1
|
Tian ZF, Hu RY, Wang Z, Wang YJ, Li W. Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review. Arch Toxicol 2025; 99:541-561. [PMID: 39729114 DOI: 10.1007/s00204-024-03941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C. A. Meyer, is a precious Traditional Chinese Medicines with high medicinal value and is known as the "king of all herbs", and its active ingredient, ginsenoside Rg3 is a rare saponin and a new class of drug, one of the most thoroughly and extensively studied in a large number of studies. Ginsenoside Rg3 is an active ingredient extracted from ginseng that possesses a variety of biological activities, including anti-inflammatory, antioxidant, and anti-fibrotic effects. Several studies have suggested that ginsenoside Rg3 may help reduce hepatic inflammation and oxidative stress, thereby slowing the progression of liver fibrosis. Ginsenoside Rg3 may have some therapeutic effects on liver fibrosis, and the underlying molecular mechanisms behind these effects are attributed to cellular autophagy, apoptosis, and anti-inflammation, as well as the modulation of antioxidant activity and multiple signaling pathways. The molecular mechanisms behind the inhibitory effect of ginsenoside Rg3 on hepatic fibrosis are reviewed, with a view to providing reference for related studies.
Collapse
Affiliation(s)
- Zhao-Feng Tian
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Basuony NS, Mohamed TM, Beltagy DM, Massoud AA, Elwan MM. Therapeutic Effects of Crocin Nanoparticles Alone or in Combination with Doxorubicin against Hepatocellular Carcinoma In vitro. Anticancer Agents Med Chem 2025; 25:194-206. [PMID: 39410891 DOI: 10.2174/0118715206327654240823074318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 02/25/2025]
Abstract
OBJECTIVE Crocin (CRO), the primary antioxidant in saffron, is known for its anticancer properties. However, its effectiveness in topical therapy is limited due to low bioavailability, poor absorption, and low physicochemical stability. This study aimed to prepare crocin nanoparticles (CRO-NPs) to enhance their pharmaceutical efficacy and evaluate the synergistic effects of Cro-NPs with doxorubicin (DOX) chemotherapy on two cell lines: human hepatocellular carcinoma cells (HepG2) and non-cancerous cells (WI38). METHODS CRO-NPs were prepared using the emulsion diffusion technique and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential, and Fourier transform infrared spectroscopy (FT-IR). Cell proliferation inhibition was assessed using the MTT assay for DOX, CRO, CRO-NPs, and DOX+CRO-NPs. Apoptosis and cell cycle were evaluated by flow cytometry, and changes in the expression of apoptotic gene (P53) and autophagic genes (ATG5 & LC3) were analyzed using real-time polymerase chain reaction. RESULTS TEM and SEM revealed that CRO-NPs exhibited a relatively spherical shape with an average size of 9.3 nm, and zeta potential analysis indicated better stability of CRO-NPs compared to native CRO. Significantly higher antitumor effects of CRO-NPs were observed against HepG2 cells (IC50 = 1.1 mg/ml and 0.57 mg/ml) compared to native CRO (IC50 = 6.1 mg/ml and 3.2 mg/ml) after 24 and 48 hours, respectively. Annexin-V assay on HepG2 cells indicated increased apoptotic rates across all treatments, with the highest percentage observed in CRO-NPs, accompanied by cell cycle arrest at the G2/M phase. Furthermore, gene expression analysis showed upregulation of P53, ATG5, and LC3 genes in DOX/CRO-NPs co-treatment compared to individual treatments. In contrast, WI38 cells exhibited greater sensitivity to DOX toxicity but showed no adverse response to CRONPs. CONCLUSION Although more in vivo studies in animal models are required to corroborate these results, our findings suggest that CRO-NPs can be a potential new anticancer agent for hepatocellular carcinoma. Moreover, they have a synergistic effect with DOX against HepG2 cells and mitigate the toxicity of DOX on normal WI38 cells.
Collapse
Affiliation(s)
- Noha S Basuony
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Department of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Doha M Beltagy
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ahmed A Massoud
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona M Elwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Cui A, Liu H, Liu X, Zhang M, Xiao B, Wang B, Yang J. Steroidal saponins: Natural compounds with the potential to reverse tumor drug resistance (Review). Oncol Lett 2024; 28:585. [PMID: 39421314 PMCID: PMC11484340 DOI: 10.3892/ol.2024.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Steroidal saponins are a type of natural product that have been widely used in Chinese herbal medicine, with a variety of pharmacological activities, such as antitumor, anti-inflammatory and anti-bacterial effects. Cancer has become a growing global health problem, and drug therapy is currently the most important clinical antitumor treatment. However, drug resistance is a major obstacle to the effectiveness of chemotherapy, resulting in >90% of deaths of patients with cancer receiving conventional chemotherapy. It has been found that steroidal saponins may exert an effect on the reversal of drug resistance in tumor cells by regulating apoptosis, autophagy, epithelial-mesenchymal transition and drug efflux through multiple related signaling pathways. The present study reviews the role and mechanism of steroidal saponins in the treatment of tumor drug resistance, aiming to provide a scientific basis and research ideas for the future development and clinical application of natural steroidal saponins.
Collapse
Affiliation(s)
- Aiping Cui
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hai Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Minhong Zhang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Bang Xiao
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Biao Wang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianqiong Yang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Osteoporosis Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
4
|
Wang W, Li K, Xiao W. The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms. J Ginseng Res 2024; 48:129-139. [PMID: 38465219 PMCID: PMC10920009 DOI: 10.1016/j.jgr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.
Collapse
Affiliation(s)
- Wenhong Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ke Li
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Ning JY, Zhang ZH, Zhang J, Liu YM, Li GC, Wang AM, Li Y, Shan X, Wang JH, Zhang X, Zhao Y. Ginsenoside Rg3 decreases breast cancer stem-like phenotypes through impairing MYC mRNA stability. Am J Cancer Res 2024; 14:601-615. [PMID: 38455405 PMCID: PMC10915333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.
Collapse
Affiliation(s)
- Jin-Yue Ning
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Zi-Han Zhang
- Medical College of Tianjin UniversityTianjin 300072, China
| | - Jia Zhang
- Department of Oncology, People’s Hospital of NingxiangNingxiang 410600, Hunan, China
| | - Yong-Min Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Guan-Chu Li
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and TechnologyWuhan 430000, China
| | - A-Man Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Ying Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Xiu Shan
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| | - Ju-Hong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University Cardiovascular HospitalDalian 116000, Liaoning, China
| | - Yi Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical UniversityDalian 116011, Liaoning, China
| |
Collapse
|
6
|
Wu L, Bai L, Dai W, Wu Y, Xi P, Zhang J, Zheng L. Ginsenoside Rg3: A Review of its Anticancer Mechanisms and Potential Therapeutic Applications. Curr Top Med Chem 2024; 24:869-884. [PMID: 38441023 DOI: 10.2174/0115680266283661240226052054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a long history of treating various diseases and is increasingly being recognized as a complementary therapy for cancer. A promising natural compound extracted from the Chinese herb ginseng is ginsenoside Rg3, which has demonstrated significant anticancer effects. It has been tested in a variety of cancers and tumors and has proven to be effective in suppressing cancer. OBJECTIVES This work covers various aspects of the role of ginsenoside Rg3 in cancer treatment, including its biological functions, key pathways, epigenetics, and potential for combination therapies, all of which have been extensively researched and elucidated. The study aims to provide a reference for future research on ginsenoside Rg3 as an anticancer agent and a support for the potential application of ginsenoside Rg3 in cancer treatment.
