1
|
Strandberg J, Louie A, Lee S, Hahn M, Srinivasan P, George A, De La Cruz A, Zhang L, Hernandez Borrero L, Huntington KE, De La Cruz P, Seyhan AA, Koffer PP, Wazer DE, DiPetrillo TA, Graff SL, Azzoli CG, Rounds SI, Klein-Szanto AJ, Tavora F, Yakirevich E, Abbas AE, Zhou L, El-Deiry WS. TRAIL agonists rescue mice from radiation-induced lung, skin, or esophageal injury. J Clin Invest 2025; 135:e173649. [PMID: 39808500 PMCID: PMC11870730 DOI: 10.1172/jci173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Radiotherapy can be limited by pneumonitis, which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found that 2 different agonists, parenteral PEGylated trimeric TRAIL (TLY012) and oral TRAIL-inducing compound (TIC10/ONC201), could reduce pneumonitis, alveolar wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22 weeks in TLY012-rescued survivors versus unrescued surviving irradiated mice. Wild-type orthotopic breast tumor-bearing mice receiving 20 Gy thoracic radiation were protected from pneumonitis with disappearance of tumors. At the molecular level, radioprotection appeared to be due to inhibition of CCL22, a macrophage-derived chemokine previously associated with radiation pneumonitis and pulmonary fibrosis. Treatment with anti-CCL22 reduced lung injury in vivo but less so than TLY012. Pneumonitis severity was worse in female versus male mice, and this was associated with increased expression of X-linked TLR7. Irradiated mice had reduced esophagitis characterized by reduced epithelial disruption and muscularis externa thickness following treatment with the ONC201 analog ONC212. The discovery that short-term treatment with TRAIL pathway agonists effectively rescues animals from pneumonitis, dermatitis, and esophagitis following high doses of thoracic radiation exposure has important translational implications.
Collapse
Affiliation(s)
- Jillian Strandberg
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Anna Louie
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Seulki Lee
- D&D Pharmatech, Seongnam-si, South Korea
| | - Marina Hahn
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Leiqing Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Payton De La Cruz
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Paul P. Koffer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - David E. Wazer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Thomas A. DiPetrillo
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Stephanie L. Graff
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Christopher G. Azzoli
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Sharon I. Rounds
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
- Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | | | - Fabio Tavora
- Argos Laboratory, Universidade Federal do Ceará Fortaleza, Ceará, Brazil
| | - Evgeny Yakirevich
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Abbas E. Abbas
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Division of Thoracic Surgery, Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Czuczi T, Murányi J, Móra I, Gurbi B, Varga A, Papp D, Schlosser G, Csala M, Csámpai A. Development of Novel Imipridones with Alkyne- and Triazole-Linked Warheads on the Tricyclic Skeleton, Showing Superior Ability to Eradicate PANC-1 and Fadu Cells Compared to ONC201. Int J Mol Sci 2024; 25:13176. [PMID: 39684886 DOI: 10.3390/ijms252313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Our ongoing research focuses on the development of new imipridone derivatives. We aim to design compounds that can completely and selectively eradicate cancer cells after relatively short treatment. We have synthetized systematically designed novel hybrids and evaluated their antiproliferative activity against PANC-1 and Fadu cell lines. We have also conducted preliminary studies on the mechanism, including colony formation as well as dose-response tests in HEK293T wild-type (WT) and HEK293T CLPP-/- cells. Following gradual structural fine-tuning based on high throughput screening, we identified two imipridone hybrids as the most potent derivatives. Their unique substitution pattern includes N-methylated propargylamine and ferrocenyl/phenyltriazole moieties on the benzyl groups attached to opposite sides of the imipridone core. We found that the compounds with IC50 values similar to those of ONC201 completely eradicated cancer cells at about 4 μM, while ONC201 treatment at even higher concentrations left 30-50% of viable cells behind. Both compounds exerted equal activity in WT and CLPP-/- HEK293T cells, indicating a ClpP-independent mechanism. Further development is needed to improve the tumor selectivity of the two potent imipridone derivatives. By preserving tumor cytotoxicity, we aim to generate new drug candidates that evade resistance and can be applied in a sufficiently broad therapeutic window.
Collapse
Affiliation(s)
- Tamás Czuczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - József Murányi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - István Móra
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Attila Varga
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi PL, Wei B, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. Br J Cancer 2024; 131:1846-1857. [PMID: 39394450 PMCID: PMC11589887 DOI: 10.1038/s41416-024-02866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, which are CLPP activators, which inhibit OXPHOS indirectly and have demonstrated safety in patients. METHODS We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201 and ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic efficacy in vivo in UM liver metastasis models. RESULTS CLPP expression was detected in primary and mUM patient samples. ONC201 and 212 decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis in human UM cell lines in vitro. ONC212 inhibited OXPHOS, increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. CONCLUSIONS Imipridones are a promising strategy for further testing and development in mUM.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Md Alauddin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sirisha Yadugiri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mir Mustafa Ali
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatima S Khan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rohini R Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Basu V, Shabnam, Murghai Y, Ali M, Sahu S, Verma BK, Seervi M. ONC212, alone or in synergistic conjunction with Navitoclax (ABT-263), promotes cancer cell apoptosis via unconventional mitochondrial-independent caspase-3 activation. Cell Commun Signal 2024; 22:441. [PMID: 39272099 PMCID: PMC11395312 DOI: 10.1186/s12964-024-01817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria-targeting agents, known as mitocans, are emerging as potent cancer therapeutics due to pronounced metabolic and apoptotic adaptations in the mitochondria of cancer cells. ONC212, an imipridone-family compound initially identified as a ClpP agonist, is currently under investigation as a potential mitocan with demonstrated preclinical efficacy against multiple malignancies. Despite this efficacy, the molecular mechanism underlying the cell death induced by ONC212 remains unclear. This study systematically investigates the mitochondrial involvement and signaling cascades associated with ONC212-induced cell death, utilizing HeLa and A549 cancer cells. Treated cancer cells exhibited characteristic apoptotic features, such as annexin-V positivity and caspase-3 activation; however, these occurred independently of typical mitochondrial events like membrane potential loss (ΔΨm) and cytochrome c release, as well as caspase-8 activation associated with the extrinsic pathway. Additionally, ONC212 treatment increased the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, which impeded apoptosis, as the overexpression of Bcl-2-GFP and Bcl-xL-GFP significantly reduced ONC212-mediated cell death. Furthermore, combining a sub-lethal dose of the Bcl-2/Bcl-xL inhibitor Navitoclax with ONC212 markedly augmented caspase-3 activation and cell death, still without any notable ΔΨm loss or cytochrome c release. Moreover, inhibition of caspase-9 activity unexpectedly augmented, rather than attenuated, caspase-3 activation and the subsequent cell death. Collectively, our research identifies ONC212 as an atypical mitochondrial-independent, yet Bcl-2/Bcl-xL-inhibitable, caspase-3-mediated apoptotic cell death inducer, highlighting its potential for combination therapies in tumors with defective mitochondrial apoptotic signaling.
