1
|
Wan X, Tao T, Zhang J, Li N, Gou Y, Yang W, Han X, Wu S, Zhang C, Peng X, Liu S, Zhang X. Effect of Age, Sex and Season on Acute Myeloid Leukemia Clinical Characteristics: A Retrospective Study. J Inflamm Res 2025; 18:2363-2375. [PMID: 39991665 PMCID: PMC11846522 DOI: 10.2147/jir.s495615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a lethal malignancy of the bone marrow, characterized by rapid proliferation of immature myeloid cells, leading to insufficient hematopoiesis and immune activities. It is well known that AML is closely associated with various molecular and cytogenetic abnormalities. In addition, the long-standing view that non-genetic factors, including age, sex and season, are also associated with the occurrence and development of AML. However, effects of these factors on AML clinical characteristics remain incompletely understood. During clinical practice, we perceived an imbalance distribution of clinical characteristics (including FAB classification, gene mutations, lymphocyte-associated cytokine levels and lymphocyte-subset proportions) in different age, sex and season groups. In order to elucidate the correlations between these factors, we performed a comprehensive data collection and analysis of AML patients in our hospital from 2013 to 2023. Methods Totally, 2798 newly diagnosed AML patients and 220 relapsed AML patients who were admitted to our hospital from January 1, 2013 to December 31, 2023 were included for analysis. Chi-square test was conducted to analyze the correlation between categorical variables. T-tests and one-way ANOVA were employed to compare mean values across two and multiple groups respectively. Mann-Whitney U-tests and Kruskal-Wallis H-tests were employed to compare mean values across two and multiple groups respectively, when data did not show normal distribution. Logistic regression was used to analyze the correlation between dependent and independent variables. Log rank test was applied for survival analysis. Waterfall diagram and chord diagram of mutated genes were created using R4.3.3 and RStudio tools. Results Overall, the distribution of age, sex and season in AML patients were unbalanced. The relationships among various mutated genes had two sides, co-existence or mutual exclusivity. Additionally, the FAB classification and gene mutation status varied significantly across the subgroups. The levels of cytokines and lymphocyte subsets altered significantly in AML patients, and were associated with prognosis and gene mutations. Conclusion Age, sex and season have shown partial correlations with AML clinical characteristics, including FAB classification, gene mutations status, lymphocyte-associated cytokine levels and lymphocyte subset proportions. We hope these findings can contribute to a deeper understanding of AML.
Collapse
Affiliation(s)
- Xingyu Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Tinglu Tao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Jing Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Nan Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Wuchen Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Xiao Han
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Shengwang Wu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Shuiqing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, People’s Republic of China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, People’s Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People’s Republic of China
| |
Collapse
|
2
|
Dou X, Dan C, Zhang D, Zhou H, He R, Zhou G, Zhu Y, Fu N, Niu B, Xu S, Liao Y, Luo Z, Yang L, Zhang H, Xu Y, Zhan Q, Chen W, Yang Z, Tang X, Zhang H, Xiao Q, Chen J, Liu L, Wang Y, Pei L, Wang L. Genomic mutation patterns and prognostic value in de novo and secondary acute myeloid leukemia: A multicenter study from China. Int J Cancer 2024; 155:2253-2264. [PMID: 39109820 DOI: 10.1002/ijc.35125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Acute myeloid leukemia (AML) can manifest as de novo AML (dn-AML) or secondary AML (s-AML), with s-AML being associated with inferior survival and distinct genomic characteristics. The underlying reasons for this disparity remain to be elucidated. In this multicenter study, next-generation sequencing (NGS) was employed to investigate the mutational landscape of AML in 721 patients from June 2020 to May 2023.Genetic mutations were observed in 93.34% of the individuals, with complex variations (more than three gene mutations) present in 63.10% of them. TET2, ASXL1, DNMT3A, TP53 and SRSF2 mutations showed a higher prevalence among older individuals, whereas WT1 and KIT mutations were more commonly observed in younger patients. BCOR, BCORL1, ZRSR2, ASXL1 and SRSF2 exhibited higher mutation frequencies in males. Additionally, ASXL1, NRAS, PPMID, SRSF2, TP53 and U2AF1 mutations were more common in patients with s-AML, which PPM1D was more frequently associated with therapy-related AML (t-AML). Advanced age and hyperleukocytosis independently served as adverse prognostic factors for both types of AML; however, s-AML patients demonstrated a greater number of monogenic adverse prognostic factors compared to dn-AML cases (ASXL1, PPM1D, TP53 and U2AF1 in s-AML vs. FLT3, TP53 and U2AF1 in dn-AML). Age and sex-related gene mutations suggest epigenetic changes may be key in AML pathogenesis. The worse prognosis of s-AML compared to dn-AML could be due to the older age of s-AML patients and more poor-prognosis gene mutations. These findings could improve AML diagnosis and treatment by identifying potential therapeutic targets and risk stratification biomarkers.