Collapse
Affiliation(s)
- Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshu Dai
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontier Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaping Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengjun Xi
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lily Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Zhou N, Mao F, Cheng S. Mechanism Research and Application for Ginsenosides in the Treatment of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7214037. [PMID: 38027042 PMCID: PMC10667047 DOI: 10.1155/2023/7214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Ginsenosides, the main active pharmacological ingredients of ginseng, have been widely used for the treatment of numerous carcinomas. Hepatocellular carcinoma (HCC) is 3rd leading malignant tumor in terms of mortality worldwide. Accumulating evidence indicates that ginsenosides play a vital role in the prevention and treatment of HCC. Ginsenosides can significantly improve the symptoms of HCC, and their anticancer activity is mainly involved in inhibiting proliferation and migration, inducing cell cycle arrest at the G0/G1 phase, promoting caspase-3 and 8-mediated apoptosis, regulating autophagy related to Atg5, Atg7, Atg12, LC3-II, and PI3K/Akt pathways, and lowering invasion and metastasis associated with decreased nuclear translocation of NF-κB p65 and MMP-2/9, increasing IL-2 and IFN-γ levels to enhance immune function, as well as regulating the gut-liver axis. In addition, ginsenosides can be used as an adjuvant to conventional cancer therapies, enhancing sensitivity to chemotherapy drugs, and improving efficacy and/or reducing adverse reactions through synergistic effects. Therefore, the current manuscript discusses the mechanism and application of ginsenosides in HCC. It is hoped to provide theoretical basis for the treatment of HCC with ginsenosides.
Collapse
Affiliation(s)
- Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuqun Cheng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
| |
Collapse
|
8
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
10
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
11
|
Natu A, Pedgaonkar A, Gupta S. Mitochondrial dysfunction and chromatin changes with autophagy-mediated survival in doxorubicin resistant cancer cell lines. Biochem Biophys Res Commun 2023; 648:1-10. [PMID: 36724554 DOI: 10.1016/j.bbrc.2023.01.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/28/2023]
Abstract
Acquired chemoresistance against doxorubicin remains an obstacle in long-term treatment. The comprehensive molecular mechanism underlying the acquirement of doxorubicin resistance has not been reported. The objective of the present study is to understand the survival strategies and investigate alternate treatments for doxorubicin-resistant cervical and liver cancer cells. In this study, doxorubicin-resistant sublines were established by continuous incremental exposure of the drug to parental cervical and liver cancer cells. The transcriptome data in drug-resistant model revealed downregulated energy production pathways like glycolysis, oxidative phosphorylation, and mTOR signalling. This resulted in slow proliferation and altered mitochondrial changes in doxorubicin-resistant cells. The altered metabolic state of the resistant cells was associated with hypo-acetylation of chromatin. Pre-treatment with HDACi sensitized the drug-resistant cells to doxorubicin by increased drug accumulation in the cells, thereby leading to apoptosis. Additionally, we demonstrated that autophagy gets activated in doxorubicin-resistant cervical and liver cancer cells. Autophagy acts as pro-survival mechanism in resistant cells, as inhibition of autophagy leads to cell death. In conclusion, the data highlights survival ability of resistant cells with mitochondrial dysfunction, altered chromatin state, and pro-survival autophagy. The study proposes targeting chromatin alteration with the combinatorial treatment of HDACi with doxorubicin or survival mechanism through autophagy inhibitor against doxorubicin-resistant cancer phenotype.
Collapse
Affiliation(s)
- Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India
| | - Aditi Pedgaonkar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, MH, India.
| |
Collapse
|
12
|
Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, El-Far AH. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: Anticancer efficacy and safety. Toxicol Appl Pharmacol 2023; 461:116405. [PMID: 36716865 DOI: 10.1016/j.taap.2023.116405] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Rokaia F Ragab
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Rania Hamada
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
13
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
14
|
Rahimi S, van Leeuwen D, Roshanzamir F, Pandit S, Shi L, Sasanian N, Nielsen J, Esbjörner EK, Mijakovic I. Ginsenoside Rg3 Reduces the Toxicity of Graphene Oxide Used for pH-Responsive Delivery of Doxorubicin to Liver and Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020391. [PMID: 36839713 PMCID: PMC9965446 DOI: 10.3390/pharmaceutics15020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Doxorubicin (DOX) is extensively used in chemotherapy, but it has serious side effects and is inefficient against some cancers, e.g., hepatocarcinoma. To ameliorate the delivery of DOX and reduce its side effects, we designed a pH-responsive delivery system based on graphene oxide (GO) that is capable of a targeted drug release in the acidic tumor microenvironment. GO itself disrupted glutathione biosynthesis and induced reactive oxygen species (ROS) accumulation in human cells. It induced IL17-directed JAK-STAT signaling and VEGF gene expression, leading to increased cell proliferation as an unwanted effect. To counter this, GO was conjugated with the antioxidant, ginsenoside Rg3, prior to loading with DOX. The conjugation of Rg3 to GO significantly reduced the toxicity of the GO carrier by abolishing ROS production. Furthermore, treatment of cells with GO-Rg3 did not induce IL17-directed JAK-STAT signaling and VEGF gene expression-nor cell proliferation-suggesting GO-Rg3 as a promising drug carrier. The anticancer activity of GO-Rg3-DOX conjugates was investigated against Huh7 hepatocarcinoma and MDA-MB-231 breast cancer cells. GO-Rg3-DOX conjugates significantly reduced cancer cell viability, primarily via downregulation of transcription regulatory genes and upregulation of apoptosis genes. GO-Rg3 is an effective, biocompatible, and pH responsive DOX carrier with potential to improve chemotherapy-at least against liver and breast cancers.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Daniel van Leeuwen
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Fariba Roshanzamir
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Lei Shi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nima Sasanian
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Jens Nielsen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- BioInnovation Institute, DK-2200 Copenhagen, Denmark
| | - Elin K. Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Correspondence:
| |
Collapse
|
15
|
Sun X, Zhou L, Han Y, Yang Q, Li X, Xin B, Chi M, Wang Y, Guo C. Scutellarin Attenuates Doxorubicin-Induced Cardiotoxicity by Inhibiting Myocardial Fibrosis, Apoptosis and Autophagy in Rats. Chem Biodivers 2023; 20:e202200450. [PMID: 36419360 DOI: 10.1002/cbdv.202200450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-β1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Li Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xingxia Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
16
|
Lee H, Nguyen Hoang AT, Lee SJ. Ginsenoside protopanaxadiol protects adult retinal pigment epithelial-19 cells from chloroquine by modulating autophagy and apoptosis. PLoS One 2022; 17:e0274763. [PMID: 36454967 PMCID: PMC9714852 DOI: 10.1371/journal.pone.0274763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/04/2022] [Indexed: 12/05/2022] Open
Abstract
Chloroquine often causes serious eye and vision problems, which are mainly mediated by lysosomotropic alteration. In this study, we investigated whether the ginsenoside protopanaxadiol relieves chloroquine-induced retinopathy by restoring lysosomotropic abnormalities in human adult retinal pigment epithelial-19 cells. Cytotoxicity was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Morphological alterations in autophagosomes of adult retinal pigment epithelial-19 cells was detected using confocal microscopy. Apoptosis was examined using flow cytometry, whereas cellular reactive oxygen species levels were determined by measuring the fluorescence intensity of 5-(and-6)-carboxy-2'-7'-dichlorohydrofluorescein diacetate. Lysosomal function was assessed by measuring lysosomal pH and enzyme activity. Immunoprecipitation and western blotting analyses were performed. Adult retinal pigment epithelial-19 cells accumulated autophagosomes with fusion defects in lysosomes and reactive oxygen species formation following exposure to chloroquine. This effect trapped Beclin-1 and B-cell lymphoma 2 interfering with autophagy initiation and autophagosome development. Protopanaxadiol alleviated chloroquine-induced toxicity by modulating the interaction between Beclin-1 and Bcl-2, which was mediated by the AMP-activated protein kinase-mammalian target of rapamycin signal axis. Furthermore, autophagy and apoptosis were simultaneously controlled by protopanaxadiol via upregulation of autophagy flux and decreased reactive oxygen species formation and apoptotic protein expression. These findings suggest that protopanaxadiol is a promising treatment strategy for chloroquine-mediated retinopathy.
