Division of Oncology, Department of Medicine, University Hospital of Patras, 26504 Rio, Greece;
| |
Collapse
|
20
|
Hsieh HH, Wu TY, Chen CH, Kuo YH, Hour MJ. Survival outcomes of beta-blocker usage in HER2-positive advanced breast cancer patients: a retrospective cohort study. Ther Adv Drug Saf 2023; 14:20420986231181338. [PMID: 37359444 PMCID: PMC10288415 DOI: 10.1177/20420986231181338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background Clinical trials investigating the effects of beta-blockers (BBs) on cancer are underway. Evidence from preclinical research suggests that BBs could serve as anticancer agents and immune boosters. There is conflicting evidence regarding the effect of BB use on clinical outcomes in patients with breast cancer. Objectives The study aimed to determine whether BB use is associated with progression-free survival (PFS) and overall survival (OS) in patients receiving anti-human epidermal growth factor receptor 2 (HER2) treatment for advanced breast cancer. Design Retrospective hospital-based study. Methods The participants enrolled were breast cancer patients with advanced HER2-positive status who initiated trastuzumab monotherapy or concomitant therapy with trastuzumab and any dose of BB. The patients were enrolled between January 2012 and May 2021 and divided into three groups based on whether they received a BB or not in the therapeutic regimen: BB-/trastuzumab+, BB+ (non-selective)/trastuzumab+, and BB+ (selective)/trastuzumab+. PFS and OS were the primary and secondary endpoints, respectively. Results The estimated median PFS in the BB-/trastuzumab+, BB+ (non-selective)/trastuzumab+, and BB+ (selective)/trastuzumab+ groups was 51.93, 21.50, and 20.77 months, respectively. The corresponding OS was 56.70, 29.10, and 27.17 months. The intergroup differences in these durations were significant. Both PFS [adjusted hazard ratio (HR): 2.21, 95% confidence interval (CI): 1.56-3.12; p < 0.001]) and OS (adjusted HR: 2.46, 95% CI: 1.69-3.57; p < 0.001) were worse when BBs were used. Conclusion Our study provides important evidence that BB use potentially has a negative effect on patients with HER2-positive advanced breast cancer. Nevertheless, despite the study's results, cardiovascular disease (CVD) should be appropriately treated in patients with HER2-positive advanced breast cancer. Other types of drugs can be used to treat CVD, but BB use should be avoided. Large real-world database and prospective studies should be conducted to validate the results of this study.
Collapse
Affiliation(s)
- Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, R.O.C
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Tien-Yuan Wu
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, R.O.C
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Chi-Hua Chen
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, R.O.C
| | - Yu-Hung Kuo
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, R.O.C
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, R.O.C
| |
Collapse
|
21
|
Chen HY, Zhao W, Na'ara S, Gleber-Netto FO, Xie T, Ali S, Thompson ZM, Buell J, Stafford H, Nagarajan P, Davies M, Wong MK, Migden MR, Sharma P, Myers JN, Gross ND, Amit M. Beta-Blocker Use Is Associated With Worse Relapse-Free Survival in Patients With Head and Neck Cancer. JCO Precis Oncol 2023; 7:e2200490. [PMID: 37285560 PMCID: PMC10309540 DOI: 10.1200/po.22.00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 04/13/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Although beta-blockers (BBs) have been hypothesized to exert a beneficial effect on cancer survival through inhibition of beta-adrenergic signaling pathways, clinical data on this issue have been inconsistent. We investigated the impact of BBs on survival outcomes and efficacy of immunotherapy in patients with head and neck squamous cell carcinoma (HNSCC), non-small-cell lung cancer (NSCLC), melanoma, or squamous cell carcinoma of the skin (skin SCC), independent of comorbidity status or cancer treatment regimen. METHODS Patients (N = 4,192) younger than 65 years with HNSCC, NSCLC, melanoma, or skin SCC treated at MD Anderson Cancer Center from 2010 to 2021 were included. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were calculated. Kaplan-Meier and multivariate analyses adjusting for age, sex, TNM staging, comorbidities, and treatment modalities were performed to assess the effect of BBs on survival outcomes. RESULTS In patients with HNSCC (n = 682), BB use was associated with worse OS and DFS (OS: adjusted hazard ratio [aHR], 1.67; 95% CI, 1.06 to 2.62; P = .027; DFS: aHR, 1.67; 95% CI, 1.06 to 2.63; P = .027), with DSS trending to significance (DSS: aHR, 1.52; 95% CI, 0.96 to 2.41; P = .072). Negative effects of BBs were not observed in the patients with NSCLC (n = 2,037), melanoma (n = 1,331), or skin SCC (n = 123). Furthermore, decreased response to cancer treatment was observed in patients with HNSCC with BB use (aHR, 2.47; 95% CI, 1.14 to 5.38; P = .022). CONCLUSION The effect of BBs on cancer survival outcomes is heterogeneous and varies according to cancer type and immunotherapy status. In this study, BB intake was associated with worse DSS and DFS in patients with head and neck cancer not treated with immunotherapy, but not in patients with NSCLC or skin cancer.