Collapse
Affiliation(s)
- Vishal Basu
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Shabnam
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Maqsood Ali
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Bhupendra K Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
5
|
Chiou JT, Chang LS. ONC212 enhances YM155 cytotoxicity by triggering SLC35F2 expression and NOXA-dependent MCL1 degradation in acute myeloid leukemia cells. Biochem Pharmacol 2024; 224:116242. [PMID: 38679209 DOI: 10.1016/j.bcp.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.
Collapse
MESH Headings
- Humans
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- U937 Cells
- Imidazoles/pharmacology
- Naphthoquinones/pharmacology
- HL-60 Cells
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Drug Synergism
- Benzyl Compounds
- Heterocyclic Compounds, 3-Ring
- Sulfonamides
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi P, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575058. [PMID: 38293232 PMCID: PMC10827043 DOI: 10.1101/2024.01.12.575058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Purpose Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion Imipridones are a promising strategy for further testing and development in mUM.
Collapse
|
7
|
Tummala T, Sevilla Uruchurtu AS, Cruz ADL, Huntington KE, George A, Liguori NR, Zhang L, Zhou L, Abbas AE, Azzoli CG, El-Deiry WS. Preclinical Synergistic Combination Therapy of Lurbinectedin with Irinotecan and 5-Fluorouracil in Pancreatic Cancer. Curr Oncol 2023; 30:9611-9626. [PMID: 37999116 PMCID: PMC10670398 DOI: 10.3390/curroncol30110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a poor prognosis. Novel chemotherapeutics in pancreatic cancer have shown limited success, illustrating the urgent need for new treatments. Lurbinectedin (PM01183; LY-01017) received FDA approval in 2020 for metastatic small cell lung cancer on or after platinum-based chemotherapy and is currently undergoing clinical trials in a variety of tumor types. Lurbinectedin stalls and degrades RNA Polymerase II and introduces breaks in DNA, causing subsequent apoptosis. We now demonstrate lurbinectedin's highly efficient killing of human-derived pancreatic tumor cell lines PANC-1, BxPC-3, and HPAF-II as a single agent. We further demonstrate that a combination of lurbinectedin and irinotecan, a topoisomerase I inhibitor with FDA approval for advanced pancreatic cancer, results in the synergistic killing of pancreatic tumor cells. Western blot analysis of combination therapy indicates an upregulation of γH2AX, a DNA damage marker, and the Chk1/ATR pathway, which is involved in replicative stress and DNA damage response. We further demonstrate that the triple combination between lurbinectedin, irinotecan, and 5-fluorouracil (5-FU) results in a highly efficient killing of tumor cells. Our results are developing insights regarding molecular mechanisms underlying the therapeutic efficacy of a novel combination drug treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Tej Tummala
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Ashley Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
| | - Leiqing Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
| | - Abbas E. Abbas
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Department of Surgery, Brown University, Providence, RI 02912, USA
| | - Christopher G. Azzoli
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (T.T.); (A.S.S.U.); (A.D.L.C.); (K.E.H.); (A.G.); (N.R.L.); (L.Z.); (L.Z.)
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA; (A.E.A.); (C.G.A.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI 02903, USA
| |
Collapse
|
8
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
9
|
Amaresan R, Gopal U. Cell surface GRP78: a potential mechanism of therapeutic resistant tumors. Cancer Cell Int 2023; 23:100. [PMID: 37221596 DOI: 10.1186/s12935-023-02931-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
GRP78 is a protein that acts as a chaperone within the endoplasmic reticulum (ER) and has multiple functions. It is induced by stress and abets cells from survival. Despite, multiple Stress conditions like ER, chronic psychological and nutritional stress, hypoxia, chemotherapy, radiation therapy, and drug resistance induce cell surface GRP78 (CS-GRP78) expression in cancer cells. Further, CS-GRP78 is associated with increased malignancy and resistance to anti-cancer therapies and is considered a high-value druggable target. Recent preclinical research suggests that targeting CS-GRP78 with anti-GRP78 monoclonal antibodies (Mab) in combination with other agents may be effective in reversing the failure of chemotherapy, radiotherapy, or targeted therapies and increasing the efficacy of solid tumors treatment. This article will review recent evidence on the role of CS-GRP78 in developing resistance to anti-cancer treatments and the potential benefits of combining anti-GRP78 Mab with other cancer therapies for specific patient populations. Furthermore, our limited understanding of how CS-GRP78 regulated in human studies is a major drawback for designing effective CS-GRP78-targeted therapies. Hence, more research is still warranted to translate these potential therapies into clinical applications.
Collapse
Affiliation(s)
- Rajalakshmi Amaresan
- Department of Zoology, Auxilium College, Gandhi Nagar, Vellore, 632 006, Tamil Nadu, India
| | - Udhayakumar Gopal
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
10
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Shin S, Solorzano J, Liauzun M, Pyronnet S, Bousquet C, Martineau Y. Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer 2022; 4:zcac031. [PMID: 36325577 PMCID: PMC9615149 DOI: 10.1093/narcan/zcac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
mRNA translation is a key mechanism for cancer cell proliferation and stress adaptation. Regulation of this machinery implicates upstream pathways such as PI3K/AKT/mTOR, RAS/MEK/ERK and the integrated stress response (ISR), principally coordinating the translation initiation step. During the last decade, dysregulation of the mRNA translation process in pancreatic cancer has been widely reported, and shown to critically impact on cancer initiation, development and survival. This includes translation dysregulation of mRNAs encoding oncogenes and tumor suppressors. Hence, cancer cells survive a stressful microenvironment through a flexible regulation of translation initiation for rapid adaptation. The ISR pathway has an important role in chemoresistance and shows high potential therapeutic interest. Despite the numerous translational alterations reported in pancreatic cancer, their consequences are greatly underestimated. In this review, we summarize the different translation dysregulations described in pancreatic cancer, which make it invulnerable, as well as the latest drug discoveries bringing a glimmer of hope.
