1
|
Li Y, Guo Z, Li P, Guo J, Wang H, Pan W, Wu F, Li J, Zhou J, Ma Z. Tanshinone T1/T2A inhibits non-small cell lung cancer through Lin28B-let-7-BORA/MYC regulatory network. Gene 2025; 935:149058. [PMID: 39481768 DOI: 10.1016/j.gene.2024.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Tanshinones are a group of compounds in Salvia miltiorrhiza. Although the effects of tanshinone I (T1) and tanshinone IIA (T2A) are widely concerned, the mechanisms of T1 and T2A in lung cancer is rarely studied. EXPERIMENTAL PROCEDURE Xenograft tumor growth was performed to detect the role of T1/T2A in vivo. Next-generation sequencing of miRNA expression profiles in T1/T2A-treated A549 cells showed that T1/T2A upregulated the expression of the let-7 family. Then, let-7a-5p and its downstream target gene BORA were identified as the research objects in this paper. Mechanistically, we examined the interplay between miR-let-7 and BORA through the dual-luciferase reporter assay. Finally, the potential regulatory role of T1/T2A on Lin28B and MYC was explored. RESULTS This study found that the let-7 family was significantly up-regulated via "Next-generation" sequencing (NGS) in the T1/T2A-treated A549 cell line, while BORA was downregulated. BORA was confirmed as a direct target of let-7. LncRNA MYCLo-5 was up-regulated after treatment with tanshinones. Knockdown of MYCLo-5 promoted the cell cycle and proliferation of non-small cell lung cancer (NSCLC) cells. CONCLUSIONS This study explored the effects of tanshinone T1 and T2A on NSCLC in vitro and in vivo, revealing the T1/T2A-let-7/BORA/MYCLo-5 regulatory pathway, which provided new insights for lung cancer treatment.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huimin Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China.
| | - Jinrong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center Harvard Medical School, USA.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Ji XZ, Qin X, Wang W, Wang L. A review of tanshinone compounds in prostate cancer treatment. Transl Androl Urol 2024; 13:1278-1287. [PMID: 39100845 PMCID: PMC11291418 DOI: 10.21037/tau-24-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant epithelial tumors in men worldwide. PCa patients are initially sensitive to chemotherapy, but patients in the advanced stages of PCa eventually develop resistance, leaving them with limited therapeutic options. Therefore, it is very important to screen new drugs for treating PCa. Salvia miltiorrhiza is a common Chinese herbal medicine used in some Asian countries. It has many functions and is widely used to treat a variety of diseases, including heart diseases and cancers. For the past few years, research has shown that liposoluble constituents of tanshinones (TANs), including cryptotanshinone, TAN IIA, dihydrotanshinone I, and TAN I, exhibit good anticancer activity in PCa. In this study, we review the progress of TAN compounds (cryptotanshinone, TAN IIA, dihydrotanshinone I, and TAN I) in treating PCa over the past decade. These compounds can act on the same molecular mechanisms, as they have a very similar structure; they are also found to work slightly differently in PCa. According to current studies, compared with other TAN compounds, TAN IIA appears to hold more potential for treating PCa. The toxicity, side effects or biodistribution of Salvia miltiorrhiza and these four TANs need to be confirmed with further research. Findings obtained in this study may provide important information for the potential clinical application of cryptotanshinone, TAN IIA, dihydrotanshinone I, and TAN I in the treatment of PCa.
Collapse
Affiliation(s)
- Xiao-Zhen Ji
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xin Qin
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Wei Wang
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Lin Wang
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
4
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Ke L, Zhong C, Chen Z, Zheng Z, Li S, Chen B, Wu Q, Yao H. Tanshinone I: Pharmacological activities, molecular mechanisms against diseases and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154632. [PMID: 36608501 DOI: 10.1016/j.phymed.2022.154632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tanshinone I (Tan I) is known as one of the important active components in Salvia miltiorrhiza. In recent years, Tan I has received a substantial amount of attention from the research community for various studies being updated and has been shown to possess favorable activities including anti-oxidative stress, regulation of cell autophagy or apoptosis, inhibition of inflammation, etc. PURPOSE: To summarize the investigation progress on the anti-disease efficacy and effect mechanism of Tan I in recent years, and provide perspectives for future study on the active ingredient. METHOD Web of Science and PubMed databases were used to search for articles related to "Tanshinone I" published from 2010 to 2022. Proteins or genes and signaling pathways referring to Tan I against diseases were summarized and classified along with its different therapeutic actions. Protein-protein interaction (PPI) analysis was then performed, followed by molecular docking between proteins with high node degree and Tan I, as well as bioinformactic analysis including GO, KEGG and DO enrichment analysis with the collected proteins or genes. RESULTS Tan I shows multiple therapeutic effects, including protection of the cardiovascular system, anti-cancer, anti-inflammatory, anti-neurodegenerative diseases, etc. The targets (proteins or genes) affected by Tan I against diseases involve Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, AKT, PRK, JNK, MMP9, ABCG2, CASP3, Cleaved-caspase-3, AMPKα, PARP, etc., and the regulatory pathways refer to Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, ATF-2/ERK, etc. What's more, AKT1, CASP3, and STAT3 were predicted as the key action targets for Tan I by PPI analysis combined with molecular docking, and the potential therapeutic effects mechanisms against diseases were also further predicted by bioinformatics analyses based on the reported targets, providing new insights into the future investigation and helping to facilitate the drug development of Tan I.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijie Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiaoyi Wu
- Department of Trauma and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou, 350004, China.
