1
|
Liu C, Liu X, Duan J. Artemisinin and Its Derivatives: Promising Therapeutic Agents for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:535. [PMID: 40283970 PMCID: PMC12030120 DOI: 10.3390/ph18040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed through repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapies. While anti-VEGF agents represent a major breakthrough in wet AMD care, repeated injections may lead to incomplete responses or resistance in some patients, and carry a risk of progressive fibrosis. Artemisinin (ART) and its derivatives, originally developed as antimalarial drugs, exhibit a broad spectrum of pleiotropic activities beyond their established use, including anti-inflammatory, anti-angiogenic, antioxidant, anti-fibrotic, mitochondrial regulatory, lipid metabolic, and immunosuppressive effects. These properties position ART as a promising therapeutic candidate for AMD. A growing interest in ART-based therapies for AMD has emerged in recent years, with numerous studies demonstrating their potential benefits. However, no comprehensive review has systematically summarized the specific roles of ART and its derivatives in AMD pathogenesis and treatment. This paper aims to fill the knowledge gap by synthesizing the therapeutic efficacy and molecular mechanisms of ART and its derivatives in AMD, thereby providing a foundation for future investigations.
Collapse
Affiliation(s)
- Chun Liu
- Eye School, Chengdu University of TCM, Chengdu 610075, China
| | - Xiaoqin Liu
- Clinical Medical School, Chengdu University of TCM, Chengdu 610075, China
| | - Junguo Duan
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu 610075, China
| |
Collapse
|
2
|
Zhu S, Cui Y, Hu H, Zhang C, Chen K, Shan Z, Teng W, Li J. Dihydroartemisinin inhibits the development of autoimmune thyroiditis by modulating oxidative stress and immune imbalance. Free Radic Biol Med 2025; 231:57-67. [PMID: 39988064 DOI: 10.1016/j.freeradbiomed.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Autoimmune thyroiditis is among the most prevalent autoimmune endocrine illnesses. However, the pathophysiology has not been determined, and efficacious treatments are still lacking. The current study used network pharmacology analysis and an experimental autoimmune thyroiditis (EAT) mouse model to explore whether dihydroartemisinin (DHA) has therapeutic effects on autoimmune thyroiditis and to investigate the potentially related mechanisms concerning oxidative stress (OS) responses and T-cell immune imbalance. The therapeutic effects of DHA on autoimmune thyroiditis and potentially related processes were first anticipated using network pharmacology analysis and then verified using the EAT model. DHA may influence the onset of autoimmune thyroiditis by regulating immune imbalance and OS responses, according to network pharmacology analysis. ELISA, immunofluorescence staining, and histopathological examination were used to detect changes in serum thyroid autoantibody levels and intrathyroidal inflammatory infiltration following DHA intervention. RT-PCR was used to determine the spleen's mRNA expression of typical T-cell cytokines, whereas an OS kit and immunohistochemical staining were used to assess the thyroid's glutathione (GSH) content, superoxide dismutase (SOD) activity, and Nrf2 protein expression. Furthermore, serum TgAb levels and intrathyroidal inflammatory infiltrates were considerably lower in EAT mice given high-dose DHA than in vehicle-treated controls. In the spleen, IFN-γ, IL-17A, and IL-6 mRNA expressions were dramatically downregulated, while IL-4 and IL-10 were significantly raised. Following high-dose DHA treatment, GSH content, SOD activity, and Nrf2 protein expression levels were markedly increased in thyroid tissue. These findings imply that DHA administration may suppress TgAb formation and reduce intrathyroidal inflammatory cell infiltration by restoring T-cell immune imbalance and increasing antioxidant capacity via the Nrf2 pathway. This study provides important experimental data for DHA's therapeutic use in patients with autoimmune thyroiditis.
