1
|
Büyücek S, Schraps N, Menz A, Lutz F, Chirico V, Viehweger F, Dum D, Schlichter R, Hinsch A, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Reiswich V, Luebke AM, Lebok P, Weidemann S, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T, Freytag M. Prevalence and clinical significance of Claudin-3 expression in cancer: a tissue microarray study on 14,966 tumor samples. Biomark Res 2024; 12:154. [PMID: 39658782 PMCID: PMC11633013 DOI: 10.1186/s40364-024-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Claudin-3 (CLDN3) participates in the formation of the tight-junctions (TJs) that regulate intercellular permeability. Altered CLDN3 expression has been linked to tumor progression in multiple tumor types. Despite its widespread expression in normal epithelial cells, CLDN3 is considered an attractive drug target candidate, since it may be more accessible in cancer cells than in normal cells due to their less orchestrated cell growth. METHODS To comprehensively determine the prevalence of CLDN3 expression in cancer, a tissue microarray containing 14,966 samples from 133 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS CLDN3 immunostaining was observed in 8,479 (68.9%) of 12,314 analyzable tumors, including 11.6% with weak, 6.2% with moderate, and 51.1% with strong positivity. CLDN3 staining was found in 96 of 133 tumor categories, 80 of which contained at least one strongly positive case. CLDN3 positivity was most seen in neuroendocrine neoplasms (92-100%) and in adenocarcinomas (67-100%), tumors of the female genital tract, including various subtypes of ovarian and endometrial carcinoma (up to 100%), as well as different subtypes of breast cancer (95.3-100%). CLDN3 positivity was less common in squamous cell carcinomas (0-43.2%) and mainly absent in melanoma, mesenchymal, and hematolymphatic neoplasms. In clear cell renal cell carcinoma (ccRCC), low CLDN3 was strongly linked to poor ISUP (p < 0.0001), Fuhrman (p < 0.0001), and Thoenes (p < 0.0001) grades, advanced pT category (p < 0.0001), high UICC stage (p = 0.0006) and distant metastasis (p = 0.0011), as well as shortened overall (p = 0.0118) and recurrence-free (p < 0.0001) survival. In papillary RCC (pRCC), low CLDN3 was associated with poor grade (p < 0.05), high pT (p = 0.0273) and distant metastasis (p = 0.0357). In urothelial carcinoma high CLDN3 was linked to high grade (p < 0.0001) and nodal metastasis (p = 0.0111). The level of CLDN3 staining was unrelated to parameters of tumor aggressiveness in pancreatic, gastric, and breast cancer. CONCLUSION In conclusion, our data demonstrate significant levels of CLDN3 expression in many different tumor entities and identify reduced CLDN3 expression as a potential prognostic marker in RCC.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Nina Schraps
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| |
Collapse
|
2
|
Kumari L, Yadav R, Kumar Y, Bhatia A. Role of tight junction proteins in shaping the immune milieu of malignancies. Expert Rev Clin Immunol 2024; 20:1305-1321. [PMID: 39126381 DOI: 10.1080/1744666x.2024.2391915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Tight junctions (TJs) and their constituent proteins play pivotal roles in cellular physiology and anatomy by establishing functional boundaries within and between neighboring cells. While the involvement of TJ proteins, such as claudins, in cancer is extensively studied, studies highlighting their interaction with immune system are still meager. Studies indicate that alterations in cytokines and immune cell populations can affect TJ proteins, compromising TJ barrier function and exacerbating pro-inflammatory conditions, potentially leading to epithelial cell malignancy. Disrupted TJs in established tumors may foster a pro-tumor immune microenvironment, facilitating tumor progression, invasion, epithelial-to-mesenchymal transition and metastasis. Although previous literature contains many studies describing the involvement of TJs in pathogenesis of malignancies their role in modulating the immune microenvironment of tumors is just beginning to be unleashed. AREAS COVERED This article for the first time attempts to discern the importance of interaction between TJs and immune microenvironment in malignancies. To achieve the above aim a thorough search of databases like PubMed and Google Scholar was conducted to identify the recent and relevant articles on the topic. EXPERT OPINION Breaking the vicious cycle of dysbiosis/infections/chemical/carcinogen-induced inflammation-TJ remodeling-malignancy-TJ dysregulation-more inflammation can be used as a strategy to complement the effect of immunotherapies in various malignancies.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
3
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
7
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
9
|
Carr BI, Guerra V, Ince V, Isik B, Yilmaz S. Discordance among aggressiveness characteristics of hepatocellular carcinoma: Portal vein thrombosis and multifocality, related to tumor size, but not to serum alpha-fetoprotein level. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:256-262. [PMID: 37854945 PMCID: PMC10583763 DOI: 10.1016/j.livres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is characterized by several clinically important prognostic parameters, including portal vein thrombosis (PVT), tumor multifocality, and serum alpha-fetoprotein (AFP) levels, in addition to maximum tumor diameter (MTD). However, associations among these parameters have not been thoroughly examined. Thus, the study aimed to investigate the correlations among these HCC characteristics in a prospectively collected database. METHODS An 8080 HCC patient database derived from our weekly HCC council meeting was examined with respect to the correlations at baseline patient presentation between increases in MTD and changes in the percentage of patients with PVT, multifocality, or AFP levels. RESULTS The percentage of patients with PVT and with multifocality (tumor nodule numbers ≥3) significantly increased with enlarging MTD, regardless of the serum AFP level, showing the independence of PVT and multifocality on AFP. The percentage of patients with multifocality increased with enlarging MTD, in the presence or absence of PVT, showing the independence of multifocality from PVT. Therefore, discordance was found between different tumor parameters. CONCLUSIONS A statistically significant association was found between PVT and MTD and between multifocality and MTD, all three of which are independent of AFP. PVT and multifocality appeared to be independent of each other. Although PVT and multifocality were independent of AFP, they were also augmented with high serum AFP levels. The results suggest the possibility of multiple pathways of tumor progression in the later stages of HCC development.