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
6
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
7
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
8
|
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W, Tang K. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022; 27:molecules27175594. [PMID: 36080361 PMCID: PMC9457553 DOI: 10.3390/molecules27175594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor of the male urinary system in Europe and America. According to the data in the World Cancer Report 2020, the incidence rate of PCa ranks second in the prevalence of male malignant tumors and varies worldwide between regions and population groups. Although early PCa can achieve good therapeutic results after surgical treatment, due to advanced PCa, it can adapt and tolerate androgen castration-related drugs through a variety of mechanisms. For this reason, it is often difficult to achieve effective therapeutic results in the treatment of advanced PCa. Tanshinone is a new fat-soluble phenanthraquinone compound derived from Salvia miltiorrhiza that can play a therapeutic role in different cancers, including PCa. Several studies have shown that Tanshinone can target various molecular pathways of PCa, including the signal transducer and activator of transcription 3 (STAT3) pathway, androgen receptor (AR) pathway, phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, and mitogen-activated protein kinase (MAPK) pathway, which will affect the release of pro-inflammatory cytokines and affect cell proliferation, apoptosis, tumor metabolism, genomic stability, and tumor drug resistance. Thus, the occurrence and development of PCa cells are inhibited. In this review, we summarized the in vivo and in vitro evidence of Tanshinone against prostate cancer and discussed the effect of Tanshinone on nuclear factor kappa-B (NF-κB), AR, and mTOR. At the same time, we conducted a network pharmacology analysis on the four main components of Tanshinone to further screen the possible targets of Tanshinone against prostate cancer and provide ideas for future research.
Collapse
|
9
|
Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH, Guo HY. Research and Development of Natural Product Tanshinone I: Pharmacology, Total Synthesis, and Structure Modifications. Front Pharmacol 2022; 13:920411. [PMID: 35903340 PMCID: PMC9315943 DOI: 10.3389/fphar.2022.920411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia miltiorrhiza (S. miltiorrhiza), which has been used for thousands of years to treat cardiovascular diseases, is a well-known Chinese medicinal plant. The fat-soluble tanshinones in S. miltiorrhiza are important biologically active ingredients including tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone. Tanshinone I, a natural diterpenoid quinone compound widely used in traditional Chinese medicine, has a wide range of biological effects including anti-cancer, antioxidant, neuroprotective, and anti-inflammatory activities. To further improve its potency, water solubility, and bioavailability, tanshinone I can be used as a platform for drug discovery to generate high-quality drug candidates with unique targets and enhanced drug properties. Numerous derivatives of tanshinone I have been developed and have contributed to major advances in the identification of new drugs to treat human cancers and other diseases and in the study of related molecular mechanisms. This review focuses on the structural modification, total synthesis, and pharmacology of tanshinone I. We hope that this review will help understanding the research progress in this field and provide constructive suggestions for further research on tanshinone I.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Guo
- *Correspondence: Chang-hao Zhang, ; Hong-Yan Guo,
| |
Collapse
|
10
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
11
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
12
|
Lai Z, He J, Zhou C, Zhao H, Cui S. Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem 2021; 28:2807-2827. [PMID: 32436817 DOI: 10.2174/0929867327666200521124850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Tanshinones are an important type of natural products isolated from Salvia miltiorrhiza Bunge with various bioactivities. Tanshinone IIa, cryptotanshinone and tanshinone I are three kinds of tanshinones which have been widely investigated. Particularly, sodium tanshinone IIa sulfonate is a water-soluble derivative of tanshinone IIa and it is used in clinical in China for treating cardiovascular diseases. In recent years, there are increasing interests in the investigation of tanshinones derivatives in various diseases. This article presents a review of the anti-atherosclerotic effects, cardioprotective effects, anticancer activities, antibacterial activities and antiviral activities of tanshinones and structural modification work in recent years.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changxin Zhou
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung ELH. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021; 34:1108-1127. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.
Collapse
Affiliation(s)
- Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- Membrane Biophysics Emeritus Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
14
|
Tanshinone I regulates autophagic signaling via the activation of AMP-activated protein kinase in cancer cells. Anticancer Drugs 2021; 31:601-608. [PMID: 32011366 DOI: 10.1097/cad.0000000000000908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tanshinone I, one of the components of Salvia miltiorrhiza Bunge, exhibits anti-tumor ability and induces autophagy. But the mechanisms are not fully understood. This study aims to investigate whether AMP-activated protein kinase dependent pathway is involved in the autophagic signaling regulation and its relationship with tumor suppression. Breast cancer cells (MDA-MB-231, MCF-7) and hepatocellular carcinoma cells (HepG2) were treated with Tanshinone I or vehicle. Acridine orange dyeing and transmission electron microscopy were employed to evaluate autophagic cells. MTT and Cell Counting Kit-8 assays were used to detect the effect of Tanshinone I combined with autophagy inhibitors on cell proliferation. Western blot was used to detect the expression levels of Beclin1 and LC3-I/II, as well as the phosphorylation of AMPKα and ULK1. Our results showed that Tanshinone I suppressed proliferation of HepG2, MDA-MB-231 and MCF-7 cancer cell lines. LC3-II and P62 were induced by Tanshinone I in all three cancer cell lines. But autophagic flux analysis showed that Tanshinone I treatment induced autophagy only in MDA-MB-231, which was also proved by transmission electron microscopy. Tanshinone I upregulated the phosphorylation of AMPKα and its downstream ULK1. AMP-activated protein kinase inhibitor compound C attenuated Beclin 1 and LC3-II expression induced by Tanshinone I in HepG2. In MDA-MB-231, compound C surprisingly induced LC3-II upregulation which is independent of AMPKα activation. Under this circumstance, treatment of Tanshinone I combined with compound C significantly inhibited MDA-MB-231 proliferation, compared with Tanshinone I treatment alone. This study demonstrates that Tanshinone I could induce cancer cell death and regulate autophagy signaling in breast cancer and hepatic carcinoma cells. Activation of AMPKα was found to be involved in autophagic signaling regulation by Tanshinone I.
Collapse
|
15
|
Zou H, Li Y, Liu X, Wu Z, Li J, Ma Z. Roles of plant-derived bioactive compounds and related microRNAs in cancer therapy. Phytother Res 2020; 35:1176-1186. [PMID: 33000538 DOI: 10.1002/ptr.6883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Plant-derived bioactive compounds, often called phytochemicals, are active substances extracted from different plants. These bioactive compounds can release therapeutic potential abilities via reducing antitumor drugs side effects or directly killing cancer cells, and others also can adjust cancer initiation and progression via regulating microRNAs (miRNAs) expression, and miRNA can regulate protein-coding expression by restraining translation or degrading target mRNA. A mass of research showed that plant-derived bioactive compounds including tanshinones, astragaloside IV, berberine, ginsenosides and matrine can inhibit tumor growth and metastasis by rescuing aberrant miRNAs expression, which has influence on tumor progression, microenvironment and drug resistance in multifarious cancers. This review aims to provide a novel understanding of plant-derived bioactive compounds targeting miRNAs and shed light on their future clinical applications.