Collapse
Affiliation(s)
- Shuangjie Zhu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Yongqi Cui
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Huizheng Hu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Chenxi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Kan Chen
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
3
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhang Y, Qu X, Xu N, He H, Li Q, Wei X, Chen Y, Xu Y, Li X, Zhang R, Zhong R, Liu C, Xiang P, Zhu F. Mechanism of Prunella vulgaris L. and luteolin in restoring Tfh/Tfr balance and alleviating oxidative stress in Graves' disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155818. [PMID: 38879922 DOI: 10.1016/j.phymed.2024.155818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The pathophysiology of Graves' disease (GD) involves imbalances between follicular helper T (Tfh) and follicular regulatory T (Tfr) cells, as well as oxidative stress (OS). Prunella vulgaris L. (Xia Ku Cao, XKC) and its primary bioactive compound, luteolin, are recognized for their potential in treating GD. Yet, the mechanism accounting for the immune-modulatory and antioxidant effects of XKC remains elusive. PURPOSE This study aims to evaluate the pharmacological effects and elucidate the underlying mechanism of XKC and luteolin in a GD mouse model induced by recombinant adenovirus of TSH receptor A subunit (Ad-hTSHR-289). METHODS High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (HPLC-QTOF MS) was used to detect the constituents of XKC. The GD model was established through inducing female BALB/c mice with three intramuscular injections of Ad-TSHR-289. Thyroid function, autoantibody and OS parameters were measured by ELISA. Changes of Tfh cells and Tfr cells were detected by flow cytometry. RT-qPCR, Western Blotting, immunohistochemistry were used to explore the related molecular mechanisms. RESULTS A total of 37 chemical components from XKC were identified by HPLC-QTOF MS, represented by flavonoids, steroids, terpenoids, and luteolin. XKC and luteolin reduced T4, TRAb levels and facilitated the recovery from thyroid damage in GD mice. Meanwhile, XKC and luteolin effectively alleviated OS by decreasing the levels of MDA, NOX2, 4-HNE, 8-OHdG, while increasing GSH level. Flow cytometry showed that XKC and luteolin restored the abnormal proportions of Tfh/Tfr and Tfh/Treg, and the mRNA levels of IL-21, Bcl-6 and Foxp3 in GD mice. In addition, XKC and luteolin inhibited PI3K, Akt, p-PI3K and p-Akt, but activated Nrf2 and HO-1. CONCLUSION XKC and luteolin could inhibit the development of GD in vivo by rebalancing Tfh/Tfr cells and alleviating OS. This therapeutic mechanism may involve the Nrf2/HO-1 and PI3K/Akt signaling pathways. Luteolin is the main efficacy material basis of XKC in countering GD. For the first time, we revealed the mechanism of XKC and luteolin in the treatment of GD from the perspective of autoimmune and OS.
Collapse
Affiliation(s)
- Yunnan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Nan Xu
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoran He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qinning Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yu Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yijiao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xingjia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ruixiang Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ronglin Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Chao Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Pingping Xiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
5
|
Zhou S, Li W, Lv R, Zhang M, Liu W. Neuroprotective effects and mechanisms of action of artemisinin in retinal ganglion cells in a mouse model of traumatic optic neuropathy. Heliyon 2024; 10:e31378. [PMID: 38828288 PMCID: PMC11140598 DOI: 10.1016/j.heliyon.2024.e31378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Traumatic optic neuropathy is known to be a critical condition that can cause blindness; however, the specific mechanism underlying optic nerve injury is unclear. Recent studies have reported that artemisinin, considered vital in malaria treatment, can also be used to treat neurodegenerative diseases; however, its precise role and mechanism of action remain unknown. Therefore, in this study, we aimed to investigate the impact and probable mechanism of action of artemisinin in retinal ganglion cells (RGCs) in a mouse model of traumatic optic neuropathy induced by optic nerve crush (ONC). Methods ONC was induced in the left eye of mice by short-term clamping of the optic nerve; oral artemisinin was administered daily. The neuroprotective effect of the drug was assessed using Tuj-1 staining in RGCs. In addition, the inflammatory response and the expression levels of phosphorylated tau protein and tau oligomers were observed using RT-qPCR, TUNEL assay, and fluorescence staining to investigate the underlying mechanisms. Results Artemisinin increased the survival rate of RGCs 14 days after ONC. Artemisinin significantly reduced the levels of inflammatory factors such as CXCL10, CXCR3, and IL-1β in the retina and decreased the apoptosis of RGCs. Moreover, downregulation of the phosphorylation of tau proteins and the expression of tau oligomers were observed after artemisinin treatment. Conclusion Our results suggest that artemisinin can increase the survival rate of RGCs after ONC and reduce their apoptosis. This effect may be achieved by inhibiting the inflammatory response it triggers and downregulating tau protein phosphorylation and tau oligomer expression. These findings suggest the potential application of artemisinin as a therapeutic agent for neuropathy.
