1
|
MAFFEZZOLI MICHELE, GIUDICE GIULIACLAIRE, IOVANE GIACOMO, MANINI MARTINA, RAPACCHI ELENA, CARUSO GIUSEPPE, SIMONI NICOLA, FERRETTI STEFANIA, PULIATTI STEFANO, CAMPOBASSO DAVIDE, BUTI SEBASTIANO. The effect of concomitant drugs on oncological outcomes in patients treated with immunotherapy for metastatic urothelial carcinoma: a narrative review. Oncol Res 2025; 33:741-757. [PMID: 40191722 PMCID: PMC11964881 DOI: 10.32604/or.2024.057278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 04/09/2025] Open
Abstract
Background immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic urothelial carcinoma (mUC), significantly improving survival outcomes. However, a subset of patients do not respond to ICIs, prompting research into potential predictive factors. Commonly prescribed medications such as corticosteroids, proton-pump inhibitors (PPIs), antibiotics (Abs), antihypertensives, and analgesics may influence ICI effectiveness. Methods we conducted a literature search on PubMed to investigate the impact of concomitant medications on the outcomes of patients with mUC, treated with ICIs. We selected the most relevant studies and performed a narrative review. Results corticosteroids, PPIs and Abs have been associated with reduced survival in ICI-treated patients, including those with mUC. In contrast, antihypertensive agents like renin-angiotensin system inhibitors and beta-blockers may enhance ICI efficacy, though evidence remains inconclusive. The impact of other medications, such as statins, metformin, and analgesics, on ICI outcomes is less clear, with some data suggesting a detrimental impact on immune response. Conclusions this narrative review synthesizes current evidence on how concomitant medications affect outcomes in mUC patients treated with ICIs.
Collapse
Affiliation(s)
- MICHELE MAFFEZZOLI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIULIA CLAIRE GIUDICE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIACOMO IOVANE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - MARTINA MANINI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - ELENA RAPACCHI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - GIUSEPPE CARUSO
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - NICOLA SIMONI
- Radiotherapy Unit, University Hospital of Parma, Parma, 43126, Italy
| | - STEFANIA FERRETTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - STEFANO PULIATTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | | | - SEBASTIANO BUTI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|
2
|
Kilmister EJ, Tan ST. Cancer Stem Cells and the Renin-Angiotensin System in the Tumor Microenvironment of Melanoma: Implications on Current Therapies. Int J Mol Sci 2025; 26:1389. [PMID: 39941158 PMCID: PMC11818896 DOI: 10.3390/ijms26031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Multiple signaling pathways are dysregulated in melanoma, notably the Ras/RAF/MAPK/ERK and PI3K/AKT/mTOR pathways, which can be targeted therapeutically. The high immunogenicity of melanoma has been exploited using checkpoint inhibitors. Whilst targeted therapies and immune checkpoint inhibitors have improved the survival of patients with advanced melanoma, treatment resistance, their side effect profiles, and the prohibitive cost remain a challenge, and the survival outcomes remain suboptimal. Treatment resistance has been attributed to the presence of cancer stem cells (CSCs), a small subpopulation of pluripotent, highly tumorigenic cells proposed to drive cancer progression, recurrence, metastasis, and treatment resistance. CSCs reside within the tumor microenvironment (TME) regulated by the immune system, and the paracrine renin-angiotensin system, which is expressed in many cancer types, including melanoma. This narrative review discusses the role of CSCs and the paracrine renin-angiotensin system in the melanoma TME, and its implications on the current treatment of advanced melanoma with targeted therapy and immune checkpoint blockers. It also highlights the regulation of the Ras/RAF/MAPK/ERK and PI3K/AKT/mTOR pathways by the renin-angiotensin system via pro-renin receptors, and how this may relate to CSCs and treatment resistance, underscoring the potential for improving the efficacy of targeted therapy and immunotherapy by concurrently modulating the renin-angiotensin system.