Collapse
Affiliation(s)
- Haesung Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Anh Thu Nguyen Hoang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
18
|
Wei Q, Ren Y, Zheng X, Yang S, Lu T, Ji H, Hua H, Shan K. Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 2022; 13:13919-13928. [PMID: 35719058 PMCID: PMC9275937 DOI: 10.1080/21655979.2022.2074616] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common pathological type of primary hepatic carcinoma. This study investigated the effects of ginsenoside Rg3 (Rg3) and sorafenib (SFN) combination therapy on HCC progression. The HCC-related data were obtained from TCGA database, and the data of HK2 mRNA, clinicopathological features, and survival outcomes were extracted using R Programming 4.0. The human hepatoma cell lines HepG2 and Bel7404 were used. Cell viability was tested using the MTT assay. Glucose consumption and lactate levels of HCC cells were detected using the corresponding kits. Western blotting was used to determine the protein expression of HK2, PI3K, and Akt. HK2 was overexpressed in patients with HCC. Compared with patients with overexpressed HK2, those with low levels of HK2 achieved a longer survival time. In addition, the Rg3 and SFN combination therapy significantly reduced cell viability, glucose consumption, lactate levels, and protein expression of HK2, PI3K, and Akt in HCC cells. Additionally, the Rg3 and SFN combination therapy exhibited a better effect than the single drug group. Inhibition of the PI3K/Akt signaling pathway or exogenous lactate intervention reversed the effects of Rg3 and SFN combination therapy in HCC cells. In conclusion, Rg3 has a synergistic effect on the sensitivity of HepG2 and Bel7404 hepatoma cells to SFN, which is related to HK2-mediated glycolysis and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qi Wei
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Yuan Ren
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Xia Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Shanghai, China
| | - Sufang Yang
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Tingting Lu
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Hongyao Ji
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| | - Haiqing Hua
- Department of Oncology, NanJing JinLing Hospital, Nanjing, China
| | - Kuizhong Shan
- Department of Oncology, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
19
|
Ram AK, Vairappan B, Srinivas BH. Nimbolide attenuates gut dysbiosis and prevents bacterial translocation by improving intestinal barrier integrity and ameliorating inflammation in hepatocellular carcinoma. Phytother Res 2022; 36:2143-2160. [PMID: 35229912 DOI: 10.1002/ptr.7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 09/25/2023]
Abstract
Gut microbiota imbalance plays a key pathological role in hepatocellular carcinoma (HCC) progression; however, the mechanism is poorly understood. We previously showed nimbolide impede tumor development by improving hepatic tight junction (TJ) proteins expression and attenuating inflammation in HCC mice. Here, we aimed to study the role of nimbolide in regulating gut microbiota imbalance and bacterial translocation (BT) through modulating intestinal TJ proteins in an experimental hepatocarcinogenesis. Nimbolide (6 mg/kg) was administered orally for 4 weeks following induction of HCC in mice at the 28th week. Nimbolide treatment attenuated the gut microbiota imbalance by decreasing 16 s rRNA levels of Escherichia coli, Enterococcus, Bacteroides and increasing Bifidobacterium, and Lactobacillus in the intestinal tissue, which was otherwise altered in HCC mice. Furthermore, nimbolide improved intestinal barrier integrity in HCC mice by upregulating TJ proteins such as occludin and ZO-1 expression and subsequently prevented hepatic BT and decreased BT markers such as LBP, sCD14, and procalcitonin in the plasma of HCC mice. Moreover, nimbolide ameliorated intestinal and hepatic inflammation by downregulating TLR4, MyD88, and NF-κB protein expression in HCC mice. Thus, nimbolide represents a novel therapeutic drug for HCC treatment by targeting the gut-liver axis, which plays an imperative role in HCC pathogenesis.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Bheemanathi Hanuman Srinivas
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| |
Collapse
|
20
|
Loh JS, Rahim NA, Tor YS, Foo JB. Simultaneous proteasome and autophagy inhibition synergistically enhances cytotoxicity of doxorubicin in breast cancer cells. Cell Biochem Funct 2022; 40:403-416. [PMID: 35485606 DOI: 10.1002/cbf.3704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 01/18/2023]
Abstract
Ubiquitin-proteasome system (UPS) and autophagy are interconnected proteolysis pathways implicated in doxorubicin resistance of breast cancer cells. Following anticancer treatments, autophagy either plays a cytoprotective role or augments treatment-induced cytotoxicity. However, the role of autophagy in breast cancer cells cotreated with doxorubicin and ixazomib remains unclear. The expression of autophagy proteins (LC3A/B and Beclin-1) and UPS protein (ubiquitin) in MDA-MB-231 and MCF-7 cells following doxorubicin, ixazomib, and/or hydroxychloroquine were determined by western blot. The combinatorial effects and combination index (CI) of triple-combination were determined by cell viability assay and CompuSyn software, respectively. Doxorubicin and ixazomib cotreatment increased Beclin-1 (3.8- and 3.5-fold) and LC3-II expression (13.5- and 1.9-fold) in MDA-MB-231 and MCF-7 cells, respectively. Adding lysosomal inhibitor hydroxychloroquine to doxorubicin and ixazomib further increased LC3-II expression to 45.0- and 16.5-fold in MDA-MB-231 and MCF-7 cells, respectively, confirming autophagy induction. The triple-combination synergistically inhibited cell growth, achieving CI 0.672 and 0.157 in MDA-MB-231 and MCF-7 cells, respectively. The triple-combination also induced ubiquitinated proteins accumulation (2.5-fold and 3.0-fold) in MDA-MB-231 and MCF-7 cells, respectively. These results suggest that the autophagy induced by doxorubicin and ixazomib cotreatment serves cytoprotective role in breast cancer cells. Simultaneous UPS and autophagy inhibition synergistically enhanced doxorubicin-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yin Sim Tor
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
21
|
Zhou L, Han Y, Yang Q, Xin B, Chi M, Huo Y, Guo C, Sun X. Scutellarin attenuates doxorubicin-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy in H9c2 cells, cardiac fibroblasts and HUVECs. Toxicol In Vitro 2022; 82:105366. [PMID: 35470029 DOI: 10.1016/j.tiv.2022.105366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Studies on doxorubicin (DOX)-induced cardiotoxicity have mainly focused on cardiomyocytes (CMs), but it is unclear whether there are differences in the toxicity degree of DOX to CMs, cardiac fibroblasts (CFs) and endothelial cells (ECs). We used H9c2 cells, rat primary isolated CFs and human umbilical vein endothelial cells (HUVECs) to systematically research the cytotoxicity of DOX. Scutellarin (SCU) is a natural polyphenolic flavonoid that exerts a cardioprotective effect. In the present study, we explored the protective effects of SCU on DOX-induced cytotoxicity in H9c2 cells, CFs and HUVECs. The results showed that DOX decreased cell viability and increased the apoptosis rate, whereas DOX had a greater killing effect on H9c2 cells compared to CFs and HUVECs. DOX significantly elevated oxidative stress, but the malondialdehyde (MDA) levels in H9c2 cells were higher after DOX treatment. In all three cell types, DOX induced DNA damage and mitochondrial dysfunction, it activated apoptosis by activation of Bax/ Bcl-2 and it induced autophagy by inhibiting the Akt/ mTOR pathway. Pretreatment with different concentrations of SCU reversed these phenomena in a dose-dependent manner. Collectively, these results revealed that there were slight differences in DOX-induced cytotoxicity among H9c2 cells, CFs and HUVECs. Furthermore, the cardioprotective effect of SCU may be attributed to attenuation of DOX-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