Collapse
Affiliation(s)
- Hannah Y. Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weilu Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shorook Na'ara
- Department of Otolaryngology—Head and Neck Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shahrukh Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zachary M. Thompson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jane Buell
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haleigh Stafford
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Michael Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael R. Migden
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neil D. Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
23
|
Conceição F, Sousa DM, Tojal S, Lourenço C, Carvalho-Maia C, Estevão-Pereira H, Lobo J, Couto M, Rosenkilde MM, Jerónimo C, Lamghari M. The Secretome of Parental and Bone Metastatic Breast Cancer Elicits Distinct Effects in Human Osteoclast Activity after Activation of β2 Adrenergic Signaling. Biomolecules 2023; 13:biom13040622. [PMID: 37189370 DOI: 10.3390/biom13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The sympathetic nervous system (SNS), particularly through the β2 adrenergic receptor (β2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting β2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under β2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under β-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.
Collapse
Affiliation(s)
- Francisco Conceição
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Tojal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Lourenço
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Helena Estevão-Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Marina Couto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Meriem Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
24
|
Farhoumand LS, Liu H, Tsimpaki T, Hendgen-Cotta UB, Rassaf T, Bechrakis NE, Fiorentzis M, Berchner-Pfannschmidt U. Blockade of ß-Adrenergic Receptors by Nebivolol Enables Tumor Control Potential for Uveal Melanoma in 3D Tumor Spheroids and 2D Cultures. Int J Mol Sci 2023; 24:ijms24065894. [PMID: 36982966 PMCID: PMC10054088 DOI: 10.3390/ijms24065894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary cancer of the eye in adults. A new systemic therapy is needed to reduce the high metastasis and mortality rate. As β-blockers are known to have anti-tumor effects on various cancer entities, this study focuses on investigating the effect of β1-selective blockers atenolol, celiprolol, bisoprolol, metoprolol, esmolol, betaxolol, and in particular, nebivolol on UM. The study was performed on 3D tumor spheroids as well as 2D cell cultures, testing tumor viability, morphological changes, long-term survival, and apoptosis. Flow cytometry revealed the presence of all three β-adrenoceptors with a dominance of β2-receptors on cell surfaces. Among the blockers tested, solely nebivolol concentration-dependently decreased viability and altered 3D tumor spheroid structure. Nebivolol blocked the repopulation of cells spreading from 3D tumor spheroids, indicating a tumor control potential at a concentration of ≥20 µM. Mechanistically, nebivolol induced ATP depletion and caspase-3/7 activity, indicating that mitochondria-dependent signaling is involved. D-nebivolol or nebivolol combined with the β2-antagonist ICI 118.551 displayed the highest anti-tumor effects, suggesting a contribution of both β1- and β2-receptors. Thus, the present study reveals the tumor control potential of nebivolol in UM, which may offer a perspective for co-adjuvant therapy to reduce recurrence or metastasis.
Collapse
Affiliation(s)
- Lina S Farhoumand
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hongtao Liu
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Theodora Tsimpaki
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrike B Hendgen-Cotta
- CardioScience Labs, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Tienush Rassaf
- CardioScience Labs, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nikolaos E Bechrakis
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Miltiadis Fiorentzis
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Eye Research Lab, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
25
|
Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Shih JC, Lu J, Mumenthaler SM, Spicer D, Neman J, Roussos Torres ET, Lenz HJ. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. Oncogene 2023; 42:627-637. [PMID: 36650218 PMCID: PMC9957733 DOI: 10.1038/s41388-022-02584-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Exploring the relationship between various neurotransmitters and breast cancer cell growth has revealed their likely centrality to improving breast cancer treatment. Neurotransmitters play a key role in breast cancer biology through their effects on the cell cycle, epithelial mesenchymal transition, angiogenesis, inflammation, the tumor microenvironment and other pathways. Neurotransmitters and their receptors are vital to the initiation, progression and drug resistance of cancer and progress in our biological understanding may point the way to lower-cost and lower-risk antitumor therapeutic strategies. This review discusses multiple neurotransmitters in the context of breast cancer. It also discusses risk factors, repurposing of pharmaceuticals impacting neurotransmitter pathways, and the opportunity for better integrated models that encompass exercise, the intestinal microbiome, and other non-pharmacologic considerations. Neurotransmitters' role in breast cancer should no longer be ignored; it may appear to complicate the molecular picture but the ubiquity of neurotransmitters and their wide-ranging impacts provide an organizing framework upon which further understanding and progress against breast cancer can be based.