Collapse
Affiliation(s)
- Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Kwon OS, Jung JH, Shin EA, Park JE, Park WY, Kim SH. Epigallocatechin-3-Gallate Induces Apoptosis as a TRAIL Sensitizer via Activation of Caspase 8 and Death Receptor 5 in Human Colon Cancer Cells. Biomedicines 2020; 8:biomedicines8040084. [PMID: 32283836 PMCID: PMC7235876 DOI: 10.3390/biomedicines8040084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/20/2023] Open
Abstract
Though epigallocatechin-3-gallate (EGCG), a major compound of green tea, has anti-diabetes, anti-obesity, anti-inflammatory, and antitumor effects, the underlying antitumor molecular mechanism of EGCG was not fully understood so far. Here the sensitizing effect of EGCG to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) was examined in colorectal cancers. Cotreatment of EGCG and TRAIL synergistically enhanced cytotoxicity and sub G1 accumulation, increased the number of terminal deoxynucleotidyl transferase-dT-mediated dUTP nick end labelling (TUNEL)-positive cells in SW480 and HCT116 cells. Furthermore, this cotreatment promoted the cleavages of poly (adenosine diphosphate-ribose) polymerase (PARP) and induced caspase 8 activation compared to TRAIL or EGCG alone in SW480 and HCT116 cells. Of note, cotreatment of EGCG and TRAIL increased the expression of death receptor 5 (DR5) at protein and mRNA levels and also DR5 cell surface level in colon cancer cells. Conversely, depletion of DR5 reduced the apoptotic activity of cotreatment of EGCG and TRAIL to increase cytotoxicity, sub-G1 population and PARP cleavages in colon cancer cells. Overall, our findings provide evidence that EGCG can be a sensitizer of TRAIL via DR5 and caspase 8 mediated apoptosis in colorectal cancer cells.
Collapse
|
17
|
Zhai A, Zhang Z, Kong X. Paeoniflorin Alleviates H 2O 2-Induced Oxidative Injury Through Down-Regulation of MicroRNA-135a in HT-22 Cells. Neurochem Res 2019; 44:2821-2831. [PMID: 31728857 DOI: 10.1007/s11064-019-02904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022]
Abstract
Paeoniflorin (PF) has been reported to possess neuroprotective influences on cognitive dysfunction illness. In current research, we attempted to probe into the protective influences of PF against H2O2-induced damage and the underlying regulating mechanisms on hippocampal HT-22 cells. HT-22 cells were pretreated with PF, and then induced by H2O2. Afterwards, the influences of PF pretreatment were examined using CCK-8 assay, apoptosis assay, western blot and ROS assay, respectively. In addition, the expression of microRNA-135a (miR-135a) was analyzed and altered by qRT-PCR and cell transfection, respectively. After overexpression of miR-135a, the effects of miR-135a mimic on cell functions were detected again. Moreover, influences of H2O2, PF and miR-135a overexpression on JAK2/STAT3 and ERK1/2 signal pathways were further investigated. Further experiments verified that PF pretreatment alleviated H2O2-induced oxidative stress through increasing cell viability, inhibiting cell apoptosis, reducing ROS generation and activating JAK2/STAT3 and ERK1/2 pathways. Besides, expression of miR-135a was declined by PF pretreatment. Whereas, miR-135a mimic abrogated the protective effects triggered by PF pretreatment. These results indicated that PF can alleviate H2O2-induced oxidative stress by down-regulation of miR-135a via activation of JAK2/STAT3 and ERK1/2 pathways.
Collapse
Affiliation(s)
- Ailing Zhai
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China.
| | - Zeng Zhang
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China
| | - Xiangjuan Kong
- Department of Psychiatry, Jining Psychiatric Hospital, No. 1 Jidai Road, Jining, 272051, Shandong, China
| |
Collapse
|
18
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
19
|
MEIm XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, Qiao YJ, Zhang JY. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med 2019; 17:59-80. [PMID: 30704625 DOI: 10.1016/s1875-5364(19)30010-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Danshen, the dried root or rhizome of Salvia miltiorrhiza Bge., is a traditional and folk medicine in Asian countries, especially in China and Japan. In this review, we summarized the recent researches of Danshen in traditional uses and preparations, chemical constituents, pharmacological activities and side effects. A total of 201 compounds from Danshen have been reported, including lipophilic diterpenoids, water-soluble phenolic acids, and other constituents, which have showed various pharmacological activities, such as anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. This article intends to provide novel insight information for further development of Danshen, which could be of great value to its improvement of utilization.