Collapse
Affiliation(s)
- Xi Dou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Dan
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Duanzhong Zhang
- Department of Hematology, Dazhou Central Hospital, Sichuan, China
| | - Hongjing Zhou
- Department of Hematology, Jining No. 1 People's Hospital, Shandong, China
| | - Renke He
- Department of Hematology, Chongqing General Hospital, Chongqing, China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Fu
- Department of Hematology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Ben Niu
- Department of Hematology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Shuangnian Xu
- Department of Hematology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Yi Liao
- Department of Oncology and Hematology, Chongqing University Central Hospital, Chongqing, China
| | - Zhangqin Luo
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lihua Yang
- Department of Hematology, Dazhou Central Hospital, Sichuan, China
| | - Haiguo Zhang
- Department of Hematology, Jining No. 1 People's Hospital, Shandong, China
| | - Yizhi Xu
- Department of Hematology, Chongqing General Hospital, Chongqing, China
| | - Qian Zhan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Shaanxi, China
| | - Li Pei
- Department of Hematology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Montgomery ND, Ferguson NL, Zeidner JF. Comprehensive genomic profiling reveals molecular subsets of ASXL1-mutated myeloid neoplasms. Leuk Lymphoma 2024; 65:209-218. [PMID: 37921062 DOI: 10.1080/10428194.2023.2277672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
A large-scale genomic analysis of patients with ASXL1-mutated myeloid disease has not been performed to date. We reviewed comprehensive genomic profiling results from 6043 adults to characterize clinicopathologic features and co-mutation patterns by ASXL1 mutation status. ASXL1 mutations occurred in 1414 patients (23%). Mutation co-occurrence testing revealed strong co-occurrence (p < 0.01) between mutations in ASXL1 and nine genes (SRSF2, U2AF1, RUNX1, SETBP1, EZH2, STAG2, CUX1, CSF3R, CBL). Further analysis of patients with these co-mutations yielded several novel findings. Co-mutation patterns supported that ASXL1/SF3B1 co-mutation may be biologically distinct from ASXL1/non-SF3B1 spliceosome co-mutation. In AML, ASXL1/SRSF2 co-mutated patients frequently harbored STAG2 mutations (42%), which were dependent on the presence of both ASXL1 and SRSF2 mutation (p < 0.05). STAG2 and SETBP1 mutations were also exclusive in ASXL1/SRSF2 co-mutated patients and associated with divergent chronic myeloid phenotypes. Our findings support that certain multi-mutant genotypes may be biologically relevant in ASXL1-mutated myeloid disease.