Collapse
Affiliation(s)
- Priya Jayachandran
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Francesca Battaglin
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
| | - Annika Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sandra Algaze
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shivani Soni
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jae Ho Lo
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Wu Zhang
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jean C Shih
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, US
| | - Janice Lu
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shannon M Mumenthaler
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, US
| | - Darcy Spicer
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Josh Neman
- Department of Neurosurgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Evanthia T Roussos Torres
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US.
| |
Collapse
|
26
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
27
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
28
|
Profiling the Adrenergic System in Breast Cancer and the Development of Metastasis. Cancers (Basel) 2022; 14:cancers14225518. [PMID: 36428611 PMCID: PMC9688855 DOI: 10.3390/cancers14225518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies and preclinical models suggest that chronic stress might accelerate breast cancer (BC) growth and the development of metastasis via sympathetic neural mechanisms. Nevertheless, the role of each adrenergic pathway (α1, α2, and β) in human samples remains poorly depicted. Herein, we propose to characterize the profile of the sympathetic system (e.g., release of catecholamines, expression of catecholamine metabolic enzymes and adrenoreceptors) in BC patients, and ascertain its relevance in the development of distant metastasis. Our results demonstrated that BC patients exhibited increased plasma levels of catecholamines when compared with healthy donors, and this increase was more evident in BC patients with distant metastasis. Our analysis using the BC-TCGA database revealed that the genes coding the most expressed adrenoreceptors in breast tissues (ADRA2A, ADRA2C, and ADRB2, by order of expression) as well as the catecholamine synthesizing (PNMT) and degrading enzyme (MAO-A and MAO-B) genes were downregulated in BC tissues. Importantly, the expression of ADRA2A, ADRA2C, and ADRB2 was correlated with metastatic BC and BC subtypes, and thus the prognosis of the disease. Overall, we gathered evidence that under stressful conditions, both the α2- and β2-signaling pathways might work on a synergetic matter, thus paving the way for the development of new therapeutic approaches.
Collapse
|
29
|
Le TT, Payne SL, Buckwald MN, Hayes LA, Parker SR, Burge CB, Oudin MJ. Sensory nerves enhance triple-negative breast cancer invasion and metastasis via the axon guidance molecule PlexinB3. NPJ Breast Cancer 2022; 8:116. [PMID: 36333352 PMCID: PMC9636220 DOI: 10.1038/s41523-022-00485-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In breast cancer, nerve presence has been correlated with more invasive disease and worse prognosis, yet the mechanisms by which different types of peripheral nerves drive tumor progression remain poorly understood. In this study, we identified sensory nerves as more abundant in human triple-negative breast cancer (TNBC) tumors. Co-injection of sensory neurons isolated from the dorsal root ganglia (DRG) of adult female mice with human TNBC cells in immunocompromised mice increased the number of lung metastases. Direct in vitro co-culture of human TNBC cells with the dorsal root ganglia (DRG) of adult female mice revealed that TNBC cells adhere to sensory neuron fibers leading to an increase in migration speed. Species-specific RNA sequencing revealed that co-culture of TNBC cells with sensory nerves upregulates the expression of genes associated with cell migration and adhesion in cancer cells. We demonstrated that lack of the semaphorin receptor PlexinB3 in cancer cells attenuate their adhesion to and migration on sensory nerves. Together, our results identify a mechanism by which nerves contribute to breast cancer migration and metastasis by inducing a shift in TNBC cell gene expression and support the rationale for disrupting neuron-cancer cell interactions to target metastasis.
Collapse
Affiliation(s)
- Thanh T Le
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Maia N Buckwald
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Lily A Hayes
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Savannah R Parker
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | | | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
30
|
Ihle CL, Wright-Hobart SJ, Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacol Ther 2022; 239:108280. [DOI: 10.1016/j.pharmthera.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
|
31
|
Ieguchi K, Funakoshi M, Mishima T, Takizawa K, Omori T, Nakamura F, Watanabe M, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Maru Y, Wada S. The Sympathetic Nervous System Contributes to the Establishment of Pre-Metastatic Pulmonary Microenvironments. Int J Mol Sci 2022; 23:ijms231810652. [PMID: 36142564 PMCID: PMC9501257 DOI: 10.3390/ijms231810652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that neural activity contributes to tumor initiation and its acquisition of metastatic properties. More specifically, it has been reported that the sympathetic nervous system regulates tumor angiogenesis, tumor growth, and metastasis. The function of the sympathetic nervous system in primary tumors has been gradually elucidated. However, its functions in pre-metastatic environments and/or the preparation of metastatic environments far from the primary sites are still unknown. To investigate the role of the sympathetic nervous system in pre-metastatic environments, we performed chemical sympathectomy using 6-OHDA in mice and observed a decrease in lung metastasis by attenuating the recruitment of myeloid-derived suppressor cells. Furthermore, we note that neuro-immune cell interactions could be observed in tumor-bearing mouse lungs in conjunction with the decreased expression of Sema3A. These data indicate that the sympathetic nervous system contributes to the preparation of pre-metastatic microenvironments in the lungs, which are mediated by neuro-immune cell interactions.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Masabumi Funakoshi
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of Peripheral Nervous System Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tsutomu Omori
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo 157-8577, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Correspondence: (Y.M.); (S.W.); Tel.: +81-3-5269-7417 (Y.M.); +81-3-3300-5257 (S.W.)