|
22
|
Lin CH, Chang HH, Lai CR, Wang HH, Tsai WC, Tsai YL, Changchien CY, Cheng YC, Wu ST, Chen Y. Fatty Acid Binding Protein 6 Inhibition Decreases Cell Cycle Progression, Migration and Autophagy in Bladder Cancers. Int J Mol Sci 2022; 23:ijms23042154. [PMID: 35216267 PMCID: PMC8878685 DOI: 10.3390/ijms23042154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blotting was used to explore protein expressions. Wound healing and Transwell assays were performed to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the decrease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown additionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential target in BC cells progression.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hsin-Han Chang
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Chien-Rui Lai
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Wen-Chiuan Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Yu-Ling Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Chih-Ying Changchien
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- National Defense Medical Center, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Yu-Chen Cheng
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Sheng-Tang Wu
- National Defense Medical Center, Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| | - Ying Chen
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| |
Collapse
|
23
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
25
|
Chang L, Zhou R, He Y, Meng M, Hu J, Liu Y, Pan Y, Tang Z, Yue Z. Total saponins from Rhizoma Panacis Majoris inhibit proliferation, induce cell cycle arrest and apoptosis and influence MAPK signalling pathways on the colorectal cancer cell. Mol Med Rep 2021; 24:542. [PMID: 34080021 PMCID: PMC8185512 DOI: 10.3892/mmr.2021.12181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) ranks third in incidence and second in mortality among all types of cancer, and due to its insidious onset and lack of early symptoms, it is usually diagnosed at a later stage. Saponins, a class of compounds abundant in plants, have been reported to possess prominent anti‑tumour properties. The use of ginsenoside Rg3 in the clinical setting was authorized by the National Medicinal Products Administration of China. In the present study, total saponins from Rhizoma Panacis Majoris (RPMTG) were prepared, and the pharmacological mechanisms underlying the anti‑CRC effects of RPMTG were investigated. The effect of RPMTG on the proliferation, cell cycle progression and apoptosis of HCT116 and SW620 cells were detected by MTT, flow cytometry and western blotting assays, and it was demonstrated that RPMTG could inhibit the proliferation of HCT116 and SW620 cells with IC50 values of 315.8 and 355.1 µg/ml, respectively, induce cell cycle arrest in the S and G0/G1 phase, and trigger apoptosis by downregulating the expression of the anti‑apoptotic proteins Bcl‑2, Bcl‑xL and induced myeloid leukaemia cell differentiation protein Mcl‑1, and increasing the expression of the pro‑apoptotic proteins Bax and Bad, cleaved caspased‑3 and poly(ADP)‑ribose polymerase. These findings suggested that RPMTG induced apoptosis through mitochondrial‑related pathways. In addition, RPMTG also decreased the expression of phosphorylated (p)‑extracellular signal‑regulated kinase and increased p‑c‑Jun N‑terminal kinase (p‑JNK) and p‑p38. Moreover, the effects of RPMTG on cell proliferation and apoptosis were partially reversed when the JNK and p38 mitogen‑activated protein kinase (MAPK) pathways were inhibited, indicating that RPMTG triggered apoptosis mainly via regulating JNK and p38 MAPK signalling. Therefore, RPMTG may have potential as an anti‑CRC agent, and further evaluations are needed.
Collapse
Affiliation(s)
- Lu Chang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yihan He
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Mei Meng
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jinhang Hu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yanru Liu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yalei Pan
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Zhishu Tang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Zhenggang Yue
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry/Shaanxi Innovative Drug Research Center, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
26
|
Zheng Q, Qiu Z, Sun Z, Cao L, Li F, Liu D, Wu D. In Vitro Validation of Network Pharmacology Predictions: Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Cell Proliferation via SIRT2. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To elucidate the molecular mechanisms underlying the therapeutic activity of ginsenoside Rg3 (Gs-Rg3) in the context of hepatocellular carcinoma (HCC). Methods Relevant databases were searched to identify protein targets that were both dysregulated and implicated in HCC, as well as targeted by Gs-Rg3. Generation of a protein-protein interaction network facilitated the selection of connected nodes for the construction of a shared disease- and drug-target interaction network model, and topological analysis identified the most highly connected nodes. Targets were annotated with their associated Gene Ontology terms, followed by Kyoto Encyclopedia of Genes and Genomes biological pathway enrichment analysis. In vitro experiments using 2 hours CC cell lines (Bel-7402 and HCCLM3) were performed to investigate the impact of Gs-Rg3 on cell proliferation, viability, cell cycle, cyclin D1 and sirtuin 2 (SIRT2) levels, and global cellular histone acetylation (specifically H3K18ac and H4K16ac). Results Network pharmacology suggested that Gs-Rg3 synergistically targets multiple proteins and pathways relevant to HCC pathogenesis, including those involved in cell cycle and proliferation. In vitro experiments confirmed that Gs-Rg3 dose-dependently inhibits cell proliferation and viability; induces G1 phase cell cycle arrest; decreases cyclin D1, cyclin-dependent kinase 2 (CDK2), and SIRT2 levels; and enhances global H3K18ac and H4K16ac. Conclusions Hypotheses derived from the network analysis were confirmed in vitro. Gs-Rg3 induces G1 phase cell cycle arrest, concomitant with decreased cyclin D1 and CDK2 levels, suggesting a possible mechanism for inhibiting proliferation. In addition, Gs-Rg3 decreases SIRT2 levels, concomitant with enhanced global H3K18ac and H4K16ac. These findings provide a theoretical basis and a support for further preclinical study of the safety and antineoplastic molecular mechanisms of Gs-Rg3, with the goal of eventual clinical translation.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhiyuan Sun
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Fuqiang Li
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
28
|
Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12:266. [PMID: 33712559 PMCID: PMC7954824 DOI: 10.1038/s41419-021-03553-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.