Collapse
Affiliation(s)
- Shirui Zhou
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangzi Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruohan Lv
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MingChang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen Y, Tao T, Liang Z, Chen X, Xu Y, Zhang T, Zhou D. Prednisone combined with Dihydroartemisinin attenuates systemic lupus erythematosus by regulating M1/M2 balance through the MAPK signaling pathway. Mol Immunol 2024; 170:144-155. [PMID: 38669759 DOI: 10.1016/j.molimm.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Dihydroartemisinin (DHA) plays a very important role in various diseases. However, the precise involvement of DHA in systemic lupus erythematosus (SLE), relation to the equilibrium between M1 and M2 cells, remains uncertain. Therefore, we aimed to investigate the role of DHA in SLE and its effect on the M1/M2 cells balance. METHODS SLE mice model was established by pristane induction. Flow cytometry was employed to measure the abundance of M1 and M2 cells within the peripheral blood of individuals diagnosed with SLE. The concentrations of various cytokines, namely TNF-α, IL-1β, IL-4, IL-6, and IL-10, within the serum of SLE patients or SLE mice were assessed via ELISA. Immunofluorescence staining was utilized to detect the deposition of IgG and complement C3 in renal tissues of the mice. We conducted immunohistochemistry analysis to assess the expression levels of Collagen-I, a collagen protein, and α-SMA, a fibrosis marker protein, in the renal tissues of mice. Hematoxylin-eosin staining, Masson's trichrome staining, and Periodic acid Schiff staining were used to examine histological alterations. In this study, we employed qPCR and western blot techniques to assess the expression levels of key molecular markers, namely CD80 and CD86 for M1 cells, as well as CD206 and Arg-1 for M2 cells, within kidney tissue. Additionally, we investigated the involvement of the MAPK signaling pathway. The Venny 2.1 online software tool was employed to identify shared drug-disease targets, and subsequently, the Cytoscape 3.9.2 software was utilized to construct the "disease-target-ingredient" network diagram. Protein-protein interactions of the target proteins were analyzed using the String database, and the network proteins underwent enrichment analysis for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS The results showed that an increase in M1 cells and a decrease in M2 cells within the peripheral blood of individuals diagnosed with SLE. Further analysis revealed that prednisone (PDN) combined with DHA can alleviate kidney damage and regulate the balance of M1 and M2 cells in both glomerular mesangial cells (GMC) and kidney. The MAPK signaling pathway was found to be involved in SLE kidney damage and M1/M2 balance in the kidney. Furthermore, PDN and/or DHA were found to inhibit the MAPK signaling pathway in GMC and kidney. CONCLUSION We demonstrated that PDN combined with DHA attenuates SLE by regulating M1/M2 balance through MAPK signaling pathway. These findings propose that the combination of PDN and DHA could serve as a promising therapeutic strategy for SLE, as it has the potential to mitigate kidney damage and reinstate the equilibrium of M1 and M2 cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China.
