1
|
Wong KK, Ab. Hamid SS. Multiomics in silico analysis identifies TM4SF4 as a cell surface target in hepatocellular carcinoma. PLoS One 2025; 20:e0307048. [PMID: 39999090 PMCID: PMC11856526 DOI: 10.1371/journal.pone.0307048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical application of cellular immunotherapy in hepatocellular carcinoma (HCC) is impeded by the lack of a cell surface target frequently expressed in HCC cells and with minimal presence in normal tissues to reduce on-target, off-tumor toxicity. To address this, an in silico multomics analysis was conducted to identify an optimal therapeutic target in HCC. A longlist of genes (n = 12,948) expressed in HCCs according to The Human Protein Atlas database were examined. Eight genes were shortlisted to identify one with the highest expression in HCCs, without being shed into circulation, and with restrictive expression profile in other normal human tissues. A total of eight genes were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in HCC cases (n = 791) derived from four independent datasets. TM4SF4 was the top-ranked target with the highest expression in HCCs. TM4SF4 showed more favorable expression profile with significantly lower expression in normal human tissues but more highly expressed in HCC compared with seven other common HCC therapeutic targets. Furthermore, scRNA-seq and immunohistochemistry datasets showed that TM4SF4 was absent in immune cell populations but highly expressed in the bile duct canaliculi of hepatocytes, regions inaccessible to immune cells. In scRNA-seq dataset of HCCs, TM4SF4 expression was positively associated with mitochondrial components and oxidative phosphorylation Gene Ontologies in HCC cells (n = 15,787 cells), suggesting its potential roles in mitochondrial-mediated oncogenic effects in HCC. Taken together, TM4SF4 is proposed as a promising cell surface target in HCC due to its high expression in HCC cells with restricted expression profile in non-cancerous tissues, and association with HCC oncogenic pathways.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Ab. Hamid
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Lin L, Wen J, Xu T, Si Y. TM4SF4 is a diagnostic biomarker accelerating progression of papillary thyroid cancer via AKT pathway. Cancer Biol Ther 2024; 25:2424570. [PMID: 39497261 PMCID: PMC11540099 DOI: 10.1080/15384047.2024.2424570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The incidence of papillary thyroid cancer (PTC) has been steadily rising, though the underlying mechanism remains unclear. This study aims to elucidate the biological role of TM4SF4 in the PTC progression. Our differential expression analysis indicated that TM4SF4 was significantly upregulated in PTC, which was corroborated in both our local cohort and the data from Human Protein Atlas. Additionally, clinical characteristics analysis and receiver operating characteristic curves (ROC) demonstrated that TM4SF4 served as a significant diagnostic marker for PTC. Correlation and enrichment analysis of TM4SF4-related partners suggested that it was involved in cell junction and cohesion processes. Furthermore, immune infiltration analysis revealed a positive correlation between TM4SF4 expression and the immune activation in PTC. Importantly, in vitro experiments demonstrated that TM4SF4 downregulation suppressed the proliferation and metastasis of PTC cell lines while inducing apoptosis. We further discovered that the AKT activator SC79 was able to reverse the malignant behaviors suppression caused by TM4SF4 knockdown, suggesting that TM4SF4 may promote PTC progression via the AKT pathway. In conclusion, our study highlights the oncogenic role of TM4SF4 in PTC and identifies it as a novel biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Wen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Tiansheng Xu
- Department of Anorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, PR China
| | - Yuhao Si
- Department of Anorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, PR China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| |
Collapse
|
3
|
Zheng Y, Zhang L, Zhang K, Wu S, Wang C, Huang R, Liao H. PLAU promotes growth and attenuates cisplatin chemosensitivity in ARID1A-depleted non-small cell lung cancer through interaction with TM4SF1. Biol Direct 2024; 19:7. [PMID: 38229120 PMCID: PMC10792809 DOI: 10.1186/s13062-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Loss of ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, contributes to malignant progression in multiple cancers including non-small cell lung cancer (NSCLC). In the search for key genes mediating the aggressive phenotype caused by ARID1A loss, we analyzed 3 Gene Expression Omnibus (GEO) datasets that contain RNA sequencing data from ARID1A-depleted cancer cells. PLAU was identified as a common gene that was induced in different cancer cells upon ARID1A depletion. Overexpression of PLAU positively modulated NSCLC cell growth, colony formation, cisplatin resistance, and survival under serum deprivation. Moreover, enforced expression of PLAU enhanced tumorigenesis of NSCLC cells in nude mice. Mechanistically, PLAU interacted with TM4SF1 to promote the activation of Akt signaling. TM4SF1-overexpressing NSCLC cells resembled those with PLAU overepxression. Knockdown of TM4SF1 inhibited the growth and survival and increased cisplatin sensitivity in NSCLC cells. The interaction between PLAU and TM4SF1 led to the activation of Akt signaling that endowed ARID1A-depleted NSCLC cells with aggressive properties. In addition, treatment with anti-TM4SF1 neutralizing antibody reduced the growth, cisplatin resistance, and tumorigenesis of ARID1A-depleted NSCLC cells. Taken together, PLAU serves as a target gene of ARID1A and promotes NSCLC growth, survival, and cisplatin resistance by stabilizing TM4SF1. Targeting TM4SF1 may be a promising therapeutic strategy for ARID1A-mutated NSCLC.