Collapse
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, Irvine, CA, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc, Durham, NC, USA
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Tarlock K, Liu X, Minard CG, Isikwei EA, Reid JM, Horton TM, Fox E, Weigel BJ, Cooper T. Feasibility of pevonedistat combined with azacitidine, fludarabine, cytarabine in pediatric relapsed/refractory AML: Results from COG ADVL1712. Pediatr Blood Cancer 2023; 70:e30672. [PMID: 37710306 PMCID: PMC10864008 DOI: 10.1002/pbc.30672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Outcomes for children with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are poor, and new therapies are needed. Pevonedistat is an inhibitor of the NEDD-8 activating enzyme, a key regulator of the ubiquitin proteasome system that is responsible for protein turnover, with protein degradation regulating cell growth and survival. PROCEDURE We evaluated the feasibility, toxicity, and pharmacokinetics (PK) of pevonedistat (20 mg/m2 days 1, 3, 5) in combination with azacitidine, fludarabine, cytarabine (aza-FLA) in children with R/R AML and MDS (NCT03813147). Twelve patients were enrolled, median age was 13 years (range 1-21). Median number of prior chemotherapeutic regimens was two (range one to five), and two (25%) patients had prior hematopoietic cell transplantation. Diagnoses were AML NOS (n = 10, 83%), acute monocytic leukemia (n = 1), and therapy-related AML (n = 1). RESULTS Overall, three of 12 (25%) patients experienced DLTs. The day 1 mean ± SD (n = 12) Cmax , VSS , T1/2 , and CL were 223 ± 91 ng/mL, 104 ± 53.8 L/m2 , 4.3 ± 1.2 hours, and 23.2 ± 6.9 L/h/m2 , respectively. T1/2 , VSS , and Cmax , but not CL, were significantly different between age groups. The overall response rate was 25%, with n = 3 patients achieving a complete remission with incomplete hematologic recovery (CRi). CONCLUSIONS Pevonedistat 20 mg/m2 combined with Aza-FLA was tolerable in children with R/R AML with similar toxicity profile to other intensive AML regimens. However, within the confines of a phase 1 study, we did not observe that the pevonedistat + Aza-FLA combination demonstrated significant anti-leukemic activity.
Collapse
Affiliation(s)
- Katherine Tarlock
- Cancer and Blood Disorders Center, Department of Pediatrics, Seattle Children’s Hospital and the Seattle Children’s Research Institute, University of Washington, Seattle WA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA
| | | | | | | | | | - Terzah M. Horton
- Texas Children’s Baylor College of Medicine/Dan L Duncan Comprehensive Cancer Center, Pediatrics, Houston TX
| | | | | | - Todd Cooper
- Cancer and Blood Disorders Center, Department of Pediatrics, Seattle Children’s Hospital and the Seattle Children’s Research Institute, University of Washington, Seattle WA
| |
Collapse
|
5
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
6
|
Krizsán S, Péterffy B, Egyed B, Nagy T, Sebestyén E, Hegyi LL, Jakab Z, Erdélyi DJ, Müller J, Péter G, Csanádi K, Kállay K, Kriván G, Barna G, Bedics G, Haltrich I, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Gaál Z, Szegedi I, Ujfalusi A, Kajtár B, Kiss C, Matolcsy A, Tímár B, Kovács G, Alpár D, Bödör C. Next-Generation Sequencing-Based Genomic Profiling of Children with Acute Myeloid Leukemia. J Mol Diagn 2023; 25:555-568. [PMID: 37088137 PMCID: PMC10435843 DOI: 10.1016/j.jmoldx.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.
Collapse
Affiliation(s)
- Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztián Kállay
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gaál
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Csongor Kiss
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Botond Tímár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Zeidner JF, Ferguson NL, Montgomery ND. A reappraisal of ASXL1 mutation sites and the cohesin-binding motif in myeloid disease. Blood Cancer J 2023; 13:96. [PMID: 37365170 DOI: 10.1038/s41408-023-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc., 4001 E NC 54 Hwy Assembly Suite 1100, Durham, NC, 27709, USA
| | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Tempus Labs, Inc., 25 Alexandria Way, Durham, NC, 27703, USA
| |
Collapse
|
8
|
Sargas C, Ayala R, Larráyoz MJ, Chillón MC, Carrillo-Cruz E, Bilbao-Sieyro C, Prados de la Torre E, Martínez-Cuadrón D, Rodríguez-Veiga R, Boluda B, Gil C, Bernal T, Bergua JM, Algarra L, Tormo M, Martínez-Sánchez P, Soria E, Serrano J, Alonso-Domínguez JM, García-Boyero R, Amigo ML, Herrera-Puente P, Sayas MJ, Lavilla-Rubira E, Martínez-López J, Calasanz MJ, García-Sanz R, Pérez-Simón JA, Gómez-Casares MT, Sánchez-García J, Barragán E, Montesinos P. Molecular Landscape and Validation of New Genomic Classification in 2668 Adult AML Patients: Real Life Data from the PETHEMA Registry. Cancers (Basel) 2023; 15:438. [PMID: 36672386 PMCID: PMC9856266 DOI: 10.3390/cancers15020438] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Next-Generation Sequencing (NGS) implementation to perform accurate diagnosis in acute myeloid leukemia (AML) represents a major challenge for molecular laboratories in terms of specialization, standardization, costs and logistical support. In this context, the PETHEMA cooperative group has established the first nationwide diagnostic network of seven reference laboratories to provide standardized NGS studies for AML patients. Cross-validation (CV) rounds are regularly performed to ensure the quality of NGS studies and to keep updated clinically relevant genes recommended for NGS study. The molecular characterization of 2856 samples (1631 derived from the NGS-AML project; NCT03311815) with standardized NGS of consensus genes (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1 and WT1) showed 97% of patients having at least one mutation. The mutational profile was highly variable according to moment of disease, age and sex, and several co-occurring and exclusion relations were detected. Molecular testing based on NGS allowed accurate diagnosis and reliable prognosis stratification of 954 AML patients according to new genomic classification proposed by Tazi et al. Novel molecular subgroups, such as mutated WT1 and mutations in at least two myelodysplasia-related genes, have been associated with an adverse prognosis in our cohort. In this way, the PETHEMA cooperative group efficiently provides an extensive molecular characterization for AML diagnosis and risk stratification, ensuring technical quality and equity in access to NGS studies.
