1
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Petrenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Vasiliy N. Stepanenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Michael Krasheninnikov
- Scientific and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of the FMBA of Russia, 119121 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
3
|
Onda N, Nakamichi S, Hirao M, Matsuda K, Matsumoto M, Miyanaga A, Noro R, Gemma A, Seike M. Afatinib plus PEM and CBDCA overcome osimertinib resistance in EGFR-mutated NSCLC with high thrombospondin-1 expression. Cancer Sci 2024; 115:2718-2728. [PMID: 38941131 PMCID: PMC11309943 DOI: 10.1111/cas.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Osimertinib induces a marked response in non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) gene mutations. However, acquired resistance to osimertinib remains an inevitable problem. In this study, we aimed to investigate osimertinib-resistant mechanisms and evaluate the combination therapy of afatinib and chemotherapy. We established osimertinib-resistant cell lines (PC-9-OR and H1975-OR) from EGFR-mutant lung adenocarcinoma cell lines PC-9 and H1975 by high exposure and stepwise method. Combination therapy of afatinib plus carboplatin (CBDCA) and pemetrexed (PEM) was effective in both parental and osimertinib-resistant cells. We found that expression of thrombospondin-1 (TSP-1) was upregulated in resistant cells using cDNA microarray analysis. We demonstrated that TSP-1 increases the expression of matrix metalloproteinases through integrin signaling and promotes tumor invasion in both PC-9-OR and H1975-OR, and that epithelial-to-mesenchymal transition (EMT) was involved in H1975-OR. Afatinib plus CBDCA and PEM reversed TSP-1-induced invasion ability and EMT changes in resistant cells. In PC-9-OR xenograft mouse models (five female Balb/c-Nude mice in each group), combination therapy strongly inhibited tumor growth compared with afatinib monotherapy (5 mg/kg, orally, five times per week) or CBDCA (75 mg/kg, intraperitoneally, one time per week) + PEM (100 mg/kg, intraperitoneally, one time per week) over a 28-day period. These results suggest that the combination of afatinib plus CBDCA and PEM, which effectively suppresses TSP-1 expression, may be a promising option in EGFR-mutated NSCLC patients after the acquisition of osimertinib resistance.
Collapse
Affiliation(s)
- Naomi Onda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
4
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
5
|
Onishi T, Takashima T, Shibahara K, Takagi S, Tanaka S, Mori M, Odashima H, Osawa Y, Hattori M. Transcriptome analysis of an AKT inhibitor-resistant endometrial cancer cell line. Pharmacol Rep 2024; 76:379-389. [PMID: 38478219 DOI: 10.1007/s43440-024-00581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Drug resistance in endometrial cancer (EC) is a serious problem and a barrier to improving prognosis. The PI3K/AKT/mTOR pathway is highly activated in EC and can serve as a potential therapeutic target. Inhibitors against AKT have been developed, but resistance to these inhibitors is a concern. This study aimed to establish AKT inhibitor resistant cell lines and identify differentially expressed genes (DEGs) between parental and AKT inhibitor resistant cell lines to understand the mechanism of drug resistance to AKT inhibitors in EC. METHODS The sensitivity of eight EC cell lines to AKT inhibitor was analyzed. One of them was used to establish a drug-resistant cell line. DEGs were examined using RNA sequencing (RNA-seq). Furthermore, DEGs were comprehensively analyzed to identify hub genes. Hub genes were evaluated using quantitative real-time polymerase chain reaction. RESULTS RNA-seq identified 617 DEGs. Hub genes were selected using bioinformatics analysis. The top 10 hub genes were TNF, CDH1, CCND1, COL1A1, CDH2, ICAM1, CAV1, THBS1, NCAM1, and CDKN2A. Relative mRNA expression was significantly upregulated for TNF, CDH1, CCND1, THBS1, p16INK4a, and p14ARF and significantly downregulated for CDH2, ICAM1, and NCAM1 in borussertib-resistant EC cell line. CONCLUSIONS Drug resistance to AKT inhibitors may depend on genes related to cell adhesion-mediated resistance and transforming growth factor β signaling.
Collapse
Affiliation(s)
- Takafumi Onishi
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan.
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan.
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Shibahara
- Department of Medical Life Sciences, School of Medical Life Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
- Cancer Cell Institute, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Shoji Takagi
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Okayama, Japan
- Kake Institute of Cytopathology, Okayama, Japan
| | - Shinichi Tanaka
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Michihiro Mori
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Hirokazu Odashima
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yukihiko Osawa
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Manabu Hattori
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto, 607-8175, Japan
- Research Center for Life and Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
6
|
Zhou X, Xia Q, Chen M, Zhang X, Huang M, Zheng X, Wang S, Wu B, Du Z. THBS1 promotes angiogenesis and accelerates ESCC malignant progression by the HIF-1/VEGF signaling pathway. Cell Biol Int 2024; 48:311-324. [PMID: 38233982 DOI: 10.1002/cbin.12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Previously, we demonstrated that the expression of THBS1 is increased in esophageal squamous cell carcinoma (ESCC) tissues and is correlated with lymph node metastasis and poor prognosis, indicating that THBS1 might be a candidate oncogene in ESCC. In this study, we future studied the specific role of THBS1 in ESCC and its molecular mechanism. Silencing THBS1 expression resulted in inhibition of cell migration and cell invasion of ESCC cells, the decrease of colony formation and proliferation. Tube formation of human umbilical vein endothelial cells (HUVECs) in vitro was decreased when cultured with conditioned medium from THBS1-silenced cells. The expression of CD31, a marker for blood vessel endothelial cells, was decreased in tumor tissues derived from THBS1-silenced tumors in vivo. Silencing THBS1 leaded the decreased of hypoxia-inducible factor-1α (HIF-1α), HIF-1β, and VEGFA protein. The expression of p-ERK and p-AKT were declined in HUVECs following incubation with conditioned medium from THBS1-silenced ESCC cells compared conditioned medium from control cells. Furthermore, the treatment with bevacizumab boosted the decrease of the p-ERK and p-AKT levels in HUVECs incubated with the conditioned medium from THBS1-silenced ESCC cells. THBS1 silencing combined with bevacizumab blocked VEGF, inhibited to the tube formation, colony formation and migration of HUVECs, which were superior to that of bevacizumab alone. We presumed that THBS1 can enhance HIF-1/VEGF signaling and subsequently induce angiogenesis by activating the AKT and ERK pathways in HUVECs, resulting in bevacizumab resistance. THBS1 would be a potential target in tumor antiangiogenesis therapies.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Qiaoxi Xia
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Mantong Chen
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaona Zhang
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Meihui Huang
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaoqi Zheng
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
7
|
Longhi E, Carminati L, Carlessi E, Belotti D, Taraboletti G. Thrombospondin-1 in drug activity and tumor response to therapies. Semin Cell Dev Biol 2024; 155:45-51. [PMID: 37414720 DOI: 10.1016/j.semcdb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Thrombospondins (TSPs) have numerous different roles in cancer, regulating the behavior of cancer cells and non-neoplastic cells, and defining the responses of tumor cells to environmental changes, thorough their ability to orchestrate cellular and molecular interactions in the tumor microenvironment (TME). As a result of these activities, TSPs can also control drug delivery and activity, tumor response and resistance to therapies, with different outcomes depending on the nature of TSP-interacting cell types, receptors, and ligands, in a highly context-dependent manner. This review, focusing primarily on TSP-1, discusses the effects of TSPs on tumor response to chemotherapy, antiangiogenic, low-dose metronomic chemotherapy, immunotherapy, and radiotherapy, by analyzing TSP activity on different cell compartments - tumor cells, vascular endothelial cells and immune cells. We review evidence of the value of TSPs, specifically TSP-1 and TSP-2, as biomarkers of prognosis and tumor response to therapy. Finally, we examine possible approaches to develop TSP-based compounds as therapeutic tools to potentiate the efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Dorina Belotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| |
Collapse
|
8
|
Singvogel K, Schittek B. Dormancy of cutaneous melanoma. Cancer Cell Int 2024; 24:88. [PMID: 38419052 PMCID: PMC10903048 DOI: 10.1186/s12935-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Zhou Q, Wang J, Zhang Z, Wuethrich A, Lobb RJ, Trau M. Tracking the EMT-like phenotype switching during targeted therapy in melanoma by analyzing extracellular vesicle phenotypes. Biosens Bioelectron 2024; 244:115819. [PMID: 37952322 DOI: 10.1016/j.bios.2023.115819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Melanoma continues to be a leading cause of mortality among skin cancers. Despite advancements in targeted therapy, patients frequently develop resistance, leading to disease progression within a year. This resistance may result from the epithelial-to-mesenchymal transition (EMT)-like phenotype switching of melanoma cells. Tracking EMT-related phenotypic changes on extracellular vesicles (EVs) has potential to inform early about response to targeted therapy and melanoma progression. However, the knowledge on protein biomarkers carried by melanoma EVs involved in the EMT-like process remains unexplored. Herein, we present a biosensor integrating surface-enhanced Raman scattering and alternating current electrohydrodynamics-induced nanomixing enhancement, for sensitive detection of EMT-associated biomarkers on EV surfaces during targeted therapy. This biosensor successfully tracks the EMT-like phenotype switching in melanoma cell lines treated with mitogen-activated protein kinase inhibitor (MAPKi). Longitudinal monitoring of patients who receive MAPKi therapy and develop resistance, our biosensor shows its ability to identify the EMT-like phenotype switching on circulating EVs. This ability potentially can be leveraged to predict the development of resistance to targeted therapy, allowing for timely intervention and personalized treatment strategies.