Collapse
Affiliation(s)
- Ethan J. Kilmister
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Wang M, Yang S, Deng J, Wu D, He C, Li G, Dong Y, Zhang Y, Li Y. Unveiling the hidden risks: albumin-corrected anion gap as a superior marker for cardiovascular mortality in type 2 diabetes: insights from a nationally prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1461047. [PMID: 39574951 PMCID: PMC11578733 DOI: 10.3389/fendo.2024.1461047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Aims Hypoalbuminemia can lead to underestimations of the true anion gap levels. There are few data on albumin-corrected serum anion gap (ACAG) status and mortality in the diabetes. The study aimed to examine the association between ACAG and all-cause, cardiovascular, and cancer mortality in type 2 diabetes (T2D) patients. Methods Herein, 8,161 diabetic adults were included in the National Health and Nutrition Examination Survey (NHANES) 1999-2018. National Mortality Index (NDI) data were used for determining mortality outcomes through 31 December 2019. Cox proportional hazards models were used to estimate the risk of all-cause, cardiovascular, and cancer mortality. We conducted a mediation analysis using the counterfactual framework method to estimate how ACAG may be indirectly associated with increased mortality risk through mediators. Results A total of 2,309 deaths were documented over 8,161 person-years of follow up, including 659 cardiovascular and 399 cancer deaths. In multivariate analyses, higher ACAG levels had a significant correlation with an increase in all-cause (HR, 1.58; 95% CI, 1.38-1.81; P=0.001), cardiovascular (HR, 1.34; 95% CI, 1.05-1.72; P=0.019), and cancer (HR, 1.41; 95% CI, 1.02-1.96; P=0.018) mortality rates than the controls. Results of the mediation analysis showed that altered levels of C-reactive protein and estimated glomerular filtration rate (eGFR) explained 7.867% and 7.669% of the relation between serum ACAG and all-cause mortality, respectively (all P<0.05). Total cholesterol and HbA1c mediated 15.402% and 14.303% of the associations with cardiovascular mortality, respectively (all P<0.05). Conclusions Higher ACAG levels were significantly associated with increased all-cause, cardiovascular, and cancer mortality. Researchers suggest that patients with T2D who control ACAG in a normal state may be at a lower risk of mortality.
Collapse
Affiliation(s)
- Mingsi Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- College of Health Management of Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu Yang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingwen Deng
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Dehai Wu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changzhi He
- Graduate School, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guanghua Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Dong
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongxiang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yilan Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Pan M, Li H, Shi X. A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. FRONT BIOSCI-LANDMRK 2024; 29:321. [PMID: 39344326 DOI: 10.31083/j.fbl2909321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Pan
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Xiaoyan Shi
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| |
Collapse
|
5
|
Liu H, Nassour I, Lebowitz S, D'Alesio M, Hampton E, Desilva A, Hammad A, AlMasri S, Khachfe HH, Singhi A, Bahary N, Lee K, Zureikat A, Paniccia A. The use of angiotensin system inhibitors correlates with longer survival in resected pancreatic adenocarcinoma patients. HPB (Oxford) 2023; 25:320-329. [PMID: 36610939 PMCID: PMC11199074 DOI: 10.1016/j.hpb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Activities and inhibition of the Renin-Angiotensin-Aldosterone System (RAAS) may affect the survival of resected pancreatic ductal adenocarcinoma (PDAC) patients METHOD: A single-institution retrospective analysis of resected PDAC patients between 2010 and 2019. To estimate the effect of angiotensin system inhibitors (ASIs) on patient survival, we performed Kaplan Meier analysis, Cox Proportional Hazards model, Propensity Score Matching (PSM), and inverse probability weighting (IPW) analysis. RESULTS 742 patients were included in the analysis. The average age was 67.0 years, with a median follow-up of 24.1 months. The use of ASI was associated with significantly longer overall survival in univariate (p = 0.004) and multivariable (HR = 0.70 [0.56-0.88],p = 0.003) adjusted analysis. In a propensity score-matched cohort of 400 patients, ASI use was again associated with longer overall survival (p = 0.039). Lastly, inverse probability weighting (IPW) analysis suggested that the use of ASI was associated with an average treatment effect on the treated (ATT) of HR = 0.68 [0.53-0.86],p = 0.002) for overall survival. CONCLUSION In this single-institution retrospective study focusing on resected PDAC patients, the use of ASI was associated with longer overall survival in multiple statistical models. Prospective clinical trials are needed before routine clinical implementation of ASI as an adjuvant to existing therapy can be recommended.