Collapse
Affiliation(s)
- Claudia Sargas
- Grupo Acreditado de Investigación en Hematología, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rosa Ayala
- Hospital Universitario 12 de Octubre, National Cancer Research Center, Complutense University, 28041 Madrid, Spain
| | - María José Larráyoz
- CIMA LAB Diagnostics, Departamento de Bioquímica y Genética, Universidad de Navarra, 31008 Pamplona, Spain
| | - María Carmen Chillón
- Servicio de Hematología, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, Centro de Investigación del Cáncer–IBMCC (USAL–CSIC), 37007 Salamanca, Spain
| | - Estrella Carrillo-Cruz
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain
| | - Cristina Bilbao-Sieyro
- Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Esther Prados de la Torre
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | - David Martínez-Cuadrón
- Servicio de Hematología, Grupo Acreditado de Investigación en Hematología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rebeca Rodríguez-Veiga
- Servicio de Hematología, Grupo Acreditado de Investigación en Hematología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Blanca Boluda
- Servicio de Hematología, Grupo Acreditado de Investigación en Hematología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Cristina Gil
- Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Teresa Bernal
- Hospital Universitario Central de Asturias, Instituto Universitario (IUOPA), Instituto de Investigación del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Lorenzo Algarra
- Hospital Universitario General de Albacete, 02006 Albacete, Spain
| | - Mar Tormo
- Hospital Clínico Universitario–INCLIVA, 46010 Valencia, Spain
| | - Pilar Martínez-Sánchez
- Hospital Universitario 12 de Octubre, National Cancer Research Center, Complutense University, 28041 Madrid, Spain
| | - Elena Soria
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain
| | - Josefina Serrano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | | | | | - María Luz Amigo
- Hospital Universitario Morales Messeguer, 30008 Murcia, Spain
| | | | | | | | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre, National Cancer Research Center, Complutense University, 28041 Madrid, Spain
| | - María José Calasanz
- CIMA LAB Diagnostics, Departamento de Bioquímica y Genética, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ramón García-Sanz
- Servicio de Hematología, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, Centro de Investigación del Cáncer–IBMCC (USAL–CSIC), 37007 Salamanca, Spain
| | - José Antonio Pérez-Simón
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain
| | | | - Joaquín Sánchez-García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | - Eva Barragán
- Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Servicio Análisis Clínicos, Grupo Acreditado de Investigación en Hematología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Pau Montesinos
- Servicio de Hematología, Grupo Acreditado de Investigación en Hematología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | | |
Collapse
|
9
|
Scott NR, Parekh SH. A-type lamins involvement in transport and implications in cancer? Nucleus 2022; 13:221-235. [PMID: 36109835 PMCID: PMC9481127 DOI: 10.1080/19491034.2022.2118418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nuclear lamins and transport are intrinsically linked, but their relationship is yet to be fully unraveled. A multitude of complex, coupled interactions between lamins and nucleoporins (Nups), which mediate active transport into and out of the nucleus, combined with well documented dysregulation of lamins in many cancers, suggests that lamins and nuclear transport may play a pivotal role in carcinogenesis and the preservation of cancer. Changes of function related to lamin/Nup activity can principally lead to DNA damage, further increasing the genetic diversity within a tumor, which could lead to the reduction the effectiveness of antineoplastic treatments. This review discusses and synthesizes different connections of lamins to nuclear transport and offers a number of outlook questions, the answers to which could reveal a new perspective on the connection of lamins to molecular transport of cancer therapeutics, in addition to their established role in nuclear mechanics.