Collapse
Affiliation(s)
- Quan Zhou
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard J Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Whitehead CA, Morokoff AP, Kaye AH, Drummond KJ, Mantamadiotis T, Stylli SS. Invadopodia associated Thrombospondin-1 contributes to a post-therapy pro-invasive response in glioblastoma cells. Exp Cell Res 2023; 431:113743. [PMID: 37591452 DOI: 10.1016/j.yexcr.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Liu Y, Wu Z, Fu Z, Han Y, Wang J, Zhang Y, Liang B, Tao Y, Zhang Y, Shen C, Xu Y, Yin S, Chen B, Liu Y, Pan H, Liang Z, Wu K. A predictive model of immune infiltration and prognosis of head and neck squamous cell carcinoma based on cell adhesion-related genes: including molecular biological validation. Front Immunol 2023; 14:1190678. [PMID: 37691922 PMCID: PMC10484396 DOI: 10.3389/fimmu.2023.1190678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Focal adhesion serves as a bridge between tumour cells and the extracellular matrix (ECM) and has multiple roles in tumour invasion, migration, and therapeutic resistance. However, studies on focal adhesion-related genes (FARGs) in head and neck squamous cell carcinoma (HNSCC) are limited. Methods Data on HNSCC samples were obtained from The Cancer Genome Atlas and GSE41613 datasets, and 199 FARGs were obtained from the Molecular Signatures database. The integrated datasets' dimensions were reduced by the use of cluster analysis, which was also used to classify patients with HNSCC into subclusters. A FARG signature model was developed and utilized to calculate each patient's risk score using least extreme shrinkage and selection operator regression analysis. The risk score was done to quantify the subgroups of all patients. We evaluated the model's value for prognostic prediction, immune infiltration status, and therapeutic response in HNSCC. Preliminary molecular and biological experiments were performed to verify these results. Results Two different HNSCC molecular subtypes were identified according to FARGs, and patients with C2 had a shorter overall survival (OS) than those with C1. We constructed an FARG signature comprising nine genes. We constructed a FARG signature consisting of nine genes. Patients with higher risk scores calculated from the FARG signature had a lower OS, and the FARG signature was considered an independent prognostic factor for HNSCC in univariate and multivariate analyses. FARGs are associated with immune cell invasion, gene mutation status, and chemosensitivity. Finally, we observed an abnormal overexpression of MAPK9 in HNSCC tissues, and MAPK9 knockdown greatly impeded the proliferation, migration, and invasion of HNSCC cells. Conclusion The FARG signature can provide reliable prognostic prediction for patients with HNSCC. Apart from that, the genes in this model were related to immune invasion, gene mutation status, and chemosensitivity, which may provide new ideas for targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Zhechen Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yanqiang Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Bingyu Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ye Tao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yidan Xu
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Pan
- Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhang Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Dong F, Liu Y, Yan W, Meng Q, Song X, Cheng B, Yao R. Netrin-4: Focus on Its Role in Axon Guidance, Tissue Stability, Angiogenesis and Tumors. Cell Mol Neurobiol 2023; 43:1663-1683. [PMID: 36350538 PMCID: PMC11412186 DOI: 10.1007/s10571-022-01279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
Netrin-4, a member of the Netrins family, is an important secreted protein that plays a role in axonal outgrowth and migration orientation. It was initially described that Netrin-4 had a high correlation with the laminin β-chain and promoted the growth of neurites in cultured olfactory bulb explants. Subsequently, it was discovered that Netrin-4 is involved in regulating various physiological processes, including angiogenesis, the occurrence and metastasis of various tumors, and the development of the kidney and alveoli. This paper reviews the current research on Netrin-4 since its discovery and provides a theoretical basis for further research on the biological characteristics of Netrin-4. Effects of Netrin-4. Netrin-4 regulates axon guidance, angiogenesis and the development of various tumors.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
13
|
Wu D, Gaskins JT, Sekula M, Datta S. Inferring Cell-Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model. Genes (Basel) 2023; 14:1368. [PMID: 37510272 PMCID: PMC10379215 DOI: 10.3390/genes14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular communication through biochemical signaling is fundamental to every biological activity. Investigating cell signaling diffusions across cell types can further help understand biological mechanisms. In recent years, this has become an important research topic as single-cell sequencing technologies have matured. However, cell signaling activities are spatially constrained, and single-cell data cannot provide spatial information for each cell. This issue may cause a high false discovery rate, and using spatially resolved transcriptomics data is necessary. On the other hand, as far as we know, most existing methods focus on providing an ad hoc measurement to estimate intercellular communication instead of relying on a statistical model. It is undeniable that descriptive statistics are straightforward and accessible, but a suitable statistical model can provide more accurate and reliable inference. In this way, we propose a generalized linear regression model to infer cellular communications from spatially resolved transcriptomics data, especially spot-based data. Our BAyesian Tweedie modeling of COMmunications (BATCOM) method estimates the communication scores between cell types with the consideration of their corresponding distances. Due to the properties of the regression model, BATCOM naturally provides the direction of the communication between cell types and the interaction of ligands and receptors that other approaches cannot offer. We conduct simulation studies to assess the performance under different scenarios. We also employ BATCOM in a real-data application and compare it with other existing algorithms. In summary, our innovative model can fill gaps in the inference of cell-cell communication and provide a robust and straightforward result.
Collapse
Affiliation(s)
- Dongyuan Wu
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA;
| | - Jeremy T. Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA; (J.T.G.); (M.S.)
| | - Michael Sekula
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA; (J.T.G.); (M.S.)
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA;
| |
Collapse
|
14
|
Li J, Qi G, Liu Y. Proteomics analysis of serum from thymoma patients. Sci Rep 2023; 13:5117. [PMID: 36991043 PMCID: PMC10060243 DOI: 10.1038/s41598-023-32339-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Thymoma is the most common malignant tumor in thymic epithelial tumors (TETS). This study aimed to identify the changes in serum proteomics in patients with thymoma. Proteins were extracted from twenty patients with thymoma serum and nine healthy controls and prepared for mass spectrometry (MS) analysis. Data independent acquisition (DIA) quantitative proteomics technique was used to examine the serum proteome. Differential proteins of abundance changes in the serum were identified. Bioinformatics was used to examine the differential proteins. Functional tagging and enrichment analysis were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The string database was used to assess the interaction of different proteins. In all, 486 proteins were found in all samples. There were differences in 58 serum proteins between patients and healthy blood donors, 35 up-regulated and 23 down-regulated. These proteins are primarily exocrine and serum membrane proteins involved in controlling immunological responses and antigen binding, according to GO functional annotation. KEGG functional annotation showed that these proteins play a significant role in the complement and coagulation cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. Notably, the KEGG pathway (complement and coagulation cascade) is enriched, and three key activators were up-regulated: von willebrand factor (VWF), coagulation factor v (F5) and vitamin k-dependent protein c (PC). Protein-protein interaction (PPI) analysis showed that six proteins ((VWF, F5, thrombin reactive protein 1 (THBS1), mannose-binding lectin-associated serine protease 2 (MASP2), apolipoprotein B (APOB), and apolipoprotein (a) (LPA)) were up-regulated and two proteins (Metalloproteinase inhibitor 1(TIMP1), ferritin light chain (FTL)) were down-regulated. The results of this study showed that several proteins involved in complement and coagulation cascades were up-regulated in the serum of patients.
Collapse
Affiliation(s)
- Jiaduo Li
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guoyan Qi
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Cellular Transcriptomics of Carboplatin Resistance in a Metastatic Canine Osteosarcoma Cell Line. Genes (Basel) 2023; 14:genes14030558. [PMID: 36980828 PMCID: PMC10048144 DOI: 10.3390/genes14030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Osteosarcoma prognosis has remained unchanged for the past three decades. In both humans and canines, treatment is limited to excision, radiation, and chemotherapy. Chemoresistance is the primary cause of treatment failure, and the trajectory of tumor evolution while under selective pressure from treatment is thought to be the major contributing factor in both species. We sought to understand the nature of platinum-based chemotherapy resistance by investigating cells that were subjected to repeated treatment and recovery cycles with increased carboplatin concentrations. Three HMPOS-derived cell lines, two resistant and one naïve, underwent single-cell RNA sequencing to examine transcriptomic perturbation and identify pathways leading to resistance and phenotypic changes. We identified the mechanisms of acquired chemoresistance and inferred the induced cellular trajectory that evolved with repeated exposure. The gene expression patterns indicated that acquired chemoresistance was strongly associated with a process similar to epithelial–mesenchymal transition (EMT), a phenomenon associated with the acquisition of migratory and invasive properties associated with metastatic disease. We conclude that the observed trajectory of tumor adaptability is directly correlated with chemoresistance and the phase of the EMT-like phenotype is directly affected by the level of chemoresistance. We infer that the EMT-like phenotype is a critical component of tumor evolution under treatment pressure and is vital to understanding the mechanisms of chemoresistance and to improving osteosarcoma prognosis.