| |
Collapse
|
32
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
Interactive exploration of a global clinical network from a large breast cancer cohort. NPJ Digit Med 2022; 5:113. [PMID: 35948579 PMCID: PMC9365762 DOI: 10.1038/s41746-022-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Despite unprecedented amount of information now available in medical records, health data remain underexploited due to their heterogeneity and complexity. Simple charts and hypothesis-driven statistics can no longer apprehend the content of information-rich clinical data. There is, therefore, a clear need for powerful interactive visualization tools enabling medical practitioners to perceive the patterns and insights gained by state-of-the-art machine learning algorithms. Here, we report an interactive graphical interface for use as the front end of a machine learning causal inference server (MIIC), to facilitate the visualization and comprehension by clinicians of relationships between clinically relevant variables. The widespread use of such tools, facilitating the interactive exploration of datasets, is crucial both for data visualization and for the generation of research hypotheses. We demonstrate the utility of the MIIC interactive interface, by exploring the clinical network of a large cohort of breast cancer patients treated with neoadjuvant chemotherapy (NAC). This example highlights, in particular, the direct and indirect links between post-NAC clinical responses and patient survival. The MIIC interactive graphical interface has the potential to help clinicians identify actionable nodes and edges in clinical networks, thereby ultimately improving the patient care pathway.
Collapse
|
34
|
Li W, Wan J, Chen C, Zhou C, Liao P, Hu Q, Hu J, Wang Y, Zhang Y, Peng C, Huang Y, Huang W, Zhang W, Mcleod HL, He Y. Dissecting the role of cell signaling versus CD8 + T cell modulation in propranolol antitumor activity. J Mol Med (Berl) 2022; 100:1299-1306. [PMID: 35895125 DOI: 10.1007/s00109-022-02238-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (β-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a β1-AR selective agent (atenolol), and a β2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of β2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective β1 nor β2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jielin Wan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, UT, 84770, USA.
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
35
|
Pérez Piñero C, Rivero EM, Gargiulo L, Rodríguez MS, Bruque CD, Bruzzone A, Lüthy IA. Adrenergic receptors in breast cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:37-63. [PMID: 36357079 DOI: 10.1016/bs.pmbts.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most diagnosed malignancy in women worldwide and in the majority of the countries. Breast cancers are classified on the expression of estrogen and progesterone receptor expression and overexpression of human epidermal growth factor receptor 2 (HER2) as luminal, HER2+ and triple negative breast cancer. The intrinsic molecular subtypes match this classification. Cancer diagnosis and treatment cause distress. In both acute and chronic stress, the secreted catecholamines adrenaline and noradrenaline trigger the "fight-or-flight" response. This chapter focuses on the actions of the β2 and α2 adrenergic receptors in several models of breast cancer. The actions of these receptors depend on the model used to investigate them. The β2-adrenergic receptors seem to exert a dual action. They can directly act on the epithelial cells inhibiting cell proliferation and migration/invasion and indirectly upon the immune microenvironment. The proportion of β2 receptors in each compartment could, therefore, lean the scale to an inhibition or to an exacerbation of tumor growth, invasion and metastasis. All the work points to a beneficial or neutral action of β-blockers on breast cancer. With respect to α2-adrenergic receptors, the investigation performed by our group suggest that the α2B and the α2C receptors are linked to enhanced cell proliferation and tumor growth acting through both the epithelial and the stromal (fibroblastic) compartments while α2A could be beneficial for patients. Some adrenergic compounds could be repurposed for breast cancer treatment due to their very low side effects and very well-known pharmacology.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | | | - Lucía Gargiulo
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina
| | - Carlos David Bruque
- Genética Molecular Humana y Bioinformática, Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB -CONICET, Buenos Aires, Argentina
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Beta 2-Adrenergic Receptor in Circulating Cancer-Associated Cells Predicts for Increases in Stromal Macrophages in Circulation and Patient Survival in Metastatic Breast Cancer. Int J Mol Sci 2022; 23:ijms23137299. [PMID: 35806301 PMCID: PMC9266803 DOI: 10.3390/ijms23137299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
The usage of beta blockers in breast cancer (BC) patients is implicated in the reduction in distant metastases, cancer recurrence, and cancer mortality. Studies suggest that the adrenergic pathway is directly involved in sympathetic-driven hematopoietic activation of pro-tumor microenvironmental proliferation and tumor cell trafficking into the circulation. Cancer-associated macrophage-like cells (CAMLs) are pro-tumor polynucleated monocytic cells of hematopoietic origin emanating from tumors which may aid in circulating tumor cell (CTC) dissemination into the circulation. We examined the linkage between Beta-2 adrenergic receptor (B2AR) signaling in CAMLs and CTCs by establishing expression profiles in a model BC cell line (MDA-MB-231). We compared the model to CAMLs and CTCs found in patents. Although internalization events were observed in patients, differences were found in the expression of B2AR between the tumor cell lines and the CAMLs found in patients. High B2AR expression on patients’ CAMLs was correlated with significantly more CAMLs in the circulation (p = 0.0093), but CTCs had no numerical relationship (p = 0.1565). High B2AR CAML expression was also significantly associated with a larger size of CAMLs (p = 0.0073), as well as being significantly associated with shorter progression-free survival (p = 0.0097) and overall survival (p = 0.0265). These data suggest that B2AR expression on CAMLs is closely related to the activation, intravasation, and growth of CAMLs in the circulation.