Collapse
|
29
|
Han B, He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 2021; 166:105428. [PMID: 33540047 DOI: 10.1016/j.phrs.2021.105428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a ubiquitous mechanism for maintaining cellular homeostasis through the degradation of long-lived proteins, insoluble protein aggregates, and superfluous or damaged organelles. Dysfunctional autophagy is observed in a variety of human diseases. With advanced research into the role that autophagy plays in physiological and pathological conditions, targeting autophagy is becoming a novel tactic for disease management. Saponins are naturally occurring glycosides containing triterpenoids or steroidal sapogenins as aglycones, and some saponins are reported to modulate autophagy. Research suggests that saponins may have therapeutic and preventive efficacy against many autophagy-related diseases. Therefore, this review comprehensively summarizes and discusses the reported saponins that exhibit autophagy regulating activities. In addition, the relevant signaling pathways that the mechanisms involved in regulating autophagy and the targeted diseases were also discussed. By regulating autophagy and related pathways, saponins exhibit bioactivities against cancer, neurodegenerative diseases, atherosclerosis and other cardiac diseases, kidney diseases, liver diseases, acute pancreatitis, and osteoporosis. This review provides an overview of the autophagy-regulating activity of saponins, the underlying mechanisms and potential applications for managing various diseases.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
30
|
Chen XL, Liu P, Zhu WL, Lou LG. DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts antitumor activity against colon cancer. Acta Pharmacol Sin 2021; 42:132-141. [PMID: 32404982 PMCID: PMC7921121 DOI: 10.1038/s41401-020-0398-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a potential therapeutic target for tumor, as it maintains the stability of a variety of proteins related to tumor development and progression. Autophagy is a self-degradation process to maintain cellular homeostasis and autophagy inhibitors can suppress tumor growth. In this study, we identified DCZ5248, a triazine derivative, was a dual inhibitor of both Hsp90 and late-autophagy with potent antitumor activity against colon cancer cells in vitro and in vivo. We showed that DCZ5248 (0.1-10 μM) induced dose-dependent degradation of Hsp90 client proteins (AKT, CDK4, CDK6 and RAF-1) in HCT 116 colon cancer cells through a proteasome-dependent pathway. Meanwhile, DCZ5248 (0.3 μM) induced cytoplasmic vacuole formation, LC3 II conversion, p62 protein upregulation, and inhibited autophagy at the late stage in the colon cancer cell lines tested. We further revealed that the inhibition of autophagy was achieved by impairing lysosomal functions through induction of lysosomal acidification and attenuation of lysosomal cathepsin activity. The modulation of autophagy by DCZ5248 was independent of Hsp90 inhibition as the autophagy inhibition was not blocked by Hsp90 knockdown. Importantly, inhibition of both Hsp90 function and autophagy by DCZ5248 induced G1-phase cell cycle arrest, apoptosis, and exerted potent antitumor activity against colon cancer cells both in vitro and in vivo. These findings demonstrate that DCZ5248 is a novel dual inhibitor of Hsp90 and autophagy with potential for colon cancer therapy.
Collapse
Affiliation(s)
- Xiang-Ling Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei-Liang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Guang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2020; 45:380-389. [PMID: 34025131 PMCID: PMC8134847 DOI: 10.1016/j.jgr.2020.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
Collapse
Key Words
- ACC, Acetyl-Coenzyme A carboxylase
- ADP, adenosine diphosphate
- AG, American ginseng extract
- AGE, advanced glycation end product
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- AST, aspartate aminotransferase
- Akt, protein kinase B
- BMI, body mass index
- C/EBPα, CCAAT/enhancer-binding protein alpha
- COX-2, cyclooxygenase-2
- CPT, current perception threshold
- CPT-1, carnitine palmitoyl transferase 1
- CRP, C-reactive protein
- CVD, Cardiovascular disease
- DBP, diastolic blood pressure
- DEN, diethyl nitrosamine
- EAT, epididymis adipose tissue
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- FAS, Fatty acid synthase
- FFA, free fatty acid
- FR, fine root concentration
- FS, fractional shortening
- GBHT, ginseng-plus-Bai-Hu-Tang
- GLUT, glucose transporter type
- GPx, glutathione peroxidase
- GS, ginsenoside
- GST, glutathione S-transferase
- GST-P, glutathione S-transferase placental form
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HCEF-RG, hypotensive components-enriched fraction of red ginseng
- HDL, high-density lipoprotein
- HFD, High fat diet
- HOMA-IR, homeostasis model assessment of insulin resistance index
- HbA1c, glycosylated hemoglobin
- I.P., intraperitoneal injection
- IL, interleukin
- IR, insulin resistance
- ITT, insulin tolerance test
- Insulin resistance
- KRG, Korean Red Ginseng
- LDL, low-density lipoprotein
- LPL, lipoprotein lipase
- Lex, lower extremities
- MDA, malondialdehyde
- MMP, Matrix metallopeptidases
- MS, Metabolic syndrome
- Metabolic syndrome
- NAFLD, Non-alcoholic fatty liver disease
- NF-кB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK cell, Natural killer cell
- NMDA-NR1, N-methyl-D-aspartate NR1
- NO, nitric oxide
- NRF1, Nuclear respiratory factor 1
- Non-alcoholic fatty liver disease
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OLETF rat, Otsuka Long-Evans Tokushima fatty rat
- PCG-1α, PPAR-γ coactivator-1α
- PI3K, phosphoinositide 3-kinase
- PPAR, peroxisome proliferator-activated receptors
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Panax ginseng
- REKRG, Rg3-enriched KRG
- ROS, Reactive oxygen species
- Rg3-KGE, Rg3-enriched KRG extract
- SBP, systolic blood pressure
- SCD, Stearoyl-Coenzyme A desaturase
- SHR, spontaneously hypertensive rat
- SREBP-1C, Sterol regulatory element-binding protein 1
- STAT5, Signal transducer and activator of transcription 5
- STZ, streptozotocin
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglyceride
- TNF, tumor necrosis factor
- UCP, Mitochondrial uncoupling proteins
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
- t-BHP, tert-butyl hyperoxide
- tGST, total glutathione
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hotaik Sung
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
32
|
Hong T, Kim MY, Da Ly D, Park SJ, Eom YW, Park KS, Baik SK. Ca 2+-activated mitochondrial biogenesis and functions improve stem cell fate in Rg3-treated human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:467. [PMID: 33148318 PMCID: PMC7640456 DOI: 10.1186/s13287-020-01974-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Taeui Hong
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea
| | - Moon Young Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, 26426, Gangwon-Do, Republic of Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Gangwon-Do, Republic of Korea
| | - Dat Da Ly
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea
| | - Su Jung Park
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, 26426, Gangwon-Do, Republic of Korea.,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Gangwon-Do, Republic of Korea
| | - Kyu-Sang Park
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea. .,Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea.