Collapse
|
16
|
Xu A, Xu XN, Luo Z, Huang X, Gong RQ, Fu DY. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis. Front Oncol 2023; 13:1191660. [PMID: 37207166 PMCID: PMC10191114 DOI: 10.3389/fonc.2023.1191660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings. Results We constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients. Conclusion The five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients.
Collapse
Affiliation(s)
- An Xu
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang-Nan Xu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Zhou Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Xiao Huang
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Quan Gong
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- *Correspondence: De-Yuan Fu,
| |
Collapse
|
17
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
18
|
Cherkaoui S, Durot S, Bradley J, Critchlow S, Dubuis S, Masiero MM, Wegmann R, Snijder B, Othman A, Bendtsen C, Zamboni N. A functional analysis of 180 cancer cell lines reveals conserved intrinsic metabolic programs. Mol Syst Biol 2022; 18:e11033. [PMID: 36321552 PMCID: PMC9627673 DOI: 10.15252/msb.202211033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells reprogram their metabolism to support growth and invasion. While previous work has highlighted how single altered reactions and pathways can drive tumorigenesis, it remains unclear how individual changes propagate at the network level and eventually determine global metabolic activity. To characterize the metabolic lifestyle of cancer cells across pathways and genotypes, we profiled the intracellular metabolome of 180 pan-cancer cell lines grown in identical conditions. For each cell line, we estimated activity for 49 pathways spanning the entirety of the metabolic network. Upon clustering, we discovered a convergence into only two major metabolic types. These were functionally confirmed by 13 C-flux analysis, lipidomics, and analysis of sensitivity to perturbations. They revealed that the major differences in cancers are associated with lipid, TCA cycle, and carbohydrate metabolism. Thorough integration of these types with multiomics highlighted little association with genetic alterations but a strong association with markers of epithelial-mesenchymal transition. Our analysis indicates that in absence of variations imposed by the microenvironment, cancer cells adopt distinct metabolic programs which serve as vulnerabilities for therapy.
Collapse
Affiliation(s)
- Sarah Cherkaoui
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PhD Program in Systems BiologyLife Science ZürichZürichSwitzerland
| | - Stephan Durot
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PhD Program in Systems BiologyLife Science ZürichZürichSwitzerland
| | | | | | - Sebastien Dubuis
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| | - Mauro Miguel Masiero
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PhD Program in Systems BiologyLife Science ZürichZürichSwitzerland
| | - Rebekka Wegmann
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PhD Program in Systems BiologyLife Science ZürichZürichSwitzerland
| | - Berend Snijder
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| | - Alaa Othman
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PHRT Swiss Multi‐OMICS Center / smoc.ethz.chZürichSwitzerland
| | | | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- PHRT Swiss Multi‐OMICS Center / smoc.ethz.chZürichSwitzerland
| |
Collapse
|
19
|
Gopinath P, Veluswami S, Gopisetty G, Sundersingh S, Rajaraman S, Thangarajan R. Identification of tumor biomarkers for pathological complete response to neoadjuvant treatment in locally advanced breast cancer. Breast Cancer Res Treat 2022; 194:207-220. [PMID: 35597840 DOI: 10.1007/s10549-022-06617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic response predictors like age, nodal status, and tumor grade and markers, like ER/PR, HER2, and Ki67, are not reliable in predicting the response to a specific form of chemotherapy. The current study aims to identify and validate reliable markers that can predict pathological complete response (pCR) in fluorouracil, epirubicin, and cyclophosphamide (FEC)-based neoadjuvant therapy with (NACT/RT) and without concurrent radiation (NACT). MATERIALS AND METHODS Tandem mass tag (TMT) quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins from core needle breast biopsy between pCR (n = 4) and no-pCR (n = 4). Immunoblotting of shortlisted proteins with the tissue lysates confirmed the differential expression of the markers. Further, immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded sections of treatment-naive core needle biopsies. In the NACT, 29 pCR and 130 no-pCR and in NACT/RT, 32 pCR and 71 no-pCR were used. RESULTS 733 and 807 proteins were identified in NACT and NACT/RT groups, respectively. Ten proteins were shortlisted for validation as potential pCR-predictive markers. THBS1, TNC, and DCN were significantly overexpressed in no-pCR in both the groups. In NACT, CPA3 was significantly upregulated in the no-pCR. In NACT/RT, HnRNPAB was significantly upregulated and HMGB1 significantly downregulated in the no-pCR. HMGB1 was the only marker to show prognostic significance. CONCLUSION Quantitative proteomics followed by IHC identified and validated potential biomarkers for predicting patient response to therapy. These markers can be used, following larger-scale validation, in combination with routine histological analysis providing vital indications of treatment response.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India
| | - Sridevi Veluswami
- Department of Surgical Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India.
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India.
| | - Shirley Sundersingh
- Department of Oncopatholology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Swaminathan Rajaraman
- Department of Epidemiology, Biostatistics and Cancer Registry, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
20
|
Janowska A, Iannone M, Fidanzi C, Romanelli M, Filippi L, Del Re M, Martins M, Dini V. The Genetic Basis of Dormancy and Awakening in Cutaneous Metastatic Melanoma. Cancers (Basel) 2022; 14:2104. [PMID: 35565234 PMCID: PMC9102235 DOI: 10.3390/cancers14092104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Immune dysregulation, in combination with genetic and epigenetic alterations, induces an excessive proliferation of uncontrolled melanoma cells followed by dissemination of the tumor cells to distant sites, invading organs and creating metastasis. Although immunotherapy, checkpoint inhibitors and molecular targeted therapies have been developed as treatment options for advanced melanoma, there are specific mechanisms by which cancer cells can escape treatment. One of the main factors associated with reduced response to therapy is the ability of residual tumor cells to persist in a dormant state, without proliferation. This comprehensive review aimed at understanding the genetic basis of dormancy/awakening phenomenon in metastatic melanoma will help identify the possible therapeutical strategies that might eliminate melanoma circulating tumor cells (CTCs) or keep them in the dormant state forever, thereby repressing tumor relapse and metastatic spread.
Collapse
Affiliation(s)
- Agata Janowska
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Michela Iannone
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Cristian Fidanzi
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Marco Romanelli
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Luca Filippi
- Unit of Neonatology, University of Pisa, 56126 Pisa, Italy;
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, University of Pisa, 56126 Pisa, Italy;
| | - Manuella Martins
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Valentina Dini
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| |
Collapse
|
21
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
Ma J, Meng Y, Zhou X, Guo L, Fu W. The Prognostic Significance and Gene Expression Characteristics of Gastric Signet-Ring Cell Carcinoma: A Study Based on the SEER and TCGA Databases. Front Surg 2022; 9:819018. [PMID: 35372476 PMCID: PMC8967986 DOI: 10.3389/fsurg.2022.819018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study is based on the Surveillance, Epidemiology, and End Results (SEER) program to explore the prognostic differences between signet-ring cell carcinoma (SRC) and intestinal-type gastric carcinoma (ITGC). This study is also based on gene sequencing data from The Cancer Genome Atlas (TCGA) to identify unique genetic contributions to the prognostic differences between the two subtypes of gastric cancer.Patients and MethodsThe clinical data were based on the SEER database from 2004 to 2015. Kaplan–Meier (KM) curves were used to compare 5-year overall survival (OS), and Cox regression was used for univariate and multivariate analyses. Gene expression profiles were obtained from TCGA database, and differentially expressed genes (DEGs) were screened. Functional enrichment analysis, protein interaction and survival analysis will be further carried out. Genes of interest were verified by the Human Protein Atlas, immunohistochemistry, and encyclopedia of Cancer Cell Lines (CCLE). The relationship between genes of interest and immune cell infiltration was also analyzed by Tumor Immune Estimation Resource (TIMER).ResultsCompared with ITGC patients, SRC patients were more likely to be female, tended to be younger, and have a greater tumor distribution in the middle and lower stomach (p < 0.01). SRCs showed a significantly better prognosis than ITGCs (p < 0.01) in early gastric cancer (EGC), while the prognosis of SRCs was significantly worse than ITGCs (p < 0.05) in advanced gastric cancer (AGC). A total of 256 DEGs were screened in SRCs compared to ITGCs, and the enrichment analysis and protein interactions revealed that differential genes were mainly related to extracellular matrix organization. Thrombospondin1 (THBS1) and serpin peptidase inhibitor, clade E, member 1 (SERPINE1) are significantly differentially expressed between SRC and ITGC, which has been preliminarily verified by immunohistochemistry and open-source databases. THBS1 and SERPINE1 are also associated with multiple immune cell infiltrates in gastric cancer.ConclusionsThere were significant differences in the clinicopathological features and prognosis between SRC and ITGC. These results suggest that SRC and ITGC may be two distinct types of tumors with different pathogeneses. We found many codifferentially expressed genes and important pathways between SRC and ITGC. THBS1 and SERPINE1 were significantly differentially expressed in the two types of gastric cancer, and may have potentially important functions.