Collapse
Affiliation(s)
- Sauyeun Shin
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Jacobo Solorzano
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Mehdi Liauzun
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Stéphane Pyronnet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Corinne Bousquet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | | |
Collapse
|
12
|
Czuczi T, Murányi J, Bárány P, Móra I, Borbély A, Csala M, Csámpai A. Synthesis and Antiproliferative Activity of Novel Imipridone–Ferrocene Hybrids with Triazole and Alkyne Linkers. Pharmaceuticals (Basel) 2022; 15:ph15040468. [PMID: 35455465 PMCID: PMC9028308 DOI: 10.3390/ph15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/10/2022] Open
Abstract
Imipridones, including ONC201, ONC206 and ONC212 (which are emblematic members of this class of compounds developed by Oncoceutics) constitute a novel class of anticancer agents, with promising results in clinical trials. With the aim of increasing the ROS (reactive oxygen species) responsivity of the synthesized molecules, a set of novel ferrocene–imipridone hybrids were designed and synthesized. Our strategy was motivated by the documented interplay between the imipridone-triggered activation of TRAIL (the tumor necrosis factor-related apoptosis-inducing ligand) and mitochondrial ClpP (Caseinolytic protease P) and the ROS-mediated effect of ferrocene-containing compounds. In order to obtain novel hybrids with multitarget characters, the ferrocene moiety was tethered to the imipridone scaffold through ethynylene and 1,2,3-triazolyl linkers by using Sonogashira coupling of Cu(I)- and Ru(II)-catalyzed azide–alkyne cycloadditions. The biological activities of the new hybrids were examined by using in vitro cell viability assays on four malignant cell lines (PANC-1, A2058, EBC-1 and Fadu), along with colony formation assays on the most resistant PANC-1 cell line. Several hybrids caused a significantly greater drop in the cell viability compared to ONC201, and two of them completely overcame the resistance, with IC50 values comparable to those produced by ONC201. The two most potent hybrids, but not ONC201, induced apoptosis/necrosis in PANC-1 and A2058 cells after 24 h of treatment.
Collapse
Affiliation(s)
- Tamás Czuczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
| | - József Murányi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
| | - Péter Bárány
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
| | - István Móra
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary;
| | - Miklós Csala
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
- Correspondence: ; Tel.: +36-1-372-2500 (ext. 6591)
| |
Collapse
|
13
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
14
|
Jhaveri AV, Zhou L, Ralff MD, Lee YS, Navaraj A, Carneiro BA, Safran H, Prabhu VV, Ross EA, Lee S, El-Deiry WS. Combination of ONC201 and TLY012 induces selective, synergistic apoptosis in vitro and significantly delays PDAC xenograft growth in vivo. Cancer Biol Ther 2021; 22:607-618. [PMID: 34856854 PMCID: PMC8726623 DOI: 10.1080/15384047.2021.1976567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The five-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained a dismal 9% for approximately 40 years with an urgent need for novel therapeutic interventions. ONC201 is the founding member of the imipridone class, comprised of orally bioavailable small molecules that have shown efficacy in multiple tumor types both in animal models and in Phase I/II clinical trials. ONC201 is a potent inducer of the tumor necrosis factor related apoptosis inducing ligand (TRAIL) pathway. TRAIL is an innate immune mechanism which induces programmed cell death of cancer cells. We observed that PDAC cells upregulated ATF4, CHOP, and DR5 after treatment with ONC201. This occurred in cell lines that are susceptible to ONC201-induced apoptosis and in ones that are not. In response to ONC201, PDAC cells downregulated anti-apoptotic proteins including c-FLIP, BclXL, XIAP, cIAP1, and survivin. We hypothesized that TRAIL receptor agonists might induce selective, synergistic apoptosis in pancreatic cancer cell lines treated with ONC201. We screened 7 pancreatic cancer cell lines and found synergy with ONC201 and rhTRAIL or the novel TRAIL receptor agonist TLY012 in 6 of the 7 cell lines tested. In vivo experiments using BxPC3 and HPAFII xenograft models showed that the combination of ONC201 plus TLY012 significantly delays tumor growth as compared to controls. Immunohistochemical analysis of the tumors after three doses of the combination showed significantly increased cleavage of caspase 3 in vivo as compared to controls. Taken together, the preclinical efficacy of ONC201 and TLY012 represents a novel therapeutic option for further testing in pancreatic cancer patients. This combination showed marked efficacy in tumor cells that are both sensitive and resistant to the pro-apoptotic effects of ONC201, providing rationale to further investigate the combination of ONC201 plus TLY012 in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aakash V Jhaveri
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Master of Science in Biotechnology Program, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Marie D Ralff
- MD/PhD Program, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States (US)
| | - Young S Lee
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US)
| | - Benedito A Carneiro
- Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| | - Howard Safran
- Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| | | | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, United States (US)
| | - Seulki Lee
- Theraly Pharmaceutics, Inc, Baltimore, MD, United States (US)
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Master of Science in Biotechnology Program, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States (US).,Brown University and the Lifespan Health System, Providence, Ri, United States (US).,Cancer Center at Brown University, the Warren Alpert Medical School, Brown University, Providence, Ri, United States (US).,Brown University and the Lifespan Cancer Institute, Providence, Ri, United States (US)
| |
Collapse
|
15
|
Zhang H, Wang SQ, Hang L, Zhang CF, Wang L, Duan CJ, Cheng YD, Wu DK, Chen R. GRP78 facilitates M2 macrophage polarization and tumour progression. Cell Mol Life Sci 2021; 78:7709-7732. [PMID: 34713304 PMCID: PMC11072571 DOI: 10.1007/s00018-021-03997-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, China
| | - Lin Hang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chun-Fang Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
| | - Chao-Jun Duan
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Yuan-Da Cheng
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Ri Chen
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
16
|