Collapse
Affiliation(s)
- Yuanliang Zheng
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Lixiang Zhang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Kangliang Zhang
- Department of Central Lab, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Shenghao Wu
- Department of Hematology and Chemotherapy, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Chichao Wang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Risheng Huang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| | - Hongli Liao
- Department of Pathology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
4
|
Arechaga-Ocampo E. Epigenetics as a determinant of radiation response in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:145-190. [PMID: 38359968 DOI: 10.1016/bs.ircmb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Radiation therapy is a cornerstone of modern cancer treatment. Treatment is based on depositing focal radiation to the tumor to inhibit cell growth, proliferation and metastasis, and to promote the death of cancer cells. In addition, radiation also affects non-tumor cells in the tumor microenvironmental (TME). Radiation resistance of the tumor cells is the most common cause of treatment failure, allowing survival of cancer cell and subsequent tumor growing. Molecular radioresistance comprises genetic and epigenetic characteristics inherent in cancer cells, or characteristics acquired after exposure to radiation. Furthermore, cancer stem cells (CSCs) and non-tumor cells into the TME as stromal and immune cells have a role in promoting and maintaining radioresistant tumor phenotypes. Different regulatory molecules and pathways distinctive of radiation resistance include DNA repair, survival signaling and cell death pathways. Epigenetic mechanisms are one of the most relevant events that occur after radiotherapy to regulate the expression and function of key genes and proteins in the differential radiation-response. This article reviews recent data on the main molecular mechanisms and signaling pathways related to the biological response to radiotherapy in cancer; highlighting the epigenetic control exerted by DNA methylation, histone marks, chromatin remodeling and m6A RNA methylation on gene expression and activation of signaling pathways related to radiation therapy response.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
5
|
Rahim NS, Wu YS, Sim MS, Velaga A, Bonam SR, Gopinath SCB, Subramaniyan V, Choy KW, Teow SY, Fareez IM, Samudi C, Sekaran SD, Sekar M, Guad RM. Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance. Pharmaceuticals (Basel) 2023; 16:110. [PMID: 36678607 PMCID: PMC9867095 DOI: 10.3390/ph16010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, China
| | - Ismail M. Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor Branch, Shah Alam Campus, 40450 Shah Alam, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
6
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
LncRNA ST8SIA6-AS1 facilitates hepatocellular carcinoma progression by governing miR-651-5p/TM4SF4 axis. Anticancer Drugs 2022; 33:741-751. [PMID: 35946523 DOI: 10.1097/cad.0000000000001326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The oncogenic role of ST8SIA6-AS1 in different cancers was reported, including hepatocellular carcinoma (HCC). However, the underlying mechanism has not been completely explored. Real time quantitative PCR analysis was conducted to assess the ST8SIA6-AS1, miR-651-5p and TM4SF4 expression in HCC tissues and cells. Cell counting kit-8 and wound-healing migration assays were adopted to evaluate the HCC cell proliferation and migration, respectively. The expression of apoptosis-related proteins (Bax and Bcl-2) in human colorectal cancer cells (HCC) was determined by western blotting. In addition to bioinformatics analysis, RNA immunoprecipitation studies and luciferase reporter assays were undertaken to investigate the direct target relationship among ST8SIA6-AS1 and miR-651-5p or TM4SF4. Highly expressed ST8SIA6-AS1 and TM4SF4 as well as poorly expressed miR-651-5p were detected in HCC tissues and cells. Clinically, miR-651-5p expression in HCC tissues is negatively correlated with ST8SIA6-AS1 or TM4SF4. Cell functional assays demonstrated that ST8SIA6-AS1 silencing resulted in weakened proliferative and migratory capacities in HCC cells in addition to increase Bax expression and reduced Bcl-2 expression. ST8SIA6-AS1 exhibited its oncogenic function by sponging tumor suppressor miR-651-5p, and the anti-oncogenic of miR-651-5p was offset by its TM4SF4. The manipulation of ST8SIA6-AS1/miR-651-5p/TM4SF4 axis-mediated oncogenicity in HCC might shed new light on HCC diagnosis and therapy.