Collapse
|
37
|
Løfling LL, Støer NC, Sloan EK, Chang A, Gandini S, Ursin G, Botteri E. β-blockers and breast cancer survival by molecular subtypes: a population-based cohort study and meta-analysis. Br J Cancer 2022; 127:1086-1096. [PMID: 35725814 PMCID: PMC9470740 DOI: 10.1038/s41416-022-01891-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023] Open
Abstract
Background The association between use of β-blockers and breast cancer (BC) prognosis has been investigated in several observational studies, with conflicting results. We performed a nationwide cohort study and a meta-analysis to investigate the association, and assess if it varied between molecular subtypes of BC. Methods We identified women aged ≥50 years with BC diagnosed between 2004 and 2018 in Norway. We used Cox regression models to estimate the association between β-blocker use at diagnosis and BC-specific survival, overall and by molecular subtype. We performed a meta-analysis of observational studies that reported molecular subtype-specific estimates of this association. Results We included 30,060 women, of which 4461 (15%) used β-blockers. After a median follow-up of 5.1 years, 2826 (9%) died of BC. Overall, β-blocker use was not associated with BC-specific survival (hazard ratio [HR] = 1.07; 95% confidence interval [CI]: 0.97–1.19). We found an association only in triple-negative BC (TNBC) patients (HR = 0.66; 95% CI: 0.47–0.91). This was confirmed in the meta-analysis: β-blocker use was associated with progression/recurrence-free (HR = 0.58; 95% CI: 0.38–0.89) and BC-specific survival (HR = 0.74; 95% CI: 0.55–1.00) in TNBC patients only. Conclusion In our cohort of BC patients and in the meta-analysis, β-blocker use was associated with prolonged BC-specific survival only in TNBC patients.
Collapse
Affiliation(s)
- L Lukas Løfling
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Nathalie C Støer
- Department of Research, Cancer Registry of Norway, Oslo, Norway.,Norwegian Research Centre for Women's Health, Women's Clinic, Oslo University Hospital, Oslo, Norway
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Aeson Chang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giske Ursin
- Cancer Registry of Norway, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edoardo Botteri
- Department of Research, Cancer Registry of Norway, Oslo, Norway. .,Section for Colorectal Cancer Screening, Cancer Registry of Norway, Oslo, Norway.
| |
Collapse
|
38
|
Naki T, Matshe W, Ubanako P, Adeyemi SA, Balogun M, Sinha Ray S, Choonara YE, Aderibigbe BA. Dopamine-Loaded Polymer-Drug Conjugates for Potential Synergistic Anti-Cancer Treatment. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| | - W. Matshe
- Polymer and Composites, CSIR Materials Science and Manufacturing, Pretoria, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samson A. Adeyemi
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - M.O. Balogun
- Polymer and Composites, CSIR Materials Science and Manufacturing, Pretoria, South Africa
| | - S. Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
39
|
Lourenço C, Conceição F, Jerónimo C, Lamghari M, Sousa DM. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers (Basel) 2022; 14:1881. [PMID: 35454788 PMCID: PMC9028241 DOI: 10.3390/cancers14081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) remains as one the most prevalent cancers diagnosed in industrialised countries. Although the overall survival rate is high, the dissemination of BRCA cells to distant organs correlates with a significantly poor prognosis. This is due to the fact that there are no efficient therapeutic strategies designed to overcome the progression of the metastasis. Over the past decade, critical associations between stress and the prevalence of BRCA metastases were uncovered. Chronic stress and the concomitant sympathetic hyperactivation have been shown to accelerate the progression of the disease and the metastases incidence, specifically to the bone. In this review, we provide a summary of the sympathetic profile on BRCA. Additionally, the current knowledge regarding the sympathetic hyperactivity, and the underlying adrenergic signalling pathways, involved on the development of BRCA metastasis to distant organs (i.e., bone, lung, liver and brain) will be revealed. Since bone is a preferential target site for BRCA metastases, greater emphasis will be given to the contribution of α2- and β-adrenergic signalling in BRCA bone tropism and the occurrence of osteolytic lesions.
