1
|
Wei X, Li Y, Jiang T, Luo P, Dai Y, Wang Q, Xu M, Yan J, Li Y, Gao J, Liu L, Zhang C, Liu Y. Terazosin attenuates abdominal aortic aneurysm formation by downregulating Peg3 expression to inhibit vascular smooth muscle cell apoptosis and senescence. Eur J Pharmacol 2024; 968:176397. [PMID: 38331337 DOI: 10.1016/j.ejphar.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 μg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Zhang X, Niu M, Li T, Wu Y, Gao J, Yi M, Wu K. S100A8/A9 as a risk factor for breast cancer negatively regulated by DACH1. Biomark Res 2023; 11:106. [PMID: 38093319 PMCID: PMC10720252 DOI: 10.1186/s40364-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND S100A8 and S100A9 are members of Ca2+-binding EF-hand superfamily, mainly expressed by macrophages and neutrophils. Limited by the poor stability of homodimers, they commonly exist as heterodimers. Beyond acting as antibacterial cytokines, S100A8/A9 is also associated with metabolic and autoimmune diseases such as obesity, diabetes, and rheumatoid arthritis. While the involvement of S100A8/A9 in breast cancer development has been documented, its prognostic significance and the precise regulatory mechanisms remain unclear. METHODS S100A8/A9 protein in breast cancer samples was evaluated by immunohistochemistry staining with tumor tissue microarrays. The serum S100A8 concentration in patients was measured by enzyme-linked immunosorbent assay (ELISA). The S100A8 secreted by breast cancer cells was detected by ELISA as well. Pooled analyses were conducted to explore the relationships between S100A8/A9 mRNA level and clinicopathological features of breast cancer patients. Besides, the effects of S100A8/A9 and DACH1 on patient outcomes were analyzed by tissue assays. Finally, xenograft tumor assays were adopted to validate the effects of DACH1 on tumor growth and S100A8/A9 expression. RESULTS The level of S100A8/A9 was higher in breast cancer, relative to normal tissue. Increased S100A8/A9 was related to poor differentiation grade, loss of hormone receptors, and Her2 positive. Moreover, elevated S100A8/A9 predicted a worse prognosis for breast cancer patients. Meanwhile, serum S100A8 concentration was upregulated in Grade 3, basal-like, and Her2-overexpressed subtypes. Additionally, the results of public databases showed S100A8/A9 mRNA level was negatively correlated to DACH1. Stable overexpressing DACH1 in breast cancer cells significantly decreased the generation of S100A8. The survival analysis demonstrated that patients with high S100A8/A9 and low DACH1 achieved the shortest overall survival. The xenograft models indicated that DACH1 expression significantly retarded tumor growth and downregulated S100A8/A9 protein abundance. CONCLUSION S100A8/A9 is remarkedly increased in basal-like and Her2-overexpressed subtypes, predicting poor prognosis of breast cancer patients. Tumor suppressor DACH1 inhibits S100A8/A9 expression. The combination of S100A8/A9 and DACH1 predicted the overall survival of breast cancer patients more preciously.
Collapse
Affiliation(s)
- Xiaojun Zhang
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinnan Gao
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Kongming Wu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Azbazdar Y, Demirci Y, Heger G, Ipekgil D, Karabicici M, Ozhan G. Comparative membrane lipidomics of hepatocellular carcinoma cells reveals diacylglycerol and ceramide as key regulators of Wnt/β-catenin signaling and tumor growth. Mol Oncol 2023; 17:2314-2336. [PMID: 37699867 PMCID: PMC10620124 DOI: 10.1002/1878-0261.13520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is largely associated with aberrant activation of Wnt/β-catenin signaling. Nevertheless, how membrane lipid composition is altered in HCC cells with abnormal Wnt signaling remains elusive. Here, by exploiting comprehensive lipidome profiling, we unravel the membrane lipid composition of six different HCC cell lines with mutations in components of Wnt/β-catenin signaling, leading to differences in their endogenous signaling activity. Among the differentially regulated lipids are diacylglycerol (DAG) and ceramide, which were downregulated at the membrane of HCC cells after Wnt3a treatment. DAG and ceramide enhanced Wnt/β-catenin signaling by inducing caveolin-mediated endocytosis of the canonical Wnt-receptor complex, while their depletion suppressed the signaling activity along with a reduction of caveolin-mediated endocytosis in SNU475 and HepG2 cells. Moreover, depletion of DAG and ceramide significantly impeded the proliferation, tumor growth, and in vivo migration capacity of SNU475 and HepG2 cells. This study, by pioneering plasma membrane lipidome profiling in HCC cells, exhibits the remarkable potential of lipids to correct dysregulated signaling pathways in cancer and stop abnormal tumor growth.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Department of Biological ChemistryUniversity of California Los AngelesCAUSA
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Wellcome Sanger InstituteCambridgeUK
| | | | - Dogac Ipekgil
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Department of Molecular Biology and GeneticsIzmir Institute of TechnologyTurkey
| |
Collapse
|
4
|
Li W, Xu L, Cao J, Ge J, Liu X, Liu P, Teng Y, Wang S, Sun Y, Liu M, Tian L. DACH1 regulates macrophage activation and tumour progression in hypopharyngeal squamous cell carcinoma. Immunology 2023; 170:253-269. [PMID: 37243970 DOI: 10.1111/imm.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Dachshund family transcription factor 1 (DACH1) has been shown to exhibit a tumour-suppressive role in a number of human cancers. However, the role of DACH1 in hypopharyngeal squamous cell carcinoma (HPSCC) and its function in the tumour microenvironment (TME) are still not clear. Crosstalk between cancer cells and tumour-associated macrophages (TAMs) mediates tumour progression in HPSCC. The expression of DACH1, CD86 and CD163 was detected in 71 matched HPSCC-non-cancerous tissue pairs using quantitative real-time polymerase chain reaction and IHC analysis. Cell proliferation, migration and invasion were monitored by colony formation, Transwell and EdU incorporation assays. ChIP-qPCR and dual-luciferase reporter assays were applied to verify the targeting relationships between DACH1 and IGF-1. Stably transfected HPSCC cells were co-cultured with MΦ macrophages to assess macrophage polarization and secretory signals. DACH1 was decreased in HPSCC tissues and was indicative of a poor prognosis for HPSCC patients. Decreased DACH1 expression in HPSCC was associated with fewer CD86+ TAMs and more CD163+ TAMs. Knockdown of DACH1 inhibited the proliferation, migration and invasion of FaDu cells via Akt/NF-κB/MMP2/9 signalling. Additionally, DACH1 was found to directly bind to the promoter region of IGF-1 to downregulate the secretion of IGF-1, which inhibited TAMs polarization through the IGF-1R/JAK1/STAT3 axis. Furthermore, in nude mice, the effects of DACH1 inhibition on tumour progression and M2-like TAMs polarization were confirmed. These findings suggest that IGF-1 is a critical downstream effector of DACH1 that suppresses cell migration and invasion and inhibits TAMs polarization. DACH1 could be a therapeutic target and prognostic marker for HPSCC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Ge
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujian Teng
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shunpeng Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Nasirpour MH, Salimi M, Majidi F, Minuchehr Z, Mozdarani H. Study of DACH1 Expression and its Epigenetic Regulators as Possible Breast Cancer-Related Biomarkers. Avicenna J Med Biotechnol 2023; 15:108-117. [PMID: 37034893 PMCID: PMC10073918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Background Breast carcinogenesis involves both genetic and epigenetic changes. DNA methylation, as well as micro-RNA regulations, are the significant epigenetic phenomena dysregulated in breast cancer. Herein, the expression of DACH1 as a tumor suppressor gene and its promoter methylation status was analyzed in breast cancer tumors. Also, the expression of three micro RNAs (miR-217, miR-6807-3p, and miR-552), which had been previously reported to target DACH1, was assessed. Methods The SYBR green-based Real-Time reverse transcription-PCR was used to determine DACH1 and micro-RNAs (miR-217, miR-6807-3p, and miR-552) expression in 120 ductal breast cancer tumors compared with standard control. Also, the promoter methylation pattern of DACH1 was investigated using the Methylation-specific PCR technique. Results DACH1 expression was significantly down-regulated in breast tumors (p<0.05). About 33.5% of tumors showed DACH1 promoter hyper-methylation. The studied micro-RNAs, expression was negatively correlated with DACH1 expression. The highest expressions of miRNAs and higher DACH1 promoter methylation were observed in advanced cancer situations. The Kaplan-Meier survival curves indicated that the overall survival was significantly poor in higher miRNAs and lower DACH1 expression in breast cancer patients (p<0.002). Conclusion DACH1 down-regulation may be associated with a poor breast cancer prognosis. The DACH1 down-regulation may be due to epigenetic regulations such as promoter methylation, especially in triple-negative cases. Other factors, such as micro-RNAs (miR-217, miR-6807-3p, and miR-552), may also have an impact. The elevated expression of miR-217, miR-6807-3p, and miR-552, maybe candidates as possible poor prognostic biomarkers in breast cancer management for further consideration.