| | - Soon Koo Baik
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea. .,Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-Do, 26426, Republic of Korea. .,Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, 26426, Gangwon-Do, Republic of Korea. .,Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Gangwon-Do, Republic of Korea.
| |
Collapse
|
33
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
34
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
35
|
Morand S, Stanbery L, Walter A, Rocconi RP, Nemunaitis J. BRCA1/2 Mutation Status Impact on Autophagy and Immune Response: Unheralded Target. JNCI Cancer Spectr 2020; 4:pkaa077. [PMID: 33409454 PMCID: PMC7771003 DOI: 10.1093/jncics/pkaa077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
BRCA1 and possibly BRCA2 proteins may relate to the regulation of autophagy. Autophagy plays a key role in immune response from both a tumor and immune effector cell standpoint. In cells with BRCA mutations, increased autophagy leads to elevated expression of major histocompatibility complex class II but may cause subclonal neoantigen presentation, which may impair the immune response related to clonal neoantigen visibility. We review evidence of BRCA1/2 regulation of autophagy, immune response, and antigen presentation.
Collapse
Affiliation(s)
- Susan Morand
- Department of Internal Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Rodney P Rocconi
- University of South Alabama - Mitchell Cancer Institute, Mobile, AL, USA
| | | |
Collapse
|
36
|
Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis 2020; 11:454. [PMID: 32532964 PMCID: PMC7293224 DOI: 10.1038/s41419-020-2597-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Inflammation and autophagy occur during hepatic fibrosis development caused by various pathogens, and effectively curbing of autophage may delay the occurrence of hepatic fibrosis. The current study aimed to unravel the inhibitory effects of Ginsenoside Rg3 (G-Rg3) on inflammation-mediated hepatic autophagy to curb hepatic fibrosis caused by thioacetamide (TAA)-induced subacute and chronic hepatic injury. TAA is mainly metabolized in the liver to cause liver dysfunction. After intraperitoneal injection of TAA for 4 or 10 weeks (TAA-chronic mouse models), severe inflammatory infiltration and fibrosis occurred in the liver. Treatment with G-Rg3 alleviated hepatic pathological changes and reversed hepatic fibrosis in the TAA-chronic models with decreased deposition of collagen fibers, reduced expression of HSCs activation marker (α-SMA), and reduced secretion of profibrogenic factors (TGF-β1). G-Rg3 decreased expressions of autophagy-related proteins in mice of TAA-chronic models. Notably, G-Rg3 inhibited the survival of activated rat hepatic stellate cells (HSC-T6), but had no cytotoxicity on human hepatocytes (L02 cell lines). G-Rg3 dose-dependently inhibited autophagy in vitro with less expression of p62 and fewer LC3a transformation into LC3b in inflammatory inducer lipopolysaccharide (LPS)-induced rat HSC-T6 cells. Furthermore, G-Rg3 enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) in vivo and in vitro. Besides, mTOR inhibitor Rapamycin and PI3K inhibitors LY294002 were employed in LPS-treated HSC-T6 cell cultures to verify that Rg3 partially reversed the increase in autophagy in hepatic fibrosis in vitro. Taken together, G-Rg3 exerted anti-fibrosis effect through the inhibition of autophagy in TAA-treated mice and LPS-stimulated HSC-T6 cells. These data collectively unravel that G-Rg3 may serve a promising anti-hepatic fibrosis drug.
Collapse
|
37
|
Lee H, Kong G, Tran Q, Kim C, Park J, Park J. Relationship Between Ginsenoside Rg3 and Metabolic Syndrome. Front Pharmacol 2020; 11:130. [PMID: 32161549 PMCID: PMC7052819 DOI: 10.3389/fphar.2020.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is an important public health issue and is associated with a more affluent lifestyle. Many studies of metabolic syndrome have been reported, but its pathogenesis remains unclear and there is no effective treatment. The ability of natural compounds to ameliorate metabolic syndrome is currently under investigation. Unlike synthetic chemicals, such natural products have proven utility in various fields. Recently, ginsenoside extracted from ginseng and ginseng root are representative examples. For example, ginseng is used in dietary supplements and cosmetics. In addition, various studies have reported the effects of ginsenoside on metabolic syndromes such as obesity, diabetes, and hypertension. In this review, we describe the potential of ginsenoside Rg3, a component of ginseng, in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Quangdon Tran
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon, South Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
38
|
Siddiqi MZ, Srinivasan S, Park HY, Im WT. Exploration and Characterization of Novel Glycoside Hydrolases from the Whole Genome of Lactobacillus ginsenosidimutans and Enriched Production of Minor Ginsenoside Rg3( S) by a Recombinant Enzymatic Process. Biomolecules 2020; 10:biom10020288. [PMID: 32059542 PMCID: PMC7072194 DOI: 10.3390/biom10020288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Several studies have reported that ginsenoside Rg3(S) is effective in treating metastatic diseases, obesity, and various cancers, however, its presence in white ginseng cannot be estimated, and only a limited amount is present in red ginseng. Therefore, the use of recombinant glycosidases from a Generally Recognized As Safe (GRAS) host strain is a promising approach to enhance production of Rg3(S), which may improve nutritional activity, human health, and quality of life. Method: Lactobacillus ginsenosidimutans EMML 3041T, which was isolated from Korean fermented pickle (kimchi), presents ginsenoside-converting abilities. The strain was used to enrich the production of Rg3(S) by fermenting protopanaxadiol (PPD)-mix-type major ginsenosides (Rb1, Rb2, Rc, and Rd) in four different types of food-grade media (1, MRS; 2, Basel Food-Grade medium; 3, Basel Food-Grade medium-I, and 4, Basel Food-Grade medium-II). Due to its tendency to produce Rg3(S), the presence of glycoside hydrolase in Lactobacillus ginsenosidimutans was proposed, the whole genome was sequenced, and the probable glycoside hydrolase gene for ginsenoside conversion was cloned. Results: The L. ginsenosidimutans EMML 3041T strain was whole genome sequenced to identify the target genes. After genome sequencing, 12 sets of glycoside hydrolases were identified, of which seven sets (α,β-glucosidase and α,β-galactosidase) were cloned in Escherichia coli BL21 (DE3) using the pGEX4T-1 vector system. Among the sets of clones, only one clone (BglL.gin-952) showed ginsenoside-transforming abilities. The recombinant BglL.gin-952 comprised 952 amino acid residues and belonged to glycoside hydrolase family 3. The enzyme exhibited optimal activity at 55 °C and a pH of 7.5 and showed a promising conversion ability of major ginsenoside Rb1→Rd→Rg3(S). The recombinant enzyme (GST-BglL.gin-952) was used to mass produce Rg3(S) from major ginsenoside Rb1. Scale-up of production using 50 g of Rb1 resulted in 30 g of Rg3(S) with 74.3% chromatography purity. Conclusion: Our preliminary data demonstrated that this enzyme would be beneficial in the preparation of pharmacologically active minor ginsenoside Rg3(S) in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 139-774, Korea;
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Korea;
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro Anseong-si, Gyeonggi-do 17579, Korea;
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Jungang-ro Anseong-si, Gyeonggi-do Anseong-si, Gyeonggi-do 17579, Korea
- Correspondence: ; Tel.: +82-31-6705335; Fax: +82-31-6705339
| |
Collapse
|
39
|
A 26-week 20(S)-ginsenoside Rg3 oral toxicity study in Beagle dogs. Regul Toxicol Pharmacol 2020; 110:104522. [DOI: 10.1016/j.yrtph.2019.104522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
|
40
|
Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, Li J, Lou J, Zhou H, Wang J, Xu G, Yu Z, Song Y, Chen X. Nanoparticle Conjugation of Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Development and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905233. [PMID: 31814271 DOI: 10.1002/smll.201905233] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. The prognosis of HCC remains very poor; thus, an effective treatment remains urgent. Herein, a type of nanomedicine is developed by conjugating Fe@Fe3 O4 nanoparticles with ginsenoside Rg3 (NpRg3), which achieves an excellent coupling effect. In the dimethylnitrosamine-induced HCC model, NpRg3 application significantly prolongs the survival of HCC mice. Further research indicates that NpRg3 application significantly inhibits HCC development and eliminates HCC metastasis to the lung. Notably, NpRg3 application delays HCC-induced ileocecal morphology and gut microbial alterations more than 12 weeks during HCC progression. NpRg3 administration elevates the abundance of Bacteroidetes and Verrucomicrobia, but decreases Firmicutes. Twenty-nine predicted microbial gene functions are enriched, while seven gene functions are reduced after NpRg3 administration. Moreover, the metabolomics profile presents a significant progression during HCC development, but NpRg3 administration corrects tumor-dominant metabolomics. NpRg3 administration decreases 3-indolepropionic acid and urea, but elevates free fatty acids. Importantly, NpRg3 application remodels the unbalanced correlation networks between gut microbiota and metabolism during HCC therapy. In conclusion, nanoparticle conjugation of ginsenoside Rg3 inhibits HCC development and metastasis via the remodeling of unbalanced gut microbiota and metabolism in vivo, providing an antitumor therapy strategy.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Liangjie Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xiaoxiong Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junmei Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujun Song
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| |
Collapse
|
41
|
Zhou T, Sun L, Yang S, Lv Y, Cao Y, Gang X, Wang G. 20(S)-Ginsenoside Rg3 Protects Kidney from Diabetic Kidney Disease via Renal Inflammation Depression in Diabetic Rats. J Diabetes Res 2020; 2020:7152176. [PMID: 32258169 PMCID: PMC7106937 DOI: 10.1155/2020/7152176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/26/2020] [Accepted: 02/15/2020] [Indexed: 02/04/2023] Open
Abstract
20(S)-Ginsenoside Rg3 (20(S)-Rg3) has been shown to induce apoptosis by interfering with several signaling pathways. Furthermore, it has been reported to have anticancer and antidiabetic effects. In order to detect the protective effect of 20(S)-Rg3 on diabetic kidney disease (DKD), diabetic rat models which were established by administering high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ), and age-matched wild-type (WT) rat were given 20(S)-Rg3 for 12 weeks, with three groups: control group (normal adult rats with saline), diabetic group (diabetic rats with saline), and 20(S)-Rg3 treatment group (diabetic rats with 20(S)-Rg3 (10 mg/kg body weight/day)). The biochemical indicators and the changes in glomerular basement membrane and mesangial matrix were detected. TUNEL staining was used to detect glomerular and renal tubular cell apoptosis. Immunohistochemical staining was used to detect the expression of fibrosis factors and inflammation factors in rat kidney tissues. Through periodic acid-Schiff staining, we observed that the change in renal histology was improved and renal tubular epithelial cell apoptosis decreased significantly by treatment with 20(S)-Rg3. Plus, the urine protein decreased in the rats with the 20(S)-Rg3 treatment. Fasting blood glucose, creatinine, total cholesterol, and triglyceride levels in the 20(S)-Rg3 treatment group were all lower than those in the diabetic group. Mechanistically, 20(S)-Rg3 dramatically downregulated the expression of TGF-β1, NF-κB65, and TNF-α in the kidney. These resulted in a significant prevention of renal damage from the inflammation. The results of the current study suggest that 20(S)-Rg3 could potentially be used as a novel treatment against DKD.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, 130061 Changchun, Jilin Province, China
| |
Collapse
|
42
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Xiao H, Xue Q, Zhang Q, Li C, Liu X, Liu J, Li H, Yang J. How Ginsenosides Trigger Apoptosis in Human Lung Adenocarcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1737-1754. [PMID: 31795742 DOI: 10.1142/s0192415x19500885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Panax ginseng is a natural medicine that has been used globally for a long time. Moreover, several studies have reported the effective activity of ginseng in treating malignancies. Various agents containing ginseng were widely used as an antitumor treatment nowadays. Lung cancer is the most common fatal cancer in China, and lung adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC). What's worse, many patients may have a failed response to conventional therapy including chemotherapy, radiotherapy, or molecule-targeted therapy due to drug resistance. Apoptosis is a highly ordered cellular suicidal process that plays an essential role in maintaining normal homeostasis. The pharmacological mechanism of many antineoplastic drugs involves triggering of apoptotic process. In several recent studies, ginsenosides are regarded as major active components of ginseng that have the potential to control lung cancer. Most of these results have proved that ginsenosides induce apoptosis in lung cancer cells through many different signaling pathways such as PI3K/Akt, NF-κB, EGFR, and so on. This study is aimed at reviewing the signaling pathways that underlie ginsenosides-triggered apoptotic process and encourage further studies to target promising agents against lung cancer treatment.
Collapse
Affiliation(s)
- Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qianfei Xue
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunyan Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoqiu Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
44
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
45
|
20(S)-Ginsenoside Rg3 Promotes HeLa Cell Apoptosis by Regulating Autophagy. Molecules 2019; 24:molecules24203655. [PMID: 31658733 PMCID: PMC6832142 DOI: 10.3390/molecules24203655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
20(S)-Ginsenoside Rg3 (GRg3) has various bioactivities including anti-cancer effects and inhibition of autophagy. However, no reports have investigated the appearance of autophagy or the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRg3. Cell viability was measured by CCK-8 (cell counting kit-8) assays. Apoptosis and the cell cycle were analyzed by Hoechst 33342 staining and flow cytometry. Apoptotic pathways were examined by ROS (reactive oxygen species) determination and rhodamine 123 assays. Western blot analysis was used to determine changes in protein levels. Autophagy induction was monitored by acidic vesicular organelle staining and EGFP-LC3 transfection. 20(S)-GRg3 inhibited autophagy of cells in a starved state, making it impossible for cells to maintain a steady state through autophagy, and then induced apoptosis. 20(S)-GRg3 blocked the late stage of autophagy (fusion of lysosomes and degradation of autophagic lysosomes), including a decrease in acidic vesicular organelle fluorescence, increased LC3 I–II conversion, accumulation of EGFP-LC3 fluorescence, GFP-mRFP-LC3 red-green fluorescence ratio, degradation of the substrate p62, and loss of the balance between autophagy and apoptosis, which induced apoptosis. ROS increased, the mitochondrial membrane potential decreased, apoptotic inducer AIF was released from mitochondria, and nuclear transfer occurred, triggering a series of subsequent apoptotic events. Autophagy inducer rapamycin inhibited the apoptosis induced by 20(S)-GRg3, whereas autophagy inhibitor BA1 promoted apoptosis induced by 20(S)-GRg3. Therefore, 20(S)-GRg3 promoted HeLa cell apoptosis by regulating autophagy. In the autophagic state, 20(S)-GRg3 can be used as a novel autophagy inhibitor in synergy with tumor-blocking therapies such as chemotherapy, which supports its application in the medical field.