Raufi AG, Liguori NR, Carlsen L, Parker C, Hernandez Borrero L, Zhang S, Tian X, Louie A, Zhou L, Seyhan AA, El-Deiry WS. Therapeutic Targeting of Autophagy in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2021; 12:751568. [PMID: 34916936 PMCID: PMC8670090 DOI: 10.3389/fphar.2021.751568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by early metastasis, late detection, and poor prognosis. Progress towards effective therapy has been slow despite significant efforts. Novel treatment approaches are desperately needed and autophagy, an evolutionary conserved process through which proteins and organelles are recycled for use as alternative energy sources, may represent one such target. Although incompletely understood, there is growing evidence suggesting that autophagy may play a role in PDAC carcinogenesis, metastasis, and survival. Early clinical trials involving autophagy inhibiting agents, either alone or in combination with chemotherapy, have been disappointing. Recently, evidence has demonstrated synergy between the MAPK pathway and autophagy inhibitors in PDAC, suggesting a promising therapeutic intervention. In addition, novel agents, such as ONC212, have preclinical activity in pancreatic cancer, in part through autophagy inhibition. We discuss autophagy in PDAC tumorigenesis, metabolism, modulation of the immune response, and preclinical and clinical data with selected autophagy modulators as therapeutics.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| | - Nicholas R. Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Cassandra Parker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Surgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry, ; Alexander G. Raufi,
| |
Collapse
|
17
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Yang T, Zhang T, Zhou X, Wang P, Gan J, Song B, Yang S, Yang CG. Dysregulation of ClpP by Small-Molecule Activators Used Against Xanthomonas oryzae pv. oryzae Infections. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7545-7553. [PMID: 34218658 DOI: 10.1021/acs.jafc.1c01470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is considered a destructive plant bacterial disease. The looming crisis of antibiotic resistance necessitates the discovery of antibiotics with new modes of action. Activated caseinolytic protease P (ClpP) can degrade bacterial FtsZ proteins that are essential for cell division; thus, we hypothesized that small-molecule-induced dysregulation of XooClpP may result in degradation of XooFtsZ to treat leaf blight diseases. In this work, we have determined the crystal structures of XooClpP, and its mutant bound with ADEP4, which revealed the action modes of XooClpP assemblies and XooFtsZ degradation by dysregulated XooClpP in the presence of small-molecule activators, such as ONC212 and ADEP4. Additionally, an antibacterial assessment demonstrated that ONC212 displays excellent activity against Xoo and prevents rice bacterial leaf blight in vivo. Thus, these unique antibacterial effects of small-molecule activators of XooClpP represent a potential strategy for the development of agricultural antibiotics by targeting bacterial ClpP.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Zhang
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Pengyu Wang
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Cai-Guang Yang
- The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
19
|
Ferrarini I, Louie A, Zhou L, El-Deiry WS. ONC212 is a Novel Mitocan Acting Synergistically with Glycolysis Inhibition in Pancreatic Cancer. Mol Cancer Ther 2021; 20:1572-1583. [PMID: 34224362 DOI: 10.1158/1535-7163.mct-20-0962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
ONC212 is a fluorinated imipridone with preclinical efficacy against pancreatic and other malignancies. Although mitochondrial protease ClpP was identified as an ONC212-binding target, the mechanism leading to cancer cell death is incompletely understood. We investigated mitochondrial dysfunction and metabolic rewiring triggered by ONC212 in pancreatic cancer, a deadly malignancy with an urgent need for novel therapeutics. We found ClpP is expressed in pancreatic cancer cells and is required for ONC212 cytotoxicity. ClpX, the regulatory binding partner of ClpP, is suppressed upon ONC212 treatment. Immunoblotting and extracellular flux analysis showed ONC212 impairs oxidative phosphorylation (OXPHOS) with decrease in mitochondrial-derived ATP production. Although collapse of mitochondrial function is observed across ONC212-treated cell lines, only OXPHOS-dependent cells undergo apoptosis. Cells relying on glycolysis undergo growth arrest and upregulate glucose catabolism to prevent ERK1/2 inhibition and apoptosis. Glucose restriction or combination with glycolytic inhibitor 2-deoxy-D-glucose synergize with ONC212 and promote apoptosis in vitro and in vivo Thus, ONC212 is a novel mitocan targeting oxidative metabolism in pancreatic cancer, leading to different cellular outcomes based on divergent metabolic programs.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Surgery, Brown University, Lifespan Health System and Warren, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island. .,Department of Pathology and Laboratory medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, Rhode Island.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, Rhode Island.,Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
20
|
Al Madhoun A, Haddad D, Al Tarrah M, Jacob S, Al-Ali W, Nizam R, Miranda L, Al-Rashed F, Sindhu S, Ahmad R, Bitar MS, Al-Mulla F. Microarray analysis reveals ONC201 mediated differential mechanisms of CHOP gene regulation in metastatic and nonmetastatic colorectal cancer cells. Sci Rep 2021; 11:11893. [PMID: 34088951 PMCID: PMC8178367 DOI: 10.1038/s41598-021-91092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
The imipramine ONC201 has antiproliferative effects in several cancer cell types and activates integrated stress response pathway associated with the induction of Damage Inducible Transcript 3 (DDIT3, also known as C/EBP homologous protein or CHOP). We investigated the signaling pathways through which ONC201/CHOP crosstalk is regulated in ONC201-treated nonmetastatic and metastatic cancer cell lines (Dukes' type B colorectal adenocarcinoma nonmetastatic SW480 and metastatic LS-174T cells, respectively). Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry, gene expression was assessed by Affymetrix microarray, signaling pathway perturbations were assessed in silico, and key regulatory proteins were validated by Western blotting. Unlike LS-174T cells, SW480 cells were resistant to ONC201 treatment; Gene Ontology analysis of differentially expressed genes showed that cellular responsiveness to ONC201 treatment also differed substantially. In both ONC201-treated cell lines, CHOP expression was upregulated; however, its upstream regulatory mechanisms were perturbed. Although, PERK, ATF6 and IRE1 ER-stress pathways upregulated CHOP in both cell types, the Bak/Bax pathway regulated CHOP only LS-174T cells. Additionally, CHOP RNA splicing profiles varied between cell lines; these were further modified by ONC201 treatment. In conclusion, we delineated the signaling mechanisms by which CHOP expression is regulated in ONC201-treated non-metastatic and metastatic colorectal cell lines. The observed differences could be related to cellular plasticity and metabolic reprogramming, nevertheless, detailed mechanistic studies are required for further validations.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait.
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait.