Collapse
Affiliation(s)
- Mohammad Hossein Nasirpour
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faezeh Majidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zarrin Minuchehr
- Institute of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Gu Q, Li L, Yao J, Dong FY, Gan Y, Zhou S, Wang X, Wang XF. Identification and verification of the temozolomide resistance feature gene DACH1 in gliomas. Front Oncol 2023; 13:1120103. [PMID: 36959804 PMCID: PMC10028258 DOI: 10.3389/fonc.2023.1120103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction The most important chemotherapy treatment for glioma patients is temozolomide. However, the development of drug resistance severely restricts the use of temozolomide. Therefore, elucidating the mechanism of temozolomide resistance, enhancing temozolomide sensitivity, and extending patient survival are urgent tasks for researchers. Methods Temozolomide resistance hub differential genes were identified using differential analysis and protein interaction analysis from the GEO datasets (GSE100736 and GSE113510). These genes were further studied in glioma patients treated with temozolomide in the TCGA and CGGA databases. Patients from the mRNAseq_325 dataset (CGGA) were considered as the training set to construct a risk model for predicting glioma sensitivity to temozolomide, while patients from the mRNAseq_693 dataset (CGGA) and TCGA-GBM dataset were considered as the validation set to evaluate the performance of models. PCR and western blot were performed to determine the difference in expression of the feature gene DACH1 between glioma cells and temozolomide-resistant glioma cells. The alterations in the sensitivity of tumor cells to temozolomide were also observed after DACH1 was silenced. The patients were then divided into two groups based on the expression of DACH1, and the differences in patient survival rates, molecular pathway activation, and level of immune infiltration were compared. Results Based on four signature genes (AHR, DACH1, MGMT, and YAP1), a risk model for predicting glioma sensitivity to temozolomide was constructed, and the results of timeROC in both the training and validation sets showed that the model had good predictive performance. The expression of the signature gene DACH1 was significantly downregulated in temozolomide-resistant cells, according to the results of the PCR and western blot experiments. The sensitivity of tumor cells to temozolomide was significantly reduced after DACH1 was silenced. DACH1 probably regulates temozolomide resistance in glioblastoma through the transcriptional dysregulation in cancer and ECM. Discussion This study constructs a risk model that can predict glioma susceptibility to temozolomide and validates the function of the feature gene DACH1, which provides a promising target for the research of temozolomide resistance.
Collapse
|
8
|
The Function of circRNA-0047604 in Regulating the Tumor Suppressor Gene DACH1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6589651. [PMID: 35097124 PMCID: PMC8794664 DOI: 10.1155/2022/6589651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer among females. Dachshund Homolog 1 (DACH1) gene is regarded as an important tumor suppressor gene in breast cancer which plays an important regulatory role in the development disease progression, particularly in carcinomas. Circular RNAs (circRNAs) and microRNA (miRNA), regarded as a novel group of noncoding RNAs, are always involved in regulating gene expression. In this work, hsa_circ_0047604 expressed lower in breast cancer tissue and played the role of sponge of miR-548o. By this way, hsa_circ_0047604 could upregulate DACH1 to inhibit breast cancer. In conclusion, this study revealed that hsa_circ_0047604 acted as a tumor suppressor and regulated breast cancer progression via hsa_circ_0047604–miR-548o–DACH1 axis, which might provide a therapeutic method for breast cancer.
Collapse
|
9
|
Baumeister J, Maié T, Chatain N, Gan L, Weinbergerova B, de Toledo MAS, Eschweiler J, Maurer A, Mayer J, Kubesova B, Racil Z, Schuppert A, Costa I, Koschmieder S, Brümmendorf TH, Gezer D. Early and late stage MPN patients show distinct gene expression profiles in CD34 + cells. Ann Hematol 2021; 100:2943-2956. [PMID: 34390367 PMCID: PMC8592960 DOI: 10.1007/s00277-021-04615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tiago Maié
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Lin Gan
- IZKF Genomics Core Facility, RWTH Aachen University Medical School, Aachen, Germany
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andreas Schuppert
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Ivan Costa
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. .,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
10
|
Huang TT, Tseng LM, Chen JL, Chu PY, Lee CH, Huang CT, Wang WL, Lau KY, Tseng MF, Chang YY, Chiang TY, Ueng YF, Lee HC, Dai MS, Liu CY. Kynurenine 3-monooxygenase upregulates pluripotent genes through β-catenin and promotes triple-negative breast cancer progression. EBioMedicine 2021; 54:102717. [PMID: 32268268 PMCID: PMC7191260 DOI: 10.1016/j.ebiom.2020.102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is aggressive and has a poor prognosis. Kynurenine 3-monooxygenase (KMO), a crucial kynurenine metabolic enzyme, is involved in inflammation, immune response and tumorigenesis. We aimed to study the role of KMO in TNBC. Methods KMO alteration and expression data from public databases were analyzed. KMO expression levels in TNBC samples were analyzed using immunohistochemistry. Knockdown of KMO in TNBC cells was achieved by RNAi and CRISPR/Cas9. KMO functions were examined by MTT, colony-forming, transwell migration/invasion, and mammosphere assays. The molecular events were analyzed by cDNA microarrays, Western blot, quantitative real-time PCR and luciferase reporter assays. Tumor growth and metastasis were detected by orthotopic xenograft and tail vein metastasis mouse models, respectively. Findings KMO was amplified and associated with worse survival in breast cancer patients. KMO expression levels were higher in TNBC tumors compared to adjacent normal mammary tissues. In vitro ectopic KMO expression increased cell growth, colony and mammosphere formation, migration, invasion as well as mesenchymal marker expression levels in TNBC cells. In addition, KMO increased pluripotent gene expression levels and promoter activities in vitro. Mechanistically, KMO was associated with β-catenin and prevented β-catenin degradation, thereby enhancing the transcription of pluripotent genes. KMO knockdown suppressed tumor growth and the expression levels of β-catenin, CD44 and Nanog. Furthermore, mutant KMO (known with suppressed enzymatic activity) could still promote TNBC cell migration/invasion. Importantly, mice bearing CRISPR KMO-knockdown TNBC tumors showed decreased lung metastasis and prolonged survival. Interpretation KMO regulates pluripotent genes via β-catenin and plays an oncogenic role in TNBC progression.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Han Lee