Collapse
|
46
|
Chen QF, Wu PH, Huang T, Shen LJ, Huang ZL, Li W. Efficacy of treatment regimens for advanced hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98:e17460. [PMID: 31577775 PMCID: PMC6783195 DOI: 10.1097/md.0000000000017460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study aimed to perform a network meta-analysis to evaluate the therapeutic effect and safety of various modalities in treating advanced hepatocellular carcinoma (HCC). Typically, the modalities of interest were comprised of sorafenib, transarterial chemoembolization (TACE), sorafenib combined with TACE, TACE combined with traditional Chinese medicine (TCM), and sorafenib combined with hepatic arterial infusion chemotherapy (HAIC). METHODS Potentially eligible studies were systemically retrieved from the electronic databases (including PubMed and Cochrane Library) up to September 2018. The overall survival (OS) associated with the 5 modalities of interest enrolled in this study was compared by means of network meta-analysis. Meanwhile, major adverse events (AEs) were also evaluated. RESULTS The current network meta-analysis enrolled 7 published randomized controlled trials (RCTs), and the pooled results indicated that the TACE-TCM regimen displayed the highest efficacy in treating advanced HCC, followed by HAIC-sorafenib. By contrast, the TACE alone and sorafenib alone regimens had the least efficacy. Relative to other regimens of interest, the TACE-TCM regimen was associated with less incidence of treatment-associated AEs. CONCLUSION The TACE-TCM regimen was associated with higher treatment responses in advanced HCC patients than those of the other regimens of interest.
Collapse
|
47
|
Wu K, Huang J, Xu T, Ye Z, Jin F, Li N, Lv B. MicroRNA-181b blocks gensenoside Rg3-mediated tumor suppression of gallbladder carcinoma by promoting autophagy flux via CREBRF/CREB3 pathway. Am J Transl Res 2019; 11:5776-5787. [PMID: 31632547 PMCID: PMC6789245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC) is the seventh most common gastrointestinal cancer. Suppression of autophagy contributes to cell death of gallbladder cancer. Gensenoside Rg3 sensitizes tumor cells to chemotherapeutic agents through autophagy inhibition. However, its role mechanism on the progression of GBC remains vague. The present study is aimed to explore the functional action of Rg3 on GBC progression. METHODS Expression of miR-181b and CREBRF in human gallbladder carcinoma specimen were determined by western blotting and qRT-PCR. Biological character of tumor cells were assessed by FACS, CCK8 and xenograft assays, respectively. Dual luciferase assay was employed to explore the targeting site of miR-181b. Autophagy flux was detected by IF staining. RESULTS MiR-181b expression was increased, while CREBRF expression was reduced in GBC specimens compared to adjacent normal tissues. Based on Catalogue of Somatic Mutations in Cancer (COSMIC) database (408 GBC samples), there was negative correlation between hsa-miR-181b-5p/-3p and CREBRF which was a direct targeting of miR-181b. miR-181b mimic promoted cell proliferation and autophagy, restrained cell apoptosis by regulating CREBRF/CREB3 pathway. As an anti-tumor agent, gensenoside Rg3 inhibited cell proliferation and tumor growth, while promoted cell apoptosis by inhibiting autophagy. However, exogenous miR-181b blunted Rg3-evoked anti-tumor effect possibly by inhibiting CREBRF/CREB pathway. CONCLUSION Collectively, these data indicates that miR-181b possibly mediates the pathologic progression of GBC by CREBRF/CREB3 signaling pathways and impairs anti-tumor effects of Rg3 on GBC development, which suggests that miR-181b might be an key switch in the process of Rg3-mediated tumor cytotoxicity in the progression of GBC.
Collapse
Affiliation(s)
- Keren Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Jie Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Tao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Zhipeng Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Fa Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Ning Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| |
Collapse
|
48
|
Yang S, Yang L, Li X, Li B, Li Y, Zhang X, Ma Y, Peng X, Jin H, Li H. New insights into autophagy in hepatocellular carcinoma: mechanisms and therapeutic strategies. Am J Cancer Res 2019; 9:1329-1353. [PMID: 31392073 PMCID: PMC6682711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023] Open
Abstract
Autophagy is a mechanism by which cellular substances are transported to lysosomes for degradation, allowing the basic transformation of cellular components, and providing energy and macromolecular precursors. In cancer, the contradictory role of autophagy in tumor suppression and promotion has been widely acknowledged. Activation and suppression of autophagy have been proposed as cancer therapies, resulting in targeted treatment of cancer by autophagy being considered ambiguous. The dynamic effect of autophagy can also be applied to hepatocellular carcinoma (HCC), a malignant tumor with high incidence and a low survival rate. In this review, we introduce characteristics of different types of autophagy and summarize which genes, non-coding RNAs, and related signaling pathways are involved in autophagy and the regulation of the formation and progress of HCC. More importantly, we discuss the role of autophagy in the treatment of HCC, such as in traditional chemotherapy, molecular targeted drugs, and natural products.
Collapse
Affiliation(s)
- Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| |
Collapse
|
49
|
Wu T, Kwaku OR, Li HZ, Yang CR, Ge LJ, Xu M. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy. Nat Prod Commun 2019; 14. [DOI: 10.1177/1934578x19858223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The term ginseng refers to the dried roots of several plants belonging to the genus Panax of the Araliaceae family. The 3 major commercial ginsengs are Panax notoginseng (Burk.) F.H. Chen (Notoginseng), P. ginseng C.A. Meyer (Ginseng), and P. quinquefolius L. (American ginseng), which have been used as herbal medicines. Over 18,000 papers on ginsengs have been published on the basis of their structural diversity and biological activities. Many reviews have summarized the phytochemistry, pharmacology, and clinical use of ginsengs, but the structure-activity relationship (SAR) of ginsenosides from ginsengs in autophagy is unavailable. Herein, we review the structural diversity of ginsenosides, especially the ones in notoginseng, and the SAR in autophagic activity is discussed in detail.
Collapse
Affiliation(s)
- Tao Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Osafo Raymond Kwaku
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, P.R. China
| | - Long-Jiao Ge
- Translational Lab of Primate Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| |
Collapse
|
50
|
Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019; 24:E1856. [PMID: 31091790 PMCID: PMC6572638 DOI: 10.3390/molecules24101856] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Zhu Lianlian
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Mennei South street, Dong-Cheng District, Beijing 100700, China.
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| |
Collapse
|