Collapse
Affiliation(s)
- Hao Liu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ibrahim Nassour
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Steven Lebowitz
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark D'Alesio
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erica Hampton
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annissa Desilva
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Abdulrahman Hammad
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Samer AlMasri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussein H Khachfe
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Aatur Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Wang Z, Wang T, Wu G, Zhu L, Zhang J. Clinical Significance and Tumor Microenvironment Characterization of a Novel Immune-Related Gene Signature in Bladder Cancer. J Clin Med 2023; 12:jcm12051892. [PMID: 36902678 PMCID: PMC10003605 DOI: 10.3390/jcm12051892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Cancer immunotherapy plays a crucial role in bladder cancer (BC) progression. Increasing evidence has elucidated the clinicopathologic significance of the tumor microenvironment (TME) in predicting outcomes and therapeutic efficacy. This study sought to establish a comprehensive analysis of the immune-gene signature combined with TME to assist in BC prognosis. We selected sixteen immune-related genes (IRGs) after a weighted gene co-expression network and survival analysis. Enrichment analysis revealed that these IRGs were actively involved in Mitophagy and Renin secretion pathways. After multivariable COX analysis, the IRGPI comprising NCAM1, CNTN1, PTGIS, ADRB3, and ANLN was established to predict the overall survival of BC, which was validated in both TCGA and GSE13507 cohorts. In addition, a TME gene signature was developed for molecular and prognosis subtyping with unsupervised clustering, followed by a panoramic landscape characterization of BC. In summary, the IRGPI model developed in our study provided a valuable tool with an improved prognosis for BC.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
- Advanced Biological Screening Facility, BioQuant, Heidelberg University, 69120 Heidelberg, Germany
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Gangfeng Wu
- Department of Urology, Shaoxing People’s Hospital, Shaoxing 312000, China
| | - Lei Zhu
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.Z.); (J.Z.)
| | - Jian Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
- Correspondence: (L.Z.); (J.Z.)
| |
Collapse
|
7
|
Kashyap MK, Bhat A, Janjua D, Rao R, Thakur K, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Chandra Bharti A. Role of angiotensin in different malignancies. ANGIOTENSIN 2023:505-544. [DOI: 10.1016/b978-0-323-99618-1.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
The interactions between antihypertensive drugs and novel anticancer therapy. J Hypertens 2021; 39:1303-1305. [PMID: 34074966 DOI: 10.1097/hjh.0000000000002806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Effect of concomitant use of antihypertensives and immune check point inhibitors on cancer outcomes. J Hypertens 2021; 39:1274-1281. [PMID: 34074965 DOI: 10.1097/hjh.0000000000002799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Antihypertensives and cancer have a complex relationship. Among the antihypertensives, renin--angiotensin system inhibitors have strong immune modulatory activities that may affect immune check point inhibitors-related outcomes in cancer patients. We evaluated the association between concomitant use of renin--angiotensin system inhibitors and other antihypertensive agents with survival/toxicity outcomes from atezolizumab. METHODS A post hoc analysis of individual patient data from seven clinical trials of lung, renal or urothelial cancers was performed. Users and nonusers of antihypertensive classes were compared for overall survival, progression-free survival and immune adverse events. Cox proportional hazards were calculated between the groups and reported as hazards ratio and 95% confidence interval (95% CI). RESULTS Of the 3695 patients, 2539 were treated with atezolizumab and the rest with chemotherapy. Twenty-four percent of patients were on a renin--angiotensin system inhibitor at trial commencement. No statistically significant difference in overall survival (hazard ratio 0.92, 95% CI 0.79-1.07, P = 0.29), progression-free survival (hazard ratio 0.95, 95% CI 0.84-1.08, P = 0.42) or immune adverse events (odds ratio 0.94, 95% CI 0.76-1.15, P = 0.55) between renin--angiotensin system inhibitor users and nonusers were identified in the atezolizumab-treated cohort. Other classes of antihypertensives were also not associated with survival. CONCLUSION Concomitant use of antihypertensives including RASi was not associated with survival and immune-related safety outcomes during atezolizumab therapy for solid cancers. Future studies should evaluate the association between antihypertensives and other ICI as well as ICI combination interventions in clinical trials and real-world settings.