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Centre, Taipei, Taiwan
| | - Wan-Lun Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ka-Yi Lau
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Fang Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Chiang
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Yune-Fang Ueng
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan; Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei 112, Taiwan; Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Ju M, Qi A, Bi J, Zhao L, Jiang L, Zhang Q, Wei Q, Guan Q, Li X, Wang L, Wei M, Zhao L. A five-mRNA signature associated with post-translational modifications can better predict recurrence and survival in cervical cancer. J Cell Mol Med 2020; 24:6283-6297. [PMID: 32306508 PMCID: PMC7294153 DOI: 10.1111/jcmm.15270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
High mortality of patients with cervical cancer (CC) stresses the imperative of prognostic biomarkers for CC patients. Additionally, the vital status of post‐translational modifications (PTMs) in the progression of cancers has been reported by numerous researches. Therefore, the purpose of this research was to dig a prognostic signature correlated with PTMs for CC. We built a five‐mRNA (GALNTL6, ARSE, DPAGT1, GANAB and FURIN) prognostic signature associated with PTMs to predict both disease‐free survival (DFS) (hazard ratio [HR] = 3.967, 95% CI = 1.985‐7.927; P < .001) and overall survival (HR = 2.092, 95% CI = 1.138‐3.847; P = .018) for CC using data from The Cancer Genome Atlas database. Then, the robustness of the signature was validated using GSE44001 and the Human Protein Atlas (HPA) database. CIBERSORT algorithm analysis displayed that activated CD4 memory T cell was also an independent indicator for DFS (HR = 0.426, 95% CI = 0.186‐0.978; P = .044) which could add additional prognostic value to the signature. Collectively, the PTM‐related signature and activated CD4 memory T cell can provide new avenues for the prognostic predication of CC. These findings give further insights into effective treatment strategies for CC, providing opportunities for further experimental and clinical validations.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| |
Collapse
|
12
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
13
|
Kong D, Li A, Liu Y, Cui Q, Wang K, Zhang D, Tang J, Du Y, Liu Z, Wu G, Wu K. SIX1 Activates STAT3 Signaling to Promote the Proliferation of Thyroid Carcinoma via EYA1. Front Oncol 2019; 9:1450. [PMID: 31921695 PMCID: PMC6933607 DOI: 10.3389/fonc.2019.01450] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
As a critical member of the Retinal Determination Gene Network (RDGN), SIX1 has been regarded as a tumor promoter in various types of cancer. However, its role in papillary thyroid carcinoma (PTC) has never been investigated. In this study, thyroid carcinoma tissue microarray staining was employed to identify the expression patterns of SIX1 and its co-activator EYA1. Papillary thyroid cancer cell lines, BCPAP, and TPC-1 cells were used to investigate the potential mechanism of SIX1 in vitro and in vivo. Flow cytometry analysis, MTT assay, the growth curve assay, colony formation assay, EdU incorporation and xenograft assay were performed to demonstrate the role of SIX1 in the malignant change of PTC cells. Western blot and Real-time PCR were used to detect the interaction among the SIX1, EYA1, and STAT3 signaling. In comparison with normal tissue, high expressions of SIX1 and EYA1 were associated with a malignant tumor. Importantly, SIX1 strongly correlated with EYA1 in thyroid carcinoma tissue microarray. Functional assays indicated SIX1 increased EYA1 expression by stabilizing EYA1 at the post-transcriptional level. Besides, SIX1 promoted the proliferation and invasion of thyroid carcinoma via activation of STAT3 signaling and its downstream targets in an EYA1-dependent manner. SIX1 can integrate with EYA1 to contribute to PTC development via activation of the classical STAT3 signaling. These data suggested targeting the abnormal activation of the SIX1/EYA1 complex may represent a novel therapeutic strategy for advanced PTC patients.
Collapse
Affiliation(s)
- Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Kong D, Ma W, Zhang D, Cui Q, Wang K, Tang J, Liu Z, Wu G. EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma. Am J Transl Res 2019; 11:2328-2338. [PMID: 31105839 PMCID: PMC6511787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Hepatocellular carcinoma (HCC) patients are at high risk for both local recurrence and distant metastasis and tightly associated with poor prognosis. Exploring the molecular mechanism will provide a new opportunity in developing personal treatment for advanced HCC patients. As a critical member of the Retinal Determination Gene Network (RDGN), EYA1 has been identified as a tumor promoter in various cancers; however, its role in HCC has never been investigated. The present study was aimed to explore the role of EYA1 in HCC development. By analyzing public microarray datasets, we found that the EYA1 mRNA level was enhanced in HCC, which was significantly correlated with an aggressive phenotype and poor prognosis. Besides, EYA1 was coordinated with the fibronectin type III domain containing 3B (FNDC3B) to promote the migration and invasion of HCC cells. Western blot assays indicated that EYA1 not only increased the abundance of FNDC3B but also contributed to Epithelial-Mesenchymal Transition (EMT)-like phenotype change, like increased N-cadherin and decreased E-cadherin expression. Collectively, this study suggested that EYA1 activated FNDC3B to promote the migration and invasion in HCC. The aberrant expressions of EYA1 and FNDC3B may become the poor predictors for HCC patients.