Collapse
Affiliation(s)
- Catarina Lourenço
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology—ICBAS-UP, 4050-313 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-UP—School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal; (C.L.); (F.C.); (M.L.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
40
|
Fan Y, Khan NH, Farhan Ali Khan M, Ahammad MDF, Zulfiqar T, Virk R, Jiang E. Association of Hypertension and Breast Cancer: Antihypertensive Drugs as an Effective Adjunctive in Breast Cancer Therapy. Cancer Manag Res 2022; 14:1323-1329. [PMID: 35392356 PMCID: PMC8982807 DOI: 10.2147/cmar.s350854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy affecting women, and its incidence in younger women is rising worldwide. Early-onset of BC is a multi-step process involving various biological aggressive tumors such as triple negative and human epidermal growth factor 2 (HER2)-positive cancers. BC prevention is still arduous across the globe. A series of observational studies have established a conclusive non-genetic clinical link between hypertension (HTN) and the development of invasive BC. Those clinical associations have driven a pharmacological seek to use the anti-hypertension (AHTN) drugs as an effective adjunctive in BC therapy. The use of AHTN, especially beta-blockers and thiazides, has been recognized as a potent anti-tumor drug to mitigate BC progression, reduce the side effects of cancer treatment, and stop the reoccurrence of cancer in the survivors. Considering the dire need to disseminate the research on how AHTN drugs can be opted as the effective adjunctive therapy to cure the BC, the current review aimed to provide an update on novel understandings on association and mechanisms of AHTN-drugs against BC as an additional cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Nazeer Hussain Khan
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | | | - M D Faysal Ahammad
- Key Laboratory of Natural Medicine and Immune Engineering, School of Medicine, Henan University, Kaifeng, People’s Republic of China
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Quaid I Azam University, Islamabad, Pakistan
| | - Razia Virk
- Department of Bio-Sciences, University Wah, Rawalpindi, Pakistan
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
41
|
Altshuler E, Aryan M, Kallumkal G, Gao H, Wilson J, Ouni A, De Leo E, Hanayneh W, Pan K. Impact of β-blockers on survival outcomes in patients with unresectable hepatocellular carcinoma. Hepat Oncol 2022; 9:HEP43. [PMID: 35665305 PMCID: PMC9136628 DOI: 10.2217/hep-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background β-blockers (BBs) have shown promise in improving overall survival (OS) in patients with breast, ovarian, pancreatic and lung cancer. However, few studies have evaluated the impact of BBs on unresectable hepatocellular carcinoma (HCC). Methods The authors compared clinical data and outcomes between unresectable HCC patients based on whether they were prescribed BBs. Results There was significantly decreased disease progression in the BB group compared with the non-BB group (22.8 vs 28.0%; p < 0.05). No difference was seen in OS or progression-free survival between groups. Those specifically on selective BBs had improved OS (hazard ratio: 0.75; 95% CI: 0.61-0.94; p = 0.01) and progression-free survival (hazard ratio: 0.66; 95% CI: 0.45-0.96; p = 0.03) compared with non-BB patients. Conclusion Although the authors' study did not demonstrate that BBs improve OS in HCC, it did show decreased disease progression among patients with HCC who were taking BBs compared with those who were not.
Collapse
Affiliation(s)
- Ellery Altshuler
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mahmoud Aryan
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Govind Kallumkal
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hanzhi Gao
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
- Department of Gastroenterology, Mayo Clinic, Jacksonville, FL, USA
| | - Jake Wilson
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ahmed Ouni
- Department of Gastroenterology, Mayo Clinic, Jacksonville, FL, USA
| | - Edward De Leo
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wissam Hanayneh
- Division of Medical Oncology, H Lee Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Kelsey Pan
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
42
|
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, Yang L, Li H. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis 2022; 8:131. [PMID: 35338118 PMCID: PMC8956600 DOI: 10.1038/s41420-022-00930-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
Abstract
A high intratumoral nerve density is correlated with poor survival, high metastasis, and high recurrence across multiple solid tumor types. Recent research has revealed that cancer cells release diverse neurotrophic factors and exosomes to promote tumor innervation, in addition, infiltrating nerves can also mediate multiple tumor biological processes via exosomes and neurotransmitters. In this review, through seminal studies establishing tumor innervation, we discuss the communication between peripheral nerves and tumor cells in the tumor microenvironment (TME), and revealed the nerve-tumor regulation mechanisms on oncogenic process, angiogenesis, lymphangiogenesis, and immunity. Finally, we discussed the promising directions of ‘old drugs newly used’ to target TME communication and clarified a new line to prevent tumor malignant capacity.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
43
|
Post-diagnostic beta blocker use and breast cancer-specific mortality: a population-based cohort study. Breast Cancer Res Treat 2022; 193:225-235. [PMID: 35286523 PMCID: PMC8993732 DOI: 10.1007/s10549-022-06528-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 12/04/2022]
Abstract
Purpose Beta blockers (BB) have been associated with improved, worsened, or unchanged breast cancer outcomes in previous studies. This study examines the association between the post-diagnostic use of BBs and death from breast cancer in a large, representative sample of New Zealand (NZ) women with breast cancer. Methods Women diagnosed with a first primary breast cancer between 2007 and 2016 were identified from four population-based regional NZ breast cancer registries and linked to national pharmaceutical data, hospital discharges, and death records. The median follow-up time was 4.51 years. Cox proportional hazard models were used to estimate the hazard of breast cancer-specific death (BCD) associated with any post-diagnostic BB use. Results Of the 14,976 women included in analyses, 21% used a BB after diagnosis. BB use (vs non-use) was associated with a small and nonstatistically significant increased risk of BCD (adjusted hazard ratio: 1.11; 95% CI 0.95–1.29). A statistically significant increased risk confined to short-term use (0–3 months) was seen (HR = 1.40; 1.14–1.73), and this risk steadily decreased with increasing duration of use and became a statistically significant protective effect at 3 + years of use (HR = 0.55; 0.34–0.88). Conclusion Our findings suggest that any increased risk associated with BB use may be driven by risk in the initial few months of use. Long-term BB use may be associated with a reduction in BCD. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-022-06528-0.