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Mustafa Al Tarrah
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Waleed Al-Ali
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, 046302, Jabriya, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Lavina Miranda
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Fatema Al-Rashed
- Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, 15462, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Milad S Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, 046302, Jabriya, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait.
| |
Collapse
|
21
|
Bonner ER, Waszak SM, Grotzer MA, Mueller S, Nazarian J. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro Oncol 2021; 23:542-556. [PMID: 33336683 DOI: 10.1093/neuonc/noaa283] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ONC201 is the first member of the imipridone family of anticancer drugs to enter the clinic for the treatment of diverse solid and hematologic cancers. A subset of pediatric and adult patients with highly aggressive brain tumors has shown remarkable clinical responses to ONC201, and recently, the more potent derivative ONC206 entered clinical trials as a single agent for the treatment of central nervous system (CNS) cancers. Despite the emerging clinical interest in the utility of imipridones, their exact molecular mechanisms are not fully described. In fact, the existing literature points to multiple pathways (e.g. tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) signaling, dopamine receptor antagonism, and mitochondrial metabolism) as putative drug targets. We have performed a comprehensive literature review and highlighted mitochondrial metabolism as the major target of imipridones. In support of this, we performed a meta-analysis of an ONC201 screen across 539 human cancer cell lines and showed that the mitochondrial caseinolytic protease proteolytic subunit (ClpP) is the most significant predictive biomarker of response to treatment. Herein, we summarize the main findings on the anticancer mechanisms of this potent class of drugs, provide clarity on their role, and identify clinically relevant predictive biomarkers of response.
Collapse
Affiliation(s)
- Erin R Bonner
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, California
| | - Javad Nazarian
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC.,Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Arrillaga-Romany I, Odia Y, Prabhu VV, Tarapore RS, Merdinger K, Stogniew M, Oster W, Allen JE, Mehta M, Batchelor TT, Wen PY. Biological activity of weekly ONC201 in adult recurrent glioblastoma patients. Neuro Oncol 2021; 22:94-102. [PMID: 31702782 DOI: 10.1093/neuonc/noz164] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ONC201 is a dopamine receptor D2 (DRD2) antagonist that penetrates the blood-brain barrier. ONC201 efficacy has been shown in glioblastoma animal models and is inversely correlated with dopamine receptor DRD5 expression. ONC201 is well tolerated in adult recurrent glioblastoma patients with dosing every 3 weeks and has achieved an objective radiographic response in a patient harboring the H3 K27M mutation. METHODS In a window-of-opportunity arm, 6 adult subjects initiated ONC201 prior to re-resection of recurrent glioblastoma with intratumoral concentrations as the primary endpoint. An additional 20 adults with recurrent glioblastoma received single agent weekly oral ONC201 at 625 mg, with progression-free survival at 6 months (PFS6) by Response Assessment in Neuro-Oncology (RANO) criteria as the primary endpoint. RESULTS The window-of-opportunity arm achieved its primary endpoint with intratumoral ONC201 concentrations at ~24 hours following the second weekly dose ranging from 600 nM to 9.3 µM. Intratumoral pharmacodynamics assessed by activating transcriptional factor 4, death receptor 5, and apoptosis induction relative to archival samples were observed with the strongest intensity and uniformity among patients with low DRD5 tumor expression. The primary endpoint of PFS6 by RANO was not achieved at 5% in this molecularly unselected cohort; however, 1 of 3 patients enrolled with the H3 K27M mutation had a complete regression of enhancing multifocal lesions that remained durable for >1.5 years. No treatment modifications or discontinuations due to toxicity were observed, including in those who underwent re-resection. CONCLUSIONS Weekly ONC201 is well tolerated, and meaningful intratumoral concentrations were achieved. ONC201 may be biologically active in a subset of adult patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tracy T Batchelor
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
23
|
Fatima N, Shen Y, Crassini K, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL. EJHAEM 2021; 2:81-93. [PMID: 35846080 PMCID: PMC9175891 DOI: 10.1002/jha2.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Despite advances in therapy, a significant proportion of patients with chronic lymphocytic leukemia (CLL) relapse with drug resistant disease. Novel treatment approaches are required, particularly for high risk disease. The imipridones represent a new class of cancer therapy that has been investigated in pre-clinical and clinical trials against a range of different cancers. We investigated the effects of the imipridone, ONC-212, against CLL cells cultured under conditions that mimic aspects of the tumour microenvironment and a TP53ko CLL cell line (OSU-CLL-TP53ko). ONC-212 induced dose-dependent apoptosis, cell cycle arrest and reduced the migration of CLL cells in vitro, including cells from patients with TP53 lesions and OSU-CLL-TP53ko cells. The effects of ONC-212 were associated with protein changes consistent with activation of the mitochondrial protease, CIpP, and the integrated stress response. We also observed inhibition of pathways downstream of the B-cell receptor (BCR) (AKT and MAPK-ERK1/2) and a pro-apoptotic shift in the balance of proteins of the BCL2 family of proteins (BCL2, MCL1, BCLxL, BAX and NOXA). In conclusion, the study suggests ONC-212 may represent an effective treatment for high risk CLL disease by inhibiting multiple facets of the BCR signaling pathway and the pro-survival effects of the BCL2-family proteins.