Collapse
|
8
|
Wu A, Tang J, Dai Y, Huang H, Nie J, Hu W, Pei H, Zhou G. Downregulation of Long Noncoding RNA CRYBG3 Enhances Radiosensitivity in Non-Small Cell Lung Cancer Depending on p53 Status. Radiat Res 2022; 198:297-305. [PMID: 35439322 DOI: 10.1667/rade-21-00197.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with high recurrence and metastasis rates, and more than half of the patients diagnosed with NSCLC receive local radiotherapy. However, the intrinsic radio-resistance of cancer cells is a major barrier to effective radiotherapy for NSCLC. CRYBG3 is a long noncoding RNA (lncRNA) that was originally identified to be upregulated in NSCLC and enhanced metastasis of NSCLC cells by interacting with eEF1A1 to promote murine double minute 2 (MDM2) expression. The aims of this study were to reveal the contribution of CRYBG3 to the radioresistance of NSCLC and determine whether that is associated with MDM2-p53 pathway. Therefore, CRYBG3 was stably downregulated in A549 (wild-type p53) and H1299 (deficient p53) cells by infecting short hairpin RNA (shRNA) lentiviral particles. The results showed that downregulation of CRYBG3 increased DNA damage, enhanced apoptosis and pro-apoptotic protein expression in A549 or p53-overexpressed H1299 cells but not in H1299 or p53-silenced A549 cells after X-ray irradiation. However, the contribution of CRYBG3 to radioresistance was abolished by eEF1A1 or MDM2 knockdown in A549 cells. Thus, we concluded that downregulation of CRYBG3 enhanced radiosensitivity by reducing MDM2 expression then leading to decreased MDM2-mediated degradation of p53 in wild-type p53 expressing NSCLC cells. These findings suggested that CRYBG3 can be a potential target for therapeutic intervention of certain lung cancer subtypes.
Collapse
Affiliation(s)
- Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
9
|
Zhang F, Ye J, Guo W, Zhang F, Wang L, Han A. TYMS-TM4SF4 axis promotes the progression of colorectal cancer by EMT and upregulating stem cell marker. Am J Cancer Res 2022; 12:1009-1026. [PMID: 35411242 PMCID: PMC8984901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The expression of thymidylate synthase (TYMS) is significantly up-regulated in various cancers and associated with the poor prognosis of patients. However, the role of TYMS in the progression of colorectal cancer (CRC) is unclear. METHODS Cell function assay, biology information analysis, and RNA sequencing were used to investigate the role of TYMS in the progression of CRC and underlining molecular mechanism. SPSS22.0 statistical software and GraphPad Prism 5 (Graphpad software) were used for statistical analysis. RESULTS Our results showed that TYMS expression was higher in CRC tissues than that in non-tumor colorectal mucosa tissues. TYMS knockdown inhibited the proliferation, migration and invasion of HCT116 and HT29 cells, and the spheroid formation of HCT116 cells. The underling mechanism demonstrated that TYMS promoted the progression of CRC by regulating EMT-related proteins including E-cadherin, Vimentin, MMP-9 and stem cell biomarkers including CD133 and CD44. Furthermore, DEG sequencing showed that TYMS knockdown enriched the pathways of metastasis and metabolism by GO and KEGG analysis. We identified TM4SF4 was the downstream target of TYMS in CRC cells. TM4SF4 overexpression increased migration and invasion of CRC cells by regulating EMT and CD133 expression. CONCLUSIONS Our findings suggest that TYMS-TM4SF4 axis may promote the progression of CRC by EMT and upregulating stem cell markers.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| | - Jiecheng Ye
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| | - Wenjing Guo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| | - Liyuan Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou 510080, Guangdong, China
| |
Collapse
|
10
|
Metastatic behavior analyses of tetraspanin TM4SF5-expressing spheres in three-dimensional (3D) cell culture environment. Arch Pharm Res 2020; 43:1162-1172. [PMID: 33222072 DOI: 10.1007/s12272-020-01291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Cancer metastasis involves diverse cellular functions via bidirectional communications between intracellular and extracellular spaces. To achieve development of the anti-metastatic drugs, one needs to consider the efficacy and mode of action (MOA) of the drug candidates to block the metastatic potentials of cancerous cells. Rather than under two-dimensional environment, investigation of the metastatic potentials under three-dimensional environment would be much pharmaceutically beneficent, since it can mimic the in vivo tumor lesions in cancer patients, leading to allowance of drug candidates analyzed in the 3D culture systems to lower failure rates during the anti-metastatic drug development. Here we have reviewed on the analyses of metastatic potentials of certain cancer models in 3D culture systems surrounded with extracellular matrix proteins, which could be supported by TM4SF5- and/or EMT-mediated actions. We particularly focused the initial events of the cancer metastasis, such as invasive outgrowth and dissemination from the cancer cell masses, spheroids, embedded in the 3D gel culture systems. This review summarizes the significance of tetraspanin TM4SF5 and Snail1 that are related to EMT in the metastatic potentials explored in the 3D gel systems.