Collapse
Affiliation(s)
- Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Weijie Ma
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| |
Collapse
|
15
|
Xu H, Jiao Y, Yi M, Zhao W, Wu K. EYA2 Correlates With Clinico-Pathological Features of Breast Cancer, Promotes Tumor Proliferation, and Predicts Poor Survival. Front Oncol 2019; 9:26. [PMID: 30761270 PMCID: PMC6361843 DOI: 10.3389/fonc.2019.00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Eyes absent homolog 2 (EYA2), a transcriptional activator, is pivotal for organ development, but aberrant regulation of EYA2 has been reported in multiple human tumors. However, the role of EYA2 in breast cancer is still lack of full understanding. To explore the biological significance of EYA2 in breast cancer, we conducted data analysis on public breast cancer datasets, and performed immunohistochemistry (IHC) analysis, colony-forming unit assays, EdU assay, western blotting, and immunofluorescence (IF). Meta-analysis showed that EYA2 mRNA expression was correlated with tumor grade, the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). IHC analysis displayed that EYA2 protein abundance was inversely associated with the status of ER and PR, and enriched in triple-negative breast cancer in comparison with luminal-type tumors. Additionally, correlation analysis reflected that EYA2 mRNA was negatively correlated with luminal markers, and positively associated with markers of basal cells, epithelial-mesenchymal transition and cancer stem cells. Clone-forming assay and EdU experiment showed that EYA2 overexpression enhanced proliferation of breast cancer cells. Results from western blotting and IF displayed that overexpression of EYA2 up-regulated the protein abundance of proliferation markers. Importantly, survival analysis indicated that higher EYA2 mRNA level predicted worse overall survival, relapse-free survival and metastasis-free survival among whole enrolled breast cancer patients. Collectively, EYA2 was closely correlated with clinico-pathological characteristics, and served as a proliferation stimulator for breast cancer cells and an unfavorable prognostic element for breast cancer patients, suggesting that EYA2 is involved in the progression of breast carcinoma.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
17
|
Lu GF, Geng F, Xiao Z, Chen YS, Han Y, You CY, Gong NL, Xie ZM, Pan M. MicroRNA-6807-3p promotes the tumorigenesis of glioma by targeting downstream DACH1. Brain Res 2018; 1708:47-57. [PMID: 30527681 DOI: 10.1016/j.brainres.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Abstract
Accumulated evidence reveals that microRNAs play vital roles in various tumors, including gliomas. MiRNAs have been shown to participate in multiple cellular functions, including cell proliferation, migration and apoptosis. Here, we investigate the potential role of a novel miRNA, miR-6807-3p, in glioma. A quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot were applied to detect the expression of miR-6807-3p and its target molecule in glioma specimens and cultured cells. The direct targets of miR-6807-3p were predicted by bioinformatics software and were further verified by a luciferase reporter assay. The effects of miR-6807-3p on glioma cell proliferation, migration, cell apoptosis and the cell cycle of glioma cells were analyzed by the Cell-Counting Kit-8 (CCK-8) assay, a cell migration assay and flow cytometry assays. MiR-6807-3p was found to promote tumor growth and migration and inhibits apoptosis and cell cycle arrest in vitro, thus playing a tumor oncogenic role in the progression of glioma. Expression levels of miR-6807-3p were greatly upregulated in glioma specimens, and dachshund homolog 1 (DACH1) was ascertained as a direct target of miR-6807-3p, modulated by the expression of miR-6807-3p in glioma cells. Aberrant expression of DACH1 was associated with the clinical survival of glioma patients. Furthermore, overexpression of DACH1 rescued the promotive effects of miR-6807-3p in glioma. Based on these findings, a novel miR-6807-3p may act as a glioma enhancer by targeting DACH1.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Fei Geng
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China.
| | - Zhi Xiao
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| | - Yuan-Shou Chen
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| | - Chun-Yue You
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Nan-Ling Gong
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| | - Ze-Mei Xie
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| | - Min Pan
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
18
|
Zhang J, Ren X, Wang B, Cao J, Tian L, Liu M. Effect of DACH1 on proliferation and invasion of laryngeal squamous cell carcinoma. Head Face Med 2018; 14:20. [PMID: 30261897 PMCID: PMC6161397 DOI: 10.1186/s13005-018-0177-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the effect of DACH1 over-expression on proliferation and invasion of laryngeal squamous cell carcinoma (LSCC). METHODS The 120 cases of LSCC tumors and 114 adjacent non-neoplastic tissues were collected to detect the expression of DACH1 by immunohistochemistry. The changes of DACH1 expression from each group were assessed and correlated to the clinical parameters of the patients. Plasmid-DACH1 was transfected into Hep-2 cells to up-regulate the expression of DACH1C. Real-time PCR, Western blot, CCK8 and transwell assay were used to verify the cell proliferation and invasion after plasmid-DACH1 transfection. RESULTS The results indicated that DACH1 was downregulated in LSCC tissues as compared to corresponding adjacent non-neoplastic tissues. Decreased expression of DACH1 was found in the tumors upraglottic tumor, lymph node metastases, T3-4 stage and advanced clinical stage. In Hep-2 cells, transfection with plasmid-DACH1 could suppress cell proliferation, invasion and induce G1 phase extension in cell cycle. CONCLUSIONS DACH1 may act as a tumor suppressor gene and could be a potential target for therapeutic intervention of LSCC.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xiuxia Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Bo Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
19
|
STIP1 is over-expressed in hepatocellular carcinoma and promotes the growth and migration of cancer cells. Gene 2018; 662:110-117. [DOI: 10.1016/j.gene.2018.03.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
|
20
|
Abstract
Overexpression of enhancer of zeste homolog 2 (EZH2) protein has been found in several malignant tumor tissues and is closely related to the degree of tumor differentiation, clinical stage, tumor size, and prognosis. The latest research shows that overexpression of EZH2 is related not only with immunoregulation but also with the replication of hepatitis B virus, the occurrence of non-alcoholic fatty liver disease, and the progress of liver fibrosis, which may become an important subject in the field of liver disease research. This paper reviews the role of EZH2 in some liver diseases and its potential application in treatment of these diseases in recent ten years.
Collapse
Affiliation(s)
- Li Zhu
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| | - Ming Li
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| | - Chuan-Wu Zhu
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| |
Collapse
|
21
|
Liu Q, Li A, Yu S, Qin S, Han N, Pestell RG, Han X, Wu K. DACH1 antagonizes CXCL8 to repress tumorigenesis of lung adenocarcinoma and improve prognosis. J Hematol Oncol 2018; 11:53. [PMID: 29636079 PMCID: PMC5894143 DOI: 10.1186/s13045-018-0597-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND C-X-C motif ligand 8 (CXCL8), known as a proinflammatory chemokine, exerts multiple effects on the proliferation, invasion, and migration of tumor cells via the autocrine or paracrine manner. Conversely, the human Dachshund homologue 1 (DACH1) is recognized as a tumor suppressor which retards the progression of various cancers. In prostate cancer, it has been demonstrated that DACH1 was negatively correlated with the expression of CXCL8 and able to antagonize the effects of CXCL8 on cellular migration. Herein, we explored the mechanisms by which DACH1 regulated the CXCL8 in non-small cell lung cancer (NSCLC). METHODS Public microarray and Kaplan-Meier plotter datasets were analyzed. Blood serum samples from lung adenocarcinoma (ADC) patients were collected for enzyme-linked immunosorbent assay (ELISA) analysis. Immunohistochemical staining was conducted on tissue microarray. Cell lines with stable expression of DACH1 were established, and relative gene expression was measured by Western blot, ELISA, real-time PCR, and human cytokine array. Correspondingly, cell lines transfected with shDACH1 were established, and relative gene expression was measured by real-time PCR and immunofluorescence array. Functional studies were performed by transwell and xenograft mice models. Luciferase reporter gene assay was applied to measure the regulation of DACH1 on CXCL8. RESULTS Our study indicated that CXCL8 both at the mRNA and protein level was associated with the high tumor burden of ADC. Correlational analyses in ADC cell lines and ADC tissues showed that DACH1 was inversely correlated with CXCL8. Meanwhile, patients with high DACH1 expression and low CXCL8 expression had prolonged time to death and recurrence. Moreover, we verified the inhibitory effects of DACH1 on CXCL8 both in vitro and in vivo. Mechanism studies proved that DACH1 transcriptionally repressed CXCL8 promoter activity through activator protein-1 (AP-1) and nuclear transcription factor-kappa B (NF-κB) sites. CONCLUSIONS Our study proved that CXCL8 acted as an unfavorable factor promoting to tumor progression and poor prognosis of ADC, while DACH1 antagonized CXCL8 to provide a favorable survival of ADC patients. Double detection of DACH1 and CXCL8 may provide a precise information for further evaluating the prognosis of ADC patients.