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Yandong Shen
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Kyle Crassini
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
| | | | - Henk Lang
- Madera TherapeuticsLLCCaryNorth Carolina
| | | | | | - Stephen P. Mulligan
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Oliver G. Best
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
- Department of Molecular Medicine and GeneticsFlinders Health and Medical Research Institute (FHMRI)College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| |
Collapse
|
24
|
Robinson CM, Talty A, Logue SE, Mnich K, Gorman AM, Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13020261. [PMID: 33445669 PMCID: PMC7828145 DOI: 10.3390/cancers13020261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Claire M. Robinson
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Aaron Talty
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Adrienne M. Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
- Correspondence:
| |
Collapse
|
25
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
26
|
Aminzadeh-Gohari S, Weber DD, Catalano L, Feichtinger RG, Kofler B, Lang R. Targeting Mitochondria in Melanoma. Biomolecules 2020; 10:biom10101395. [PMID: 33007949 PMCID: PMC7599575 DOI: 10.3390/biom10101395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Drastically elevated glycolytic activity is a prominent metabolic feature of cancer cells. Until recently it was thought that tumor cells shift their entire energy production from oxidative phosphorylation (OXPHOS) to glycolysis. However, new evidence indicates that many cancer cells still have functional OXPHOS, despite their increased reliance on glycolysis. Growing pre-clinical and clinical evidence suggests that targeting mitochondrial metabolism has anti-cancer effects. Here, we analyzed mitochondrial respiration and the amount and activity of OXPHOS complexes in four melanoma cell lines and normal human dermal fibroblasts (HDFs) by Seahorse real-time cell metabolic analysis, immunoblotting, and spectrophotometry. We also tested three clinically approved antibiotics, one anti-parasitic drug (pyrvinium pamoate), and a novel anti-cancer agent (ONC212) for effects on mitochondrial respiration and proliferation of melanoma cells and HDFs. We found that three of the four melanoma cell lines have elevated glycolysis as well as OXPHOS, but contain dysfunctional mitochondria. The antibiotics produced different effects on the melanoma cells and HDFs. The anti-parasitic drug strongly inhibited respiration and proliferation of both the melanoma cells and HDFs. ONC212 reduced respiration in melanoma cells and HDFs, and inhibited the proliferation of melanoma cells. Our findings highlight ONC212 as a promising drug for targeting mitochondrial respiration in cancer.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| |
Collapse
|
27
|
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response. Int J Mol Sci 2019; 21:ijms21010169. [PMID: 31881743 PMCID: PMC6981480 DOI: 10.3390/ijms21010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
- Correspondence: ; Tel.: +01-336-716-2234
| |
Collapse
|
28
|
Elaileh A, Saharia A, Potter L, Baio F, Ghafel A, Abdelrahim M, Heyne K. Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. Am J Cancer Res 2019; 9:1871-1888. [PMID: 31598392 PMCID: PMC6780661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality among men and women in the United States. Its incidence has been on the rise, with a projected two-fold increase by 2030. PDAC carries a poor prognosis due to a lack of effective screening tools, limited understanding of pathophysiology, and ineffective treatment modalities. Recently, there has been a revolution in the world of oncology with the advent of novel treatments to combat this disease. However, the 5-year survival of PDAC remains unchanged at a dismal 8%. The aim of this review is to bring together several studies and identify various recent modalities that have been promising in treating PDAC.
Collapse
Affiliation(s)
- Ahmed Elaileh
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Ashish Saharia
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Lucy Potter
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Flavio Baio
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Afnan Ghafel
- Department of Radiology, The University of JordanAmman, Jordan
| | - Maen Abdelrahim
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Kirk Heyne
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| |
Collapse
|
29
|
Zhao R, Li Y, Gorantla S, Poluektova LY, Lin H, Gao F, Wang H, Zhao J, Zheng JC, Huang Y. Small molecule ONC201 inhibits HIV-1 replication in macrophages via FOXO3a and TRAIL. Antiviral Res 2019; 168:134-145. [PMID: 31158413 DOI: 10.1016/j.antiviral.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Despite the success of antiretroviral therapy (ART), eradication of HIV-1 from brain reservoirs remains elusive. HIV-1 brain reservoirs include perivascular macrophages that are behind the blood-brain barrier and difficult to access by ART. Macrophages express transcription factor FOXO3a and the TNF superfamily cytokine TRAIL, which are known to target HIV-1-infected macrophages for viral inhibition. ONC201 is a novel and potent FOXO3a activator capable of inducing TRAIL. It can cross the blood-brain barrier, and has shown antitumor effects in clinical trials. We hypothesized that activation of FOXO3a/TRAIL by ONC201 will inhibit HIV-1 replication in macrophages. Using primary human monocyte-derived macrophages, we demonstrated that ONC201 dose-dependently decreased replication levels of both HIV-1 laboratory strain and primary strains as determined by HIV-1 reverse transcriptase activity assay. Consistent with data on HIV-1 replication, ONC201 also reduced intracellular and extracellular p24, viral RNA, and integrated HIV-1 DNA in infected macrophages. Blocking TRAIL or knockdown of FOXO3a with siRNA reversed ONC201-mediated HIV-1 suppression, suggesting that ONC201 inhibits HIV-1 through FOXO3a and TRAIL. The anti-HIV-1 effect of ONC201 was further validated in vivo in NOD/scid-IL-2Rgcnull mice. After intracranial injection of HIV-1-infected macrophages into the basal ganglia, we treated the mice daily with ONC201 through intraperitoneal injection for six days. ONC201 significantly decreased p24 levels in both the macrophages and the brain tissues, suggesting that ONC201 suppresses HIV-1 in vivo. Therefore, ONC201 can be a promising drug candidate to combat persistent HIV-1 infection in the brain.
Collapse
Affiliation(s)
- Runze Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Yuju Li
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Santhi Gorantla
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Larisa Y Poluektova
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hai Lin
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengtong Gao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Hongyun Wang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jeffrey Zhao
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jialin C Zheng
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Yunlong Huang
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Nii T, Prabhu VV, Ruvolo V, Madhukar N, Zhao R, Mu H, Heese L, Nishida Y, Kojima K, Garnett MJ, McDermott U, Benes CH, Charter N, Deacon S, Elemento O, Allen JE, Oster W, Stogniew M, Ishizawa J, Andreeff M. Imipridone ONC212 activates orphan G protein-coupled receptor GPR132 and integrated stress response in acute myeloid leukemia. Leukemia 2019; 33:2805-2816. [PMID: 31127149 PMCID: PMC6874902 DOI: 10.1038/s41375-019-0491-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Imipridones constitute a novel class of antitumor agents. Here, we report that a second-generation imipridone, ONC212, possesses highly increased antitumor activity compared to the first-generation compound ONC201. In vitro studies using human acute myeloid leukemia (AML) cell lines, primary AML, and normal bone marrow (BM) samples demonstrate that ONC212 exerts prominent apoptogenic effects in AML, but not in normal BM cells, suggesting potential clinical utility. Imipridones putatively engage G protein-coupled receptors (GPCRs) and/or trigger an integrated stress response in hematopoietic tumor cells. Comprehensive GPCR screening identified ONC212 as activator of an orphan GPCR GPR132 and Gαq signaling, which functions as a tumor suppressor. Heterozygous knock-out of GPR132 decreased the antileukemic effects of ONC212. ONC212 induced apoptogenic effects through the induction of an integrated stress response, and reduced MCL-1 expression, a known resistance factor for BCL-2 inhibition by ABT-199. Oral administration of ONC212 inhibited AML growth in vivo and improved overall survival in xenografted mice. Moreover, ONC212 abrogated the engraftment capacity of patient-derived AML cells in an NSG PDX model, suggesting potential eradication of AML initiating cells, and was highly synergistic in combination with ABT-199. Collectively, our results suggest ONC212 as a novel therapeutic agent for AML.