Collapse
|
11
|
Choi SI, Lee JH, Kim RK, Jung U, Kahm YJ, Cho EW, Kim IG. HSPA1L Enhances Cancer Stem Cell-Like Properties by Activating IGF1Rβ and Regulating β-Catenin Transcription. Int J Mol Sci 2020; 21:ijms21186957. [PMID: 32971893 PMCID: PMC7555772 DOI: 10.3390/ijms21186957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Studies have shown that cancer stem cells (CSCs) are involved in resistance and metastasis of cancer; thus, therapies targeting CSCs have been proposed. Here, we report that heat shock 70-kDa protein 1-like (HSPA1L) is partly involved in enhancing epithelial–mesenchymal transition (EMT) and CSC-like properties in non-small cell lung cancer (NSCLC) cells. Aldehyde dehydrogenase 1 (ALDH1) is considered a CSC marker in some lung cancers. Here, we analyzed transcriptional changes in genes between ALDH1high and ALDH1low cells sorted from A549 NSCLC cells and found that HSPA1L was highly expressed in ALDH1high cells. HSPA1L played two important roles in enhancing CSC-like properties. First, HSPA1L interacts directly with IGF1Rβ and integrin αV to form a triple complex that is involved in IGF1Rβ activation. HSPA1L/integrin αV complex-associated IGF1Rβ activation intensified the EMT-associated cancer stemness and γ-radiation resistance through its downstream AKT/NF-κB or AKT/GSK3β/β-catenin activation pathway. Secondly, HSPA1L was also present in the nucleus and could bind directly to the promoter region of β-catenin to function as a transcription activator of β-catenin, an important signaling protein characterizing CSCs by regulating ALDH1 expression. HSPA1L may be a novel potential target for cancer treatment because it both enhances IGF1Rβ activation and regulates γβ-catenin transcription, accumulating CSC-like properties.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Jei-Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Uhee Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
| | - Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea; (S.-I.C.); (J.-H.L.); (R.-K.K.); (U.J.); (Y.-J.K.)
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34057, Korea
- Correspondence:
| |
Collapse
|
12
|
Jung K, Choi JS, Koo BM, Kim YJ, Song JY, Sung M, Chang ES, Noh KW, An S, Lee MS, Song K, Lee H, Kim RN, Shin YK, Oh DY, Choi YL. TM4SF4 and LRRK2 Are Potential Therapeutic Targets in Lung and Breast Cancers through Outlier Analysis. Cancer Res Treat 2020; 53:9-24. [PMID: 32972043 PMCID: PMC7812009 DOI: 10.4143/crt.2020.434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To find biomarkers for disease, there have been constant attempts to investigate the genes that differ from those in the disease groups. However, the values that lie outside the overall pattern of a distribution, the outliers, are frequently excluded in traditional analytical methods as they are considered to be ‘some sort of problem.’ Such outliers may have a biologic role in the disease group. Thus, this study explored new biomarker using outlier analysis, and verified the suitability of therapeutic potential of two genes (TM4SF4 and LRRK2). Materials and Methods Modified Tukey’s fences outlier analysis was carried out to identify new biomarkers using the public gene expression datasets. And we verified the presence of the selected biomarkers in other clinical samples via customized gene expression panels and tissue microarrays. Moreover, a siRNA-based knockdown test was performed to evaluate the impact of the biomarkers on oncogenic phenotypes. Results TM4SF4 in lung cancer and LRRK2 in breast cancer were chosen as candidates among the genes derived from the analysis. TM4SF4 and LRRK2 were overexpressed in the small number of samples with lung cancer (4.20%) and breast cancer (2.42%), respectively. Knockdown of TM4SF4 and LRRK2 suppressed the growth of lung and breast cancer cell lines. The LRRK2 overexpressing cell lines were more sensitive to LRRK2-IN-1 than the LRRK2 under-expressing cell lines Conclusion Our modified outlier-based analysis method has proved to rescue biomarkers previously missed or unnoticed by traditional analysis showing TM4SF4 and LRRK2 are novel target candidates for lung and breast cancer, respectively.
Collapse
Affiliation(s)
- Kyungsoo Jung
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Daegu, Korea
| | - Beom-Mo Koo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Young Song
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minjung Sung
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Sol Chang
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ka-Won Noh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sungbin An
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hannah Lee
- Interdisciplinary Program in Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Ryong Nam Kim