| | - Tingjun Tao
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| | - Zhaoxin Liang
- The First Clinical Medical School, Southern Medical University, 1838 North of Guangzhou Avenue, Baiyun, Guangzhou 510515, Guangdong, China
| | - Xiangnong Chen
- Department of hematopathology, The First Affiliated Hospital of Sun Yat-sen University, 58 ZhongshanEr Road, Yuexiu District, Guangzhou, China
| | - Ya'nan Xu
- Department of Dermatology, Yan'an People's Hospital, 16 Qilipu Street, Baota District, Yan'an, Shanxi, China
| | - Tangtang Zhang
- Department of Dermatology, The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dunrong Zhou
- Department of Intensive Care Unit, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| |
Collapse
|
7
|
Xie K, Li Z, Zhang Y, Wu H, Zhang T, Wang W. Artemisinin and its derivatives as promising therapies for autoimmune diseases. Heliyon 2024; 10:e27972. [PMID: 38596057 PMCID: PMC11001780 DOI: 10.1016/j.heliyon.2024.e27972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Artemisinin, a traditional Chinese medicine with remarkable antimalarial activity. In recent years, studies demonstrated that artemisinin and its derivatives (ARTs) showed anti-inflammatory and immunoregulatory effects. ARTs have been developed and gradually applied to treat autoimmune and inflammatory diseases. However, their role in the treament of patients with autoimmune and inflammatory diseases in particular is less well recognized. This review will briefly describe the history of ARTs use in patients with autoimmune and inflammatory diseases, the theorized mechanisms of action of the agents ARTs, their efficacy in patients with autoinmmune and inflammatory diseases. Overall, ARTs have numerous beneficial effects in patients with autoimmune and inflammatory diseases, and have a good safety profile.
Collapse
Affiliation(s)
- Kaidi Xie
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| |
Collapse
|
8
|
Zha X, Ji R, Li Y, Cao R, Zhou S. Network pharmacology, molecular docking, and molecular dynamics simulation analysis reveal the molecular mechanism of halociline against gastric cancer. Mol Divers 2024:10.1007/s11030-024-10822-y. [PMID: 38504075 DOI: 10.1007/s11030-024-10822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Halociline, a derivative of alkaloids, was isolated from the marine fungus Penicillium griseofulvum by our group. This remarkable compound exhibits promising antineoplastic activity, yet the precise molecular mechanisms underlying its anticancer properties remain enigmatic. To unravel these mechanisms, we employed an integrated approach of network pharmacology analysis, molecular docking simulations, and molecular dynamics simulations to explore halociline therapeutic targets for gastric cancer. The data from network pharmacology indicate that halociline targets MAPK1, MMP-9, and PIK3CA in gastric cancer cells, potentially mediated by diverse pathways including cancer, lipid metabolism, atherosclerosis, and EGFR tyrosine kinase inhibitor resistance. Notably, molecular docking and dynamics simulations revealed a high affinity between halociline and these targets, with free binding energies (ΔEtotal) of - 20.28, - 27.94, and - 25.97 kcal/mol for MAPK1, MMP-9, and PIK3CA, respectively. This study offers valuable insights into the potential molecular mechanism of halociline's inhibition of gastric cancer cells and serves as a valuable reference for future basic research efforts.
Collapse
Affiliation(s)
- Xiangru Zha
- NHC Key Laboratory of Control of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, 3#, Xueyuan Road, Haikou, 571199, Hainan, China
| | - Rong Ji
- NHC Key Laboratory of Control of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, 3#, Xueyuan Road, Haikou, 571199, Hainan, China
| | - Yang Li
- NHC Key Laboratory of Control of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, 3#, Xueyuan Road, Haikou, 571199, Hainan, China
| | - Rong Cao
- NHC Key Laboratory of Control of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, 3#, Xueyuan Road, Haikou, 571199, Hainan, China
| | - Songlin Zhou
- NHC Key Laboratory of Control of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, 3#, Xueyuan Road, Haikou, 571199, Hainan, China.
| |
Collapse
|
9
|
Gao X, Lin X, Wang Q, Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med Res Rev 2024; 44:867-891. [PMID: 38054758 DOI: 10.1002/med.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.