Collapse
Affiliation(s)
- Xiao-Dan MEIm
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Feng Cao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Yun Che
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jing Li
- College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen-Jing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Jiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
20
|
Wang W, Li J, Ding Z, Li Y, Wang J, Chen S, Miao J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med 2019; 23:6454-6465. [PMID: 31293090 PMCID: PMC6714145 DOI: 10.1111/jcmm.14539] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/26/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti-cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I-induced increased expression of the proapoptotic gene Bax and decreased expression of the anti-apoptotic gene Bcl-2 is the possible mechanism of its anti-cancer effects. Tan I was also found to abolish the IL-6-mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Fayyaz S, Javed Z, Attar R, Farooqi AA, Yaylim I, Ahmad A. MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. Semin Cancer Biol 2019; 58:56-64. [PMID: 30716480 DOI: 10.1016/j.semcancer.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Large-scale sequencing methodologies have helped us identify numerous genomic alterations and we have started to scratch the surface of many new targets for treatment of cancer and the associated predictive biomarkers. TRAIL (TNF-related apoptosis-inducing ligand) is a highly appreciated anti-cancer molecule because of its ability to selectively target cancer cells. However, confluence of information suggests that cancer cells develop resistance against TRAIL-based therapeutics. It is being realized that overexpression of anti-apoptotic proteins and inactivation of pro-apoptotic proteins significantly impairs TRAIL triggered apoptosis, particularly in clinical settings. Re-balancing of pro-and anti-apoptotic proteins and upregulation of death receptors with functionally active extrinsic and intrinsic apoptotic pathways are necessary to sensitize cancer cells to TRAIL based therapeutics. microRNAs (miRNAs) are involved in regulation of myriad of molecular processes and characterized into oncogenic and tumor suppressor miRNAs. Accumulating data has identified miRNAs which positively or negatively regulate TRAIL mediated signaling in cancer cells, helping us understand different steps at which TRAIL-mediated apoptotic signaling can be targeted. Here, we assess the status of our understanding of the mechanisms related to miRNA regulation of TRAIL mediated signaling, as well as the existing gaps therein, and discuss the challenges and opportunities that will help us get closer to personalized medicine.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Pakistan
| | - Zeeshan Javed
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | | | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar İnstitute of Experimental Medicine, İstanbul University, İstanbul, Turkey
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
22
|
Novel combination of tanshinone I and lenalidomide induces chemo-sensitivity in myeloma cells by modulating telomerase activity and expression of shelterin complex and its associated molecules. Mol Biol Rep 2018; 45:2429-2439. [DOI: 10.1007/s11033-018-4409-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
|
23
|
Kim DH, Shin EA, Kim B, Shim BS, Kim SH. Reactive oxygen species-mediated phosphorylation of p38 signaling is critically involved in apoptotic effect of Tanshinone I in colon cancer cells. Phytother Res 2018; 32:1975-1982. [DOI: 10.1002/ptr.6126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Hee Kim
- College of Korean Medicine; Kyung Hee University; Seoul South Korea
| | - Eun Ah Shin
- College of Korean Medicine; Kyung Hee University; Seoul South Korea
| | - Bonglee Kim
- College of Korean Medicine; Kyung Hee University; Seoul South Korea
| | - Bum Sang Shim
- College of Korean Medicine; Kyung Hee University; Seoul South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine; Kyung Hee University; Seoul South Korea
| |
Collapse
|
24
|
Nazim UM, Moon JH, Lee YJ, Seol JW, Park SY. PPARγ activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget 2018; 8:26819-26831. [PMID: 28460464 PMCID: PMC5432299 DOI: 10.18632/oncotarget.15819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/20/2017] [Indexed: 12/18/2022] Open
Abstract
Members of the tumor necrosis factor (TNF) transmembrane cytokine superfamily, such as TNFα and Fas ligand (FasL), play crucial roles in inflammation and immunity. TRAIL is a member of this superfamily with the ability to selectively trigger cancer cell death but does not motive cytotoxicity to most normal cells. Troglitazone are used in the cure of type II diabetes to reduce blood glucose levels and improve the sensitivity of an amount of tissues to insulin. In this study, we revealed that troglitazone could trigger TRAIL-mediated apoptotic cell death in human lung adenocarcinoma cells. Pretreatment of troglitazone induced activation of PPARγ in a dose-dependent manner. In addition conversion of LC3-I to LC3-II and PPARγ was suppressed in the presence of GW9662, a well-characterized PPARγ antagonist. Treatment with troglitazone resulted in a slight increase in conversion rate of LC3-I to LC3-II and significantly decreased p62 expression levels in a dose-dependent manner. This indicates that troglitazone induced autophagy flux activation in human lung cancer cells. Inhibition of autophagy flux applying a specific inhibitor and genetically modified ATG5 siRNA enclosed troglitazone-mediated enhancing effect of TRAIL. These data demonstrated that activation of PPARγ mediated by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux and also suggest that troglitazone may be a combination therapeutic target with TRAIL protein in TRAIL-resistant cancer cells.
Collapse
Affiliation(s)
- Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
25
|
Park SH, Lee DH, Kim JL, Kim BR, Na YJ, Jo MJ, Jeong YA, Lee SY, Lee SI, Lee YY, Oh SC. Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells. Oncotarget 2018; 7:59503-59518. [PMID: 27517746 PMCID: PMC5312327 DOI: 10.18632/oncotarget.11147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/06/2016] [Indexed: 01/09/2023] Open
Abstract
Metformin is an anti-diabetic drug with a promising anti-cancer potential. In this study, we show that subtoxic doses of metformin effectively sensitize human colorectal cancer (CRC) cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which induces apoptosis. Metformin alone did not induce apoptosis, but significantly potentiated TRAIL-induced apoptosis in CRC cells. CRC cells treated with metformin and TRAIL showed activation of the intrinsic and extrinsic pathways of caspase activation. We attempted to elucidate the underlying mechanism, and found that metformin significantly reduced the protein levels of myeloid cell leukemia 1 (Mcl-1) in CRC cells and, the overexpression of Mcl-1 inhibited cell death induced by metformin and/or TRAIL. Further experiments revealed that metformin did not affect mRNA levels, but increased proteasomal degradation and protein stability of Mcl-1. Knockdown of Mule triggered a significant decrease of Mcl-1 polyubiquitination. Metformin caused the dissociation of Noxa from Mcl-1, which allowed the binding of the BH3-containing ubiquitin ligase Mule followed by Mcl-1ubiquitination and degradation. The metformin-induced degradation of Mcl-1 required E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Our study is the first report indicating that metformin enhances TRAIL-induced apoptosis through Noxa and favors the interaction between Mcl-1 and Mule, which consequently affects Mcl-1 ubiquitination.