- Bio-MAX/N-BIO, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Fu F, Yang X, Zheng M, Zhao Q, Zhang K, Li Z, Zhang H, Zhang S. Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Front Mol Biosci 2020; 7:202. [PMID: 33015133 PMCID: PMC7461813 DOI: 10.3389/fmolb.2020.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Transmembrane 4 L six family 1 (TM4SF1) is a protein with four transmembrane domains that belongs to the transmembrane 4 L six family members (TM4SFs). Structurally, TM4SF1 consists of four transmembrane domains (TM1-4), N- and C-terminal intracellular domains, two extracellular domains, a smaller domain between TM1 and TM2, and a larger domain between TM3 and TM4. Within the cell, TM4SF1 is located at the cell surface where it transmits extracellular signals into the cytoplasm. TM4SF1 interacts with tetraspanins, integrin, receptor tyrosine kinases, and other proteins to form tetraspanin-enriched microdomains. This interaction affects the pro-migratory activity of the cells, and thus it plays important roles in the development and progression of cancer. TM4SF1 has been shown to be overexpressed in many malignant tumors, including gliomas; malignant melanomas; and liver, prostate, breast, pancreatic, bladder, colon, lung, gastric, ovarian, and thyroid cancers. TM4SF1 promotes the migration and invasion of cancer cells by inducing epithelial-mesenchymal transition, self-renewal ability, tumor angiogenesis, invadopodia formation, and regulating the related signaling pathway. TM4SF1 is an independent prognostic indicator and biomarker in several cancers. It also promotes drug resistance, which is a major cause of therapeutic failure. These characteristics make TM4SF1 an attractive target for antibody-based immunotherapy. Here, we review the many functions of TM4SF1 in malignant tumors, with the aim to understand the interaction between its expression and the biological behaviors of cancer and to supply a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
14
|
Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhang L, Hao C, Zhai R, Wang D, Zhang J, Bao L, Li Y, Yao W. Downregulation of exosomal let-7a-5p in dust exposed- workers contributes to lung cancer development. Respir Res 2018; 19:235. [PMID: 30497474 PMCID: PMC6267915 DOI: 10.1186/s12931-018-0949-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Either chronic or acute exposure to dust particles may lead to pneumoconiosis and lung cancer, and lung cancer mortality among patients diagnosed with pneumoconiosis is increasing. Utilizing genome-wide sequencing technology, this study aimed to identify methods to decrease the number of patients with pneumoconiosis who die from lung cancer. METHODS One hundred fifty-four subjects were recruited, including 54 pneumoconiosis patients and 100 healthy controls. Exosomes were isolated from the venous blood of every subject. Distinctive miRNAs were identified using high throughput sequencing technology, and bioinformatics analysis predicted target genes involved in lung cancer as well as their corresponding biological functions. Moreover, cross-cancer alterations of genes related to lung cancer were investigated, and survival analysis was performed using 2437 samples with an average follow-up period of 49 months. RESULTS Let-7a-5p was revealed to be downregulated by 21.67% in pneumoconiosis. Out of the 683 let-7a-5p target genes identified from bioinformatics analysis, four genes related to five signaling pathways were confirmed to be involved in lung cancer development. Alterations in these four target genes were then explored in 4105 lung cancer patients, and BCL2L1 and IGF1R were demonstrated to be aberrantly expressed. Survival analysis further revealed that high expression of BCL2L1 corresponded to reduced survival of lung cancer patients (HR (95%CI) = 1.75(1.33~2.30)), while patient survival time was unaffected by expression of IGF1R (HR (95%CI) = 1.15 (0.98~1.36)). CONCLUSIONS In patients with lung adenocarcinoma, simultaneous downregulation of exosomal let-7a-5p and elevated expression of BCL2L1 are useful as predictive biomarkers for poor survival.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Occupational Hygiene, School of Public Health and Management, Healthy Shandong Collaborative Innovation Center for Major Social Risk Prediction and Governance, Weifang Medical University, 7166 Baotong West Street, Weifang, 261024 China
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Changfu Hao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Ruonan Zhai
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Di Wang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Jianhui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Lei Bao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Yiping Li
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Wu Yao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| |
Collapse
|
16
|
Ma YS, Yu F, Zhong XM, Lu GX, Cong XL, Xue SB, Xie WT, Hou LK, Pang LJ, Wu W, Zhang W, Cong LL, Liu T, Long HD, Sun R, Sun HY, Lv ZW, Wu CY, Fu D. miR-30 Family Reduction Maintains Self-Renewal and Promotes Tumorigenesis in NSCLC-Initiating Cells by Targeting Oncogene TM4SF1. Mol Ther 2018; 26:2751-2765. [PMID: 30301667 DOI: 10.1016/j.ymthe.2018.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that tumor-initiating cells (TICs) are responsible for the occurrence, development, recurrence, and development of the drug resistance of cancer. MicroRNA (miRNA) plays a significant functional role by directly regulating targets of TIC-triggered non-small-cell lung cancer (NSCLC), but little is known about the function of the miR-30 family in TICs. In this study, we found the miR-30 family to be downregulated during the spheroid formation of NSCLC cells, and patients with lower miR-30a/c expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, transmembrane 4 super family member 1 (TM4SF1) was confirmed to be a direct target of miR-30a/c. Concomitant low expression of miR-30a/c and high expression of TM4SF1 correlated with a shorter median OS and PFS in NSCLC patients. miR-30a/c significantly inhibited stem-like characteristics in vitro and in vivo via suppression of its target gene TM4SF1, and then it inhibited the activity of the mTOR/AKT-signaling pathway. Thus, our data provide the first evidence that TM4SF1 is a direct target of miR-30a/c and miR-30a/c inhibits the stemness and proliferation of NSCLC cells by targeting TM4SF1, suggesting that miR-30a/c and TM4SF1 may be useful as tumor biomarkers for the diagnosis and treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Ming Zhong