Collapse
Affiliation(s)
- Takenobu Nii
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neel Madhukar
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Heese
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University, Saga, Japan
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Cyril H Benes
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, Zhao R, St-Germain J, Heese LE, Egan G, Ruvolo VR, Barghout SH, Nishida Y, Hurren R, Ma W, Gronda M, Link T, Wong K, Mabanglo M, Kojima K, Borthakur G, MacLean N, Ma MCJ, Leber AB, Minden MD, Houry W, Kantarjian H, Stogniew M, Raught B, Pai EF, Schimmer AD, Andreeff M. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell 2019; 35:721-737.e9. [PMID: 31056398 PMCID: PMC6620028 DOI: 10.1016/j.ccell.2019.03.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Survival/drug effects
- Crystallography, X-Ray
- Drug Screening Assays, Antitumor
- Endopeptidase Clp/chemistry
- Endopeptidase Clp/genetics
- Endopeptidase Clp/metabolism
- Female
- HCT116 Cells
- HEK293 Cells
- Heterocyclic Compounds, 4 or More Rings/administration & dosage
- Heterocyclic Compounds, 4 or More Rings/chemistry
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Imidazoles
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mitochondria/metabolism
- Models, Molecular
- Point Mutation
- Protein Conformation/drug effects
- Proteolysis
- Pyridines
- Pyrimidines
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jo Ishizawa
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Sarah F Zarabi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - R Eric Davis
- The University of Texas MD Anderson Cancer Center; Department of Lymphoma and Myeloma, Houston, TX 77030, USA
| | - Ondrej Halgas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Takenobu Nii
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ran Zhao
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Lauren E Heese
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Grace Egan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Vivian R Ruvolo
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yuki Nishida
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Wencai Ma
- The University of Texas MD Anderson Cancer Center, Bioinformatics and Comp Biology, Houston, TX 77030, USA
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Todd Link
- The University of Texas MD Anderson Cancer Center, Genomic Medicine, Houston, TX 77030, USA
| | - Keith Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kensuke Kojima
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA; Saga University, Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga 849-8501, Japan
| | - Gautam Borthakur
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Man Chun John Ma
- The University of Texas MD Anderson Cancer Center; Department of Lymphoma and Myeloma, Houston, TX 77030, USA
| | - Andrew B Leber
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Walid Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center; Department of Leukemia, Houston, TX 77030, USA
| | | | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Emil F Pai
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Michael Andreeff
- The University of Texas MD Anderson Cancer Center, Molecular Hematology and Therapy, Department of Leukemia, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center; Department of Leukemia, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Bakadlag R, Jandaghi P, Hoheisel JD, Riazalhosseini Y. The potential of dopamine receptor D2 (DRD2) as a therapeutic target for tackling pancreatic cancer. Expert Opin Ther Targets 2019; 23:365-367. [DOI: 10.1080/14728222.2019.1606904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rowa Bakadlag
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Pouria Jandaghi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jörg D. Hoheisel
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| |
Collapse
|
33
|
Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 2019; 163:269-278. [PMID: 30831072 DOI: 10.1016/j.bcp.2019.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
The protein chaperone GRP78 is a master regulator of endoplasmic reticulum (ER) functions and is frequently over-expressed at the surface of cancer cells where it contributes to chemo-resistance. It represents a well-studied ER stress marker but an under-explored target for new drug development. This review aims to untangle the structural and functional diversity of GRP78 modulators, covering over 130 natural products, synthetic molecules, specific peptides and monoclonal antibodies that target GRP78. Several approaches to promote or to incapacitate GRP78 are presented, including the use of oligonucleotides and specific cell-delivery peptides often conjugated to cytotoxic payloads to design GRP78-targeted therapeutics. A repertoire of drugs that turn on/off GRP78 is exposed, including molecules which bind directly to GRP78, principally to its ATP site. There exist many options to regulate positively or negatively the expression of the chaperone, or to interfere with its cellular trafficking. This review provides a molecular cartography of GRP78 pharmacological effectors and adds weight to the notion that GRP78 repressors could represent promising anticancer therapeutics, notably as regards limiting chemo-resistance of cancer cells. The potential of GRP78-targeting drugs in other therapeutic modalities is also evoked.
Collapse
Affiliation(s)
- Christian Bailly
- UMR-S 1172, Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, CHU Lille, 59045 Lille, France.
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
34
|
Ferrocene-Containing Impiridone (ONC201) Hybrids: Synthesis, DFT Modelling, In Vitro Evaluation, and Structure⁻Activity Relationships. Molecules 2018; 23:molecules23092248. [PMID: 30177664 PMCID: PMC6225426 DOI: 10.3390/molecules23092248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/11/2023] Open
Abstract
Inspired by the well-established clinical evidence about the interplay between apoptotic TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) mechanism and reactive oxygen species (ROS)-mediated oxidative stress, a set of novel ONC201 hybrids containing the impiridone core and one or two differently positioned ferrocenylalkyl groups were synthesised in our present work. These two types of residues have been implicated in the aforementioned mechanisms associated with cytotoxic activity. A straightforward, primary amine-based synthetic approach was used allowing the introduction of a variety of N-substituents into the two opposite regions of the heterocyclic skeleton. Reference model compounds with benzyl and halogenated benzyl groups were also synthesised and tested. The in vitro assays of the novel impiridones on five malignant cell lines disclosed characteristic structure-activity relationship (SAR) featuring significant substituent-dependent activity and cell-selectivity. A possible contribution of ROS-mechanism to the cytotoxicity of the novel metallocenes was suggested by density functional theory (DFT)studies on simplified models. Accordingly, unlike the mono-ferrocenylalkyl-substituted products, the compounds containing two ferrocenylalkyl substituents in the opposite regions of the impiridone core display a much more pronounced long-term cytotoxic effect against A-2058 cell line than do the organic impiridones including ONC201 and ONC212. Furthermore, the prepared bis-metallocene derivatives also present substantial activity against COLO-205- and EBC-1 cell lines.