Collapse
Affiliation(s)
- Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| |
Collapse
|
10
|
Zhu H, Mu S, Liu S, Cui Y, Ren J, Yang E, Wang L, Cui X, Ren A. Yiqi Jiedu Xiaoying Decoction Improves Experimental Autoimmune Thyroiditis in Rats by Regulating Th17/Treg Cell Balance. Endocr Metab Immune Disord Drug Targets 2024; 24:1186-1196. [PMID: 38317460 DOI: 10.2174/0118715303256311231122094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Experimental autoimmune thyroiditis (EAT) is a widely used animal model to study the pathogenesis and treatment of autoimmune thyroid diseases. Yiqi Jiedu Xiaoying Decoction (YJXD) is a traditional Chinese medicine formula with potential immunomodulatory effects. In this study, we investigated the therapeutic effects of YJXD on EAT in rats and explored its underlying mechanisms. METHODS Female Wistar rats were induced to develop EAT by immunization with thyroglobulin (Tg) and taken sodium iodide water (0.05%) and then treated with YJXD or sodium selenite. HE staining was used to observe the pathological changes of thyroid tissue in EAT rats. Th17 and Treg cell frequencies were analyzed by flow cytometry, and the expression levels of Th17- and Treg-related cytokines and thyroid autoantibody were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Th17- and Treg-related transcriptional factors was detected by real-time polymerase chain reaction (RT-PCR) and Immunohistochemistry (IHC). RESULTS Our results demonstrated that treatment with YJXD significantly attenuated the severity of EAT, as evidenced by reduced thyroid gland inflammatory infiltration and decreased serum thyroglobulin autoantibody levels. Importantly, YJXD treatment effectively modulated the Th17/Treg cell balance by suppressing Th17 cell differentiation and promoting Treg cell expansion. Moreover, YJXD was also found to regulate the expression levels of Th17- and Treg-related cytokines and transcriptional factors, further supporting its immunomodulatory effects in EAT. CONCLUSION YJXD exerted therapeutic effects on EAT by regulating the Th17/Treg cell balance, modulating the production of Th17- and Treg-related cytokines and the expression of transcriptional factors.
Collapse
MESH Headings
- Animals
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/drug therapy
- Thyroiditis, Autoimmune/metabolism
- Rats, Wistar
- Rats
- Disease Models, Animal
- Cytokines/metabolism
Collapse
Affiliation(s)
- Hui Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Shumin Mu
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Shiyin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Yang Cui
- Department of Traditional Chinese Medicine, Yantai Penglai People's Hospital, Yantai 265600, China
| | - Jianyu Ren
- Department of Traditional Chinese Medicine, People's Hospital of Dongying, Dongying 257091, China
| | - Enquan Yang
- Cardiovascular Department, Tangshan Nanhu Hospital, Tangshan 063000, China
| | - Lining Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Xiaoke Cui
- Department of Endocrinology, Xuchang Hospital of Traditional Chinese Medicine, Xuchang 461000, China
| | - Ailing Ren
- Department of Traditional Chinese Medicine, Dongying New District Hospital, Dongying 257029, China
| |
Collapse
|
11
|
Zhang C, Zhang Q, Qin L, Yan Z, Wu L, Liu T. Dioscin Ameliorates Experimental Autoimmune Thyroiditis via the mTOR and TLR4/NF-κB Signaling. Drug Des Devel Ther 2023; 17:2273-2285. [PMID: 37551407 PMCID: PMC10404412 DOI: 10.2147/dddt.s410901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Autoimmune thyroiditis (AIT) is a common autoimmune disease that causes thyroid dysfunction. Clinical symptoms in Hashimoto thyroiditis patients were improved after oral administration of dioscin. However, the mechanisms involved in the therapeutic effect remain unclear. METHODS The protective effects and potential mechanisms of dioscin for autoimmune thyroiditis were explored in a rat model of thyroglobulin-induced autoimmune thyroiditis. Firstly, the rat model of AIT was obtained by subcutaneous injection of thyroglobulin and drinking the sodium iodide solution, followed by gavage administration for 8 weeks. Rats were sacrificed after anaesthesia, serum and thyroid samples were preserved. Serum triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), thyrotropin (TSH), thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), and thyrotropin receptor antibody (TRAb) expressions were measured by enzyme-linked immunosorbent assay (ELISA). Morphological changes were observed by H&E staining. Next, we used transcriptomics techniques to find the potential therapeutic target of dioscin. Finally, we validated the transcriptomic results by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC-P), respectively. RESULTS Animal experiments showed that dioscin regulated T3, T4, FT3, TSH, TgAb, TPOAb, and TRAb and alleviated the pathological process in a dose-dependent manner, with the high-dose group showing optimal efficacy. In the transcriptome, the nuclear factor kappa B (NF-κB) pathway was identified by KEGG enrichment analysis and validated by RT-PCR and IHC-P. The relative expression of NF-κB, mechanistic target of rapamycin (mTOR), and toll-like receptor 4 (TLR4) mRNA and protein were decreased in the dioscin-treated group compared to the AIT model group. CONCLUSION Our results suggest that dioscin treatment improved thyroid function and downregulated TGAb, TPOAb and TRAb levels in rat models of AIT, which may alleviate the pathological process and suppress the inflammatory response by inhibiting mTOR and TLR4/NF-κB pathways.