Collapse
|
44
|
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis. J Cell Physiol 2022; 237:2107-2127. [PMID: 35243626 DOI: 10.1002/jcp.30707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of β2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by β2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Timilsina M, Kernan DPM, Yang H, d'Aquin M. Synergy Between Embedding and Protein Functional Association Networks for Drug Label Prediction Using Harmonic Function. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1203-1213. [PMID: 33064647 DOI: 10.1109/tcbb.2020.3031696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semi-Supervised Learning (SSL)is an approach to machine learning that makes use of unlabeled data for training with a small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such a model, we used openly available data resources to create (i)drugs and genes, (ii)genes and disease, bipartite graphs. We constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration by effectively predicting drug labels.
Collapse
|
46
|
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio 2022; 13:100219. [PMID: 35243294 PMCID: PMC8857466 DOI: 10.1016/j.mtbio.2022.100219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.
Collapse
|
47
|
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK. Biobehavioral Pathways and Cancer Progression: Insights for Improving Well-Being and Cancer Outcomes. Integr Cancer Ther 2022; 21:15347354221096081. [PMID: 35579197 PMCID: PMC9118395 DOI: 10.1177/15347354221096081] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
The relationship between psychosocial factors and cancer has intrigued people for centuries. In the last several decades there has been an expansion of mechanistic research that has revealed insights regarding how stress activates neuroendocrine stress-response systems to impact cancer progression. Here, we review emerging mechanistic findings on key pathways implicated in the effect of stress on cancer progression, including the cellular immune response, inflammation, angiogenesis, and metastasis, with a primary focus on the mediating role of the sympathetic nervous system. We discuss converging findings from preclinical and clinical cancer research that describe these pathways and research that reveals how these stress pathways may be targeted via pharmacological and mind-body based interventions. While further research is required, the body of work reviewed here highlights the need for and feasibility of an integrated approach to target stress pathways in cancer patients to achieve comprehensive cancer treatment.
Collapse
Affiliation(s)
- Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC, Australia
| | - Michael H. Antoni
- Departments of Psychology, Psychiatry, and Behavioral Sciences, and Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jennifer M. Knight
- Department of Psychiatry and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Telles
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Susan K. Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
48
|
Lorona NC, Cook LS, Tang MTC, Hill DA, Wiggins CL, Li CI. Antihypertensive medications and risks of recurrence and mortality in luminal, triple-negative, and HER2-overexpressing breast cancer. Cancer Causes Control 2021; 32:1375-1384. [PMID: 34347212 PMCID: PMC8541909 DOI: 10.1007/s10552-021-01485-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Antihypertensives are commonly prescribed medications and their effect on breast cancer recurrence and mortality is not clear, particularly among specific molecular subtypes of breast cancer: luminal, triple-negative (TN), and HER2-overexpressing (H2E). METHODS A population-based prospective cohort study of women aged 20-69 diagnosed with a first primary invasive breast cancer between 2004 and 2015 was conducted in the Seattle, Washington and Albuquerque, New Mexico greater metropolitan areas. Multivariable-adjusted Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for risks of breast cancer recurrence, breast cancer-specific mortality, and all-cause mortality associated with hypertension and antihypertensives. RESULTS In this sample of 2,383 luminal, 1,559 TN, and 615 H2E breast cancer patients, overall median age was 52 (interquartile range, 44-60). Hypertension and current use of antihypertensives were associated with increased risks of all-cause mortality in each subtype. Current use of angiotensin-converting enzyme inhibitors was associated with increased risks of both recurrence and breast cancer-specific mortality among luminal patients (HR: 2.5; 95% CI: 1.5, 4.3 and HR: 1.9; 95% CI: 1.2, 3.0, respectively). Among H2E patients, current use of calcium channel blockers was associated with an increased risk of breast cancer-specific mortality (HR: 1.8; 95% CI: 0.6, 5.4). CONCLUSION Our findings suggest that some antihypertensive medications may be associated with adverse breast cancer outcomes among women with certain molecular subtypes. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Nicole C Lorona
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, M4-C308, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Linda S Cook
- Department of Internal Medicine, University of New Mexico and the University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Mei-Tzu C Tang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, M4-C308, USA
| | - Deirdre A Hill