Collapse
Affiliation(s)
- Junren Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yan Meng
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital Cancer Center, Beijing, China
- *Correspondence: Xin Zhou
| | - Limei Guo
- Department of Pathology, Peking University Third Hospital, Beijing, China
- Limei Guo
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital Cancer Center, Beijing, China
- Wei Fu
| |
Collapse
|
23
|
Sadangi S, Milosavljevic K, Castro-Perez E, Lares M, Singh M, Altameemi S, Beebe DJ, Ayuso JM, Setaluri V. Role of the Skin Microenvironment in Melanomagenesis: Epidermal Keratinocytes and Dermal Fibroblasts Promote BRAF Oncogene-Induced Senescence Escape in Melanocytes. Cancers (Basel) 2022; 14:cancers14051233. [PMID: 35267541 PMCID: PMC8909265 DOI: 10.3390/cancers14051233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Melanoma is a deadly skin cancer caused by the uncontrolled proliferation of melanocytes, a population of specialized cells that produce the skin pigment melanin. An aberrant proliferation of melanocytes is common, manifesting as new moles, and these lesions often remain benign. Only a small fraction of these aberrant melanocytes transition to melanoma (i.e., melanomagenesis). The factors that drive this transition are not fully understood. Recent studies have suggested that other cells—specifically, keratinocytes that make up the upper skin layers and fibroblasts, which are non-specialized cells within the deeper layers of the skin—also contribute to melanomagenesis. Here, employing microscale models that mimicked the skin microenvironment, we investigated the effect of crosstalk between melanocytes as well as keratinocytes and fibroblasts on melanomagenesis. Our findings show that keratinocyte- and fibroblast-derived factors can inhibit the mechanisms that prevent an uncontrolled melanocyte proliferation and contribute to melanomagenesis. Thus, targeting skin microenvironment-derived factors is a potential strategy to prevent melanomagenesis. Abstract BRAFV600E is the most common mutation driver in melanoma. This mutation is known to cause a brief burst of proliferation followed by growth arrest and senescence, which prevent an uncontrolled cell proliferation. This phenomenon is known as oncogene-induced senescence (OIS) and OIS escape is thought to lead to melanomagenesis. Much attention has been focused on the melanocyte-intrinsic mechanisms that contribute to senescence escape. Additional genetic events such as the loss of tumor suppressor PTEN and/or epigenetic changes that contribute to senescence escape have been described. However, the role of the skin microenvironment—specifically, the role of epidermal keratinocytes—on melanomagenesis is not fully understood. In this study, we employ a microfluidic platform to study the interaction between melanocytes expressing the BRAFV600E mutation as well as keratinocytes and dermal fibroblasts. We demonstrate that keratinocytes suppress senescence-related genes and promote the proliferation of transformed melanocytes. We also show that a keratinocyte-conditioned medium can alter the secretion of both pro- and anti-tumorigenic factors by transformed melanocytes. In addition, we show that melanocytes and keratinocytes from donors of white European and black African ancestry display different crosstalks; i.e., white keratinocytes appear to promote a more pro-tumorigenic phenotype compared with black keratinocytes. These data suggest that keratinocytes exert their influence on melanomagenesis both by suppressing senescence-related genes in melanocytes and by affecting the balance of the melanocyte-secreted factors that favor tumorigenesis.
Collapse
Affiliation(s)
- Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - Katarina Milosavljevic
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - Edgardo Castro-Perez
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - Sarah Altameemi
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA;
- Correspondence: (J.M.A.); (V.S.)
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.S.); (K.M.); (E.C.-P.); (M.L.); (M.S.); (S.A.)
- Correspondence: (J.M.A.); (V.S.)
| |
Collapse
|
24
|
Moosavy SH, Koochakkhani S, Barazesh M, Mohammadi S, Ahmadi K, Inchehsablagh BR, Kavousipour S, Eftekhar E, Mokaram P. In silico Analysis of Single Nucleotide Polymorphisms Associated with MicroRNA
Regulating 5-fluorouracil Resistance in Colorectal Cancer. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210930161618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the broad influence and reversible nature of microRNA (miRNA) on the
expression and regulation of target genes, researchers suggest that miRNAs and single nucleotide polymorphisms
(SNPs) in miRNA genes interfere with 5-fluorouracil (5-FU) drug resistance in colorectal
cancer chemotherapy.
Methods:
Computational assessment and cataloging of miRNA gene polymorphisms that target mRNA
transcripts directly or indirectly through regulation of 5-FU chemoresistance in CRC were screened out
by applying various universally accessible datasets such as miRNA SNP3.0 software.
Results:
1255 SNPs in 85 miRNAs affecting 5-FU resistance (retrieved from literature) were detected.
Computational analysis showed that 167 from 1255 SNPs alter microRNA expression levels leading to
inadequate response to 5-FU resistance in CRC. Among these 167 SNPs, 39 were located in the seed
region of 25/85 miRNA and were more critical than other SNPs. Has-miR-320a-5p with 4 SNP in seed
region was miRNA with the most number of SNPs. On the other hand, it has been identified that proteoglycan
in cancer, adherents junction, ECM-receptor interaction, Hippo signaling pathway, TGF-beta signaling
cascade, biosynthesis of fatty acid, and fatty acid metabolism were the most important pathways
targeted by these 85 predicted miRNAs.
Conclusion:
Our data suggest 39 SNPs in the seed region of 25 miRNAs as catalog in miRNA genes that
control the 5-FU resistance in CRC. These data also identify the most important pathways regulated by
miRNA.
Collapse
Affiliation(s)
- Seyed Hamid Moosavy
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad,
Iran
| | - Khadijeh Ahmadi
- Infection and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical
Science, Bandar Abbas, Iran
| | - Behnaz Rahnama Inchehsablagh
- Department of Physiology and Student Research Committee, Hormozgan University of
Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
25
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
26
|
He L, Wang GP, Guo JY, Chen ZR, Liu K, Gong SS. Epithelial-Mesenchymal Transition Participates in the Formation of Vestibular Flat Epithelium. Front Mol Neurosci 2022; 14:809878. [PMID: 34975404 PMCID: PMC8719593 DOI: 10.3389/fnmol.2021.809878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
The vestibular sensory epithelium of humans and mice may degenerate into a layer of flat cells, known as flat epithelium (FE), after a severe lesion. However, the pathogenesis of vestibular FE remains unclear. To determine whether the epithelial–mesenchymal transition (EMT) participates in the formation of vestibular FE, we used a well-established mouse model in which FE was induced in the utricle by an injection of streptomycin into the inner ear. The mesenchymal and epithelial cell markers and cell proliferation were examined using immunofluorescence staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The function of the EMT was assessed through transcriptome microarray analysis. The results demonstrated that mesenchymal cell markers (α-SMA, S100A4, vimentin, and Fn1) were upregulated in vestibular FE compared with the normal utricle. Robust cell proliferation, which was absent in the normal status, was observed in the formation of FE. Microarray analysis identified 1,227 upregulated and 962 downregulated genes in vestibular FE. Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) were highly associated with several EMT-related GO terms, such as cell adhesion, cell migration, and extracellular matrix. Pathway enrichment analysis revealed that DEGs were enriched in the EMT-related signaling pathways, including extracellular matrix (ECM)-receptor interaction, focal adhesion, PI3K/Akt signaling pathway and cell adhesion molecule. Protein–protein interaction networks screened 20 hub genes, which were Akt, Casp3, Col1a1, Col1a2, Fn1, Hgf, Igf1,Il1b, Irs1, Itga2, Itga5, Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1, Trp53, and Col2a1. Most of these genes are reportedly involved in the EMT process in various tissues. The mRNA expression level of hub genes was validated using qRT-PCR. In conclusion, the present study indicates that EMT plays a significant role in the formation of vestibular FE and provides an overview of transcriptome characteristics in vestibular FE.