Collapse
Affiliation(s)
- Brian I. Carr
- Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Vito Guerra
- National Institute of Gastroenterology, S. de Bellis Research Hospital, Bari, Italy
| | - Volkan Ince
- Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burak Isik
- Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
10
|
Sun Z, Yan T, Jiang H, Cai J, Zhu X, Chen Q. Claudin-3 facilitates the progression and mediates the tumorigenic effects of TGF-β in glioblastoma multiforme. Med Oncol 2023; 40:268. [PMID: 37578554 DOI: 10.1007/s12032-023-02136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Glioblastoma multiforme (GBM) is a significantly malignant and lethal brain tumor with an average survival time of less than 12 months. Several researches had shown that Claudin-3 (CLDN3) is overexpressed in various cancers and might be important in their growth and spread. In this study, we used qRT-PCR, western blotting, immunohistochemistry, and immunofluorescence staining assays to investigate the expression levels of various proteins. To explore the proliferation abilities of GBM cells, we conducted the CCK-8 and EdU-DNA formation assays. Wound healing and transwell assays were used to investigate the capacities of invasion and migration of GBM cells. Additionally, we constructed an intracranial xenograft model of GBM to study the in vivo role of CLDN3. Our study devoted to investigate the function of CLDN3 in the pathogenesis and progression of GBM. Our study revealed that CLDN3 was upregulated in GBM and could stimulate tumor cell growth and epithelial-mesenchymal transition (EMT) in both laboratory and animal models. We also discovered that CLDN3 expression could be triggered by transforming growth factor-β (TGF-β) and reduced by specific inhibitors of the TGF-β signaling pathway, such as ITD-1. Further analysis revealed that increased CLDN3 levels enhanced TGF-β-induced growth and EMT in GBM cells, while reducing CLDN3 levels weakened these effects. Our study demonstrated the function of CLDN3 in facilitating GBM growth and metastasis and indicated its involvement in the tumorigenic effects of TGF-β. Developing specific inhibitors of CLDN3 might, therefore, represent a promising new approach for treating this devastating disease.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Wang G, Zhou Y, Yi B, Long Y, Ma B, Zhang Y. Comprehensive analysis of the prognostic value and biological function of TDG in hepatocellular carcinoma. Cell Cycle 2023; 22:1478-1495. [PMID: 37224078 PMCID: PMC10281473 DOI: 10.1080/15384101.2023.2216501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetics plays an important role in the malignant progression of tumors, in which DNA methylation can alter genetic performance without altering the DNA sequence. As a key regulator demethylation, thymine-DNA glycosylase (TDG) has been reported to participate in malignant progression of multiple tumors. In this study, we demonstrate that TDG is highly expressed in hepatocellular carcinoma (HCC) and its high expression is closely related to the poor prognosis of patients. Decreasing TDG expression can significantly inhibit the malignant biological behavior of HCC cells. ABL proto-oncogene 1(ABL1) was identified as a downstream gene regulated by TDG demethylation. In addition, TDG can affect the Hippo signaling pathway through ABL1 to regulate HCC cell proliferation, apoptosis, invasion and migration. Overall, our study demonstrated that TDG reduces DNA methylation of ABL1, increases ABL1 protein expression, and affects the Hippo signaling pathway to regulate the malignant progression of HCC.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yinwen Zhou
- Department of Surgery, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bin Yi
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yanli Long
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Ma
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
13
|
Claudin-3 Loss of Expression Is a Prognostic Marker in Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24010803. [PMID: 36614243 PMCID: PMC9820886 DOI: 10.3390/ijms24010803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) development is the foremost concern after treatment of patients with high risk with locally advanced or metastatic prostate cancer. Androgen receptor (AR) is the main driver of CRPC development, through its interaction with epigenetic modifier genes, placing epigenetics modifications in the forefront of CRPC development. Comparing the DNA methylation and expression profile of androgen-sensitive and -refractory prostate cancer cells, we describe the epigenetic silencing of claudin-3 (CLDN3) in AR positive cells resistant to androgen deprivation (LNCaP-abl). CLDN3 silencing was associated with DNA methylation, loss of histone acetylation and H3K27 methylation, and was re-expressed by the combined treatment with the epigenetic modulators Aza and SAHA. From a functional point of view, CLDN3 loss was associated with increased cellular invasion. Immunohistochemical analysis showed decreased CLDN3 expression in samples from CRPC patients. Interestingly, CLDN3 expression was significantly decreased in samples from patients with high total Gleason score (≥8) and locally advanced tumors. Finally, CLDN3 loss of expression was associated with worse disease-free survival and time to clinical progression. In conclusion, our findings strongly indicate that epigenetic silencing of CLDN3 is a common event in CRPC that could be useful as a molecular marker for the prognosis of prostate cancer patients and to discriminate aggressive from indolent prostate tumors.
Collapse
|
14
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
15
|
Xu ZZ, Fei SK. Research progress of tight junction protein claudin-3 in hepatobiliary systemic diseases. Shijie Huaren Xiaohua Zazhi 2022; 30:668-673. [DOI: 10.11569/wcjd.v30.i15.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Claudin-3 is an important member of the claudin family of tight junction proteins and is the most abundant tight junction protein in the hepatobiliary system. It plays an important role in building tight junctions of hepatobiliary cells, and maintaining cellular barrier function and molecular delivery function. Dysregulation of hepatic claudin-3 expression leads to disruption of hepatobiliary system junctions, metabolic function, barrier function, proliferation capacity, and molecular delivery function, and is closely related to the development of various hepatobiliary diseases such as hepatic malignancies, cholesterol stones, and chronic liver diseases. In this paper, we review the progress in the research of claudin-3 in hepatobiliary diseases.
Collapse
Affiliation(s)
- Zu-Zhi Xu
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| | - Shu-Ke Fei
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| |
Collapse
|
16
|
Feng J, Xu Y, Wei Z, Xia Y, Zhang H, Shen C, Wang P, Yan W, Fang D, Fang Y. Capsaicin inhibits migration and invasion via inhibiting epithelial-mesenchymal transition in esophageal squamous cell carcinoma by up-regulation of claudin-3 expression. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Kyuno D, Takasawa A, Takasawa K, Ono Y, Aoyama T, Magara K, Nakamori Y, Takemasa I, Osanai M. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers 2022; 10:1967080. [PMID: 34486479 PMCID: PMC8794250 DOI: 10.1080/21688370.2021.1967080] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Claudins are major components of tight junctions that maintain cell polarity and intercellular adhesion. The dynamics of claudins in cancer cells have attracted attention as a therapeutic target. During carcinogenesis, claudin expression is generally downregulated; however, overexpression of claudin-18.2 has been observed in several types of cancers. Upregulated and mislocalized claudin-18.2 expression in cancer cells has been suggested as a therapeutic target. Research on claudin-18.2 has revealed its involvement in carcinogenesis. Clinical trials using zolbetuximab, a monoclonal antibody targeting claudin-18.2, for patients with advanced cancer yielded positive results with few high-grade adverse events; thus, it is expected to be a novel and effective therapeutic. Here, we review current insights into the role that claudin-18.2 plays in basic cancer research and clinical applications. A better understanding of these roles will facilitate the development of new treatment strategies for cancer patients with poor prognoses.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
18
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
19
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
20
|
Li Y, Li T, Zhou D, Wei J, Li Z, Li X, Jia S, Ouyang Q, Qi S, Chen Z, Zhang B, Yu J, Jia J, Xu A, Huang J. Role of tight junction-associated MARVEL protein marvelD3 in migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Cell Adh Migr 2021; 15:249-260. [PMID: 34338154 PMCID: PMC8331009 DOI: 10.1080/19336918.2021.1958441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
MarvelD3, a recently identified tight junction membrane protein, could be associated with hepatocellular carcinoma (HCC). We aimed to investigate the role of marvelD3 in Epithelial-Mesenchymal Transition (EMT) and migration of HCC and explore the underlying molecular mechanisms. First, we assessed marvlD3 expression in HCC and normal liver tissues and found loss of marvelD3 expression was significantly correlated with the occurrence and TNM stage of HCC. Second, we detected that marvelD3 was downregulated in HCC cells with transforming growth factor β1 and snail/slug-induced EMT. Finally, we analyzed expression of marvelD3 protein was significantly associated with EMT and the NF-κB signaling pathway. Our study demonstrated that MarvelD3 inhibited EMT and migration of HCC cells along with inhibiting NF-κB signaling pathway.Abbreviations: HCC, Hepatocellular carcinoma; TJ, Tight junction; MARVEL, MAL and related proteins for vesicle trafficking and membrane link; EMT, Epithelial-mesenchymal transition; NF-κB, Nuclear factor kappa B; TAMPs, Tight junction-associated marvel proteins; TGF-β1, Transforming growth factor-β1; MMP9, matrix metallopeptidase 9; RT-PCR, Real-time PCR; IHC, Immunohistochemistry; IF, Immunofluorescence.