Collapse
|
10
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
11
|
Acheampong DO, Barffour IK, Boye A, Aninagyei E, Ocansey S, Morna MT. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020; 131:110748. [PMID: 33152916 PMCID: PMC7480230 DOI: 10.1016/j.biopha.2020.110748] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The severe form of COVID-19 has significant sex disparities, with high fatalities commonly reported among males than females. The incidence of COVID-19 has also been higher in males compared with their female counterparts. This trend could be attributed to a better responsive and robust immune system in females. Cytokine storm is one of the pathophysiological features of severe COVID-19, and it occurs as a result of over-activation of immune cells leading to severe inflammation and tissue damage. Nevertheless, it is well modulated in females compared to their male counterparts. Severe inflammation in males is reported to facilitate progression of mild to severe COVID-19. The sex hormones, estrogens and androgens which exist in varying functional levels respectively in females and males are cited as the underlying cause for the differential immune response to COVID-19. Evidence abounds that estrogen modulate the immune system to protect females from severe inflammation and for that matter severe COVID-19. On the contrary, androgen has been implicated in over-activation of immune cells, cytokine storm and the attendant severe inflammation, which perhaps predispose males to severe COVID-19. In this review efforts are made to expand understanding and explain the possible roles of the immune system, the sex hormones and the angiotensin-converting enzyme (ACE) systems in male bias to severe COVID-19. Also, this review explores possible therapeutic avenues including androgen deprivation therapy (ADT), estrogen-based therapy, and ACE inhibitors for consideration in the fight against COVID-19.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Child, Preschool
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/therapy
- Disease Susceptibility
- Female
- Gonadal Steroid Hormones/physiology
- Humans
- Immunity, Innate
- Infant
- Infant, Newborn
- Inflammation
- Male
- Mice
- Middle Aged
- Pandemics
- Peptidyl-Dipeptidase A/physiology
- Pneumonia, Viral/complications
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/therapy
- Prostatic Neoplasms/complications
- Prostatic Neoplasms/drug therapy
- Protein Disulfide-Isomerases/physiology
- Receptors, Cell Surface/physiology
- Receptors, Virus/physiology
- SARS-CoV-2
- Sex Distribution
- Smoking/adverse effects
- Young Adult
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Allied Health Sciences, Ho, Ghana
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Martin Tangnaa Morna
- Department of Surgery, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Uso terapéutico de los inhibidores de la enzima convertidora de angiotensina en pacientes con COVID-19: las «dos caras de la moneda». REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [PMCID: PMC7365126 DOI: 10.1016/j.rccar.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
La evidencia actual es limitada para determinar el impacto del uso de los inhibidores de la enzima convertidora de angiotensina (IECA) en la predisposición al empeoramiento de la enfermedad del coronavirus 2019 (COVID-19). Inicialmente se reportó que en los pacientes con progresión grave de la COVID-19 existía una mortalidad elevada, los cuales tenían antecedentes de hipertensión arterial, diabetes mellitus, enfermedad cardiovascular y enfermedad renal crónica. Parte de estos pacientes también tenía en común que utilizaban IECA, lo cual alertó a la comunidad médica sobre su riesgo potencial en coexistencia con COVID-19. Sin embargo, estudios más recientes de casos-controles encontraron que los inhibidores del sistema renina-angiotensina, incluyendo los IECA, no incrementan el riesgo de COVID-19 o de requerir admisión hospitalaria por esta causa. Diferentes revistas científicas han facilitado el acceso a reportes preliminares, dejando a discreción de la comunidad médica y científica hacer uso de dicha información para promover el desarrollo de estudios que confirmen experimentalmente dichos hallazgos, preclínicos y epidemiológicos, que finalmente impacten en las decisiones de la práctica clínica para beneficiar a los pacientes con COVID-19. En esta revisión de la literatura se exploran los diferentes efectos mediados por los IECA que podrían estar relacionados con la respuesta inmune durante la infección y la transmisión de COVID-19, compilando evidencia disponible que evalúa si en realidad representan un riesgo o si, por el contrario, confieren un efecto protector.