Collapse
Affiliation(s)
- Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Wang J, Uddin MN, Hao JP, Chen R, Xiang YX, Xiong DQ, Wu Y. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia. Front Genet 2021; 12:723001. [PMID: 34777462 PMCID: PMC8585857 DOI: 10.3389/fgene.2021.723001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Acute Myeloid Leukemia (AML) is a complex and heterogeneous hematologic malignancy. However, the function of prognosis-related signature genes in AML remains unclear. Methods: In the current study, transcriptome sequencing was performed on 15 clinical samples, differentially expressed RNAs were identified using R software. The potential interactions network was constructed by using the common genes between target genes of differentially expressed miRNAs with transcriptome sequencing results. Functional and pathway enrichment analysis was performed to identify candidate gene-mediated aberrant signaling pathways. Hub genes were identified by the cytohubba plugin in Cytoscape software, which then expanded the potential interactions regulatory module for hub genes. TCGA-LAML clinical data were used for the prognostic analysis of the hub genes in the regulatory network, and GVSA analysis was used to identify the immune signature of prognosis-related hub genes. qRT-PCR was used to verify the expression of hub genes in independent clinical samples. Results: We obtained 1,610 differentially expressed lncRNAs, 233 differentially expressed miRNAs, and 2,217 differentially expressed mRNAs from transcriptome sequencing. The potential interactions network is constructed by 12 lncRNAs, 25 miRNAs, and 692 mRNAs. Subsequently, a sub-network including 15 miRNAs as well as 12 lncRNAs was created based on the expanded regulatory modules of 25 key genes. The prognostic analysis results show that CCL5 and lncRNA UCA1 was a significant impact on the prognosis of AML. Besides, we found three potential interactions networks such as lncRNA UCA1/hsa-miR-16-5p/COL4A5, lncRNA UCA1/hsa-miR-16-5p/SPARC, and lncRNA SNORA27/hsa-miR-17-5p/CCL5 may play an important role in AML. Furthermore, the evaluation of the immune infiltration shows that CCL5 is positively correlated with various immune signatures, and lncRNA UCA1 is negatively correlated with the immune signatures. Finally, the result of qRT-PCR showed that CCL5 is down-regulated and lncRNA UCA1 is up-regulated in AML samples separately. Conclusions: In conclusion, we propose that CCL5 and lncRNA UCA1 could be recognized biomarkers for predicting survival prognosis based on constructing competing endogenous RNAs in AML, which will provide us novel insight into developing novel prognostic, diagnostic, and therapeutic for AML.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun-Xia Xiang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
28
|
Primary high-grade serous ovarian cancer cells are sensitive to senescence induced by carboplatin and paclitaxel in vitro. Cell Mol Biol Lett 2021; 26:44. [PMID: 34674640 PMCID: PMC8532320 DOI: 10.1186/s11658-021-00287-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Various types of normal and cancer cells undergo senescence in response to carboplatin and paclitaxel, which are considered the gold standard treatments in ovarian cancer management. Surprisingly, the effect of these drugs on ovarian cancer cell senescence remained unknown. METHODS The experiments were conducted on primary high-grade serous ovarian cancer cells. Molecular markers of senescence were evaluated using cytochemistry and immunofluorescence. Cell cycle distribution was analyzed using flow cytometry. Expression of cyclins and signaling pathways was tested using western blot. Telomere length and telomerase activity were measured using qPCR, and the colocalization of telomeres with DNA damage foci using immuno-FISH. Oxidative stress-related parameters were quantified using appropriate fluorescence probes. Production of cancerogenic agents was analyzed using qPCR and ELISA. RESULTS Carboplatin applied with paclitaxel induces senescence of ovarian cancer cells in vitro. This activity was reflected by permanent G2/M growth arrest, a high fraction of cells expressing senescence biomarkers (SA-β-Gal and γ-H2A.X), upregulated expression of p16, p21, and p53 cell cycle inhibitors, and decreased expression of cyclin B1. Neither telomere length nor telomerase activity changed in the senescent cells, and the majority of DNA damage was localized outside telomeres. Moreover, drug-treated cancer cells exhibited increased production of STAT3 protein, overproduced superoxide and peroxides, and increased mitochondrial mass. They were also characterized by upregulated ANG1, CCL11, IL-6, PDGF-D, TIMP-3, TSP-1, and TGF-β1 at the mRNA and/or protein level. CONCLUSIONS Our findings imply that conventional chemotherapy may elicit senescence in ovarian cancer cells, which may translate to the development of a cancer-promoting phenotype, despite the inability of these cells to divide.
Collapse
|
29
|
Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol Biol Rep 2021; 48:7261-7272. [PMID: 34626309 DOI: 10.1007/s11033-021-06722-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The tumor suppressor protein p53 is a most promising target for the development of anticancer drugs. Allicin (diallylthiosulfinate) is one of the most active components of garlic (Alliium sativum L.) and possesses a variety of health-promoting properties with pharmacological applications. However, whether allicin plays an anti-cancer role against breast cancer cells through the induction of p53-mediated apoptosis remains unknown. METHODS AND RESULTS In this study, we investigate the anti-breast cancer effect of allicin in vitro by using MCF-7 and MD-MBA-231 cells. We found that allicin reduces cell viability, induces apoptosis and cell cycle arrest in both cells. Allicin activated p53 and caspase 3 expressions in both cells but produced different effects on the expression of p53-related biomarkers. In MDA-MB-231 cells, allicin up-regulated the mRNA and protein expression of A1BG and THBS1 while down-regulated the expression of TPM4. Conversely, the mRNA and protein expression of A1BG, THBS1 and TPM4 were all reduced in MCF-7 cells. Hence, allicin induces cell cycle arrest and apoptosis in breast cancer cells through p53 activation but it effects on the expression of p53-related biomarkers were dependent upon the specific type of breast cancer involved. CONCLUSIONS These findings suggest that allicin induces apoptosis and regulates biomarker expression in breast cancer cell lines through modulating the p53 signaling pathway. Furthermore, our results promote the utility of allicin as compound for further studies as an anticancer drug targeting p53.
Collapse
|
30
|
Zhang X, Huang T, Li Y, Qiu H. Upregulation of THBS1 is Related to Immunity and Chemotherapy Resistance in Gastric Cancer. Int J Gen Med 2021; 14:4945-4957. [PMID: 34475782 PMCID: PMC8407783 DOI: 10.2147/ijgm.s329208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Thrombospondin 1 (THBS1) is an endogenous inhibitor of angiogenesis, but it also promotes tumor invasion, metastasis, and immune response in the tumor environment. Previous research has found that THBS1 is highly expressed in many tumors and has a negative correlation with tumor prognosis. However, research on the relationship between THBS1 and immune infiltration in GC is less well documented, and the objective of our study was to investigate the role of THBS1 expression in GC. Patients and Methods The expression of THBS1 in GC was analyzed by Oncomine, TIMER, TGCA, GEO and IHC staining. Analysis of the signaling pathways associated with THBS1 expression in GC uses GSEA. The relationship between THBS1 expression and immune infiltration was analyzed by the ESTIMATE algorithm, single-cell transcriptome analysis, TIMER2 database and CIBERSORT algorithm. Finally, the relationship between THBS1 expression and drug sensitivity was analyzed by the CellMiner database. Results THBS1 was overexpressed in GC and was associated with poor prognosis, and high THBS1 expression was an independent risk factor. GSEA results showed that high THBS1 expression in GC was associated with tumorigenesis, adhesion, and significant immune enrichment. THBS1 expression was most strongly correlated with tumor-associated macrophages (TAMs), M2 macrophages and cancer-associated fibroblast (CAFs) in GC. THBS1 expression positively correlates with most immune checkpoint members, suggesting that THBS1 may play an important role in the tumor microenvironment. THBS1 overexpression was negatively correlated with some drug sensitivities, such as Oxaliplatin. Conclusion Upregulation of THBS1 was positively correlated with poor prognosis and immunosuppression in GC and negatively correlated with anticancer drug sensitivity, suggesting that THBS1 may serve as a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yiming Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| |
Collapse
|
31
|
Marcheteau E, Farge T, Pérès M, Labrousse G, Tenet J, Delmas S, Chusseau M, Duprez-Paumier R, Franchet C, Dalenc F, Imbert C, Noujarède J, Colacios C, Prats H, Cabon F, Ségui B. Thrombospondin-1 Silencing Improves Lymphocyte Infiltration in Tumors and Response to Anti-PD-1 in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:4059. [PMID: 34439212 PMCID: PMC8391594 DOI: 10.3390/cancers13164059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-β), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-β signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-β activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-β activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.
Collapse
Affiliation(s)
- Elie Marcheteau
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- SeleXel, 1 Place Pierre Potier, BP 50624, CEDEX 1, 31106 Toulouse, France; (S.D.); (M.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Michaël Pérès
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
| | - Guillaume Labrousse
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Julie Tenet
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Stéphanie Delmas
- SeleXel, 1 Place Pierre Potier, BP 50624, CEDEX 1, 31106 Toulouse, France; (S.D.); (M.C.)
| | - Maud Chusseau
- SeleXel, 1 Place Pierre Potier, BP 50624, CEDEX 1, 31106 Toulouse, France; (S.D.); (M.C.)
| | - Raphaëlle Duprez-Paumier
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France; (R.D.-P.); (C.F.); (F.D.)
| | - Camille Franchet
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France; (R.D.-P.); (C.F.); (F.D.)