Collapse
Affiliation(s)
- Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Teng Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenkun Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
22
|
Zhang L, Wang Y, Sha Y, Zhang B, Zhang R, Zhang H, Xu S, Wang H, Xu Y, Chen Y, Zhao X, Zhu J, Zhang Z, Wang C. CITED4 enhances the metastatic potential of lung adenocarcinoma. Thorac Cancer 2021; 12:1291-1302. [PMID: 33759374 PMCID: PMC8088925 DOI: 10.1111/1759-7714.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND CITED4 belongs to the CBP/p300-interacting transactivator with glutamic acid and aspartic acid-rich tail (CITED) family which is induced by various cytokines and participates in cytokine-induced proliferation and differentiation. CITED4 is induced by HB-EGF in lung cancer cells. However, it is unclear whether and how CITED4 contributes to the invasion and metastasis of lung adenocarcinoma (ADC). METHODS CITED4 expression in lung adenocarcinoma and its association with disease-free survival (DFS) and overall survival were analyzed based on a cohort of 261 patients. The roles of CITED4 were validated via loss-of-function and gain-of-function experiments. The relationship between CITED4 and CLDN3 was validated by immunohistochemistry, Western blotting, and luciferase reporter assays. The function of the CITED4-CTNNB1-CLDN3 complex was fully validated and described. RESULTS CITED4 expression was significantly upregulated in ADC tissues and cells and a predictor for DFS. Downregulation of CITED4 attenuated the proliferation and invasion, whereas CITED4 overexpression enhanced these effects. Overexpression and knockdown of CITED4 resulted in the upregulation and downregulation of CLDN3, respectively. Moreover, CITED4 downregulation suppressed CLDN3-mediated ADC cell metastasis in vivo. CITED4 was highly expressed and positively correlated with CLDN3. Mechanistically, CITED4 interacted with CTNNB1 and functioned synergistically to enhance CLDN3 transcription. Importantly, CITED4 induced ADC invasion via a CLDN3-dependent pathway. CITED4 determined the level of CLDN3, which in turn affected the sensitivity of tumors to Clostridium perfringens enterotoxin treatment. CONCLUSIONS The CITED4-CTNNB1-CLDN3 axis plays a key role in the invasion and metastasis of ADC and provides a novel therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Lianmin Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuan Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongsheng Sha
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shilei Xu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hailong Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Xu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yulong Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoliang Zhao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianquan Zhu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Comprehensive analysis of expression and prognostic value of the claudin family in human breast cancer. Aging (Albany NY) 2021; 13:8777-8796. [PMID: 33714203 PMCID: PMC8034964 DOI: 10.18632/aging.202687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Claudins (CLDN) are structural components of tight junctions that function in paracellular transport and maintain the epithelial barrier function. Altered expression and distribution of members of the claudin family have been implicated in several cancers including breast cancer (BC). We performed a comprehensive analysis of the expression and prognostic value of claudins in BC using various online databases. Compared with normal tissues, CLDN3, 4, 6, 7, 9, and 14 were upregulated in BC tissues, whereas CLDN2, 5, 8, 10, 11, 15, 19, and 20 were downregulated. A high expression of CLDN2, 5, 6, 9, 10, 11, and 14–20 was associated with better relapse-free survival (RFS), whereas a high CLDN3 expression correlated with poor RFS. In addition, a high expression of CLDN3, 4, 14, and 20 was associated with poor overall survival (OS), whereas that of CLDN5 and CLDN11 was linked to a better OS. Although METABRIC and TCGA datasets revealed 22% and 27% gene alterations, respectively, in the members of the claudin family, these were not associated with survival. These findings suggest CLDN3, 5, and 11 could be promising therapeutic targets for patients with BC.
Collapse
|
24
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
25
|
Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J, He Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B 2020; 10:1426-1439. [PMID: 32963941 PMCID: PMC7488353 DOI: 10.1016/j.apsb.2020.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
The membrane protein claudin-3 (CLDN3) is critical for the formation and maintenance of tight junction and its high expression has been implicated in dictating malignant progression in various cancers. However, the post-translational modification of CLDN3 and its biological function remains poorly understood. Here, we report that CLDN3 is positively correlated with ovarian cancer progression both in vitro and in vivo. Of interest, CLDN3 undergoes S-palmitoylation on three juxtamembrane cysteine residues, which contribute to the accurate plasma membrane localization and protein stability of CLDN3. Moreover, the deprivation of S-palmitoylation in CLDN3 significantly abolishes its tumorigenic promotion effect in ovarian cancer cells. By utilizing the co-immunoprecipitation assay, we further identify ZDHHC12 as a CLDN3-targating palmitoyltransferase from 23 ZDHHC family proteins. Furthermore, the knockdown of ZDHHC12 also significantly inhibits CLDN3 accurate membrane localization, protein stability and ovarian cancer cells tumorigenesis. Thus, our work reveals S-palmitoylation as a novel regulatory mechanism that modulates CLDN3 function, which implies that targeting ZDHHC12-mediated CLDN3 S-palmitoylation might be a potential strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobing Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongni Xia
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 100098, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Caccamo D, Currò M, Ientile R, Verderio EAM, Scala A, Mazzaglia A, Pennisi R, Musarra-Pizzo M, Zagami R, Neri G, Rosmini C, Potara M, Focsan M, Astilean S, Piperno A, Sciortino MT. Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. Int J Mol Sci 2020; 21:ijms21144891. [PMID: 32664456 PMCID: PMC7402311 DOI: 10.3390/ijms21144891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Elisabetta AM Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Department of Innate Immunology, Shenzhen International Institute for Biomedical Research, 140 Jinye Ave, Building A10, Life Science Park, Dapeng New District, Shenzhen 518119, China
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Roberto Zagami
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| |
Collapse
|
27
|
Zhang D, Sun B, Zhao X, Sun H, An J, Lin X, Zhu D, Zhao X, Wang X, Liu F, Zhang Y, Liu J, Gu Q, Dong X, Qiu Z, Liu Z, Qi H, Che N, Li J, Cheng R, Zheng X. Twist1 accelerates tumour vasculogenic mimicry by inhibiting Claudin15 expression in triple-negative breast cancer. J Cell Mol Med 2020; 24:7163-7174. [PMID: 32469152 PMCID: PMC7339217 DOI: 10.1111/jcmm.15167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/16/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
The up-regulation of EMT regulator Twist1 has been implicated in vasculogenic mimicry (VM) formation in human triple-negative breast cancer (TNBC). Twist1 targets the Claudin15 promoter in hepatocellular carcinoma cells. Claudin family members are related with TNBC. However, the relationship between Claudin15 and VM formation is not clear. In this study, we first found that Claudin15 expression was frequently down-regulated in human TNBC, and Claudin15 down-regulation was significantly associated with VM and Twist1 nuclear expression. Claudin15 down-regulation correlated with shorter survival compared with high levels. Claudin15 silence significantly enhanced cell motility, invasiveness and VM formation in the non-TNBC MCF-7 cells. Conversely, an up-regulation of Claudin15 remarkably reduced TNBC MDA-MB-231 cell migration, invasion and VM formation. We also showed that down-regulation of Claudin15 was Twist1-dependent, and Twist1 repressed Claudin15 promoter activity. Furthermore, GeneChip analyses of mammary glands of Claudin15-deficient mice indicated that Claudin18 and Jun might be downstream factors of Twist1-Claudin15. Our results suggest that Twist1 induced VM through Claudin15 suppression in TNBC, and Twist1 inhibition of Claudin15 might involve Claudin18 and Jun expression.