- Department of Tumor Radiotherapy, Jiangxi Province Tumor Hospital, Nanchang 330029, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xian-Ling Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Shao-Bo Xue
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen-Ting Xie
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li-Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Le-Le Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Tie Liu
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Hui-Deng Long
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Ran Sun
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Hong-Yan Sun
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
17
|
Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int J Mol Sci 2018; 19:ijms19082411. [PMID: 30111747 PMCID: PMC6122069 DOI: 10.3390/ijms19082411] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system, which is constituted by the IGF-1 and IGF-2 peptide hormones, their corresponding receptors and several IGF binding proteins, is involved in physiological and pathophysiological processes. The IGF system promotes cancer proliferation/survival and its signaling induces the epithelial-mesenchymal transition (EMT) phenotype, which contributes to the migration, invasiveness, and metastasis of epithelial tumors. These cancers share two major IGF-1R signaling transduction pathways, PI3K/AKT and RAS/MEK/ERK. However, as far as we could review at this time, each type of cancer cell undergoes EMT through tumor-specific routes. Here, we review the tumor-specific molecular signatures of IGF-1-mediated EMT in breast, lung, and gastric cancers.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | - Annamaria Mancini
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | | |
Collapse
|
18
|
Zhu X, Wang Y, Tan L, Fu X. The pivotal role of DNA methylation in the radio-sensitivity of tumor radiotherapy. Cancer Med 2018; 7:3812-3819. [PMID: 29952116 PMCID: PMC6089158 DOI: 10.1002/cam4.1614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy is an important modality for treatment of carcinomas; however, radio‐resistance is still a difficult problem. Aberrant epigenetic alterations play an important role in cancer development. Among epigenetic parameters, DNA methylation has arguably attracted the most attention in the radio‐resistance process. To determine the role of DNA methylation in radiation resistance, several studies were conducted. We summarized previous studies on the role of DNA methylation in radiotherapy. We observed this significant role of DNA methylation in genes related to DNA repair, cell proliferation, cell cycle process, and re‐oxygenation. Furtherly, we also conclude the predictive effect of DNA methylation on tumor radio‐sensitivity and the using of DNA methyltransferase inhibitors in clinical practice. DNA methylation plays a pivotal role in the radio‐sensitivity of tumor radio‐therapy. While hyper‐methylation or hypo‐methylation of genes is related to gene functions.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Li Tan
- Department of Cellular and Genetic Medicine, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| |
Collapse
|
19
|
Peng XC, Zeng Z, Huang YN, Deng YC, Fu GH. Clinical significance of TM4SF1 as a tumor suppressor gene in gastric cancer. Cancer Med 2018; 7:2592-2600. [PMID: 29665316 PMCID: PMC6010756 DOI: 10.1002/cam4.1494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transmembrane‐4‐L‐six‐family member‐1 (TM4SF1), a tumor‐associated antigen, is overexpressed in most epithelial cell carcinomas and a potential target for antibody‐mediated therapy. However, the role of TM4SF1 in gastric cancer has not been elucidated. The aim of this study was to investigate the clinical significance of TM4SF1 expression in gastric carcinoma (GC) tissues using 152 GC tissue samples and matched adjacent nontumor tissue samples analyzed by immunohistochemistry, and 13 fresh GC tissue samples analyzed by Western blotting. The results showed that TM4SF1 was heterogeneously expressed in normal gastric mucosa, with a high expression rate in fundus mucosa. Higher levels and strong expression rate of TM4SF1 were associated with GC tissues of higher‐grade differentiation. TM4SF1 levels were lower in gastric cancer tissues than gastric noncancerous tissues. Expression of TM4SF1 was not correlated with USP10 (P = 0.157), S100A12 (P = 0.479), p53 (P = 0.249), or Ki67 (P = 0.166) in GC. The expression of TM4SF1 was significantly and negatively correlated with depth of invasion (P = 0.031), nodal metastasis (P = 0.042), TNM stage (P = 0.030), and Lauren classification (P = 0.026). There was no significant correlation between TM4SF1 expression and age, gender, tumor size, or distant metastasis (P > 0.05). The expression of TM4SF1 was associated with well overall survival (P = 0.0164). The 5‐year survival rate for patients with GC showing TM4SF1 positive was 58.82% (10/17), and the median survival time was 78 months, higher than that (12.90%, 12/93) of patients who were TM4SF1 negative, whose median survival time was 62 months. These data suggested that low expression of TM4SF1 is associated with carcinogenesis and development, tumor progression and invasion of gastric cancer, and poor overall survival of patients with GC. TM4SF1 is a tumor suppressor for GC and a novel prognostic marker for patients with GC.