Collapse
Affiliation(s)
- Nicholas R. Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
The evolution of targeted therapy in pediatric AML: gemtuzumab ozogamicin, FLT3/IDH/BCL2 inhibitors, and other therapies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:603-610. [PMID: 36485125 PMCID: PMC9819987 DOI: 10.1182/hematology.2022000358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the maximum intensification of chemotherapy and the increased use of hematopoietic stem cell transplantation (HCT) in pediatric patients with acute myeloid leukemia (AML), nearly 40% of patients still experience relapse, and cure in this setting remains a significant challenge. Recent improvements in AML characterization, including advances in flow cytometry and comprehensive genomic sequencing, have led to a better understanding of AML biology and the identification of multiple potential therapeutic targets. Novel agents targeting genomic lesions, cell surface antigens, and other mechanisms that permit oncogenesis or immune escape are being incorporated into current treatment strategies or are under investigation in efforts to improve outcomes and decrease the toxicities and late effects associated with traditional intensive chemotherapeutic and HCT treatment. However, multiple challenges still exist, including the biologic and immunophenotypic heterogeneity of childhood AML, the differences in underlying biology as compared to adult AML, and the significant potential for on-target/off-tumor toxicity associated with therapies directed at targets common to myeloid cells, both leukemic and normal. This article reviews the current landscape of genomic and cell surface targets for children with AML with a focus on the currently available targeted therapeutic agents, those in active clinical investigation, and those still in development.
Collapse
|
11
|
Underwood JS, Sharaf N, O'Brien ARW, Batra S, Konig H, Skiles JL. Differences Between Pediatric and Adult Protocols and Medical Centers in the Treatment of Acute Myeloid Leukemia in the United States. J Adolesc Young Adult Oncol 2022; 12:147-150. [PMID: 35834614 DOI: 10.1089/jayao.2021.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- John S Underwood
- Department of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nematullah Sharaf
- Internal Medicine/Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew R W O'Brien
- Department of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandeep Batra
- Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Heiko Konig
- Department of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jodi L Skiles
- Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Blood Count Recovery Following Induction Therapy for Acute Myeloid Leukemia in Children Does Not Predict Survival. Cancers (Basel) 2022; 14:cancers14030616. [PMID: 35158884 PMCID: PMC8833679 DOI: 10.3390/cancers14030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary International Working Group (IWG) and European LeukemiaNet (ELN) adult response definitions are currently used to evaluate the efficacy of new agents for childhood acute myeloid leukemia (AML); however, the criteria are not consistent with consensus definitions used in pediatric trials or the common practice of intensifying treatment prior to full hematopoietic recovery of ANC ≥ 1000 cells/μL and platelets ≥ 100 cells/μL. This retrospective analysis of the two most recent Phase 3 AML trials in the Children’s Oncology Group assesses the incidence, timing, and prognostic significance of count recovery following induction chemotherapy in children with AML. These data confirm that awaiting count recovery to meet adult criteria does not reflect standard practice in pediatric AML and IWG/ELN-defined CR does not have a significant impact on survival in children. Continuing to use adult IWG/ELN count recovery definitions limits childhood AML drug development by underestimating response, and therefore, updated response criteria are needed for pediatric AML patients. Abstract International Working Group (IWG) and European LeukemiaNet (ELN) response definitions are utilized to evaluate the efficacy of new agents for childhood acute myeloid leukemia (AML) for regulatory purposes. However, these criteria are not consistent with definitions used in pediatric AML trials or with standard pediatric practice to proceed with subsequent therapy cycles prior to IWG/ELN-defined count recovery. We retrospectively analyzed data from the two most recent Phase 3 pediatric AML clinical trials conducted by the Children’s Oncology Group (COG) to assess the incidence, timing, and prognostic significance of count recovery following induction chemotherapy. Of the patients with fewer than 5% bone marrow blasts at the end of first induction, 21.5% of patients proceeded to a second induction cycle prior to achieving ANC ≥ 500 cells/μL and platelets ≥ 50,000 cells/μL, both well below the IWG/ELN thresholds of ANC > 1000 cells/μL and platelets > 100,000 cells/μL. In these two sequential childhood AML Phase 3 trials, neither ANC nor platelet recovery predicted survival. Intensification of treatment through the initiation of subsequent therapy cycles prior to attainment of IWG/ELN-defined CR is common practice in clinical trials for children with AML, suggesting that updated response definitions are needed for pediatric AML.