Collapse
Affiliation(s)
- Danfang Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Baocun Sun
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Huizhi Sun
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Jindan An
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xian Lin
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Dongwang Zhu
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Xueming Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Xudong Wang
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Fang Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Yanhui Zhang
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Jiameng Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Qiang Gu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xueyi Dong
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhiqiang Qiu
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhiyong Liu
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Hong Qi
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Jing Li
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Runfen Cheng
- Department of PathologyCancer Hospital of Tianjin Medical UniversityTianjinChina
| | - Xu Zheng
- Department of PathologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
28
|
Liu H, Wang M, Liang N, Guan L. Claudin-9 enhances the metastatic potential of hepatocytes via Tyk2/Stat3 signaling. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:722-731. [PMID: 31418417 DOI: 10.5152/tjg.2019.18513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS We have previously identified a tight junction protein claudin-9 (CLDN9) as an upregulated gene in hepatocellular carcinoma (HCC) through an immunohistochemistry analysis. Here, we explore its function and clinical relevance in human HCC. MATERIALS AND METHODS Stable transfection of the hepatocyte line HL7702 with CLDN9 was confirmed by the real-time polymerase chain reaction (PCR), western blotting, and immunofluorescence. The impact of CLDN9 on the cell invasion and migration was assessed in vitro by a transwell assay and wound-healing experiment. Western blotting was used to determine the activation state of the Tyk2 (tyrosine kinase 2)/Stat3 (signal transducer and activator of transcription 3) pathway. Moreover, we used a Tyk2-RNAi assay to silence the expression of Tyk2 in CLDN9 expressing hepatocytes; subsequently, the impact of the Tyk2/Stat3 signaling pathway on the cell invasion and migration in vitro was assessed by a transwell assay and a wound-healing experiment. Furthermore, an immunohistochemistry method was utilized to explore the expression levels of CLDN9 and p-Stat3 in the HCC tissues and histologically non-neoplastic hepatic tissues. RESULTS We confirmed that the expression of CLDN9 significantly enhanced the metastatic ability of hepatocytes in vitro, and the activation of the Stat3 pathway by Tyk2 was an important mechanism by which CLDN9 promoted hepatocyte aggressiveness in HCC. CONCLUSION As an HCC proto-oncogene, CLDN9 affected the Stat3 signaling pathway via Tyk2 and ultimately enhanced the metastatic ability of hepatocytes.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of Pathology, Jilin Cancer Hospital, Changchun, China
| | - Na Liang
- The Office of Surgical Nursing Changchun Medical College, Changchun, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
30
|
Kim LK, Park SA, Eoh KJ, Heo TH, Kim YT, Kim HJ. E2F8 regulates the proliferation and invasion through epithelial-mesenchymal transition in cervical cancer. Int J Biol Sci 2020; 16:320-329. [PMID: 31929759 PMCID: PMC6949145 DOI: 10.7150/ijbs.37686] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
The transcription factor E2F is an important modulator of the cell cycle, and the unrestricted activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. E2F8 is known to play an important role in embryonic development and cell cycle control by inhibiting E2F1. However, it is not yet known whether E2F8 is involved in the progression of cervical cancer. In this study, the functional consequences of E2F8 knockdown in vitro and in vivo were explored. To demonstrate the function of E2F8 in cell proliferation, migration and invasion, we knocked down E2F8 in cervical cancer cell lines; in vitro and in vivo experiments using this knockdown showed that E2F8 potently induced the expression of epithelial-mesenchymal transition (EMT) markers. Finally, clinical data confirmed that E2F8 was a significant predictive factor for progression-free survival, and that patients with cervical cancer who exhibited high expression of E2F8 showed high FIGO stages and frequent recurrence rates compared to patients with low E2F8 expression. In conclusion, our study suggests that E2F8 is highly correlated with the progression-free survival of cervical cancer patients.
Collapse
Affiliation(s)
- Lee Kyung Kim
- Institute of Women's Life Medical Science, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Kyung Jin Eoh
- Institute of Women's Life Medical Science, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Young Tae Kim
- Institute of Women's Life Medical Science, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, South Korea
| |
Collapse
|
31
|
Jia H, Chai X, Li S, Wu D, Fan Z. Identification of claudin-2, -6, -11 and -14 as prognostic markers in human breast carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2195-2204. [PMID: 31934042 PMCID: PMC6949642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 06/10/2023]
Abstract
The development of cancer occurs with various genomic and epigenetic modifications that act as indicators for early diagnosis and treatment. Recent data have shown that the abnormal expression of the claudin (CLDN) tight junction (TJ) proteins is involved in the tumorigenesis of numerous human cancers. Real-time quantitative PCR and western blotting were used to explore the differences in the expression of the CLDN TJ proteins in breast carcinoma tissues and non-neoplastic tissues. The results showed that CLDN5, CLDN9, CLDN12 and CLDN13 were not expressed in breast carcinoma tissues or non-neoplastic tissues. CLDN1, CLDN3, CLDN8 and CLDN10 were expressed in breast carcinoma and non-neoplastic tissues, but there was no significant difference between the expression of these CLDN proteins among them. The expression of CLDN2, -6, -11 and -14 varied between the breast carcinoma and non-neoplastic tissues. Moreover, 86 samples of breast carcinoma and non-neoplastic tissues were examined for the expression of CLDN2, -6, -11 and -14 by streptavidin-peroxidase immunohistochemical staining. The data revealed that the CLDN2, CLDN6, and CLDN14 were expressed in the cell membrane and the expression levels of these proteins were downregulated in breast carcinoma. The CLDN11 was expressed in cell cytoplasm and the expression level of CLDN11 was upregulated compared with those in non-neoplastic tissues. Consistent with these findings, the expression of CLDN2, CLDN6 and CLDN14 were downregulated, while the expression of CLDN11 was upregulated in breast carcinoma compared with those in non-neoplastic tissues. Furthermore, the associations between these CLDNs and clinicopathologic indicators were analyzed, and these CLDN expressions were revealed to be associated with distant metastasis and to predict a poor prognosis. In conclusion, our data showed that the expression levels of CLDN2, -6, -11 and -14 differed between breast carcinoma tissues and histologically non-neoplastic tissues, and the expression levels of these CLDNs may be useful as molecular markers for the diagnosis of breast carcinoma as well as for the determination of metastasis and prognosis.