Collapse
Affiliation(s)
- Qian Liu
- 0000 0004 1799 5032grid.412793.aDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Anping Li
- grid.412633.1Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
| | - Shengnan Yu
- 0000 0004 1799 5032grid.412793.aDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Shuang Qin
- 0000 0004 1799 5032grid.412793.aDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Na Han
- 0000 0004 1799 5032grid.412793.aDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Wynnewood, PA 19096 USA
| | - Xinwei Han
- grid.412633.1Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 People’s Republic of China
| | - Kongming Wu
- 0000 0004 1799 5032grid.412793.aDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
22
|
Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2018; 8:10675-10691. [PMID: 27793013 PMCID: PMC5354691 DOI: 10.18632/oncotarget.12893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
The mammary gland is an organ comprising two primary lineages, specifically the inner luminal and the outer myoepithelial cell layers. Mammary gland stem cells (MaSCs) are highly dynamic and self-renewing, and can give rise to these mammary gland lineages. The lineages are responsible for gland generation during puberty as well as expansion during pregnancy. In recent years, researchers have focused on understanding how MaSCs are regulated during mammary gland development and transformation of breast cancer. Here, we summarize the identification of MaSCs, and how they are regulated by the signaling transduction pathways, mammary gland microenvironment, and non-coding RNAs (ncRNAs). Moreover, we debate the evidence for their serving as the origin of breast cancer, and discuss the therapeutic perspectives of targeting breast cancer stem cells (BCSCs). In conclusion, a better understanding of the key regulators of MaSCs is crucial for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
23
|
The retinal determination gene network: from developmental regulator to cancer therapeutic target. Oncotarget 2018; 7:50755-50765. [PMID: 27203207 PMCID: PMC5226618 DOI: 10.18632/oncotarget.9394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Although originally identified for its function in Drosophila melanogaster eye specification, the Retinal Determination Gene Network (RDGN) is essential for the development of multiple organs in mammals. The RDGN regulates proliferation, differentiation and autocrine signaling, and interacts with other key signaling pathways. Aberrant expression of RDGN members such as DACH, EYA and SIX contributes to tumor initiation and progression; indeed, the levels of RDGN members are clinically prognostic factors in various cancer types. Stimulation or suppression of the activities of these crucial components can block cancer cell proliferation, prevent cancer stem cell expansion and even reverse the EMT process, thereby attenuating malignant phenotypes. Thus, cancer therapeutic interventions targeting RDGN members should be pursued in future studies.
Collapse
|
24
|
Cao J, Yan XR, Liu T, Han XB, Yu JJ, Liu SH, Wang LB. MicroRNA-552 promotes tumor cell proliferation and migration by directly targeting DACH1 via the Wnt/β-catenin signaling pathway in colorectal cancer. Oncol Lett 2017; 14:3795-3802. [PMID: 28927149 DOI: 10.3892/ol.2017.6600] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/31/2017] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to analyze the crucial role of microRNAs (miRNAs/miRs) involved in the proliferation and migration of colorectal cancer (CRC) and to investigate their underlying mechanisms. The present study discusses the expression and function of miR-552 in CRC. The expression level of miR-552 in CRC cells and tissues was observed, and it was suggested that the high expression of miR-552 accelerated the proliferation and migration of CRC cells in vitro. Notably, a result of the present study was that the cell fate determination factor Dachshund family transcription factor 1 (DACH1) was identified as a direct target of miR-552. Suppressing miR-552 expression in CRC cells increased endogenous DACH1 mRNA and protein levels, which was negatively correlated with miR-552. DACH1 performs an important role in the development of a number of neoplasms, and has the ability to regulate the Wnt/β-catenin signaling pathway as a novel predictive and diagnostic biomarker. Accordingly, it was concluded that miR-552 exerted a tumor-promoting role in CRC development by targeting DACH1, which may contribute to the increase in the rates of CRC proliferation and migration. miR-552 may serve as a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Jia Cao
- Department of Medical Laboratory, Ningxia Medical University, Clinical Medicine College, Yinchuan, Ningxia 750004, P.R. China
| | - Xiu-Rui Yan
- Stem Cell Institute, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ting Liu
- Stem Cell Institute, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xue-Bo Han
- Department of Medical Laboratory, Ningxia Medical University, Clinical Medicine College, Yinchuan, Ningxia 750004, P.R. China
| | - Jing-Jing Yu
- Stem Cell Institute, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,National Engineering Research Center of Beijing Biochip Technology, Sub-Center in Ningxia, Yinchuan, Ningxia 750004, P.R. China
| | - Shi-Hai Liu
- Central Laboratory, The Affiliated Hospital of Qingdao University, Animal Experimental Center, Qingdao, Shandong 266003, P.R. China
| | - Li-Bin Wang
- Department of Medical Laboratory, Ningxia Medical University, Clinical Medicine College, Yinchuan, Ningxia 750004, P.R. China.,Stem Cell Institute, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,National Engineering Research Center of Beijing Biochip Technology, Sub-Center in Ningxia, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
25
|
DACH1 suppresses breast cancer as a negative regulator of CD44. Sci Rep 2017; 7:4361. [PMID: 28659634 PMCID: PMC5489534 DOI: 10.1038/s41598-017-04709-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell fate determination factor, contributes to tumorigenesis, invasion, metastasis of human breast neoplasm. However, the exact molecular mechanisms for the anti-tumor roles of DACH1 in breast carcinoma are still lack of extensive understanding. Herein, we utilized immunohistochemistry (IHC) staining and public microarray data analysis showing that DACH1 was higher in normal breast, low-grade and luminal-type cancer in comparison with breast carcinoma, high-grade and basal-like tumors respectively. Additionally, both correlation analysis of public databases of human breast carcinoma and IHC analysis of mice xenograft tumors demonstrated that DACH1 inversely related to cancer stem cells (CSCs) markers, epithelial-mesenchymal transition (EMT) inducers and basal-enriched molecules, while cluster of differentiation 44 (CD44) behaved in an opposite manner. Furthermore, mice transplanted tumor model indicated that breast cancer cells Met-1 with up-regulation of DACH1 were endowed with remarkably reduced potential of tumorigenesis. Importantly, meta-analysis of 19 Gene Expression Omnibus (GEO) databases of breast cancer implicated that patients with higher DACH1 expression had prolonged time to death, recurrence and metastasis, while CD44 was a promising biomarker predicting worse overall survival (OS) and metastasis-free survival (MFS). Collectively, our study indicated that CD44 might be a novel target of DACH1 in breast carcinoma.