Collapse
Affiliation(s)
- Seong Hye Park
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bo Ram Kim
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoo Jin Na
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min Jee Jo
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoon A Jeong
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suk-Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Il Lee
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Daejeon, Republic of Korea
| | - Sang Cheul Oh
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Ding C, Tian Q, Li J, Jiao M, Song S, Wang Y, Miao Z, Zhang A. Structural Modification of Natural Product Tanshinone I Leading to Discovery of Novel Nitrogen-Enriched Derivatives with Enhanced Anticancer Profile and Improved Drug-like Properties. J Med Chem 2018; 61:760-776. [DOI: 10.1021/acs.jmedchem.7b01259] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianting Tian
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
| | - Mingkun Jiao
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Song
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingqing Wang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehong Miao
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Reactive oxygen species dependent phosphorylation of the liver kinase B1/AMP activated protein kinase/ acetyl-CoA carboxylase signaling is critically involved in apoptotic effect of lambertianic acid in hepatocellular carcinoma cells. Oncotarget 2017; 8:70116-70129. [PMID: 29050265 PMCID: PMC5642540 DOI: 10.18632/oncotarget.19592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
Though lambertianic acid (LA) is reported to have hypolipidemic activity in liver, its underlying anticancer mechanism is poorly understood so far. Thus, in the present study, apoptotic mechanism of LA was elucidated in HepG2 and SK-Hep1 hepatocellular carcinoma (HCC) cells. Here LA increased cytotoxicity, sub-G1 population and Annexin V/PI positive cells in two HCC cells. Also, LA cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP), activated phosphorylation of liver kinase B1 (LKB1)/AMP activated protein kinase (AMPK)/ acetyl-CoA carboxylase (ACC) pathway and also suppressed antiapoptotic proteins such as phosphorylation of Akt/ mammalian target of rapamycin (mTOR) and the expression of B cell lymphoma-2 (Bcl-2)/ B-cell lymphoma-extra large (Bcl-xL) and cyclooxygenase-2 (COX-2) in two HCC cells. Furthermore, LA generated reactive oxygen species (ROS) in HepG2 cells and AMPK inhibitor compound C or ROS inhibitor N-acetyl-L-cysteine (NAC) blocked the apoptotic ability of LA to cleave PARP or increase sub G1 population in HepG2 cells. Consistently, cleavages of PARP and caspase-3 were induced by LA only in AMPK+/+ MEF cells, but not in AMPK-/- MEF cells. Also, immunoprecipitation (IP) revealed that phosphorylation of LKB1/AMPK through their binding was enhanced in LA treated HepG2 cells. Overall, these findings suggest that ROS dependent phosphorylation of LKB1/AMPK/ACC signaling is critically involved in LA induced apoptosis in HCCs.
Collapse
|
28
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
29
|
Fukagawa S, Miyata K, Yotsumoto F, Kiyoshima C, Nam SO, Anan H, Katsuda T, Miyahara D, Murata M, Yagi H, Shirota K, Yasunaga S, Kato K, Miyamoto S. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci 2017; 108:886-896. [PMID: 28231414 PMCID: PMC5448652 DOI: 10.1111/cas.13210] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/11/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Recently, several molecularly targeted anticancer agents have been developed for ovarian cancer; however, its prognosis remains extremely poor. The development of molecularly targeted therapy, as well as companion diagnostics, is required to improve outcomes for patients with ovarian cancer. In this study, to identify microRNAs (miRNAs) involved in the progression of ovarian cancer we analyzed serum miRNAs in patients with ovarian cancer using miRNA array and quantitative RT-PCR and examined the anticancer properties of miRNA expression in ovarian cancer cells. In patients with ovarian cancer, high amount of miR-135a-3p in serum samples was significantly associated with favorable clinical prognosis. The amount of miR-135a-3p was significantly decreased in patients with ovarian cancer compared with patients with ovarian cysts or normal ovaries. In SKOV-3 and ES-2 human ovarian cancer cells, enhanced expression of miR-135a-3p induced drug sensitivity to cisplatin and paclitaxel and suppressed cell proliferation and xenograft tumor growth. These findings suggest that miR-135a-3p may be considered as a biomarker and a therapeutic agent in ovarian cancer.
Collapse
Affiliation(s)
- Satoshi Fukagawa
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | - Kohei Miyata
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | | | - Chihiro Kiyoshima
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
| | - Sung Ouk Nam
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Haruchika Anan
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Takahiro Katsuda
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Daisuke Miyahara
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Masaharu Murata
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologyFaculty of MedicineKyushu UniversityFukuokaJapan
| | - Kyoko Shirota
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| | - Shin'ichiro Yasunaga
- Central Research Institute for Advanced Molecular MedicineFukuoka UniversityFukuokaJapan
- Department of BiochemistryFaculty of MedicineFukuoka UniversityFukuokaJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologyFaculty of MedicineKyushu UniversityFukuokaJapan
| | - Shingo Miyamoto
- Department of Obstetrics and GynecologyFukuoka UniversityFukuokaJapan
| |
Collapse
|
30
|
Lee JC, Shin EA, Kim B, Kim BI, Chitsazian-Yazdi M, Iranshahi M, Kim SH. Auraptene Induces Apoptosis via Myeloid Cell Leukemia 1-Mediated Activation of Caspases in PC3 and DU145 Prostate Cancer Cells. Phytother Res 2017; 31:891-898. [PMID: 28383142 DOI: 10.1002/ptr.5810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 01/24/2023]
Abstract
Although auraptene, a prenyloxy coumarin from Citrus species, was known to have anti-oxidant, anti-bacterial, antiinflammatory, and anti-tumor activities, the underlying anti-tumor mechanism of auraptene in prostate cancers is not fully understood to date. Thus, in the present study, we have investigated the anti-tumor mechanism of auraptene mainly in PC3 and DU145 prostate cancer cells, because auraptene suppressed the viability of androgen-independent PC3 and DU145 prostate cancer cells better than androgen-sensitive LNCaP cells. Also, auraptene notably increased sub-G1 cell population and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells as features of apoptosis in two prostate cancer cells compared with untreated control. Consistently, auraptene cleaved poly(ADP-ribose) polymerase, activated caspase-9 and caspase-3, suppressed the expression of anti-apoptotic proteins, including Bcl-2 and myeloid cell leukemia 1 (Mcl-1), and also activated pro-apoptotic protein Bax in both prostate cancer cells. However, Mcl-1 overexpression reversed the apoptotic effect of auraptene to increase sub-G1 population and induce caspase-9/3 in both prostate cancer cells. Taken together, the results support scientific evidences that auraptene induces apoptosis in PC3 and DU145 prostate cancer cells via Mcl-1-mediated activation of caspases as a potent chemopreventive agent for prostate cancer prevention and treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of East West Medical Science Graduate School of East West Medical Science, Kyung Hee University, Suwon, Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Bo-Im Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Mahsa Chitsazian-Yazdi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| |
Collapse
|
31
|
Hao L, Zhao Y, Li ZG, He HG, Liang Q, Zhang ZG, Shi ZD, Zhang PY, Han CH. Tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and induces apoptosis of prostate and bladder cancer cells. Oncol Lett 2017; 13:3638-3640. [PMID: 28521465 PMCID: PMC5431394 DOI: 10.3892/ol.2017.5922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
The effect of recombinant and purified tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the proliferation and apoptosis of PC-3 prostate cancer cells and the 5637 bladder cancer cells were investigated. We used a cell proliferation assay and flow cytometry to measure the proliferation and apoptosis of cancer cells after 24-h incubation of PC-3 and 5637 cells with different concentrations of TRAIL. PC-3 cell proliferation rate significantly decreased when TRAIL was used at concentrations of 20, 40, 80 and 160 ng/ml compared with the untreated group. In the 5637 cells, the proliferation rate significantly decreased when TRAIL was used at concentrations of 5, 10, 20 and 40 ng/ml compared with the untreated group. The flow cytometry results also confirmed that the apoptosis rate of both cancer cell lines increased with TRAIL protein concentration. In conclusion, recombinant and purified TRAIL has anticancer activity by inhibiting proliferation and promoting apoptosis of prostate and bladder cancer cells.