Collapse
Affiliation(s)
- Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Xin Chai
- Department of Breast Surgery, Jilin Cancer Hospital1018 Huguang Street, Changchun 130021, Jilin, P. R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| |
Collapse
|
32
|
Zhou S, Piao X, Wang C, Wang R, Song Z. Identification of claudin‑1, ‑3, ‑7 and ‑8 as prognostic markers in human laryngeal carcinoma. Mol Med Rep 2019; 20:393-400. [PMID: 31115553 PMCID: PMC6580001 DOI: 10.3892/mmr.2019.10265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Various genomic and epigenetic modifications that occur during the development of cancer act as potential biomarkers for early diagnosis and treatment. Previous studies have demonstrated abnormal expression of the claudin (CLDN) tight junction (TJ) proteins in numerous types of human cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting were employed to investigate variations in the expression of the CLDN TJ proteins in laryngeal non-neoplastic tissues and laryngeal squamous carcinoma tissues. It was revealed that CLDN2, CLDN4, CLDN5, CLDN6, CLDN9, CLDN11 and CLDN12 were undetectable in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues. Additionally, CLDN10 was expressed in laryngeal squamous carcinoma tissues and laryngeal non-neoplastic tissues; however, no significant difference was reported. Conversely, the expression levels of CLDN1 and CLDN7 mRNA and protein were downregulated in laryngeal squamous carcinoma tissues compared with in adjacent non-neoplastic tissues, whereas those of CLDN3 and CLDN8 were upregulated. A total of 80 samples of laryngeal squamous carcinoma and non-neoplastic tissues were analyzed for the expression of CLDN1, −3, −7 and −8 via streptavidin-peroxidase immunohistochemical staining. It was revealed that the expression levels of CLDN1 and CLDN7 were downregulated in laryngeal squamous carcinoma tissues compared with in non-neoplastic mucosal tissues, whereas those of CLDN3 and CLDN8 were upregulated. Furthermore, the associations between CLDN expression and the clinicopathological factors of patients were analyzed. The expression levels of CLDN3 and CLDN7 were reported to be associated with distant metastasis and serve as potential predictors of poor prognosis. In conclusion, the findings of the present study demonstrated that the expression levels of CLDN1, −3, −7 and −8 varied between laryngeal squamous carcinoma tissues and non-neoplastic tissues. The expression levels of these CLDNs may be useful molecular markers for the diagnosis of laryngeal carcinoma, and determining the metastasis and prognosis of this disease.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Xue Piao
- Department of Anesthesiology, Maternity Hospital of Changchun City, Changchun, Jilin 130021, P.R. China
| | - Chengyan Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Rui Wang
- Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
33
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
34
|
Ma L, Yin W, Ma H, Elshoura I, Wang L. Targeting claudin-3 suppresses stem cell-like phenotype in nonsquamous non-small-cell lung carcinoma. Lung Cancer Manag 2019; 8:LMT04. [PMID: 31044015 PMCID: PMC6488947 DOI: 10.2217/lmt-2018-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
AIM To determine the role of claudin-3 in cancer stemness in nonsquamous non-small-cell lung carcinoma (NSCLC). MATERIALS & METHODS In vitro/vivo extreme limiting dilution analysis and the side population assay were used to investigate the role of claudin-3 in regulating cancer stemness in nonsquamous NSCLC. RESULTS & CONCLUSION Claudin-3 depletion decreased the formation rates of spheres and tumors and increased cisplatin sensitivity. Claudin-3 was also identified as one downstream target of estrogen receptor-α in regulating cancer stemness. Moreover, targeting CLDN-3 transcription by small molecules including withaferin A, estradiol and fulvestrant suppressed cancer stemness and reversed chemoresistance. These results demonstrated claudin-3 is one positive regulator of cancer stemness in nonsuqamous NSCLC.
Collapse
Affiliation(s)
- Lin Ma
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
- R&D Center, Guangzhou Ribobio Co., Ltd, Guangzhou 510663, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Heliang Ma
- Department of Radiology, Jinan Central Hospital, Jinan, Shandong 250013, China
| | - Ihab Elshoura
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Lan Wang
- Department of Respiratory Medicine, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin 214400, China
| |
Collapse
|
35
|
Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol 2018; 13:72. [PMID: 30219077 PMCID: PMC6138900 DOI: 10.1186/s13000-018-0749-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Asia; however, the molecular mechanism in its tumorigenesis remains unclear. Abnormal expression of claudins (CLDNs), a family of tight junction (TJ) proteins, plays an important role in the metastatic phenotype of epithelial-derived tumors by affecting tight junction structure, function and related cellular signaling pathways. In a previous study, we used a tissue chip assay to identify CLDN17 as an upregulated gene in HCC. Here we aimed to use molecular biology technology to explore the effect of CLDN17 on the malignant phenotype of HCC and the underlying molecular mechanism, with the objective of identifying a new target for HCC treatment and the control of HCC metastasis. Method The expression levels of CLDN17 in HCC tissues and histologically non-neoplastic hepatic tissues were explored by immunohistochemistry. Stable transfection of the hepatocyte line HL7702 with CLDN17 was detected by real-time polymerase chain reaction (PCR), western blotting and immunofluorescence. The impact of CLDN17 on the malignant phenotype of HL7702 cells in vitro was assessed by a Cell Counting Kit-8 (CCK8) assay, a Transwell assay and a wound-healing experiment. Western blotting was utilized to detect the activation state of Tyrosine kinase 2 (Tyk2) / signal transducer and activator of transcription3 (Stat3) pathway. A Tyk2 RNA interference (RNAi) was utilized to determine the impact of the Tyk2/Stat3 signaling pathway on the malignant phenotype of hepatocytes. Results In this work, our research group first found that CLDN17 was highly expressed in HCC tissues and was associated with poor prognosis. In addition, we demonstrated that CLDN17 affected the Stat3 signaling pathway via Tyk2 and ultimately enhanced the migration ability of hepatocytes. Conclusion In conclusion, we confirmed that the upregulated expression of CLDN17 significantly enhances the migration ability of hepatocytes in vitro and we found that the activation of the Stat3 pathway by Tyk2 may an important mechanism by which CLDN17 promotes aggressiveness in hepatocytes.
Collapse
|
36
|
Prognostic value of NUSAP1 in progression and expansion of glioblastoma multiforme. J Neurooncol 2018; 140:199-208. [PMID: 29995176 DOI: 10.1007/s11060-018-2942-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Nucleolar and spindle-associated protein (NUSAP1) is a microtubule and chromatin-binding protein that stabilizes microtubules to prevent depolymerization, maintains spindle integrity. NUSAP1 could cross-link spindles into aster-like structures, networks and fibers. It has also been found to play roles in progression of several cancers. However, the potential correlation between NUSAP1 and clinical outcome in patients with glioblastoma multiforme (GBM) remains largely unknown. In the current study, we demonstrated that NUSAP1 was significantly up-regulated in GBM tissues compared with adult non-tumor brain tissues both in a validated cohort and a TCGA cohort. In addition, Kaplan-Meier analysis indicated that patients with high NUSAP1 expression had significantly lower OS (P = 0.0027). Additionally, in the TCGA cohort, NUSAP1 expression was relatively lower in GBM patients within the neural and mesenchymal subtypes compared to other subtypes, and associated with the status of several genetic aberrations such as PTEN deletion and wild type IDH1. The present study provides new insights and evidence that NUSAP1 over-expression was significantly correlated with progression and prognosis of GBM. Furthermore, knockdown of NUSAP1 revealed its regulation on G2/M progression and cell proliferation (both in vitro and in vivo). These data demonstrate that NUSAP1 could serve as a novel prognostic biomarker and a potential therapeutic target for GBM.