Collapse
Affiliation(s)
- Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhiyi Yan
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lili Wu
- Technology Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
13
|
Gao J, Hu J, Li P, Che K, Wang F, Yan S. Human umbilical cord mesenchymal stem cells alleviate the imbalance of CD4 + T cells via protein tyrosine phosphatase non-receptor type 2/signal transducer and activator of transcription 3 signaling in ameliorating experimental autoimmune thyroiditis in rats. Endocr J 2022; 69:613-625. [PMID: 35153255 DOI: 10.1507/endocrj.ej20-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) on experimental autoimmune thyroiditis (EAT) and the underlying mechanisms by utilizing a porcine thyroglobulin-induced EAT rat model. The rats received four tail vein injections of vehicle or hUCMSCs at an interval of 7 days and were sacrificed on day 28 after the first injection. Hematoxylin and eosin staining and enzyme-linked immunosorbent assays (ELISAs) were used to assess the therapeutic effects of hUCMSCs on EAT. Splenic lymphocytes were isolated from rats, and the proportions of CD4+ T cell subsets were analyzed by flow cytometry. Splenic CD4+ T cells from EAT rats were cocultured with hUCMSCs. A loss-of-function assay for protein tyrosine phosphatase non-receptor type 2 (PTPN2) was performed to explore the involvement of PTPN2/signal transducer and activator of transcription 3 (STAT3) signaling on the therapeutic benefit of hUCMSCs in EAT. hUCMSC treatment significantly alleviated inflammation, reduced serum thyroid antibody levels, and decreased the ratios of IL-17α+/CD25+FOXP3+ cells and serum IFN-γ/IL-4 in EAT rats. Furthermore, hUCMSC treatment upregulated PTPN2 protein expression in splenic lymphocytes of EAT rats as well as enhanced the PTPN2 protein level and attenuated phosphorylation of STAT3 in CD4+ T cells in vitro. Importantly, knockdown of Ptpn2 significantly reversed hUCMSC-mediated suppression of cell proliferation and hUCMSC-induced alterations in the expression of inflammatory cytokines in CD4+ T cells. Thus, hUCMSC treatment alleviates thyroid inflammation and the CD4+ T cell imbalance in EAT via PTPN2/STAT3 signaling, serving as a promising therapeutic approach for autoimmune thyroiditis.