- Department of Internal Medicine, University of New Mexico and the University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Charles L Wiggins
- Department of Internal Medicine, University of New Mexico and the University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, M4-C308, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Vaibavi SR, Sivasubramaniapandian M, Vaippully R, Edwina P, Roy B, Bajpai SK. Calcium-channel-blockers exhibit divergent regulation of cancer extravasation through the mechanical properties of cancer cells and underlying vascular endothelial cells. Cell Biochem Biophys 2021; 80:171-190. [PMID: 34643835 DOI: 10.1007/s12013-021-01035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular and cancer illnesses often co-exist, share pathological pathways, and complicate therapy. In the context of the potential oncological role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clinically-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect. Next, impedance-spectroscopy shows that for monolayers of either endothelial or cancer cells, Nifedipine-treatment alone decreases the impedance of both cases, suggesting compromised cell-cell integrity. Furthermore, upon co-culturing MCF-7 on the HUVEC monolayers, Nifedipine-treated MCF-7 cells exhibit weaker impedance than Verapamil-treated MCF-7 cells. Following, fluorescent staining of CCB-treated cytoskeleton, focal adhesions, and cell-cell junction also indicated that Nifedipine treatment diminished the cell-cell integrity, whereas verapamil treatment preserved the integrity. Since CCBs regulate intracellular Ca2+, we next investigated if cancer cell's exposure to CCBs regulates calcium-dependent processes critical to extravasation, specifically traction and mechanics of plasma membrane. Towards this end, first, we quantified the 2D-cellular traction of cells in response to CCBs. Results show that exposure to F-actin depolymerizing drug decreases traction stress significantly only for Nifedipine-treated cells, suggesting an actin-independent mechanism of Verapamil activity. Next, using an optical tweezer to quantify the mechanics of plasma membrane (PM), we observe that under constant, externally-applied tensile strain, PM of Nifedipine-treated cells exhibits smaller relaxation-time than Verapamil and untreated cells. Finally, actin depolymerization significantly decreases MSD only for Verapamil treated cancer-cells and endothelial cells and not for Nifedipine-treated cells. Together, our results show that CCBs can have varied, mechanics-regulating effects on cancer-cell transmigration across endothelial monolayers. A judicious choice of CCBs is critical to minimizing the pro-metastatic effects of antihypertension therapy.
Collapse
Affiliation(s)
- S R Vaibavi
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | | | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology, Madras, India
| | - Privita Edwina
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology, Madras, India
| | | |
Collapse
|
50
|
Koh M, Takahashi T, Kurokawa Y, Kobayashi T, Saito T, Ishida T, Serada S, Fujimoto M, Naka T, Wada N, Yamashita K, Tanaka K, Miyazaki Y, Makino T, Nakajima K, Yamasaki M, Eguchi H, Doki Y. Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis. Gastric Cancer 2021; 24:1037-1049. [PMID: 33782804 DOI: 10.1007/s10120-021-01184-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite improvements in gastric cancer treatment, the mortality associated with advanced gastric cancer is still high. The activation of β-adrenergic receptors by stress has been shown to accelerate the progression of several cancers. Accordingly, increasing evidence suggests that the blockade of β-adrenergic signaling can inhibit tumor growth. However, the effect of β-blockers, which target several signaling pathways, on gastric cancer remains to be elucidated. This study aimed to investigate the anti-tumor effects of propranolol, a non-selective β-blocker, on gastric cancer. METHODS We explored the effect of propranolol on the MKN45 and NUGC3 gastric cancer cell lines. Its efficacy and the mechanism by which it exerts anti-tumor effects were examined using several assays (e.g., cell proliferation, cell cycle, apoptosis, and wound healing) and a xenograft mouse model. RESULTS We found that propranolol inhibited tumor growth and induced G1-phase cell cycle arrest and apoptosis in both cell lines. Propranolol also decreased the expression of phosphorylated CREB-ATF and MEK-ERK pathways; suppressed the expression of matrix metalloproteinase-2, 9 and vascular endothelial growth factor; and inhibited gastric cancer cell migration. In the xenograft mouse model, propranolol treatment significantly inhibited tumor growth, and immunohistochemistry revealed that propranolol led to the suppression of proliferation and induction of apoptosis. CONCLUSIONS Propranolol inhibits the proliferation of gastric cancer cells by inducing G1-phase cell cycle arrest and apoptosis. These findings indicate that propranolol might have an opportunity as a new drug for gastric cancer.
Collapse
Affiliation(s)
- Masahiro Koh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teruyuki Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomo Ishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Minoru Fujimoto
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Noriko Wada
- Department of Surgery, Ikeda City Hospital, Ikeda, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|