Collapse
Affiliation(s)
- Xing-Chun Peng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Number 280, South Chong-Qing Road, Shanghai, 200025, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, No.99, Ziyang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yu-Ning Huang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Number 280, South Chong-Qing Road, Shanghai, 200025, China
| | - Yun-Chao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No.99, Ziyang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Number 280, South Chong-Qing Road, Shanghai, 200025, China
| |
Collapse
|
20
|
Choi SI, Kim SY, Lee JH, Kim JY, Cho EW, Kim IG. Osteopontin production by TM4SF4 signaling drives a positive feedback autocrine loop with the STAT3 pathway to maintain cancer stem cell-like properties in lung cancer cells. Oncotarget 2017; 8:101284-101297. [PMID: 29254164 PMCID: PMC5731874 DOI: 10.18632/oncotarget.21021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/26/2017] [Indexed: 01/16/2023] Open
Abstract
Transmembrane 4 L6 family proteins have been known to promote cancer. In this study, we demonstrated that transmembrane 4 L6 family member 4 (TM4SF4), which is induced by γ-radiation in non-small cell lung cancer (NSCLC) cells, is involved in epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties of NSCLC through the regulation of osteopontin (OPN). Forced TM4SF4 overexpression in A549 cells increased the secretion of OPN, which activates CD44 or integrin signaling and thus maintains EMT-associated CSC-like properties. OPN, known as a downstream target of β-catenin/T-cell factor 4 (TCF-4), was induced by up-regulated β-catenin via TM4SF4-driven phosphorylation of glycogen synthase kinase 3b (GSK3β). TCF4 complexed to promoter regions of OPN in TM4SF4-overexpressing A549 cells was also confirmed by chromatin immunoprecipitation. Knockout of either β-catenin or TCF4-suppressed OPN expression, demonstrating that both factors are essential for OPN expression in NSCLC cells. OPN secreted by TM4SF4/GSK3β/β-catenin signaling activated the JAK2/STAT3 or FAK/STAT3 pathway, which also up-regulates OPN expression in an autocrine manner and consequently maintains the self-renewal and metastatic capacity of cancer cells. Neutralizing antibody to OPN blocked the autocrine activation of OPN expression, consequently weakened the metastatic and self-renewal capacity of cancer cells. Collectively, our findings indicate that TM4SF4-triggered OPN expression is involved in the persistent reinforcement of EMT or cancer stemness by creating a positive feedback autocrine loop with JAK2/STAT3 or FAK/STAT3 pathways.
Collapse
Affiliation(s)
- Soo Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Seo Yoen Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Jei Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Jung Yul Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Eun Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| |
Collapse
|
21
|
Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment. Oncotarget 2017; 8:13277-13292. [PMID: 28129652 PMCID: PMC5355095 DOI: 10.18632/oncotarget.14809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/27/2016] [Indexed: 01/04/2023] Open
Abstract
The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.
Collapse
|
22
|
Luo J, Wang W, Tang Y, Zhou D, Gao Y, Zhang Q, Zhou X, Zhu H, Xing L, Yu J. mRNA and methylation profiling of radioresistant esophageal cancer cells: the involvement of Sall2 in acquired aggressive phenotypes. J Cancer 2017; 8:646-656. [PMID: 28367244 PMCID: PMC5370508 DOI: 10.7150/jca.15652] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies worldwide. Radiotherapy plays a critical role in the curative management of inoperable ESCC patients. However, radioresistance restricts the efficacy of radiotherapy for ESCC patients. The molecules involved in radioresistance remain largely unknown, and new approaches to sensitize cells to irradiation are in demand. Technical advances in analysis of mRNA and methylation have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathways of ESCC radioresistance. In this study, we constructed radioresistant TE-1 and Eca-109 cell lines (TE-1/R and Eca-109/R, respectively). The radioresistant cells showed an increased migration ability but reduced apoptosis and cisplatin sensitivity compared with their parent cells. mRNA and methylation profiling by microarray revealed 1192 preferentially expressed mRNAs and 8841 aberrantly methylated regions between TE-1/R and TE-1 cells. By integrating the mRNA and methylation profiles, we related the decreased expression of transcription factor Sall2 with a corresponding increase in its methylation in TE-1/R cells, indicating its involvement in radioresistance. Upregulation of Sall2 decreased the growth and migration advantage of radioresistant ESCC cells. Taken together, our present findings illustrate the mRNA and DNA methylation changes during the radioresistance of ESCC and the important role of Sall2 in esophageal cancer malignancy.
Collapse
Affiliation(s)
- Judong Luo
- Medical college of Shandong University, Jinan, Shandong, China
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Dandan Zhou
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yi Gao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Qi Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Xifa Zhou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
23
|
Lee JH, Kim JY, Kim SY, Choi SI, Kim KC, Cho EW, Kim IG. APBB1 reinforces cancer stem cell and epithelial-to-mesenchymal transition by regulating the IGF1R signaling pathway in non-small-cell lung cancer cells. Biochem Biophys Res Commun 2016; 482:35-42. [PMID: 27836546 DOI: 10.1016/j.bbrc.2016.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023]
Abstract
Amyloid β precursor protein binding family B member 1(APBB1) was first identified as a binding partner of amyloid precursor protein during brain development, but its function in the context of cancer remain unclear. Here we show for the first time that APBB1 is partly associated with intensifying cancer stem cell(CSC) and epithelial-to-mesenchymal transition (EMT) and enhancing radiation-resistant properties of lung cancer cells. We found that APBB1 was highly expressed in ALDH1high CSC-like cells sorted from A549 lung cancer cells. In APBB1-deficient H460 cells with forced overexpression of APBB1, the protein directly interacted with IGF1Rβ, enhanced phosphorylation of IGF1Rβ/PI3K/AKT pathway(activation) and subsequently induced the phosphorylation of GSK3β(inactivation). This phosphorylation stabilized Snail1, a negative regulator of E-cadherin expression, and regulated β-catenin-mediated ALDH1 expression, which are representative markers for EMT and CSCs, respectively. In contrast, suppression of APBB1 expression with siRNA yielded the opposite effects in APBB1-rich A549 cells. We concluded that APBB1 partly regulates the expression of ALDH1. We also found that APBB1 regulates activation of nuclear factor-κB, which is involved in reducing various stresses including oxidative stress, which suggests that APBB1 is associated with γ-radiation sensitivity. Our findings imply that APBB1 plays an important role in the maintenance of EMT-associated CSC-like properties and γ-radiation resistance via activation of IGF1Rβ/AKT/GSK3β pathway in lung cancer cells, highlighting APBB1 as a potential target for therapeutic cancer treatment.