Collapse
Affiliation(s)
- Junjie Gao
- Medical College, Qingdao University, Qingdao, China
| | - Jianxia Hu
- The Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- The Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengli Yan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Chen B, Li C, Chang G, Wang H. Dihydroartemisinin targets fibroblast growth factor receptor 1 (FGFR1) to inhibit interleukin 17A (IL-17A)-induced hyperproliferation and inflammation of keratinocytes. Bioengineered 2022; 13:1530-1540. [PMID: 35006038 PMCID: PMC8805964 DOI: 10.1080/21655979.2021.2021701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a common chronic immune-mediated disease that often has a serious negative impact on the physical and mental health of patients. Dihydroartemisinin (DHA) is a drug with anti-fibrotic and anti-inflammatory effects that may be involved in the autoimmune regulation of immune diseases. However, the effects of DHA on psoriasis have not been reported comprehensively. Therefore, the aim of this study was to investigate the effect of DHA on abnormal proliferation and inflammation of epidermal keratinocyte cells in psoriasis and its mechanism of action. IL-17A-induced human epidermal keratin-forming cells (HaCaT) were used as a model. And after induction exposure to different concentrations of DHA, CCK-8, EDU staining, wound healing and Western blotting were performed to assess cell viability, proliferation, migration, differentiation and inflammatory factors, respectively. Subsequently, agonists of fibroblast growth factor receptor 1 (FGFR1) were added and the above experiments were repeated. The results showed that DHA obviously inhibited IL-17A-induced hyperproliferation, migration and expression of inflammatory factors in HaCaT cells. Furthermore, FGFR1 was highly expressed in IL-17A-induced HaCaT cells, and DHA inhibited its expression. However, the inhibitory effect of DHA on IL-17A-induced HaCaT cells was reversed after the addition of FGFR1 agonist. In conclusion, DHA could inhibit IL-17A-induced hyperproliferation and inflammation of keratinocytes by targeting FGFR1, which also provided a new target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Baojiang Chen
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Internal Medicine, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, P.R. China
| | - Guizhen Chang
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| | - Huan Wang
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| |
Collapse
|
15
|
Niu Y, Zhao Y, He J, Yun Y, Shen M, Gan Z, Zhang L, Wang T. Dietary dihydroartemisinin supplementation alleviates intestinal inflammatory injury through TLR4/NOD/NF-κB signaling pathway in weaned piglets with intrauterine growth retardation. ACTA ACUST UNITED AC 2021; 7:667-678. [PMID: 34430721 PMCID: PMC8361298 DOI: 10.1016/j.aninu.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/10/2023]
Abstract
The aim of present study was to evaluate whether diets supplemented with dihydroartemisinin (DHA) could alleviate intestinal inflammatory injury in weaned piglets with intrauterine growth retardation (IUGR). Twelve normal birth weight (NBW) piglets and 12 piglets with IUGR were fed a basal diet (NBW-CON and IUCR-CON groups), and another 12 piglets with IUGR were fed the basal diet supplemented with DHA at 80 mg/kg (IUGR-DHA group) from 21 to 49 d of age. At 49 d of age, 8 piglets with similar body weight in each group were sacrificed. The jejunal and ileal samples were collected for further analysis. The results showed that IUGR impaired intestinal morphology, increased intestinal inflammatory response, raised enterocyte apoptosis and reduced enterocyte proliferation and activated transmembrane toll-like receptor 4 (TLR4)/nucleotide-binding and oligomerization domain (NOD)/nuclear factor-κB (NF-κB) signaling pathway. Dihydroartemisinin inclusion ameliorated intestinal morphology, indicated by increased villus height, villus height-to-crypt depth ratio, villus surface area and decreased villus width of piglets with IUGR (P < 0.05). Compared with NBW piglets, IUGR piglets supplemented with DHA exhibited higher apoptosis index and caspase-3 expression, and lower proliferation index and proliferating cell nuclear antigen expression in the intestine (P < 0.05). Dihydroartemisinin supplementation attenuated the intestinal inflammation of piglets with IUGR, indicated by increased concentrations of intestinal inflammatory cytokines and lipopolysaccharides (P < 0.05). In addition, DHA supplementation down-regulated the related mRNA expressions of TLR4/NOD/NF-κB signaling pathway and upregulated mRNA expressions of negative regulators of TLR4 and NOD signaling pathway in the intestine of piglets with IUGR (P < 0.05). Piglets in the IUGR-DHA group showed lower protein expressions of TLR4, phosphorylated NF-κB (pNF-κB) inhibitor α, nuclear pNF-κB, and higher protein expression of cytoplasmic pNF-κB in the intestine than those in the IUGR-CON group (P < 0.05). In conclusion, DHA supplementation could improve intestinal morphology, regulate enterocyte proliferation and apoptosis, and alleviate intestinal inflammation through TLR4/NOD/NF-κB signaling pathway in weaned piglets with IUGR.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongwei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhending Gan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