Collapse
|
14
|
Gopalakrishnapillai A, Correnti CE, Pilat K, Lin I, Chan MK, Bandaranayake AD, Mehlin C, Kisielewski A, Hamill D, Kaeding AJ, Meshinchi S, Olson JM, Kolb EA, Barwe SP. Immunotherapeutic Targeting of Mesothelin Positive Pediatric AML Using Bispecific T Cell Engaging Antibodies. Cancers (Basel) 2021; 13:5964. [PMID: 34885074 PMCID: PMC8657033 DOI: 10.3390/cancers13235964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in the treatment of pediatric AML have been modest over the past four decades. Despite maximally intensive therapy, approximately 40% of patients will relapse. Novel targeted therapies are needed to improve outcomes. We identified mesothelin (MSLN), a well-validated target overexpressed in some adult malignancies, to be highly expressed on the leukemic cell surface in a subset of pediatric AML patients. The lack of expression on normal bone marrow cells makes MSLN a viable target for immunotherapies such as T-cell engaging bispecific antibodies (BsAbs) that combine two distinct antibody-variable regions into a single molecule targeting a cancer-specific antigen and the T-cell co-receptor CD3. Using antibody single-chain variable region (scFv) sequences derived from amatuximab-recognizing MSLN, and from either blinatumomab or AMG330 targeting CD3, we engineered and expressed two MSLN/CD3-targeting BsAbs: MSLNAMA-CD3L2K and MSLNAMA-CD3AMG, respectively. Both BsAbs promoted T-cell activation and reduced leukemic burden in MV4;11:MSLN xenografted mice, but not in those transplanted with MSLN-negative parental MV4;11 cells. MSLNAMA-CD3AMG induced complete remission in NTPL-146 and DF-5 patient-derived xenograft models. These data validate the in vivo efficacy and specificity of MSLN-targeting BsAbs. Because prior MSLN-directed therapies appeared safe in humans, MSLN-targeting BsAbs could be ideal immunotherapies for MSLN-positive pediatric AML patients.
Collapse
Affiliation(s)
- Anilkumar Gopalakrishnapillai
- Nemours Centers for Childhood Cancer Research & Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (A.G.); (A.K.); (D.H.); (E.A.K.)
| | - Colin E. Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Kristina Pilat
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Ida Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Man Kid Chan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Ashok D. Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Anne Kisielewski
- Nemours Centers for Childhood Cancer Research & Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (A.G.); (A.K.); (D.H.); (E.A.K.)
| | - Darcy Hamill
- Nemours Centers for Childhood Cancer Research & Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (A.G.); (A.K.); (D.H.); (E.A.K.)
| | - Allison J. Kaeding
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.E.C.); (K.P.); (I.L.); (M.K.C.); (A.D.B.); (C.M.); (A.J.K.); (S.M.); (J.M.O.)
| | - Edward Anders Kolb
- Nemours Centers for Childhood Cancer Research & Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (A.G.); (A.K.); (D.H.); (E.A.K.)
| | - Sonali P. Barwe
- Nemours Centers for Childhood Cancer Research & Cancer and Blood Disorders, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (A.G.); (A.K.); (D.H.); (E.A.K.)
| |
Collapse
|
15
|
Abstract
The outcomes associated with pediatric acute myeloid leukemia (AML) have improved over the last few decades, with the implementation of intensive chemotherapy, hematopoietic stem cell transplant, and improved supportive care. However, even with intensive therapy and the use of HSCT, both of which carry significant risks of short- and long-term side effects, approximately 30% of children are not able to be cured. The characterization of AML in pediatrics has evolved over time and it currently involves use of a variety of diagnostic tools, including flow cytometry and comprehensive genomic sequencing. Given the adverse effects of chemotherapy and the need for additional therapeutic options to improve outcomes in these patients, the genomic and molecular architecture is being utilized to inform selection of targeted therapies in pediatric AML. This review provides a summary of current, targeted therapy options in pediatric AML.