Collapse
|
35
|
Garcia-Carbonero N, Li W, Cabeza-Morales M, Martinez-Useros J, Garcia-Foncillas J. New Hope for Pancreatic Ductal Adenocarcinoma Treatment Targeting Endoplasmic Reticulum Stress Response: A Systematic Review. Int J Mol Sci 2018; 19:E2468. [PMID: 30134550 PMCID: PMC6165247 DOI: 10.3390/ijms19092468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumours, and its incidence is rising worldwide. Although survival can be improved by surgical resection when these tumours are detected at an early stage, this cancer is usually asymptomatic, and disease only becomes apparent after metastasis. Several risk factors are associated with this disease, the most relevant being chronic pancreatitis, diabetes, tobacco and alcohol intake, cadmium, arsenic and lead exposure, certain infectious diseases, and the mutational status of some genes associated to a familial component. PDAC incidence has increased in recent decades, and there are few alternatives for chemotherapeutic treatment. Endoplasmic reticulum (ER) stress factors such as GRP78/BiP (78 kDa glucose-regulated protein), ATF6α (activating transcription factor 6 isoform α), IRE1α (inositol-requiring enzyme 1 isoform α), and PERK (protein kinase RNA-like endoplasmic reticulum kinase) activate the transcription of several genes involved in both survival and apoptosis. Some of these factors aid in inducing a non-proliferative state in cancer called dormancy. Modulation of endoplasmic reticulum stress could induce dormancy of tumour cells, thus prolonging patient survival. In this systematic review, we have compiled relevant results concerning those endoplasmic reticulum stress factors involved in PDAC, and we have analysed the mechanism of dormancy associated to endoplasmic reticulum stress and its potential use as a chemotherapeutic target against PDAC.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Antibodies/pharmacology
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/therapy
- Communicable Diseases/complications
- Communicable Diseases/genetics
- Communicable Diseases/metabolism
- Communicable Diseases/pathology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Diabetes Complications/genetics
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatitis, Chronic/complications
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Risk Factors
- Sulfones/pharmacology
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Marticela Cabeza-Morales
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Fang Z, Wang J, Clark LH, Sun W, Yin Y, Kong W, Pierce SR, West L, Sullivan SA, Tran AQ, Prabhu VV, Zhou C, Bae-Jump V. ONC201 demonstrates anti-tumorigenic and anti-metastatic activity in uterine serous carcinoma in vitro. Am J Cancer Res 2018; 8:1551-1563. [PMID: 30210923 PMCID: PMC6129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023] Open
Abstract
Uterine serous carcinoma (USC) represents an aggressive histologic subtype of endometrial cancer. It is associated with a poor prognosis, and improved therapies for women battling USCs are greatly needed. ONC201 is an orally bioavailable, first-in-class small molecule that induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) independent of p53. ONC201 has demonstrated anti-tumorigenic activity in pre-clinical models of solid tumors through induction of apoptosis and inactivation of the AKT/MAPK pathways. Recent phase I and II clinical trials have shown that ONC201 is well tolerated and may have single agent activity in high grade glioma patients among others. We sought to determine the effects of ONC201 on cell proliferation in USC and identify the mechanisms by which ONC201 inhibits cell growth in this disease. ONC201 inhibited cell proliferation in a dose-dependent manner in ARK1, ARK2 and SPEC-2 cell lines. The anti-proliferative activity of ONC201 in ARK1 and SPEC-2 cells was associated with induction apoptosis independent of p53 via both a TRAIL mediated apoptotic pathway and a mitochondrial apoptosis pathway. Treatment with ONC201 resulted in significant reduction in adhesion and invasion as well as inhibition of the AKT and MAPK pathways. In addition, ONC201 markedly potentiated the anti-tumorigenic effects of paclitaxel in USC cells. Our results suggest that ONC201 has significant anti-proliferative and anti-metastatic effects in USC cells through both induction of apoptosis and inhibition of the AKT and MAPK pathways. ONC201 and paclitaxel are a promising therapeutic combination in USC cells. Thus, ONC201 should be evaluated as a single agent and as a therapeutic partner with paclitaxel in future clinical trials of USC.
Collapse
Affiliation(s)
- Ziwei Fang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Leslie H Clark
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Stuart R Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Stephanie A Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
37
|
Lev A, Lulla AR, Ross BC, Ralff MD, Makhov PB, Dicker DT, El-Deiry WS. ONC201 Targets AR and AR-V7 Signaling, Reduces PSA, and Synergizes with Everolimus in Prostate Cancer. Mol Cancer Res 2018; 16:754-766. [PMID: 29588330 DOI: 10.1158/1541-7786.mcr-17-0614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
Abstract
Androgen receptor (AR) signaling plays a key role in prostate cancer progression, and androgen deprivation therapy (ADT) is a mainstay clinical treatment regimen for patients with advanced disease. Unfortunately, most prostate cancers eventually become androgen-independent and resistant to ADT with patients progressing to metastatic castration-resistant prostate cancer (mCRPC). Constitutively activated AR variants (AR-V) have emerged as mediators of resistance to AR-targeted therapy and the progression of mCRPC, and they represent an important therapeutic target. Out of at least 15 AR-Vs described thus far, AR-V7 is the most abundant, and its expression correlates with ADT resistance. ONC201/TIC10 is the founding member of the imipridone class of small molecules and has shown anticancer activity in a broad range of tumor types. ONC201 is currently being tested in phase I/II clinical trials for advanced solid tumors, including mCRPC, and hematologic malignancies. There has been promising activity observed in patients in early clinical testing. This study demonstrates preclinical single-agent efficacy of ONC201 using in vitro and in vivo models of prostate cancer. ONC201 has potent antiproliferative and proapoptotic effects in both castration-resistant and -sensitive prostate cancer cells. Furthermore, the data demonstrate that ONC201 downregulates the expression of key drivers of prostate cancer such as AR-V7 and downstream target genes including the clinically used biomarker PSA (KLK3). Finally, the data also provide a preclinical rationale for combination of ONC201 with approved therapeutics for prostate cancer such as enzalutamide, everolimus (mTOR inhibitor), or docetaxel.Implications: The preclinical efficacy of ONC201 as a single agent or in combination, in hormone-sensitive or castration-resistant prostate cancer, suggests the potential for immediate clinical translation. Mol Cancer Res; 16(5); 754-66. ©2018 AACR.
Collapse
Affiliation(s)
- Avital Lev
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Amriti R Lulla
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian C Ross
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Marie D Ralff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Petr B Makhov
- Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|