17
|
Zhu L, Chen X, Zhu Y, Qin J, Niu T, Ding Y, Xiao Y, Jiang Y, Liu K, Lu J, Yang W, Qiao Y, Jin G, Ma J, Dong Z, Zhao J. Dihydroartemisinin Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma Partially by Targeting AKT1 and p70S6K. Front Pharmacol 2020; 11:587470. [PMID: 33658929 PMCID: PMC7919191 DOI: 10.3389/fphar.2020.587470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiace Qin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Tingting Niu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yongwei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yang Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Chen Y, Yan Y, Liu H, Qiu F, Liang CL, Zhang Q, Huang RY, Han L, Lu C, Dai Z. Dihydroartemisinin ameliorates psoriatic skin inflammation and its relapse by diminishing CD8 + T-cell memory in wild-type and humanized mice. Theranostics 2020; 10:10466-10482. [PMID: 32929360 PMCID: PMC7482806 DOI: 10.7150/thno.45211] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Conventional immunosuppressants cause side effects and do not prevent the recurrence of autoimmune diseases. Moreover, they may not inhibit autoimmunity mediated by pathogenic memory T-cells. Dihydroartemisinin (DHA) has been shown to regulate autoimmunity. However, it remains unknown whether DHA impacts psoriasis and its recurrence. The objective of this study was to determine therapeutic effects of DHA on psoriasis and its relapse as well as its underlying mechanisms. Methods: We established animal models of imiquimod (IMQ)-induced psoriasis-like wild-type mice and humanized NSG mice receiving lesional human skin from patients with psoriasis. Many immunoassays, including immunohistochemistry, flow cytometry, quantitative RT-PCR and Western blotting, were performed. Results: We found that DHA not only ameliorated acute skin lesion of psoriatic mice, but also alleviated its recurrence by diminishing CD8+ central memory T (TCM) and CD8+ resident memory T (TRM) cells. It attenuated epidermal pathology and T-cell infiltration in the skin of IMQ-induced psoriatic mice while suppressing expression of IL-15, IL-17 and other proinflammatory cytokines in the skin. Surprisingly, DHA reduced the frequency and number of CD8+, but not CD4+, subset of CD44highCD62Lhigh TCM in psoriatic mice, whereas methotrexate (MTX) lowered CD4+, but not CD8+, TCM frequency and number. Indeed, DHA, but not MTX, downregulated eomesodermin (EOMES) and BCL-6 expression in CD8+ T-cells. Furthermore, DHA, but not MTX, reduced the presence of CD8+CLA+, CD8+CD69+ or CD8+CD103+ TRM cells in mouse skin. Interestingly, treatment with DHA, but not MTX, during the first onset of psoriasis largely prevented psoriasis relapse induced by low doses of IMQ two weeks later. Administration of recombinant IL-15 or CD8+, but not CD4+, TCM cells resulted in complete recurrence of psoriasis in mice previously treated with DHA. Finally, we demonstrated that DHA alleviated psoriatic human skin lesions in humanized NSG mice grafted with lesional skin from psoriatic patients while reducing human CD8+ TCM and CD103+ TRM cells in humanized mice. Conclusion: We have provided the first evidence that DHA is advantageous over MTX in preventing psoriasis relapse by reducing memory CD8+ T-cells.
Collapse
Affiliation(s)
- Yuchao Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Feifei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chun-Ling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qunfang Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
19
|
Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int Immunopharmacol 2019; 77:105967. [DOI: 10.1016/j.intimp.2019.105967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
|
20
|
Liu X, Lu J, Liao Y, Liu S, Chen Y, He R, Men L, Lu C, Chen Z, Li S, Xiong G, Yang S. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother 2019; 117:109070. [DOI: 10.1016/j.biopha.2019.109070] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
|
21
|
Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflamm Res 2019; 68:297-310. [DOI: 10.1007/s00011-019-01216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
|