Collapse
|
16
|
Lewis DR, Siembida EJ, Seibel NL, Smith AW, Mariotto AB. Survival outcomes for cancer types with the highest death rates for adolescents and young adults, 1975-2016. Cancer 2021; 127:4277-4286. [PMID: 34308557 DOI: 10.1002/cncr.33793] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Five-year relative survival for adolescent and young adult (AYA) patients with cancer diagnosed at the ages of 15 to 39 years is 85%. Survival rates vary considerably according to the cancer type. The purpose of this study was to analyze long-term survival trends for cancer types with the highest mortality among AYAs to determine where the greatest burden is and to identify areas for future research. METHODS Using data from the Surveillance, Epidemiology, and End Results cancer registry and the National Center for Health Statistics, the authors examined the incidence, mortality, and survival for the 9 cancer types with the highest mortality rates in this age group from 1975 to 2016. JPSurv, new survival trend software, was used in the analysis. RESULTS Results suggested significant improvements in 5-year relative survival for brain and other nervous system tumors, colon and rectum cancer, lung and bronchus cancer, acute myeloid leukemia, and non-Hodgkin lymphoma (all P values < .05). Limited or no improvement in survival was found for female breast cancer, cervical cancer, ovarian cancer, and bone and joint sarcomas. CONCLUSIONS Five-year relative survival for multiple cancer types in AYAs has improved, but some common cancer types in this group still show limited survival improvements (eg, ovarian cancer). Survival improvements in colorectal cancer have been overshadowed by its rising incidence, which suggests a substantial disease burden. Future research should focus on female breast, bone, ovarian, and cervical cancers, which have seen minimal or no improvements in survival. LAY SUMMARY Survival trends for adolescents and young adults with cancer are presented from a 40-year period. Although survival progress is noted for brain cancer, lung cancer, acute myeloid leukemia, and colon and rectum cancer, the incidence of colon and rectum cancer remains high. Minimal progress is evident for female breast, bone, ovarian, and cervical cancers, which are in need of renewed focus.
Collapse
Affiliation(s)
- Denise Riedel Lewis
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Elizabeth J Siembida
- Center for Health Innovation and Outcomes Research, Northwell Health, Manhasset, New York
| | - Nita L Seibel
- Division of Cancer Treatment and Detection, National Cancer Institute, Bethesda, Maryland
| | - Ashley Wilder Smith
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Angela B Mariotto
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
17
|
Single base substitution mutational signatures in pediatric acute myeloid leukemia based on whole genome sequencing. Leukemia 2021; 35:1485-1489. [PMID: 33864028 PMCID: PMC8102186 DOI: 10.1038/s41375-021-01242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
|
18
|
Segerink WH, de Haas V, Kaspers GJL. Measurable residual disease in pediatric acute myeloid leukemia: a systematic review. Expert Rev Anticancer Ther 2021; 21:451-459. [PMID: 33706635 DOI: 10.1080/14737140.2021.1860763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: A systematic review was performed to assess the prognostic value of Measurable Residual Disease (MRD) during treatment, for relapse and overall survival in pediatric acute myeloid leukemia (AML).Areas covered: A systematic search of available literature was performed to identify original full-text articles concerning MRD as prognostic for relapse and survival in pediatric AML. Thirteen studies were included, and in all studies, MRD positivity during treatment was associated with worse clinical outcome. MRD positivity was significantly associated with a higher probability of relapse in eleven studies. However, MRD negativity does not exclude the possibility of relapse in pediatric AML, while positivity early during therapy does not exclude cure.Expert opinion: MRD positivity during treatment has emerged as the most powerful prognostic factor in pediatric AML concerning relapse and overall survival and is useful for risk-group adapted treatment. Future studies should identify the optimal time-point(s) for MRD measurements and the optimal technique, to further improve its prognostic significance.
Collapse
Affiliation(s)
- W H Segerink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands
| | - V de Haas
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands
| | - G J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584CS, The Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, The Netherlands
| |
Collapse
|
19
|
Abstract
The key differences between tumors arising in children and those in adults stem from the cellular origin of cancer at different ages, with adult cancers arising within aging cell hierarchies, as a consequence of accumulated damage and mutagenesis, in contrast to childhood tumors that are born in aberrantly developing tissues. A distinct biological property of childhood tumor cells-a block of developmental maturation-may hold the key to advancing the treatment of childhood cancer beyond cytotoxic strategies.