Collapse
|
37
|
Zhang Z, Yu W, Chen S, Chen Y, Chen L, Zhang S. Methylation of the claudin‑3 promoter predicts the prognosis of advanced gastric adenocarcinoma. Oncol Rep 2018; 40:49-60. [PMID: 29749528 PMCID: PMC6059754 DOI: 10.3892/or.2018.6411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Claudin-3 expression is associated with gastric cancer progression, but the role of epigenetic modifications remains unclear. We investigated methylation of the claudin-3 promoter and expression profiles in gastric adenocarcinoma and their associations with clinicopathological characteristics and prognosis of the patients. A total of 122 patients with advanced gastric cancer [stage IIB-IV, with lymph node (LN) metastasis] were enrolled. Each patient provided 4 tissue samples: normal gastric epithelium, intestinal metaplasia, primary tumor and metastatic LN. Claudin-3 protein expression was examined by immunohistochemistry. Claudin-3 promoter methylation was determined by methylation-specific PCR and verified by bisulfite sequencing PCR. Claudin-3 mRNA expression was measured by real-time PCR in a subset of cases, and its correlation with protein expression was analyzed using Spearman correlation. Kaplan-Meier survival analysis was performed (log-rank test). Factors associated with survival were identified by Cox regression. The strong expression rate of claudin-3 in intestinal metaplasia, primary tumor, metastatic LN and normal gastric epithelium was 91.8, 58.2, 30.3 and 13.9%, respectively. The promoter hypermethylation rate in intestinal metaplasia, primary tumor, normal gastric epithelium and metastatic LN was 5.7, 27.9, 36.9 and 49.2%, respectively. Claudin-3 mRNA and protein expression were positively correlated (P<0.001) with normal gastric epithelium (rs=0.745), intestinal metaplasia (rs=0.876), primary gastric adenocarcinoma (rs=0.915) and metastatic LN (rs=0.819). Claudin-3 mRNA expression was negatively correlated with claudin-3 promoter methylation. Median patient survival was 38, 22 and 11 months in the hypomethylated, partially methylated and hypermethylated groups, respectively (P<0.001). Claudin-3 promoter methylation status (HR: 5.67; 95% CI: 2.27–14.17) but not claudin-3 expression was an independent predictor of survival. Claudin-3 promoter hypermethylation reduces claudin-3 expression and independently predicts poor prognosis.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, P.R. China
| | - Weixing Yu
- Institute of Translational Medicine, Fujian Medical University, Fujian, Fuzhou 350122, P.R. China
| | - Shuqin Chen
- Department of Pathology, Fujian Medical University, Fujian, Fuzhou 350122, P.R. China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, P.R. China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, P.R. China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, P.R. China
| |
Collapse
|
38
|
Che J, Yue D, Zhang B, Zhang H, Huo Y, Gao L, Zhen H, Yang Y, Cao B. Claudin-3 Inhibits Lung Squamous Cell Carcinoma Cell Epithelial-mesenchymal Transition and Invasion via Suppression of the Wnt/β-catenin Signaling Pathway. Int J Med Sci 2018; 15:339-351. [PMID: 29511369 PMCID: PMC5835704 DOI: 10.7150/ijms.22927] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Altered expression of claudin-3 (CLDN3), a key cytoskeletal structural protein of the tight junctions in the epithelium, is associated with the development and metastasis of various human cancers. CLDN3 expression has been shown to be significantly associated with the prognosis of lung squamous cell carcinoma (SqCC). This study investigated the role of CLDN3 in inhibiting lung SqCC cell migration and invasion as well as the underlying molecular mechanisms. The CLDN3 levels were assessed between 20 paired lung SqCC tissues and adjacent normal tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The ectopic CLDN3 overexpression or knockdown was generated by using a plasmid carrying CLDN3 cDNA or shRNA, respectively. CLDN3 expression was significantly reduced in lung SqCC tissues vs. the adjacent normal tissues. The ectopic CLDN3 overexpression markedly inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of lung cancer H520 cells, whereas CLDN3 knockdown had an inverse effect on SK-MES-1 cells. However, cell viability and plate colony formation assays showed that both CLDN3 knockdown and overexpression did not affect SqCC cell proliferation. Both tissue and cell data revealed that CLDN3 expression was significantly associated with the expression of the EMT biomarkers E-cadherin and Vimentin. Furthermore, CLDN3-modulated EMT and expression of the EMT markers were through regulation of the Wnt/β-catenin signaling pathway. In conclusion, this study identified reduced CLDN3 expression in lung SqCC tissues, which was associated with the progression and metastasis of lung SqCC and was attributed to EMT by activation of the Wnt pathway. Thus, CLDN3 could be further evaluated as a novel biomarker for predicting the prognosis of lung SqCC and as a target for the treatment of lung SqCC in the future.
Collapse
Affiliation(s)
- Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Dongsheng Yue
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Bin Zhang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hua Zhang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Yansong Huo
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Liuwei Gao
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hongchao Zhen
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Yan Yang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
39
|
Zhang L, Wang Y, Zhang B, Zhang H, Zhou M, Wei M, Dong Q, Xu Y, Wang Z, Gao L, Qu Y, Shi B, Zhu J, Yin Y, Chen Y, Sun L, Zhang W, Xu S, Ying G, Wang C. Claudin-3 expression increases the malignant potential of lung adenocarcinoma cells: role of epidermal growth factor receptor activation. Oncotarget 2017; 8:23033-23047. [PMID: 28160565 PMCID: PMC5410283 DOI: 10.18632/oncotarget.14974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Claudins are essential for the formation and maintenance of tight junctions (TJ). The altered expression of claudin proteins has been described in a variety of malignancies. However, the alteration of these proteins in lung adenocarcinoma (ADC) are poorly understood. Therefore, we report, based on the protein expression analysis of a total of 275 patient samples, that claudin-3 (CLDN3) expression is significantly increased in ADC tissues and is associated with cancer progression, correlating significantly with the poor survival of ADC patients (p=0.041&0.029). More importantly, forcing CLDN3 expression in ADC cells without endogenous CLDN3 expression resulted in significant increases in the cell proliferation, anchorage-dependent growth, migration and drug-resistance. In addition, epidermal growth factor (EGF) signaling pathway modulates the expression of claudins in a number of solid tumors. However, the mechanism of tight junction regulation by EGF in ADC remains unclear. To investigate this mechanisms, ADC cell lines were treated with EGF and its inhibitor. EGF unregulated CLDN3 expression via the MEK/ERK or PI3K/Akt signaling pathways and was required for the maintenance of baseline CLDN3 expression. Furthermore, downregulation of CLDN3 expression in ADC cell was found to prevent the EGF-induced increase in cell proliferation. In conclusion, our results demonstrate a novel role of CLDN3 overexpression in promoting the malignant potential of lung adenocarcinoma. This function is potentially regulated by the EGF-activated MEK/ERK and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Lianmin Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bin Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hua Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Meng Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Mei Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Qiuping Dong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yue Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhaosong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Liuwei Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bowen Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jinfang Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuesong Yin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yulong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Lu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Wei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shilei Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Changli Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
40
|
Yu COL, Leung KS, Jiang JL, Wang TBY, Chow SKH, Cheung WH. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation. Sci Rep 2017; 7:11631. [PMID: 28912573 PMCID: PMC5599683 DOI: 10.1038/s41598-017-11934-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023] Open
Abstract
Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.