Collapse
Affiliation(s)
- Jei Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353, South Korea
| | - Jung Yul Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353, South Korea
| | - Seo Yeon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea
| | - Soo Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea
| | - Kuk Chan Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea
| | - Eun Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 25 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon, South Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-Daero, Yuseong-Gu, Daejeon 305-353, South Korea.
| |
Collapse
|
24
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
25
|
Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice. Cancer Lett 2016; 377:126-33. [PMID: 27130449 DOI: 10.1016/j.canlet.2016.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/24/2022]
Abstract
Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy.
Collapse
|
26
|
Chronscinski D, Cherukeri S, Tan F, Perfito N, Lomax J, Iorns E. Registered report: the androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. PeerJ 2015; 3:e1231. [PMID: 26401447 PMCID: PMC4579027 DOI: 10.7717/peerj.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative (PCFMFRI) seeks to address growing concerns about reproducibility in scientific research by conducting replications of recent papers in the field of prostate cancer. This Registered Report describes the proposed replication plan of key experiments from “The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resistant Prostate Cancer in Man” by Sharma and colleagues (2013), published in Cancer Cell in 2013. Of thousands of targets for the androgen receptor (AR), the authors elucidated a subset of 16 core genes that were consistently downregulated with castration and re-emerged with castration resistance. These 16 AR binding sites were distinct from those observed in cells in culture. The authors suggested that cellular context can have dramatic effects on downstream transcriptional regulation of AR binding sites. The present study will attempt to replicate Fig. 7C by comparing gene expression of the 16 core genes identified by Sharma and colleagues in xenograft tumor tissue compared to androgen treated LNCaP cells in vitro. The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative is a collaboration between the Prostate Cancer Foundation, the Movember Initiative, and Science Exchange, and the results of the replications will be published by PeerJ.
Collapse
Affiliation(s)
| | | | - Fraser Tan
- Science Exchange and The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative , Palo Alto, CA , USA
| | - Nicole Perfito
- Science Exchange and The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative , Palo Alto, CA , USA
| | - Joelle Lomax
- Science Exchange and The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative , Palo Alto, CA , USA
| | - Elizabeth Iorns
- Science Exchange and The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative , Palo Alto, CA , USA
| |
Collapse
|
27
|
Choi JM, Jang JY, Choi YR, Kim HR, Cho BC, Lee HW. Reduced expression of EI24 confers resistance to gefitinib through IGF-1R signaling in PC9 NSCLC cells. Lung Cancer 2015; 90:175-81. [PMID: 26342551 DOI: 10.1016/j.lungcan.2015.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Lung cancer is the commonly diagnosed cancer and is the leading cause of cancer-related mortality worldwide. The most prevalent form of lung cancer is NSCLC, comprising 80% of all lung cancer cases, and epidermal growth factor receptor (EGFR) is frequently mutated in NSCLC. EI24 is a p53-responsive gene and plays an important role in tumor suppression. In the current study, we found that reduced expression of EI24 conferred resistance to EGFR-tyrosine-kinase inhibitor (TKI) in NSCLC cells. MATERIALS AND METHODS The correlation between EI24 expression and EGFR-TKI drug resistance in EGFR-driven tumors were determined from microarray datasets. The phospho-protein expression profiles of receptor tyrosine kinases and protein kinases were examined using antibody arrays method in PC9 cells expressing shRNAs targeting EI24 and gefitinib-resistant PC9-GR cells expressing exogenous EI24. RESULTS AND CONCLUSIONS The EGFR-TKI resistant clones had reduced expression of EI24 mRNA compared to the sensitive clones, and EI24 knockdown rendered sensitive cells resistant to EGFR-TKI. Receptor tyrosine kinase screening revealed the involvement of a kinase switch in EI24-mediated regulation of drug sensitivity. We found that EI24 modulates the insulin growth factor-1 receptor (IGF-1R) pathway through the induction of IGF-1. Combination treatment with EGFR and IGF-1R inhibitors significantly reduced the viability of EI24 knockdown-induced resistant cell lines compared to single-agent treatments. We also showed that low EI24 and high IGF-1R expressions in lung cancer patients were correlated with reduced overall survival. Taken together, these results suggest a potential role for EI24 as a biomarker of drug resistance, and indicate that combination therapy with EGFR and IGF-1R inhibitors would be effective in NSCLC patients with low EI24 expression.
Collapse
Affiliation(s)
- Jung-Min Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Seoul, South Korea
| | - Ji-Young Jang
- Department of Biochemistry, College of Life Science and Biotechnology, Seoul, South Korea
| | - Yu-Ra Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Seoul, South Korea
| | - Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Seoul, South Korea; Laboratory Animal Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|