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, 1 Av. Irène Joliot-Curie, 31100 Toulouse, France; (R.D.-P.); (C.F.); (F.D.)
| | - Caroline Imbert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
| | - Justine Noujarède
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Céline Colacios
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Hervé Prats
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Florence Cabon
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- SeleXel, 1 Place Pierre Potier, BP 50624, CEDEX 1, 31106 Toulouse, France; (S.D.); (M.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Bruno Ségui
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, 2 Aavenue Hubert Curien, CEDEX 1, 31047 Toulouse, France; (E.M.); (T.F.); (M.P.); (G.L.); (J.T.); (C.I.); (J.N.); (C.C.); (H.P.); (F.C.)
- Université Toulouse III—Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse, France
- Equipe Labellisée par la Fondation ARC—Association Pour la Recherche sur le Cancer, 94803 Villejuif, France
| |
Collapse
|
32
|
Fahrmann JF, Katayama H, Irajizad E, Chakraborty A, Kato T, Mao X, Park S, Murage E, Rusling L, Yu CY, Cai Y, Hsiao FC, Dennison JB, Tran H, Ostrin E, Wilson DO, Yuan JM, Vykoukal J, Hanash S. Plasma Based Protein Signatures Associated with Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13163972. [PMID: 34439128 PMCID: PMC8391533 DOI: 10.3390/cancers13163972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
Small-cell-lung cancer (SCLC) is associated with overexpression of oncogenes including Myc family genes and YAP1 and inactivation of tumor suppressor genes. We performed in-depth proteomic profiling of plasmas collected from 15 individuals with newly diagnosed early stage SCLC and from 15 individuals before the diagnosis of SCLC and compared findings with plasma proteomic profiles of 30 matched controls to determine the occurrence of signatures that reflect disease pathogenesis. A total of 272 proteins were elevated (area under the receiver operating characteristic curve (AUC) ≥ 0.60) among newly diagnosed cases compared to matched controls of which 31 proteins were also elevated (AUC ≥ 0.60) in case plasmas collected within one year prior to diagnosis. Ingenuity Pathway analyses of SCLC-associated proteins revealed enrichment of signatures of oncogenic MYC and YAP1. Intersection of proteins elevated in case plasmas with proteomic profiles of conditioned medium from 17 SCLC cell lines yielded 52 overlapping proteins characterized by YAP1-associated signatures of cytoskeletal re-arrangement and epithelial-to-mesenchymal transition. Among samples collected more than one year prior to diagnosis there was a predominance of inflammatory markers. Our integrated analyses identified novel circulating protein features in early stage SCLC associated with oncogenic drivers.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ashish Chakraborty
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Leona Rusling
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Yinging Cai
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hai Tran
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Edwin Ostrin
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - David O. Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
- Correspondence:
| |
Collapse
|
33
|
Bothrops Jararaca Snake Venom Modulates Key Cancer-Related Proteins in Breast Tumor Cell Lines. Toxins (Basel) 2021; 13:toxins13080519. [PMID: 34437390 PMCID: PMC8402457 DOI: 10.3390/toxins13080519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 μg/mL (low) or 2.5 μg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.
Collapse
|
34
|
Wang YM, Khederzadeh S, Li SR, Otecko NO, Irwin DM, Thakur M, Ren XD, Wang MS, Wu DD, Zhang YP. Integrating Genomic and Transcriptomic Data to Reveal Genetic Mechanisms Underlying Piao Chicken Rumpless Trait. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:787-799. [PMID: 33631431 PMCID: PMC9170765 DOI: 10.1016/j.gpb.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Piao chicken, a rare Chinese native poultry breed, lacks primary tail structures, such as pygostyle, caudal vertebra, uropygial gland, and tail feathers. So far, the molecular mechanisms underlying tail absence in this breed remain unclear. In this study, we comprehensively employed comparative transcriptomic and genomic analyses to unravel potential genetic underpinnings of rumplessness in Piao chicken. Our results reveal many biological factors involved in tail development and several genomic regions under strong positive selection in this breed. These regions contain candidate genes associated with rumplessness, including Irx4, Il18, Hspb2, and Cryab. Retrieval of quantitative trait loci (QTL) and gene functions implies that rumplessness might be consciously or unconsciously selected along with the high-yield traits in Piao chicken. We hypothesize that strong selection pressures on regulatory elements might lead to changes in gene activity in mesenchymal stem cells of the tail bud. The ectopic activity could eventually result in tail truncation by impeding differentiation and proliferation of the stem cells. Our study provides fundamental insights into early initiation and genetic basis of the rumpless phenotype in Piao chicken.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China; Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Shi-Rong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Zoological Survey of India, Kolkata 700053, India
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
35
|
Fu PY, Hu B, Ma XL, Tang WG, Yang ZF, Sun HX, Yu MC, Huang A, Hu JW, Zhou CH, Fan J, Xu Y, Zhou J. Far upstream element-binding protein 1 facilitates hepatocellular carcinoma invasion and metastasis. Carcinogenesis 2021; 41:950-960. [PMID: 31587040 DOI: 10.1093/carcin/bgz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research suggests that far upstream element-binding protein 1 (FUBP1) plays an important role in various tumors including epatocellular carcinoma (HCC). However, the role of FUBP1 in liver cancer remains controversial, and the regulatory pathway by FUBP1 awaits to be determined. This study aims to identify the role of FUBP1 in HCC progression. Our result shows that the high level of FUBP1 expression in HCC predicts poor prognosis after surgery. Overexpression of FUBP1 promotes HCC proliferation, invasion, and metastasis by activating transforming growth factor-β (TGF-β)/Smad pathway and enhancing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Inhibitor of Thrombospondin-1 (LSKL) could inhibit HCC proliferation and invasion in vitro and in vivo by blocking the activation of TGF-β/Smad pathway mediated by thrombospondin-1 (THBS1). Our study identified the critical role of FUBP1-THBS1-TGF-β signaling axis in HCC and provides potentially new therapeutic modalities in HCC.
Collapse
Affiliation(s)
- Pei-Yao Fu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiao-Lu Ma
- Laboratory Medicine Department, Shanghai Tumor Center of Fudan University, Shanghai, P.R. China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Hai-Xiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chen-Hao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
37
|
Melanoma Cell Resistance to Vemurafenib Modifies Inter-Cellular Communication Signals. Biomedicines 2021; 9:biomedicines9010079. [PMID: 33467521 PMCID: PMC7830125 DOI: 10.3390/biomedicines9010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The therapeutic success of BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi) in BRAF-mutant melanoma is limited by the emergence of drug resistance, and several lines of evidence suggest that changes in the tumor microenvironment can play a pivotal role in acquired resistance. The present study focused on secretome profiling of melanoma cells sensitive or resistant to the BRAFi vemurafenib. Proteomic and cytokine/chemokine secretion analyses were performed in order to better understand the interplay between vemurafenib-resistant melanoma cells and the tumor microenvironment. We found that vemurafenib-resistant melanoma cells can influence dendritic cell (DC) maturation by modulating their activation and cytokine production. In particular, human DCs exposed to conditioned medium (CM) from vemurafenib-resistant melanoma cells produced higher levels of pro-inflammatory cytokines—that potentially facilitate melanoma growth—than DCs exposed to CM derived from parental drug-sensitive cells. Bioinformatic analysis performed on proteins identified by mass spectrometry in the culture medium from vemurafenib-sensitive and vemurafenib-resistant melanoma cells suggests a possible involvement of the proteasome pathway. Moreover, our data confirm that BRAFi-resistant cells display a more aggressive phenotype compared to parental ones, with a significantly increased production of interferon-γ, interleukin-8, vascular-endothelial growth factor, CD147/basigin, and metalloproteinase 2 (MMP-2). Plasma levels of CD147/basigin and MMP-2 were also measured before the start of therapy and at disease progression in a small group of melanoma patients treated with vemurafenib or vemurafenib plus cobimetinib. A significant increment in CD147/basigin and MMP-2 was observed in all patients at the time of treatment failure, strengthening the hypothesis that CD147/basigin might play a role in BRAFi resistance.