Collapse
Affiliation(s)
- Caroline Oi-Ling Yu
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Sui Leung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jonney Lei Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tina Bai-Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
41
|
Ahmad R, Kumar B, Chen Z, Chen X, Müller D, Lele SM, Washington MK, Batra SK, Dhawan P, Singh AB. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling. Oncogene 2017; 36:6592-6604. [PMID: 28783170 PMCID: PMC6512312 DOI: 10.1038/onc.2017.259] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
The Hyperactivated Wnt/β-catenin signaling acts as a switch to induce EMT and promote colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma to adenocarcinomas transition. However, inter-dependence between these signaling pathways and key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains unclear. In current study, we have discovered, using a comprehensive investigative regimen, a novel and tissue specific role of claudin-3, a tight junction integral protein, in inhibiting colon cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic regulation. Claudin-3−/− mice revealed dedifferentiated and leaky colonic epithelium, and developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3−/− mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent CRC malignancy.
Collapse
Affiliation(s)
- R Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Z Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - X Chen
- Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Müller
- Department of Pediatric Nephrology, Charité, and Berlin Institute of Health, Berlin, Germany
| | - S M Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - M K Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - P Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - A B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
42
|
Worst TS, von Hardenberg J, Gross JC, Erben P, Schnölzer M, Hausser I, Bugert P, Michel MS, Boutros M. Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker. Mol Cell Proteomics 2017; 16:998-1008. [PMID: 28396511 DOI: 10.1074/mcp.m117.068577] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
In prostate cancer and other malignancies sensitive and robust biomarkers are lacking or have relevant limitations. Prostate specific antigen (PSA), the only biomarker widely used in prostate cancer, is suffering from low specificity. Exosomes offer new perspectives in the discovery of blood-based biomarkers. Here we present a proof-of principle study for a proteomics-based identification pipeline, implementing existing data sources, to exemplarily identify exosome-based biomarker candidates in prostate cancer.Exosomes from malignant PC3 and benign PNT1A cells and from FBS-containing medium were isolated using sequential ultracentrifugation. Exosome and control samples were analyzed on an LTQ-Orbitrap XL mass spectrometer. Proteomic data is available via ProteomeXchange with identifier PXD003651. We developed a scoring scheme to rank 64 proteins exclusively found in PC3 exosomes, integrating data from four public databases and published mass spectrometry data sets. Among the top candidates, we focused on the tight junction protein claudin 3. Retests under serum-free conditions using immunoblotting and immunogold labeling confirmed the presence of claudin 3 on PC3 exosomes. Claudin 3 levels were determined in the blood plasma of patients with localized (n = 58; 42 with Gleason score 6-7, 16 with Gleason score ≥8) and metastatic prostate cancer (n = 11) compared with patients with benign prostatic hyperplasia (n = 15) and healthy individuals (n = 15) using ELISA, without prior laborious exosome isolation. ANOVA showed different CLDN3 plasma levels in these groups (p = 0.004). CLDN3 levels were higher in patients with Gleason ≥8 tumors compared with patients with benign prostatic hyperplasia (p = 0.012) and Gleason 6-7 tumors (p = 0.029). In patients with localized tumors CLDN3 levels predicted a Gleason score ≥ 8 (AUC = 0.705; p = 0.016) and did not correlate with serum PSA.By using the described workflow claudin 3 was identified and validated as a potential blood-based biomarker in prostate cancer. Furthermore this workflow could serve as a template to be used in other cancer entities.
Collapse
Affiliation(s)
- Thomas Stefan Worst
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; .,§Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Jost von Hardenberg
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,§Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Julia Christina Gross
- §Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,¶Haematology and Oncology and Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Philipp Erben
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martina Schnölzer
- ‖Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Hausser
- **Institute of Pathology IPH, University Clinic Heidelberg and Electron Microscopy Core Facility, University of Heidelberg, Germany
| | - Peter Bugert
- ‡‡Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Maurice Stephan Michel
- From the ‡Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boutros
- §Department of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
43
|
Wu XD, Bie QL, Zhang B, Yan ZH, Han ZJ. Wnt10B is critical for the progression of gastric cancer. Oncol Lett 2017; 13:4231-4237. [PMID: 28599424 PMCID: PMC5452953 DOI: 10.3892/ol.2017.5992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/01/2017] [Indexed: 01/26/2023] Open
Abstract
The family of Wnt proteins have been implicated in embryogenesis by regulation of cell fate and pattern formation, and also in human carcinogenesis. Wnt10B was previously shown to be involved in breast cancer development. The present study assessed the association of Wnt10B expression in human gastric cancer tissue specimens with clinicopathological data from these patients. Wnt10B expression in the regulation of gastric cancer cell proliferation and migration capacity in vitro was then investigated. The data revealed that Wnt10B mRNA and protein were upregulated in gastric cancer tissue samples and the upregulated Wnt10B mRNA was associated with gastric cancer metastasizing to lymph nodes. Knockdown of Wnt10B expression reduced gastric cancer cell proliferation and migration, as well as expression of a cell proliferation marker Ki67. Knockdown of Wnt10B expression inhibited tumor cell epithelial-mesenchymal transition by upregulation of E-cadherin and downregulation of N-cadherin. In addition, Wnt10B knockdown also suppressed tumor cell stemness by downregulation of octamer-binding transcription factor 4 and Nanog expression. The present data indicated that Wnt10B expression performs an important role in gastric cancer progression in vitro. Therefore, targeting of Wnt10B expression or activity may be investigated as a possible strategy for the control of gastric cancer.
Collapse
Affiliation(s)
- Xiao-Dan Wu
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Qing-Li Bie
- The Key Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zi-He Yan
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhi-Jun Han
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
44
|
Dickkopf-1 Is a Biomarker for Systemic Lupus Erythematosus and Active Lupus Nephritis. J Immunol Res 2017; 2017:6861575. [PMID: 28373995 PMCID: PMC5360949 DOI: 10.1155/2017/6861575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022] Open
Abstract
An early diagnosis of lupus nephritis (LN) has an important clinical implication in guiding treatments of systemic lupus erythematosus (SLE) in clinical settings. In this study, the concentrations of Wnt-3A, Frizzled-8 (FZD-8), and Dickkopf-1 (DKK-1) of Wnt signaling, as well as their diagnostic values for accessing LN, were evaluated by ELISA in sera and urine of 111 SLE patients (31 with LN and 80 without LN) and 70 healthy cohorts. Significantly more abundances of DKK-1 protein were determined in both of sera and urine of SLE patients compared to healthy cohorts (p < 0.0001); in particular the serum DKK-1 concentration was even higher in LN-SLE patients relative to non-LN SLE subjects (p < 0.0001). Intriguingly, concentrations of above examined proteins in SLE patients showed no correlation between serum and urine. Moreover, a combination of DKK-1 with anti-dsDNA and/or levels of complement C3 and C4 could not increase the specificity and/or sensitivity for identification of patients with LN diseases, but both ROC curve and multiple-factor nonconditional logistic regression analysis showed that serum DKK-1 was considered better positive biomarker for identification of LN in SLE patients. These results imply that serum and/or urine DKK-1 may be a valuable and independent biomarker for identification of SLE patients with LN.