Collapse
|
26
|
Huang H, Kong D, Liu Y, Cui Q, Wang K, Zhang D, Wang J, Zhai M, Yan J, Zhang C, Wu G. Sapylin promotes wound healing in mouse skin flaps. Am J Transl Res 2017; 9:3017-3026. [PMID: 28670389 PMCID: PMC5489901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Seroma formation is one of the most common complications after modified radical mastectomy. Sapylin is an agent used to reduce seroma formation following breast cancer surgery. In this article, we aimed to identify the potential mechanism by which Sapylin reduced seroma formation. Thirty-six female C57 mice were randomly divided into three groups. All mice were anaesthetized and a skin flap was generated on their abdomens. Each group was treated with normal saline, 0.5 KE/ml of Sapylin, or 50% hypertonic glucose, respectively. On day 3 and day 7 after the surgery, six mice in each group were sacrificed. Skin flap samples were collected and markers of angiogenesis, collagen synthesis, fibroplasia and matrix remodeling were detected. The skin flaps from the Sapylin- or hypertonic glucose-treated mice closed faster than the skin flaps from the mice treated with normal saline. The neovessel density was higher in the skin flaps from the mice in the Sapylin group than those in the other two groups. Increased mRNA and protein expression of angiogenesis markers (VEGF-A and HIF-1α) and collagen synthesis markers (FGF2 and TGF-β1) were observed in the mice in the Sapylin group compared with the saline- or hypertonic glucose-treated mice. The extracellular matrix remodeling marker MMP2 was induced by Sapylin only in the early phase (day 3). In conclusion, Sapylin accelerated wound closure, and promoted angiogenesis, collagen synthesis and the remodeling process, which improved wound healing. Considering the close relationship between wound healing and seroma formation, Sapylin may reduce seroma formation after modified radical mastectomy.
Collapse
Affiliation(s)
- Huijing Huang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Deguang Kong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Dong Hu Road, Wuhan 430071, P. R. China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Jinli Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Maocai Zhai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Dong Hu Road, Wuhan 430071, P. R. China
| |
Collapse
|
27
|
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017; 8:33972-33989. [PMID: 28430641 PMCID: PMC5464927 DOI: 10.18632/oncotarget.15687] [Citation(s) in RCA: 480] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved and versatile pathway that is known to be involved in embryonic development, tissue homeostasis and a wide variety of human diseases. Aberrant activation of this pathway gives rise to the accumulation of β-catenin in the nucleus and promotes the transcription of many oncogenes such as c-Myc and CyclinD-1. As a result, it contributes to carcinogenesis and tumor progression of several cancers, including colon cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer and ovarian cancer. β-Catenin is a pivotal component of the Wnt signaling pathway and it is tightly regulated at three hierarchical levels: protein stability, subcellular localization and transcriptional activity. Uncovering the regulatory mechanisms of β-catenin will provide new insights into the pathogenesis of cancer and other diseases, as well as new therapeutic strategies against these diseases. In this review we dissect the concrete regulatory mechanisms of β-catenin from three aspects mentioned above. Then we focus on the role of β-catenin in cancer initiation, progression, dormancy, immunity and cancer stem cell maintenance. At last, we summarize the recent progress in the development of agents for the pharmacological modulation of β-catenin activity in cancer therapy.
Collapse
Affiliation(s)
- Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
28
|
Yang Y, Chen XX, Li WX, Wu XQ, Huang C, Xie J, Zhao YX, Meng XM, Li J. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis. J Cell Mol Med 2017; 21:2317-2328. [PMID: 28332284 PMCID: PMC5618695 DOI: 10.1111/jcmm.13153] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
EZH2, a histone H3 lysine‐27‐specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway‐stimulated fibroblasts in vitro and in vivo by repressing Dkk‐1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4‐induced rat liver and primary HSCs as well as TGF‐β1‐treated HSC‐T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF‐β1‐induced proliferation of HSC‐T6 cells and the expression of α‐SMA. In addition, knockdown of Dkk1 promoted TGF‐β1‐induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk‐1 through trimethylation of H3K27me3 in TGF‐β1‐treated HSC‐T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2‐mediated repression of Dkk1 promotes the activation of Wnt/β‐catenin pathway, which is an essential event for HSC activation.
Collapse
Affiliation(s)
- Yang Yang
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Xia Chen
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Department of Pharmacy, Anhui No. 2 Province People's Hospital, Hefei, China
| | - Wan-Xia Li
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Qin Wu
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Juan Xie
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yu-Xin Zhao
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- The key of Laboratory Precision Medicine for Severe Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Dickkopf-1 Is a Biomarker for Systemic Lupus Erythematosus and Active Lupus Nephritis. J Immunol Res 2017; 2017:6861575. [PMID: 28373995 PMCID: PMC5360949 DOI: 10.1155/2017/6861575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022] Open
Abstract
An early diagnosis of lupus nephritis (LN) has an important clinical implication in guiding treatments of systemic lupus erythematosus (SLE) in clinical settings. In this study, the concentrations of Wnt-3A, Frizzled-8 (FZD-8), and Dickkopf-1 (DKK-1) of Wnt signaling, as well as their diagnostic values for accessing LN, were evaluated by ELISA in sera and urine of 111 SLE patients (31 with LN and 80 without LN) and 70 healthy cohorts. Significantly more abundances of DKK-1 protein were determined in both of sera and urine of SLE patients compared to healthy cohorts (p < 0.0001); in particular the serum DKK-1 concentration was even higher in LN-SLE patients relative to non-LN SLE subjects (p < 0.0001). Intriguingly, concentrations of above examined proteins in SLE patients showed no correlation between serum and urine. Moreover, a combination of DKK-1 with anti-dsDNA and/or levels of complement C3 and C4 could not increase the specificity and/or sensitivity for identification of patients with LN diseases, but both ROC curve and multiple-factor nonconditional logistic regression analysis showed that serum DKK-1 was considered better positive biomarker for identification of LN in SLE patients. These results imply that serum and/or urine DKK-1 may be a valuable and independent biomarker for identification of SLE patients with LN.
Collapse
|
30
|
Lu C, Liao Z, Cai M, Zhang G. MicroRNA-320a downregulation mediates human liver cancer cell proliferation through the Wnt/β-catenin signaling pathway. Oncol Lett 2016; 13:573-578. [PMID: 28356931 PMCID: PMC5351300 DOI: 10.3892/ol.2016.5479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/10/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) have emerged as key epigenetic regulators involved in cancer progression. miR-320a has been demonstrated to be a novel tumor suppressive microRNA in several types of cancers. In the present study, the role of miR-320a in human hepatocellular carcinoma (HCC) was investigated. The expression levels of miR-320a and messenger RNA were determined by reverse transcription-quantitative polymerase chain reaction, while cell cycle and cell apoptosis were analyzed by flow cytometry. The cell proliferative ability was determined by Cell Counting Kit-8 assay and colony formation assay. The downstream target of miR-320a was confirmed by luciferase reporter assay, while the protein levels were measured by western blotting. The results revealed that miR-320a was inversely associated with HCC proliferation in HCC cell lines. Functional studies demonstrated that miR-320a significantly decreased the capability of cell proliferation and induced G0/G1 growth arrest in vitro. In addition, β-catenin was identified as one of the direct targets of miR-320a, downregulating the expression level of β-catenin, c-myc, cyclin D1 and dickkopf-1. In conclusion, miR-320a may act as a tumor-suppressive microRNA through targeting β-catenin in HCC.