Collapse
Affiliation(s)
- Sam Behjati
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Division of Pediatric Neurooncology, Heidelberg, Germany
- Heidelberg University Hospital, Department of Pediatric Hematology and Oncology, Heidelberg, Germany
| |
Collapse
|
20
|
Yoshida N, Yamada K, Ohshima K. Comprehensive genomic analysis identifying heterogeneity in peripheral T-cell lymphoma. Cancer Sci 2021; 112:1339-1347. [PMID: 33576080 PMCID: PMC8019213 DOI: 10.1111/cas.14849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous entity generally with a poor prognosis. Recent genomic analyses have characterized genomic alterations and described gene expression profiling and epigenetic mechanisms in PTCL, leading to reveal molecular pathophysiology in detail. One of several important findings is that heterogeneities exist in both the disease and in individuals. Among PTCL subtypes, adult T-cell leukemia/lymphoma (ATLL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are common in Japan. ATLL is an incurable T-cell malignancy induced by human T-cell lymphotropic virus type 1 (HTLV-1). The global genomics of ATLL can be summarized as alterations involving T-cell receptor (TCR) signaling and immune escape mechanisms. This highlights the fact that ATLL is a viral-mediated T-cell malignancy. Interestingly, several previous studies have found that the genomics of ATLL differ according to geographical region and age at diagnosis, suggesting disease heterogeneity, though they share HTLV-1 infection as initial disease hit. Clonal expansion of the cells acquired by somatic mutations in ATLL-related genes is identified in a part of HTLV-1 carriers who developed ATLL later. The risk for ATLL may be updated based on findings in detail. PTCL-NOS is a heterogeneous disease type of T-cell lymphoma that does not correspond to any other type of PTCL. Several studies have stratified PTCL-NOS according to transcriptional, genomic, microenvironmental, and clinical aspects. These kinds of analysis from multiple aspects are useful to understand the heterogeneous group. These efforts will help guide suitable translational research to target PTCL.
Collapse
Affiliation(s)
- Noriaki Yoshida
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan.,Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
21
|
Schütte J, Reusch J, Khandanpour C, Eisfeld C. Structural Variants as a Basis for Targeted Therapies in Hematological Malignancies. Front Oncol 2019; 9:839. [PMID: 31555592 PMCID: PMC6722867 DOI: 10.3389/fonc.2019.00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
Structural variants (SV) are changes in the genomic landscape that can alter gene expression levels and thus lead to disease development. The most common and best studied SVs in hematological malignancies are chromosomal translocations. Here, parts of two genes that are normally on different chromosomes come into close proximity due to a failure in DNA repair. As a consequence, fusion proteins which show a different function and/or cellular localization compared to the two original proteins are expressed, sometimes even at different levels. The identification of chromosomal translocations is often used to identify the specific disease a patient is suffering from. In addition, SVs such as deletions, duplications, inversions and single nucleotide polymorphisms (SNPs) can occur in hematopoietic cells and lead to their malignant transformations. Changes in the 3D genome structure have also recently been shown to impact disease development. In this review, we describe a variety of SVs occurring in different subtypes of hematological malignancies. Currently, most therapeutic approaches target fusion proteins which are the cellular product of chromosomal translocations. However, amplifications and SNPs also play a role in disease progression and can be targeted. We present some examples for different types of structural variants and how they are currently treated.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Julia Reusch
- Medizinische Fakultät, Universität Münster, Münster, Germany
| | | | | |
Collapse
|
22
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
23
|
Abstract
Increasing evidence supports the prognostic significance of measurable residual disease (MRD) in acute myeloid leukemia (AML). Dynamic MRD assessment for patients with AML complements baseline patient risk assessment factors in determining patient prognosis. MRD status may also be helpful in informing therapeutic decisions. The European Leukemia Net MRD working party recently issued consensus recommendations for the use of MRD in AML. The Food and Drug Administration also issued advice for using MRD in trials of hematologic malignancies. This article discusses MRD testing, highlights the challenges in adopting MRD testing in clinical practice, and provides insights into the future of the field.
Collapse
|