Collapse
|
45
|
李 婧, 谢 芳, 徐 晓, 马 娟, 周 代, 廖 妍, 唐 静, 谢 乾, 白 岚, 南 清. [Claudin-3 expression in colorectal carcinoma and its significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:63-67. [PMID: 28109100 PMCID: PMC6765752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate the expression of claudin-3 in colorectal carcinoma and its association with the occurrence, progression and prognosis of colorectal cancer. METHODS Forty surgical specimens of colorectal carcinoma and 22 adjacent normal tissues resected between October, 2010 and January, 2013 at Nanfang Hospital were examined for claudin-3 expression using immunohistochemistry, which was analyzed in association with the clinicopathological parameters and the survival of the patients. RESULTS Claudin-3 was expressed mainly on the cell membrane, and its positivity rate was significantly higher in cancer tissues than in normal tissues (92.50% vs 59.09%, P<0.05). In 13 cases claudin-3 expression was detected in both the cancer tissues and adjacent normal tissues with average expression scores of 4.538 and 3.269, respectively (P<0.05). In the cancer tissues, the strongly positive expression rate was significantly higher in poorly differentiated tissues (85.71%) than in well (21.43%) and moderately (36.48%) differentiated tissues (P<0.05), and was higher in cases with lymph node metastasis than in those without (61.11% vs 22.72%, P<0.05). The strongly positive expression rate of claudin-3 was not correlated with the patients'age, gender, tumor location or tumor size (P>0.05). Of the 33 cancer patients followed up, 14 had a postoperative survival time no longer than 3 years and 19 had longer survival time, and their average expression scores differed significantly (4.50 vs 3.526, P<0.05). CONCLUSION Claudin-3 is over-expressed in colorectal cancer tissues, and its high expression may promote the occurrence and progression of colorectal cancer. Claudin-3 may serve as a molecular biomarker for early diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- 婧宜 李
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 芳 谢
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓平 徐
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 娟娟 马
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 代超 周
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妍 廖
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 静 唐
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 乾 谢
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 岚 白
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 清振 南
- />南方医科大学南方医院消化内科//广东省胃肠疾病重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
46
|
Singh AB, Uppada SB, Dhawan P. Claudin proteins, outside-in signaling, and carcinogenesis. Pflugers Arch 2017; 469:69-75. [PMID: 27988840 PMCID: PMC6166644 DOI: 10.1007/s00424-016-1919-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
Environment affects an individual's development and disease risk which then suggest that the environmental cues must have ways of reaching to the cellular nuclei to orchestrate desired genetic changes. Polarized and differentiated epithelial cells join together by cell-cell adhesions to create a protective sheet which separates body's internal milieu from its environment, albeit in highly regulated manner. Among these cell-cell adhesions, a key role of tight junction, the apical cell-cell adhesion, in maintaining epithelial cell polarity and differentiation is well recognized. Moreover, significant changes in expression and cellular distribution of claudin proteins, integral component of the tight junction, characterize pathophysiological changes including neoplastic growth and progression. Studies have further confirmed existence of complex claudin-based interactomes and demonstrated that changes in such protein partnering can influence barrier integrity and communication between a cell and its environment to produce undesired outcome. Cell signaling is the process by which cells respond to their environment to make dynamic decisions to live, grow and proliferate, or die. Thus, pivotal role of the deregulated tight junction structure/function in influencing cellular signaling cascades to alter cellular phenotype can be envisaged, however, is not well understood. Needless to mention that advanced knowledge in this area can help improve therapeutic considerations and preventive measures. Here, we discuss potential role of the tight junction in the regulation of "outside-in" signaling to regulate cancer growth, with specific focus upon the claudin family of proteins.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | | | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
47
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
48
|
Li CP, Cai MY, Jiang LJ, Mai SJ, Chen JW, Wang FW, Liao YJ, Chen WH, Jin XH, Pei XQ, Guan XY, Zeng MS, Xie D. CLDN14 is epigenetically silenced by EZH2-mediated H3K27ME3 and is a novel prognostic biomarker in hepatocellular carcinoma. Carcinogenesis 2016; 37:557-566. [DOI: 10.1093/carcin/bgw036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
49
|
Meng D, Chen Y, Yun D, Zhao Y, Wang J, Xu T, Li X, Wang Y, Yuan L, Sun R, Song X, Huai C, Hu L, Yang S, Min T, Chen J, Chen H, Lu D. High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma. Oncotarget 2016; 6:4901-19. [PMID: 25669971 PMCID: PMC4467123 DOI: 10.18632/oncotarget.3208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most malignant brain tumor and glioblastoma (GBM) is the most aggressive type. The involvement of N-myc (and STAT) interactor (NMI) in tumorigenesis was sporadically reported but far from elucidation. This study aims to investigate roles of NMI in human glioma. Three independent cohorts, the Chinese tissue microarray (TMA) cohort (N = 209), the Repository for Molecular Brain Neoplasia Data (Rembrandt) cohort (N = 371) and The Cancer Genome Atlas (TCGA) cohort (N = 528 or 396) were employed. Transcriptional or protein levels of NMI expression were significantly increased according to tumor grade in all three cohorts. High expression of NMI predicted significantly unfavorable clinical outcome for GBM patients, which was further determined as an independent prognostic factor. Additionally, expression and prognostic value of NMI were associated with molecular features of GBM including PTEN deletion and EGFR amplification in TCGA cohort. Furthermore, overexpression or depletion of NMI revealed its regulation on G1/S progression and cell proliferation (both in vitro and in vivo), and this effect was partially dependent on STAT1, which interacted with and was regulated by NMI. These data demonstrate that NMI may serve as a novel prognostic biomarker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Delong Meng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuanyuan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dapeng Yun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingjie Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingkun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Yuan
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruochuan Sun
- The Eighth Department of General Surgery and Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Song
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Huai
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lingna Hu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Song Yang
- The Eighth Department of General Surgery and Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Taishan Min
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
50
|
DACH1 is a novel predictive and prognostic biomarker in hepatocellular carcinoma as a negative regulator of Wnt/β-catenin signaling. Oncotarget 2016; 6:8621-34. [PMID: 25940701 PMCID: PMC4496171 DOI: 10.18632/oncotarget.3281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022] Open
Abstract
The cell fate determination factor Dachshund (DACH1) functions as a novel suppressor in the progression of various neoplasms. Previous study has suggested that hypermethylation of promoter region was responsible for the reduction of DACH1 expression in hepatocellular carcinoma (HCC), and associated with the progression of HCC, but the clinical significance and the exact molecular mechanisms of DACH1 in the progression of HCC remain unclear. In this study, we employed public microarray data analysis and tissue microarrays (TMAs) technologies and showed that DACH1 expression was reduced in HCC even at early stage and associated with the tumor progression. Notably, Kaplan-Meier analysis further indicated DACH1 could be an independent prognostic factor for the overall survival of HCC. Further, mechanistic studies revealed that overexpression of DACH1 inhibited the growth and migration of HCC cell line, which were dependent in part on the inactivation of Wnt pathway via phosphorylation of GSK3β to suppress β-catenin. In agreement, the abundance of DACH1 was inversely correlated with several Wnt target genes. Collectively, our study indicated β-catenin is a novel target of DACH1 in HCC.
Collapse
|