Collapse
Affiliation(s)
- Caicheng Lu
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Zengwei Liao
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Minxian Cai
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| | - Guirong Zhang
- Department of Medical Technology, The Second Hospital of Longyan, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
31
|
Liu Q, Li A, Tian Y, Liu Y, Li T, Zhang C, Wu JD, Han X, Wu K. The expression profile and clinic significance of the SIX family in non-small cell lung cancer. J Hematol Oncol 2016; 9:119. [PMID: 27821176 PMCID: PMC5100270 DOI: 10.1186/s13045-016-0339-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The SIX family homeobox genes have been demonstrated to be involved in the tumor initiation and progression, but their clinicopathological features and prognostic values in non-small cell lung cancer (NSCLC) have not been well defined. We analyzed relevant datasets and performed a systemic review and a meta-analysis to assess the profile of SIX family members in NSCLC and evaluate their importance as biomarkers for diagnosis and prediction of NSCLC. METHODS This meta-analysis included 17 studies with 2358 patients. Hazard ratio (HR) and 95 % confidence interval (CI) were calculated to represent the prognosis of NSCLC with expression of the SIX family genes. Heterogeneity of the ORs and HRs was assessed and quantified using the Cochrane Q and I 2 test. Begg's rank correlation method and Egger's weighted regression method were used to screen for potential publication bias. Bar graphs of representative datasets were plotted to show the correlation between the SIX expression and clinicopathological features of NSCLC. Kaplan-Meier survival curves were used to validate our prognostic analysis by pooled HR. RESULTS The systematic meta-analysis unveiled that the higher expressions of SIX1-5 were associated with the greater possibility of the tumorigenesis. SIX4 and SIX6 were linked to the lymph node metastasis (LNM). SIX2, SIX3, and SIX4 were correlated with higher TNM stages. Furthermore, the elevated expressions of SIX2, SIX4, and SIX6 predicted poor overall survival (OS) in NSCLC (SIX2: HR = 1.14, 95 % CI, 1.00-1.31; SIX4: HR = 1.39, 95 % CI, 1.16-1.66; SIX6: HR = 1.18, 95 % CI, 1.00-1.38) and poor relapse-free survival (RFS) in lung adenocarcinoma (ADC) (SIX2: HR = 1.42, 95 % CI, 1.14-1.77; SIX4: HR = 1.52, 95 % CI, 1.09-2.11; SIX6: HR = 1.25, 95 % CI, 1.01-1.56). CONCLUSIONS Our report demonstrated that the SIX family members play distinct roles in the tumorigenesis of NSCLC and can be potential biomarkers in predicting prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatric, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cuntai Zhang
- Department of Geriatric, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
32
|
WNT1 Gene from WNT Signaling Pathway Is a Direct Target of miR-122 in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2016; 181:884-897. [PMID: 27687586 DOI: 10.1007/s12010-016-2256-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is an invasive form of hepatic cancer arising from the accumulation of multiple genetic alterations. In this study, the causal role of disturbed canonical Wnt/β-catenin pathway was approved, and some of HCC-driven important gene candidates were determined. MicroRNAs (miRNAs), small non-coding RNAs, are the key regulators of important cancer genes, and their participation in tumorigenesis has been shown. By reviewing literature, WNT1 gene with functional significance was selected to approve miRNAs as new subjects for targeted therapy.For proper and fast miRNA detection and also confirmation of the role of bioinformatics in obtaining practical data, we benefited from different bioinformatics tools such as TargetScan, miRanda, and DIANA. In order to use an HCC model, we used HepG2 cell line. Luciferase assay was applied to assess the ability of the selected miRNAs in targeting WNT1 3'-UTR. To overexpress the selected miRNA in HepG2 cell line, viral construct was prepared. Quantitative real-time PCR was performed to evaluate selected miRNA and target gene expression levels. miR-122 was selected according to data concerning various bioinformatics tools.miR-122 was downregulated and WNT1 gene expression was upregulated in HepG2 cell line. After viral construct transduction, miR-122 expression was elevated and WNT1 expression was notably declined. Finally, we introduced WNT1 gene as one of the important genes in HCC, and also, we showed that miR-122 can regulate WNT1 gene expression.Moreover, our study determines the potential of bioinformatics analyses in providing accurate and reliable data for miRNA: messenger RNA (mRNA) prediction.
Collapse
|
33
|
Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q, Chen Y. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol 2016; 9:83. [PMID: 27601007 PMCID: PMC5012055 DOI: 10.1186/s13045-016-0311-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The objective of this study was to evaluate the effect of platinum-based drugs on nuclear-factor erythroid2 like 2 (NRF2) signaling in non-small cell lung cancer cell lines with or without Kelch-like ECH-associated protein 1 (KEAP1) mutations and to determine the role of NRF2 and KEAP1 on platinum-based drug treatment. METHODS We used real-time PCR to assess relative mRNA expression and used western blotting and immunofluorescence assays to assess protein expression. Small interfering RNA and shuttle plasmids were used to modulate the expression of NRF2, wild-type KEAP1, and mutant KEAP1. Drug sensitivity to platinum-based drugs was evaluated with Cell Count Kit-8. RESULTS We found that platinum-based therapies modified the NRF2 signaling pathway differently in KEAP1-mutated non-small cell lung cancer (NSCLC) cell lines compared with wild-type KEAP1 cell lines. The reactive degree of NRF2 signaling also varies between nedaplatin and cisplatin. The modification of NRF2 or KEAP1 expression in NSCLC cell lines disrupted downstream gene expression and cell sensitivity to platinum-based drugs. Finally, gene expression data retrieved from The Cancer Genome Atlas (TCGA) consortium indicated that KEAP1 mutation significantly affects NRF2 signaling activity in patients with NSCLC. CONCLUSIONS Our findings suggest that NRF2 signaling plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and provides a rationale for using NRF2 as a specific biomarker for predicting which patients will be most likely to benefit from platinum-based treatment.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
34
|
Xu H, Wu K, Tian Y, Liu Q, Han N, Yuan X, Zhang L, Wu GS, Wu K. CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. Int J Oncol 2016; 49:1343-50. [PMID: 27499099 PMCID: PMC5021250 DOI: 10.3892/ijo.2016.3639] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Cluster of differentiation 44 (CD44), a well-known transmembrane glycoprotein, serves as a promoting factor in the carcinogenesis and progression of a variety of neoplasms. Previous studies have demonstrated that aberrant expression of CD44 was associated with the initiation, invasion, metastasis, and therapy-resistance of breast cancer, but whether there was any association between CD44 and pathological characteristics of breast cancer or epidermal growth factor receptor (EGFR) has not been clearly elucidated. In this study, we utilized public microarray data analysis and tissue microarray technologies to display that CD44 level was enhanced in breast cancer and was significantly correlated with histological grade and the status of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 (HER2) and EGFR. Furthermore, mRNA expression of CD44 in breast tumors was positively correlated with basal cytokeratin markers KRT5 and KRT17, but inversely associated with luminal marker FOXA1. Besides, Kaplan-Meier analysis showed that high CD44 mRNA level had adverse impact on the progression-free survival of patients with HER2-expressing or basal-like breast cancer. Functionally, inhibition of EGFR activity by erlotinib impaired the invasion and migration ability of breast cancer cell lines. Western blot assays demonstrated that erlotinib treatment decreased the expression of CD44, accompanied with the reduced protein levels of mesenchymal and cancer stem cell markers. Collectively, this study suggested that the expression of CD44 was upregulated by EGFR pathway and CD44 had a robust impact on the development of breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kongju Wu
- Nursing School of Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gen Sheng Wu
- Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Mebarki S, Désert R, Sulpice L, Sicard M, Desille M, Canal F, Schneider HDP, Bergeat D, Turlin B, Bellaud P, Lavergne E, Guével RL, Corlu A, Perret C, Coulouarn C, Clément B, Musso O. De novo HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas. Oncotarget 2016; 7:39026-39043. [PMID: 27191501 PMCID: PMC5129911 DOI: 10.18632/oncotarget.9346] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/27/2022] Open
Abstract
About 20% hepatocellular carcinomas (HCCs) display wild-type β-catenin, enhanced Wnt signaling, hepatocyte dedifferentiation and bad outcome, suggesting a specific impact of Wnt signals on HCC stem/progenitor cells. To study Wnt-specific molecular pathways, cell fates and clinical outcome, we fine-tuned Wnt/β-catenin signaling in liver progenitor cells, using the prototypical Wnt ligand Wnt3a. Cell biology assays and transcriptomic profiling were performed in HepaRG hepatic progenitors exposed to Wnt3a after β-catenin knockdown or Wnt inhibition with FZD8_CRD. Gene expression network, molecular pathology and survival analyses were performed on HCCs and matching non-tumor livers from 70 patients by real-time PCR and tissue micro-array-based immunohistochemistry. Wnt3a reprogrammed liver progenitors to replicating fibrogenic myofibroblast-like cells displaying stem and invasive features. Invasion was inhibited by 30 nM FZD7 and FZD8 CRDs. Translation of these data to human HCCs revealed two tight gene networks associating cell surface Wnt signaling, stem/progenitor markers and mesenchymal commitment. Both networks were linked by Hyaluronan And Proteoglycan Link Protein 1 (HAPLN1), that appeared de novo in aggressive HCCs expressing cytoplasmic β-catenin and stem cell markers. HAPLN1 was independently associated with bad overall and disease-free outcome. In vitro, HAPLN1 was expressed de novo in EPCAM¯/NCAM+ mesoderm-committed progenitors, upon spontaneous epithelial-mesenchymal transition and de-differentiation of hepatocyte-like cells to liver progenitors. In these cells, HAPLN1 knockdown downregulated key markers of mesenchymal cells, such as Snail, LGR5, collagen IV and α-SMA. In conclusion, HAPLN1 reflects a signaling network leading to stemness, mesenchymal commitment and HCC progression.