Collapse
|
13
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
14
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
15
|
Fabris F, Palmer D, Salama KM, de Magalhães JP, Freitas AA. Using deep learning to associate human genes with age-related diseases. Bioinformatics 2020; 36:2202-2208. [PMID: 31845988 PMCID: PMC7141856 DOI: 10.1093/bioinformatics/btz887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
Motivation One way to identify genes possibly associated with ageing is to build a classification model (from the machine learning field) capable of classifying genes as associated with multiple age-related diseases. To build this model, we use a pre-compiled list of human genes associated with age-related diseases and apply a novel Deep Neural Network (DNN) method to find associations between gene descriptors (e.g. Gene Ontology terms, protein–protein interaction data and biological pathway information) and age-related diseases. Results The novelty of our new DNN method is its modular architecture, which has the capability of combining several sources of biological data to predict which ageing-related diseases a gene is associated with (if any). Our DNN method achieves better predictive performance than standard DNN approaches, a Gradient Boosted Tree classifier (a strong baseline method) and a Logistic Regression classifier. Given the DNN model produced by our method, we use two approaches to identify human genes that are not known to be associated with age-related diseases according to our dataset. First, we investigate genes that are close to other disease-associated genes in a complex multi-dimensional feature space learned by the DNN algorithm. Second, using the class label probabilities output by our DNN approach, we identify genes with a high probability of being associated with age-related diseases according to the model. We provide evidence of these putative associations retrieved from the DNN model with literature support. Availability and implementation The source code and datasets can be found at: https://github.com/fabiofabris/Bioinfo2019. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fabio Fabris
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Khalid M Salama
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| |
Collapse
|
16
|
Urup T, Gillberg L, Kaastrup K, Lü MJS, Michaelsen SR, Andrée Larsen V, Christensen IJ, Broholm H, Lassen U, Grønbaek K, Poulsen HS. Angiotensinogen promoter methylation predicts bevacizumab treatment response of patients with recurrent glioblastoma. Mol Oncol 2020; 14:964-973. [PMID: 32133779 PMCID: PMC7191184 DOI: 10.1002/1878-0261.12660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/30/2019] [Accepted: 03/02/2020] [Indexed: 11/07/2022] Open
Abstract
Patients with recurrent glioblastoma achieving response to bevacizumab combined with chemotherapy have clinical improvement and prolonged survival. High gene expression of angiotensinogen (AGT) is associated with a poor bevacizumab response. Because AGT expression is epigenetically regulated, we aimed to investigate whether AGT promoter methylation in tumor tissue predicts response to bevacizumab combination therapy in patients with recurrent glioblastoma. The study included 159 patients with recurrent glioblastoma, treated with bevacizumab combination treatment (training cohort, n = 77; validation cohort, n = 82). All patients could be evaluated for treatment response and biomarkers. DNA methylation of 4 CpG sites in the AGT promoter was measured using pyrosequencing. A model for nonresponse was established using logistic regression analysis. In the training cohort, lower methylation of each of the four CpG sites in the AGT promoter was significantly associated with nonresponse (all P < 0.05). Moreover, the mean methylation level of all four CpG sites was associated with an increased likelihood of not achieving response to bevacizumab combination therapy (twofold decrease: odds ratio = 3.01; 95% confidence interval: 1.41-6.44; P = 0.004). We developed a model for nonresponse in the training cohort, where a threshold of mean AGT promoter methylation levels was set to below 12%. The model could predict bevacizumab nonresponse with 96% specificity. Importantly, this predictor was also significantly associated with nonresponse in the validation cohort (P = 0.037). Taken together, our findings suggest that low AGT promoter methylation in tumor tissue predicts nonresponse to bevacizumab combination treatment in patients with recurrent glioblastoma. We have, thus, established and successfully validated a predictor for nonresponse that can be used to identify patients who will not benefit from bevacizumab combination therapy.