Collapse
Affiliation(s)
- Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yan Zhao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhi-Gang Li
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Hou-Guang He
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Qing Liang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhi-Guo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
32
|
Zhou ZH, Yang J, Kong AN. Phytochemicals in Traditional Chinese Herbal Medicine: Cancer Prevention and Epigenetics Mechanisms. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Ma Z, Luo Y, Qiu M. miR-143 Induces the Apoptosis of Prostate Cancer LNCap Cells by Suppressing Bcl-2 Expression. Med Sci Monit 2017; 23:359-365. [PMID: 28109198 PMCID: PMC5278922 DOI: 10.12659/msm.899719] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Prostate cancer has become a serious threat to the life of patients. microRNAs are small non-coding RNA molecules that regulate the growth and apoptosis of cells. We aimed to investigate the regulation and mechanism of microRNA (miR-143) in the proliferation and apoptosis of prostate cancer LNCap cells. Material/Methods miR-143 and control scramble miRNA were synthesized and respectively transfected into LNCap cells. The proliferation and apoptosis were detected by MTT assay, flow cytometry, and caspase-3 activity assay. The intracellular expression of Bcl-2 was determined by Western blot. Further, LNCap cells were transfected with small interfering RNA (siRNA) targeting Bcl-2 (siBcl-2) or plasmid expressing Bcl-2, followed by transfection of miR-143 or control miRNA. Bcl-2 expression was detected by Western blot, and cell apoptosis was measured by caspase-3 activity assay. Results Transfection of miR-143 significantly inhibited the proliferation of LNCap cells (P=0.0073), increased the percentage of externalized phosphatidylserine (P=0.0042), activated the caspase-3 (P=0.0012), and decreased the expression of Bcl-2 (P=0.012) when compared with the control miRNA group. The expression of Bcl-2 was significantly reduced after siBcl-2 transfection. The apoptosis in the siBcl-2+miR-143 group was significantly increased compared with that in the miR-143 group (P=0.036), whereas there was no significant difference in the apoptosis between the siBcl-2+miRNA and miRNA groups. The expression of Bcl-2 was obviously higher after the transfection of Bcl-2-expressing plasmid. The apoptosis in Bcl-2+miR-143 group was significantly reduced compared with the miR-143 group (P=0.031), whereas no significant difference in the apoptosis was detected between the miRNA and Bcl-2+miRNA groups. Conclusions Transfection of miR-143 induces the apoptosis of prostate cancer LNCap cells by down-regulating Bcl-2 expression, suggesting that Bcl-2 might be a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Zhiwei Ma
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Yizhao Luo
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Mingxing Qiu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
34
|
Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. Sci Rep 2017; 7:40382. [PMID: 28106052 PMCID: PMC5247764 DOI: 10.1038/srep40382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Tanshinone IIA (Tan IIA), a phytochemical derived from the roots of Salvia miltiorrhiza, has been shown to inhibit growth and induce apoptosis in various cancer cells. The association of its inhibitory effect on the primary malignant bone tumor, osteosarcoma, with mitochondrial dysfunction remains unclear. This study aimed to investigate the anti-proliferative effects of Tan IIA on human osteosarcoma 143B cells both in vitro and in vivo. Administration of Tan IIA to NOD-SCID mice implanted with 143B cells led to significant inhibition of tumor development. The inhibition of proliferation, migration, and invasion was observed in 143B cells treated with Tan IIA. The tumor proliferation markers, Ki67 and PCNA, were suppressed and apoptosis by TUNEL assay was activated respectively. Apoptosis in the Tan IIA-treated 143B cells and xerograft mice was associated with the activation of caspase cascade via the modulation of Bcl-2 family. The CD31 was inhibited in Tan IIA-treated xenografts to indicate anti-neovasculization. Tan IIA administration resulted in a significant decrease in the mitochondrial fusion proteins, Mfn1/2 and Opa1, as well as an increase in the fission protein Drp1. We concluded that mitochondrial dysfunction associated with dynamic change was involved in apoptosis and anti-angiogenesis elicited by Tan IIA.