Collapse
Affiliation(s)
- Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
- CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
- CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Frédéric Canal
- Inserm, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
- CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
- CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Pascale Bellaud
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, Rennes, France
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Rémy Le Guével
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Anne Corlu
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Christine Perret
- Inserm, Institut Cochin, Paris, France
- Cnrs, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Coulouarn
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
- Université de Rennes 1, Rennes, France
| |
Collapse
|
36
|
Zhang H, Yu C, Chen M, Li Z, Tian S, Jiang J, Sun C. miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2. Tumour Biol 2016; 37:11321-9. [PMID: 26960688 DOI: 10.1007/s13277-016-4995-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023] Open
Abstract
The morbidity and mortality of hepatocellular carcinoma (HCC) is very high, finding new therapeutic targets are critical for HCC treatment. miR-522 has been demonstrated to be upregulated in HCC tissues, but its role in HCC progression remains to be elucidated. In this report, we found miR-522 was upregulated in HCC cells and tissues, miR-522 overexpression promoted cell proliferation, colony formation, and cell cycle progression, whereas knockdown of miR-522 reduced these effects. We also analyzed the expression of several key cell cycle regulatory proteins and found overexpression of miR-522-inhibited cell cycle inhibitors p21 and p27 expression and enhanced cyclin D1 expression and the level of Rb phosphorylation, vice versa. These suggested miR-522-accelerated G1/S transition. DKK1 (dickkopf-1) and SFRP2 (secreted frizzled-related protein 2) were the targets of miR-522, their expression was inversely with miR-522 in HCC tissues. DKK1 and SFRP2 the antagonists of Wnt signaling, suggesting miR-522-promoted HCC progression through activating Wnt signaling. miR-522 might be a valuable target for HCC therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Hubei Cancer Hospital, 116 Zhuodaoquan south road, Hongshan district, Wuhan, 430079, Hubei, People's Republic of China.
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
37
|
Yue X, Zhao P, Wu K, Huang J, Zhang W, Wu Y, Liang X, He X. GRIM-19 inhibition induced autophagy through activation of ERK and HIF-1α not STAT3 in Hela cells. Tumour Biol 2016; 37:9789-96. [PMID: 26810068 DOI: 10.1007/s13277-016-4877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Gene associated with retinoid-interferon-induced mortality (GRIM-19), an important subunit of mitochondrial complex I, has been identified as a tumor suppressor, and its reduced expression has been reported to be associated with tumorigenesis and metastasis. Autophagy has been proposed as a protective mechanism for cell survival under various stresses, including chemotherapy. However, it remains unknown whether GRIM-19 is linked to autophagy and chemotherapy resistance. Here, we showed that suppression of GRIM-19 by shRNA enhanced cell-type-dependent autophagy by activating extracellular regulated protein kinase (ERK) and hypoxia inducible factor-1a (HIF-1a) in a reactive oxygen species (ROS)-mediated manner, and thereby conferred resistance to paclitaxel. Besides, the antioxidant N-acetyl-L-cysteine (NAC) and autophagy inhibitor 3-MA could in part overcome this resistance. We also found that GRIM-19 expression was significantly correlated with clinical stage and grade in patients with cervical cancers. Taken together, our results indicated that GRIM-19 inhibition induced autophagy and chemotherapy resistance, which could affect prognosis of cervical cancers. Our study has identified new function of GRIM-19 and its underlying mechanism, and it will provide possible avenues for therapeutic targeting in cervical cancers.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Female
- Fluorescent Antibody Technique
- Follow-Up Studies
- HeLa Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lymphatic Metastasis
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Neoplasm Invasiveness
- Neoplasm Staging
- Paclitaxel/pharmacology
- Prognosis
- RNA, Small Interfering/genetics
- STAT3 Transcription Factor/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Uterine Cervical Neoplasms/drug therapy
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Xin Yue
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China
| | - Peiwei Zhao
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Pathology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, China
| | - Yaogui Wu
- School of Public Health, Wuhan University, Wuhan, China
| | - Xiaohui Liang
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xuelian He
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Liu Y, Kong D, Wu H, Yuan X, Xu H, Zhang C, Wu G, Wu K. Interplay of retinal determination gene network with TGF-β signaling pathway in epithelial-mesenchymal transition. Stem Cell Investig 2015; 2:12. [PMID: 27358880 DOI: 10.3978/j.issn.2306-9759.2015.05.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/25/2015] [Indexed: 01/17/2023]
Abstract
As a fundamental event in the generation of tissues and organs during embryogenesis, the epithelial-mesenchymal transition (EMT) has also been implicated in cancer progression by its ability to alter the plasticity of epithelial cells to acquire invasive properties. Evidence is mounting that ectopic activation of transforming growth factors β (TGF-β)/bone morphogenetic protein (BMP) superfamily members to enhance tumorigenesis and metastasis. In this respect, the Retinal Determination Gene Network (RDGN), which was identified to govern the normal initiation of the morphogenetic furrow in Drosophila, has now been found to be de-regulated in various types of cancers, and the key members of this network, DACH, SIX, and EYA, have emerged as novel co-regulators of TGF- signaling during EMT. Understanding the molecular mechanism by which RDGN regulates TGF-β/BMP signaling to influence EMT may lead to novel strategies for targeted therapies.
Collapse
Affiliation(s)
- Yu Liu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Deguang Kong
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hua Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xun Yuan
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hanxiao Xu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cuntai Zhang
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaosong Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Kongming Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|