Collapse
Affiliation(s)
- Thomas Urup
- Department of Radiation Biology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Hematology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Kaastrup
- Department of Hematology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maya Jeje Schuang Lü
- Department of Radiation Biology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Radiation Biology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Center of Diagnostic Investigation, Rigshospitalet, Copenhagen, Denmark
| | | | - Helle Broholm
- Department of Neuropathology, Center of Diagnostic Investigation, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Radiation Biology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Centre for Cancer and Organ Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Riddiough GE, Fifis T, Muralidharan V, Perini MV, Christophi C. Searching for the link; mechanisms underlying liver regeneration and recurrence of colorectal liver metastasis post partial hepatectomy. J Gastroenterol Hepatol 2019; 34:1276-1286. [PMID: 30828863 DOI: 10.1111/jgh.14644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Despite excellent treatment of primary colorectal cancer, the majority of deaths occur as a result of metastasis to the liver. Recent population studies have estimated that one quarter of patients with colorectal cancer will incur synchronous or metachronous colorectal liver metastasis. However, only one quarter of these patients will be eligible for potentially curative resection. Tumor recurrence occurs in reportedly 60% of patients undergoing hepatic resection, and the majority of intrahepatic recurrence occurs within the first 6 months of surgery. The livers innate ability to restore its homeostatic size, and volume facilitates major hepatic resection that currently offers the only chance of cure to patients with extensive hepatic metastases. Experimental and clinical evidence supports the notion that following partial hepatectomy, liver regeneration (LR) paradoxically drives tumor progression and increases the risk of recurrence. It is becoming increasingly clear that the processes that drive liver organogenesis, regeneration, and tumor progression are inextricably linked. This presents a major hurdle in the management of colorectal liver metastasis and other hepatic malignancies because therapies that reduce the risk of recurrence without hampering LR are sought. The processes and pathways underlying these phenomena are multiple, complex, and cross-communicate. In this review, we will summarize the common mechanisms contributing to both LR and tumor recurrence.
Collapse
Affiliation(s)
- Georgina E Riddiough
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Theodora Fifis
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | | | - Marcos V Perini
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
18
|
Rao R, Husain A, Bharti AC, Kashyap MK. Discovery of a Novel Connecting Link between Renin-Angiotensin System and Cancer in Barrett's Esophagus by Proteomic Screening. Proteomics Clin Appl 2019; 13:e1900006. [PMID: 30891939 DOI: 10.1002/prca.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 02/05/2023]
Abstract
The renin-angiotensin system (RAS) plays a central role in the regulation of homeostasis and blood pressure. This involves an important enzyme called angiotensin-converting enzyme that leads to the conversion of angiotensin I into angiotensin II. RAS has been reported to show association with inflammation, and in sporadic studies, with cancer. In particular, angiotensin II has been reported to be prevalent in the hypoxic microenvironment and associated with cancer signaling pathways. In a recent study, Bratlie et al. (Proteomics Clin. Appl. 2019, 4, 1800102) is shown to exploit 2D gel electrophoresis, and mass spectrometry (MS) to identify differentially expressed proteins by comparing low-grade dysplasia in Barrett's Esophagus (BE) following administration of agents that interfere with RAS, that is, enalapril and candesartan, and identified specific modulation of HSP60, PDIA3, and PPA1. Though 2D gel coupled with MS is a commonly-used tool for studying proteomes, it still has limitations in terms of a comprehensive analysis due to lack of absolute quantitation in a high-throughput manner. Despite technical limitations and the small size of the study, preliminary data emerging from the investigation show interference caused by clinically approved RAS inhibitors resulting in alteration of molecular markers associated with tumorigenicity. The authors propose potential factors that may influence the progression of the disease. However, these are conspicuous changes in high-abundance proteins only. Therefore, there is a need to carry out detailed experimental studies either using an in vitro labeling technique (isobaric labeling for relative and absolute quantitation) for tissues or an in vivo labeling technique (stable isotope labeling in animal cell culture) coupled with LC-MS/MS to identify differentially-regulated proteins to delineate the role of RAS in BE.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Amjad Husain
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manoj K Kashyap
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| |
Collapse
|