Collapse
|
35
|
Liu N, Shi YF, Diao HY, Li YX, Cui Y, Song XJ, Tian X, Li TY, Liu B. MicroRNA-135a Regulates Apoptosis Induced by Hydrogen Peroxide in Rat Cardiomyoblast Cells. Int J Biol Sci 2017; 13:13-21. [PMID: 28123342 PMCID: PMC5264257 DOI: 10.7150/ijbs.16769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and apoptosis are the most important pathologic features of ischemic heart disease. Recent research has indicated that microRNAs (miRs) play an essential role in apoptosis. However, whether miRs might regulate B cell lymphoma-2 (Bcl-2) protein in apoptosis during ischemic heart disease is still unclear. The aim of this study, therefore, was to confirm the regulation of microRNA-135a (miR-135a) in oxidative stress injuries induced by hydrogen peroxide (H2O2) in rat cardiomyoblast cells H9c2. To this end, we analyzed the effects of H2O2 treatment on miR-135a expression in rat cardiomyocytes. Furthermore, we upregulated and inhibited miR-135a using mimics and inhibitors, respectively, and examined the effects on cell viability and apoptosis-related proteins. We observed that miR-135a was markedly up-regulated under H2O2 treatment in rat cardiomyoblast cells. Overexpression of miR-135a blocked the Bcl-2 protein and enhanced the apoptosis induced by H2O2, and miR-135a inhibition restored Bcl-2 protein expression. Interestingly, miR-135a inhibition did not attenuate H2O2-induced apoptosis with Bcl-2 knockdown. The results of the present study indicate that miR-135a regulates H2O2-induced apoptosis in H9c2 cells via targeting Bcl-2, and that miR-135a may be a novel therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yong-Feng Shi
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Hong-Ying Diao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yang-Xue Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yan Cui
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Xian-Jing Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Xin Tian
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Tian-Yi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| |
Collapse
|
36
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. New Frontiers in Promoting TRAIL-Mediated Cell Death: Focus on Natural Sensitizers, miRNAs, and Nanotechnological Advancements. Cell Biochem Biophys 2016; 74:3-10. [PMID: 26972296 DOI: 10.1007/s12013-015-0712-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a multifaceted and genomically complex disease, and rapidly emerging scientific evidence is emphasizing on intra-tumor heterogeneity within subpopulations of tumor cells and rapidly developing resistance against different molecular therapeutics. There is an overwhelmingly increasing list of agents currently being tested for efficacy against cancer. In accordance with the concept that therapeutic agents must have fewer off target effects and considerable efficacy, TRAIL has emerged as one among the most deeply investigated proteins reportedly involved in differential killing of tumor cells. Considerable killing activity of TRAIL against different cancers advocated its entry into clinical trials. However, data obtained through preclinical and cell culture studies are deepening our understanding of wide-ranging mechanisms which induce resistance against TRAIL-based therapeutics. These include downregulation of death receptors, overexpression of oncogenes, inactivation of tumor suppressor genes, imbalance of pro- and anti-apoptotic proteins, and inactivation of intrinsic and extrinsic pathways. Substantial fraction of information has been added into existing pool of knowledge related to TRAIL biology and recently accumulating evidence is adding new layers to regulation of TRAIL-induced apoptosis. Certain hints have emerged underscoring miR135a-3p- and miR-143-mediated regulation of TRAIL-induced apoptosis, and natural agents have shown remarkable efficacy in improving TRAIL-based therapeutics by increasing expression of tumor suppressor miRNAs. In this review, we summarize most recent breakthroughs related to naturopathy and strategies to nanotechnologically deliver TRAIL to the target site in xenografted mice. We also set spotlight on positive and negative regulators of TRAIL-mediated signaling. Comprehensive knowledge of genetics and proteomics of TRAIL-based signaling network obtained from cancer patients of different populations will be helpful in getting a step closer to personalized medicine.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Cosmo Damiano Gadaleta
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ilaria Marech
- Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
37
|
Hung YC, Pan TL, Hu WL. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5293284. [PMID: 27579153 PMCID: PMC4989081 DOI: 10.1155/2016/5293284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
Abstract
Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS) in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen). Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.
Collapse
Affiliation(s)
- Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung 83342, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, No. 1, Sec. 1, Syuecheng Road, Dashu District, Kaohsiung 84001, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, No. 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 83302, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsush-Shih Road, Taichung 40402, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung 83342, Taiwan; Kaohsiung Medical University College of Medicine, No. 100, Shihcyuan 1st Road, Sanmin District, Kaohsiung 807, Taiwan; Fooyin University College of Nursing, No. 151, Chinhsueh Road, Ta-Liao District, Kaohsiung 831, Taiwan
| |
Collapse
|
38
|
Zhu W, Zhan D, Wang L, Ma D, Cheng M, Wang H, Zhao J, Cai Y, Cheng Z. Proteasome inhibitor MG132 potentiates TRAIL-induced apoptosis in gallbladder carcinoma GBC-SD cells via DR5-dependent pathway. Oncol Rep 2016; 36:845-52. [PMID: 27277541 DOI: 10.3892/or.2016.4839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
TRAIL is a tumor-selective apoptosis-inducing cytokine playing a vital role in the surveillance and elimination of some tumor cells. However, some tumors are resistant to TRAIL treatment. Proteasome inhibitor MG132 exhibits anti-proliferative and pro-apoptotic properties in many tumors. In this study, we demonstrated that proteasome inhibitor MG132 in vitro and in vivo potentiates TRAIL-induced apoptosis in gallbladder carcinoma GBC-SD cells. MG132 was able to inhibit the proliferation of GBC-SD cells and induce apoptosis in a dose-dependent manner. The induction of apoptosis by proteasome inhibitor MG132 was mainly through the extrinsic apoptotic pathways of caspase activation such as caspase-8, caspase-3 and PARP cleavage. In addition, this process was also dependent on the upregulation of death receptor 5 (DR5), which promoted TRAIL-induced apoptosis in GBC-SD cells. Taken together, these findings indicate that MG132 possesses anti-gallbladder cancer potential that correlate with regulation of DR5-dependent pathway, and suggest that MG132 may be a promising agent for sensitizing GBC-SD cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dihua Zhan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dening Ma
- Department of Liver Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Mingrong Cheng
- Department of General Surgery, Pudong New Area District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Huipeng Wang
- Department of General Surgery, The Affiliated Shanghai Fifth People's Hospital of Fudan University, Shanghai 200240, P.R. China
| | - Jiaying Zhao
- Department of General Surgery, The Affiliated Shanghai Fifth People's Hospital of Fudan University, Shanghai 200240, P.R. China
| | - Yuankun Cai
- Department of General Surgery, The Affiliated Shanghai Fifth People's Hospital of Fudan University, Shanghai 200240, P.R. China
| | - Zhijian Cheng
- Department of General Surgery, The Affiliated Shanghai Fifth People's Hospital of Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
39
|
Zhang T, Shao Y, Chu TY, Huang HS, Liou YL, Li Q, Zhou H. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells. Am J Cancer Res 2016; 6:957-972. [PMID: 27293991 PMCID: PMC4889712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023] Open
Abstract
Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma.