Collapse
|
38
|
Wang P, Zeng Z, Lin C, Wang J, Xu W, Ma W, Xiang Q, Liu H, Liu SL. Thrombospondin-1 as a Potential Therapeutic Target: Multiple Roles in Cancers. Curr Pharm Des 2020; 26:2116-2136. [PMID: 32003661 DOI: 10.2174/1381612826666200128091506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Thrombospondin-1, an extracellular matrix protein, is the first identified natural angiogenesis inhibitor. Thrombospondin-1 participates in a great number of physiological and pathological processes, including cell-cell and cell-matrix interactions via a number of cell receptors, including CD36 and CD47, which plays a vital role in mediating inflammation and performs a promoting effect in pulmonary arterial vasculopathy and diabetes. Thrombospondin-1 consists of six domains, which combine with different molecules and participate in various functions in cancers, serving as a critical member in diverse pathways in cancers. Thrombospondin-1 works as a cancer promotor in some pathways but as a cancer suppressor in others, which makes it highly possible that its erroneous functioning might lead to opposite effects. Therefore, subdividing the roles of thrombospondin-1 and distinguishing them in cancers are necessary. Complex structure and multiple roles take disadvantage of the research and application of thrombospondin-1. Compared with the whole thrombospondin-1 protein, each thrombospondin- 1 active peptide performs an uncomplicated structure and, nevertheless, a specific role. In other words, various thrombospondin-1 active peptides may function differently. For instance, thrombospondin-1 could both promote and inhibit glioblastoma, which is significantly inhibited by the three type I repeats, a thrombospondin-1 active peptide but promoted by the fragment 167-569, a thrombospondin-1 active peptide consisting of the procollagen homology domain and the three type I repeats. Further studies of the functions of thrombospondin-1 active peptides and applying them reasonably are necessary. In addition to mediating cancerogenesis, thrombospondin-1 is also affected by cancer development, as reflected by its expression in plasma and the cancer tissue. Therefore, thrombospondin-1 may be a potential biomarker for pre-clinical and clinical application. This review summarizes findings on the multiple roles of thrombospondin-1 in cancer processes, with a focus on its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
39
|
Su W, Guan Y, Huang B, Wang J, Wei Y, Zhao Y, Jiao Q, Ji J, Yu D, Xu L. Bioinformatic analysis reveals hub genes and pathways that promote melanoma metastasis. BMC Cancer 2020; 20:863. [PMID: 32894090 PMCID: PMC7487637 DOI: 10.1186/s12885-020-07372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Melanoma has the highest mortality rate of all skin tumors, and metastases are the major cause of death from it. The molecular mechanism leading to melanoma metastasis is currently unclear. METHODS With the goal of revealing the underlying mechanism, three data sets with accession numbers GSE8401, GSE46517 and GSE7956 were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the differentially expressed gene (DEG) of primary melanoma and metastatic melanoma, three kinds of analyses were performed, namely functional annotation, protein-protein interaction (PPI) network and module construction, and co-expression and drug-gene interaction prediction analysis. RESULTS A total of 41 up-regulated genes and 79 down-regulated genes was selected for subsequent analyses. Results of pathway enrichment analysis showed that extracellular matrix organization and proteoglycans in cancer are closely related to melanoma metastasis. In addition, seven pivotal genes were identified from PPI network, including CXCL8, THBS1, COL3A1, TIMP3, KIT, DCN, and IGFBP5, which have all been verified in the TCGA database and clinical specimens, but only CXCL8, THBS1 and KIT had significant differences in expression. CONCLUSIONS To conclude, CXCL8, THBS1 and KIT may be the hub genes in the metastasis of melanoma and thus may be regarded as therapeutic targets in the future.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.,Department of Medicine, Soochow University, No. 199 Renai Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yi Guan
- School of Foreign Languages, Soochow University, No. 1 Shizi Street, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Biao Huang
- Department of Medicine, Soochow University, No. 199 Renai Street, Suzhou, Jiangsu, 215000, People's Republic of China.,Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Juanjuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yuqian Wei
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Daojiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Longjiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, 215000, Jiangsu, People's Republic of China
| |
Collapse
|
40
|
Schisandra Inhibit Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Rats via Suppressing M2 Macrophage Polarization. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5137349. [PMID: 32884941 PMCID: PMC7455820 DOI: 10.1155/2020/5137349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause and limited to the lungs. Schisandrae chinensis fructus (Wuweizi, Schisandra) is commonly used traditional Chinese medicines (TCM) for the treatment of pulmonary fibrosis, bronchitis, and other lung diseases in China. In this study, we investigated the therapeutic effect of Schisandra on IPF which is induced by bleomycin (BLM) in rats and the inhibition of alternatively activated macrophage (M2) polarization. Bleomycin-induced pulmonary fibrosis was used as a model for IPF, and rats were given drug interventions for 7 and 28 days to evaluate the role of Schisandra in the early oxidative phase and late fibrotic phases of BLM-induced pulmonary injury. The data showed that Schisandra exerted protective effects on BLM-induced pulmonary injury in two phases, which were improving inflammatory cell infiltration and severe damages of lung architectures and decreasing markers of M2 subtype. In order to prove the inhibitory effect of Schisandra on M2 polarization, in vitro experiments, we found that Schisandra downregulated the M2 ratio, which confirmed that the polarization of M2 was suppressed. Moreover, Schisandra blocked TGF-β1 signaling in AMs by reducing the levels of Smad3 and Smad4; meanwhile, the upregulation of Smad7 by Schisandra also promoted the effect of inhibition on the TGF-β1/Smad pathway. These results demonstrate that suppression of M2 polarization by Schisandra is associated with the development of IPF in rats.
Collapse
|
41
|
Prithviraj P, Anaka M, Thompson EW, Sharma R, Walkiewicz M, Tutuka CSA, Behren A, Kannourakis G, Jayachandran A. Aberrant pregnancy-associated plasma protein-A expression in breast cancers prognosticates clinical outcomes. Sci Rep 2020; 10:13779. [PMID: 32792532 PMCID: PMC7426935 DOI: 10.1038/s41598-020-70774-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/03/2020] [Indexed: 01/15/2023] Open
Abstract
Elevated levels of pregnancy-associated plasma protein-A (PAPP-A) have been implicated in the pathogenesis of various malignancies, including breast cancers. Breast cancer is one of the most frequent carcinomas and is the second most common cancer type detected in women of child-bearing age. Throughout pregnancy PAPP-A is produced and secreted by the placental syncytiotrophoblast cells; co-incidentally pregnancy-associated breast cancers often have an aggressive clinical course. The components of the PAPP-A/IGF axis was assessed in a panel of breast cancer cell lines. Using neutralising antibodies the impact of PAPP-A/IGF axis on cell motility was evaluated. PAPP-A was expressed in four of the twelve breast cancer cell lines tested. Blocking PAPP-A and IGFBP4 with neutralising antibodies significantly decreased motiliy of MDA-MB-231 cells. Upregulation of PAPP-A expression in breast tumours resulted in a trend towards worse overall survival. Notably, PAPP-A expression also positively correlated with epithelial-to-mesenchymal transition markers. In conclusion, these results indicate that PAPP-A plays an important role in breast cancer progression and it may be a promising therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Prashanth Prithviraj
- Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Fiona Elsey Cancer Research Institute, Ballarat Technology Park- Central Suite 23, 106-110 Lydiard St Sth, Ballarat, VIC, 3350, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Matthew Anaka
- Department of Medicine, University of Alberta, Alberta, Canada
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat Technology Park- Central Suite 23, 106-110 Lydiard St Sth, Ballarat, VIC, 3350, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Marzena Walkiewicz
- Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Candani S A Tutuka
- Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Andreas Behren
- Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Park- Central Suite 23, 106-110 Lydiard St Sth, Ballarat, VIC, 3350, Australia.,Federation University Australia, Ballarat, VIC, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Ballarat Technology Park- Central Suite 23, 106-110 Lydiard St Sth, Ballarat, VIC, 3350, Australia. .,Gallipoli Medical Research Institute and The University of Queensland, Brisbane, Australia.
| |
Collapse
|
42
|
Sun S, Dong H, Yan T, Li J, Liu B, Shao P, Li J, Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:139. [PMID: 32600280 PMCID: PMC7325168 DOI: 10.1186/s12881-020-01073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Background Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. Methods Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. Results A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87–2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77–2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. Conclusions Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene 2020; 39:5267-5281. [PMID: 32561850 DOI: 10.1038/s41388-020-1362-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Melanoma is a deadly form of skin cancer that accounts for a disproportionally large proportion of cancer-related deaths in younger people. Compared with most other skin cancers, a feature of melanoma is its high metastatic capacity, although the mechanisms that confer this are not well understood. The Hippo pathway is a key regulator of organ growth and cell fate that is deregulated in many cancers. To analyse the Hippo pathway in cutaneous melanoma, we generated a transcriptional signature of melanoma cells that overexpressed YAP, the key downstream Hippo pathway oncoprotein. YAP-mediated transcriptional activity varied in melanoma cell lines but did not cluster with known genetic drivers of melanomagenesis such as BRAF and NRAS mutations. Instead, it correlated strongly with published gene expression profiles linked to melanoma cell invasiveness and varied throughout the metastatic cascade in melanoma patient tumours. Consistent with this, YAP was both necessary and sufficient for melanoma cell invasion in vitro. In vivo, YAP promoted spontaneous melanoma metastasis, whilst the growth of YAP-expressing primary tumours was impeded. Finally, we identified the YAP target genes AXL, THBS1 and CYR61 as key mediators of YAP-induced melanoma cell invasion. These data suggest that YAP is a critical regulator of melanoma metastasis.
Collapse
|
44
|
Federico A, Steinfass T, Larribère L, Novak D, Morís F, Núñez LE, Umansky V, Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:83-99. [PMID: 32637583 PMCID: PMC7327877 DOI: 10.1016/j.omto.2020.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| |
Collapse
|
45
|
Distinguishing Tumor and Stromal Sources of MicroRNAs Linked to Metastasis in Cutaneous Melanoma. Transl Oncol 2020; 13:100802. [PMID: 32474365 PMCID: PMC7260684 DOI: 10.1016/j.tranon.2020.100802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miRNA) dysregulation in cancer causes changes in gene expression programs regulating tumor progression and metastasis. Candidate metastasis suppressor miRNA are often identified by differential expression in primary tumors compared to metastases. Here, we performed comprehensive analysis of miRNA expression in The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) tumors (97 primary, 350 metastatic), and identified candidate metastasis-suppressor miRNAs. Differential expression analysis revealed miRNA significantly downregulated in metastatic tumors, including miR-205, miR-203, miR-200a-c, and miR-141. Furthermore, sequential feature selection and classification analysis identified miR-205 and miR-203 as the miRNA best able to discriminate between primary and metastatic tumors. However, cell-type enrichment analysis revealed that gene expression signatures for epithelial cells, including keratinocytes and sebocytes, were present in primary tumors and significantly correlated with expression of the candidate metastasis-suppressor miRNA. Examination of miRNA expression in cell lines revealed that candidate metastasis-suppressor miRNA identified in the SKCM tumors, were largely absent in melanoma cells or melanocytes, and highly restricted to keratinocytes and other epithelial cell types. Indeed, the differences in stromal cell composition between primary and metastatic tumor tissues is the main basis for identification of differential miRNA that were previously classified as metastasis-suppressor miRNAs. We conclude that future studies must consider tumor-intrinsic and stromal sources of miRNA in their workflow to identify bone fide metastasis-suppressor miRNA in cutaneous melanoma and other cancers.
Collapse
|
46
|
Savchenko RR, Vasilyev SA, Fishman VS, Sukhikh ES, Sukhikh LG, Murashkina AA, Lebedev IN. Effect of the THBS1 Gene Knockout on the Radiation-Induced Cellular Response in a Model System In Vitro. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Huang R, Chen Z, Li W, Fan C, Liu J. Immune system‑associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma. Int J Oncol 2020; 56:1199-1211. [PMID: 32319580 PMCID: PMC7115743 DOI: 10.3892/ijo.2020.4998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant types of cancer, and is associated with high recurrence rates and a poor response to chemotherapy. Immune signatures in the microenvironment of HCC have not been well explored systematically. The aim of the present study was to identify prognostic immune signatures and build a nomogram for use in clinical evaluation. Using bioinformatics analysis, RNA‑seq data and overall survival (OS) information on 370 HCC cases from TCGA and 232 HCC cases from ICGC were analyzed. The differential expression of select immune genes, based on previously published studies, between HCC and adjacent tissue were analyzed using the limma package in R. Enrichment of pathways and gene ontology analysis was performed using clusterProfiler. Subsequently, univariate Cox regression analysis, Lasso penalty linear regression and multivariate Cox regression models were used to construct a model for immune risk score (IRS). The R packages, survival and survivalROC, were used to plot survival and the associated receiver operating characteristic curves. Infiltration of immune cells was calculated using Tumor IMmune Estimation Resource, with significance examined using a Pearson's correlation test. P<0.05 was considered significant. Based on the analysis, expression of 200 immune genes were upregulated and 47 immune genes were downregulated immune genes. In the multivariate Cox model, 5 genes (enhancer of zest homology 2, ferritin light chain, complement factor H related 3, isthmin 2, cyclin dependent kinase 5) were used to generate the IRS. By stratifying according to the median IRS, it was shown that patients with a high IRS had poor OS rates after 1, 2, 3 and 5 years, and this result was consistent across the testing, training and independent validation cohorts. Additionally, the IRS was correlated with the abundance of infiltrating immune cells. The nomogram built using IRS and clinical characteristics, was able to predict 1, 3 and 5 year OS with area under the curve values of >0.8. These results suggest that the model developed to calculate the IRS may be used to monitor the effectiveness of treatment strategies and for prognostic prediction.
Collapse
Affiliation(s)
- Rongfu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200000
| | | | - Chunmei Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Jun Liu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
48
|
Li J, He J, Zhang X, Li J, Zhao P, Fei P. TSP1 ameliorates age-related macular degeneration by regulating the STAT3-iNOS signaling pathway. Exp Cell Res 2020; 388:111811. [PMID: 31899207 DOI: 10.1016/j.yexcr.2019.111811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Age-related macular degeneration is a progressive ocular disease that is the leading cause of vision loss among elderly. AMD usually is divided into two types: wet and dry AMD, which is linked with inflammation. Choroidal Neovascularization (CNV) formation or wet AMD is also associated with oxidative stress. Previously, TSP1 has been shown to have a significant alleviating effect on CNV in TSP1 knockout (TSP1-/-) mice. However, the mechanism by which TSP1 ameliorates CNV remains unclear. Here we report that TSP1 reduces nitric oxide production to prevent cells from forming tubes formation and reduced the levels of vascular endothelial growth factor (VEGF) and lipid peroxides (LPO) during oxidative stress. We measured RF/6A cell viability by CCK-8 assay and apoptosis by flow cytometry. RF/6A cell were transfected with TSP1 and STAT3 overexpression, and then the mRNA and protein levels of TSP1 and also the signal pathways were detected by qRT-PCR and Western blot analysis. Migration assays were performed using a transwell system. Co-Immunoprecipitation was used to analyze the binding relationship between CD47 and SHP-2. The results show that overexpression of TSP1 alleviated the damage of oxidative stress to RF/6A cells including increased cell activity and migration, decreased apoptosis and reduced migration compared to the control group. SHP-2 was activated by TSP1 through its receptor CD47 and STAT3 phosphorylation was reduced by activation of SHP-2, thereby blocking STAT3-iNOS pathway and reducing NO concentration in RF/6A cells ultimately protecting them from oxidative stress. Finally, the CNV mice model confirmed that TSP1 overexpression could protect the mice against CNV in vivo, modified the antioxidants levels and decreased the expression of TNF-α and IL-6 under laser irradiation. These results indicate a potential mechanism of TSP1 to slow down formation of CNV in wet AMD, which may bring hope for new treatment strategies.
Collapse
Affiliation(s)
- Jing Li
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jiaqi He
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 201104, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jiakai Li
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
49
|
Liu X, Xu D, Liu Z, Li Y, Zhang C, Gong Y, Jiang Y, Xing B. THBS1 facilitates colorectal liver metastasis through enhancing epithelial-mesenchymal transition. Clin Transl Oncol 2020; 22:1730-1740. [PMID: 32052380 DOI: 10.1007/s12094-020-02308-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Liver metastasis is one of the major causes of cancer-related death in patients with colorectal cancer (CRC). The purpose of this study was to identify specific molecules which are involved in colorectal liver metastasis (CRLM). MATERIALS AND METHODS In this study, we employed TMT (tandem mass tags)-labeling combined with liquid chromatography-mass spectrometry technology to do comparative analyses of proteomics between the primary tumor specimens derived from colorectal cancer patients with or without liver metastasis. Pathway enrichment analyses were performed using DAVID database. The crucial molecules were identified through protein-protein interaction network. Immunohistochemistry (IHC) was employed to analyze the expression of THBS1 (thrombospondin-1) in CRC tissues. Finally, transwell cell migration and invasion assays were performed to explore the roles of THBS1 in CRC cell migration and invasion. RESULTS We found that the expression of 311 proteins was dysregulated in CRLM using quantitative proteomics. Among these proteins, we identified FN1, TIMP1, THBS1, POSTN and VCAN as five crucial proteins in CRLM by analysis in silico. IHC assay revealed that increased THBS1 expression was significantly correlated with liver metastasis as well as poor prognosis of CRC patients. GEO data analysis also suggests that upregulated mRNA level of THBS1 is also associated with shorter overall survival of CRC patients. Moreover, THBS1 depletion inhibited migration and invasion of CRC cells through attenuating epithelial-mesenchymal transition. Co-expression analyses with TCGA data indicated that THBS1 is co-expressed with mesenchymal markers, including Vimentin, N-cadherin, Snail1 and Twist1 in CRC tissues. CONCLUSIONS By collecting the omics data with functional studies, the present results reveal that THBS1 facilitates colorectal liver metastasis through promoting epithelial-mesenchymal transition. This understanding of molecular roles of THBS1 in CRLM may be promising to develop targeted therapies to prolong survival in CRC patients.
Collapse
Affiliation(s)
- X Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - D Xu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Z Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Y Li
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - C Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Y Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Y Jiang
- Department of Medical Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - B Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
50
|
Bommi PV, Chand V, Mukhopadhyay NK, Raychaudhuri P, Bagchi S. NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC. Oncogene 2020; 39:1784-1796. [PMID: 31740787 PMCID: PMC11095046 DOI: 10.1038/s41388-019-1105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Biological Sciences Research Building (BSRB), 6767 Bertner Ave, Houston, TX, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Nishit K Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA.
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|