Collapse
Affiliation(s)
- Taolan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Yingying Shao
- Institute of Life Sciences, Chongqing Medical University1 Yixueyuan Rd, Yuzhong District, Chongqing 400016, P. R. China
| | - Tang-Yuan Chu
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Hsuan-Shun Huang
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
- IStat Biomedical Co. Ltd.Taipei, Taiwan
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| |
Collapse
|
40
|
Ko H, Jeong MH, Jeon H, Sung GJ, So Y, Kim I, Son J, Lee SW, Yoon HG, Choi KC. Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage. Oncotarget 2016; 6:9970-84. [PMID: 25991668 PMCID: PMC4496411 DOI: 10.18632/oncotarget.3667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022] Open
Abstract
TRAIL can induce apoptosis in some cancer cells and is an immune effector in the surveillance and elimination of developing tumors. Yes, some cancers are resistant to TRAIL. Delphinidin, a polyphenolic compound contained in brightly colored fruits and vegetables, has anti-inflammatory, anti-oxidant, and anti-tumorigenic activities. Here we showed that delphinidin sensitized TRAIL-resistant human prostate cancer cells to undergo apoptosis. Cells treated with delphinidin and TRAIL activated the extrinsic and intrinsic pathways of caspase activation. TRAIL-induced apoptosis in prostate cancer cells pretreated with delphinidin was dependent on death receptor 5 (DR5) and downstream cleavage of histone deacetylase 3 (HDAC3). In conclusion, delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis by inducing DR5, thus causing caspase-mediated HDAC3 cleavage. Our data reveal a potential way of chemoprevention of prostate cancer by enabling TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Mi-Hyeon Jeong
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Brain Korea PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Hyelin Jeon
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Jun Sung
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - Youngsin So
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - InKi Kim
- Asan Institute for Medical Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - JaeKyoung Son
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Woo SM, Seo BR, Min KJ, Kwon TK. FTY720 enhances TRAIL-mediated apoptosis by up-regulating DR5 and down-regulating Mcl-1 in cancer cells. Oncotarget 2016; 6:11614-26. [PMID: 25843953 PMCID: PMC4484480 DOI: 10.18632/oncotarget.3426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/24/2015] [Indexed: 12/30/2022] Open
Abstract
FTY720, Fingolimod, is a functional antagonist to the sphingosine-1-phosphate (S1P) receptor and an inhibitor of sphingosine kinase 1. Here, we showed that a combination of FTY720 and TRAIL induced apoptosis in human renal, breast, and colon carcinoma cells. Most importantly, this combination had no effect on normal cells. Furthermore, the combined treatment with FTY720 and TRAIL reduced tumor growth in xenograft models. FTY720 up-regulated death receptor (DR)5 at post-translational level. Knockdown of DR5 markedly blocked apoptosis induced by the combined treatment. FTY720 also inhibited Mcl-1 expression at the post-translational level. Over-expression of Mcl-1 blocked apoptosis induced by FTY720 and TRAIL. Interestingly, phospho-FTY720 and inhibitors of sphingosine kinase failed to enhance TRAIL-induced apoptosis. Thus, FTY720 enables TRAIL-induced apoptosis through up-regulation of DR5 and down-regulation of Mcl-1 in human cancer cells.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Bo Ram Seo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
42
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
43
|
Ho TF, Chang CC. A promising "TRAIL" of tanshinones for cancer therapy. Biomedicine (Taipei) 2015; 5:23. [PMID: 26621311 PMCID: PMC4664605 DOI: 10.7603/s40681-015-0023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
An ideal cancer therapy specifically targets cancer cells while sparing normal
tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) elicits
apoptosis by engaging its cognate death receptors (DRs—namely, DR4 and DR5. The
cancer cell-selective proapoptotic action of TRAIL is highly attractive for cancer
therapy, but clinical application of TRAIL is rather limited due to tumors’ inherent
or acquired TRAIL resistance. Combining TRAIL with agents that reverse resistance to
it has proved promising in the sensitization of TRAIL-induced apoptosis. Noteworthy,
natural compounds have already been validated as potential resources for TRAIL
sensitizers. In this review, we focus on the recently identified TRAILsensitizing
effect of tanshinones, the anticancer ingredients of the medicinal plant Salvia miltiorrhiza (Danshen in Chinese). Research from
our laboratories and others have revealed the synergy of a tanshinones-TRAIL
combination in diverse types of cancer cells through up-regulation of DR5 and/or
down-regulation of antiapoptotic proteins such as survivin. Thus, in addition to
their anticancer mechanisms, tanshinones as TRAIL sensitizers hold great potential
to be translated to TRAIL-based therapeutic modalities for combatting cancer.
Collapse
Affiliation(s)
- Tsing-Fen Ho
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 406, Taichung, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, 402, Taichung, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, 402, Taichung, Taiwan. .,Ph.D. Program in Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
44
|
Jiao M, Ding C, Zhang A. Preparation of 2-aryl derivatives of tanshinone I through a palladium-catalyzed Csp2–H activation/arylation approach. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Nussinov R, Jang H, Tsai CJ. The structural basis for cancer treatment decisions. Oncotarget 2014; 5:7285-302. [PMID: 25277176 PMCID: PMC4202123 DOI: 10.18632/oncotarget.2439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer treatment decisions rely on genetics, large data screens and clinical pharmacology. Here we point out that genetic analysis and treatment decisions may overlook critical elements in cancer development, progression and drug resistance. Two critical structural elements are missing in genetics-based decision-making: the mechanisms of oncogenic mutations and the cellular network which is rewired in cancer. These lay the foundation for the structural basis for cancer treatment decisions, which is rooted in the physical principles of the molecular conformational behavior of single molecules and their interactions. Improved tumor mutational analysis platforms and knowledge of the redundant pathways which can take over in cancer, may not only supplement known actionable findings, but forecast possible cancer progression and resistance. Such forward-looking can be powerful, endowing the oncologist with mechanistic insight and cancer prognosis, and consequently more informed treatment options. Examples include redundant pathways taking over after inhibition of EGFR constitutive activation, mutations in PIK3CA p110α and p85, and the non-hotspot AKT1 mutants conferring constitutive membrane localization.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|