1
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP, Starczynowski DT. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun 2024; 15:9189. [PMID: 39448591 PMCID: PMC11502881 DOI: 10.1038/s41467-024-53629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematopoietic malignancy. Although many patients achieve complete remission with standard induction therapy, a combination of cytarabine and anthracycline, ~40% of patients have induction failure. These refractory patients pose a treatment challenge, as they do not respond to salvage therapy or allogeneic stem cell transplant. Herein, we show that AML patients who experience induction failure have elevated expression of the NF-κB target gene tumor necrosis factor alpha-induced protein-3 (TNFAIP3/A20) and impaired necroptotic cell death. A20High AML are resistant to anthracyclines, while A20Low AML are sensitive. Loss of A20 in AML restores sensitivity to anthracycline treatment by inducing necroptosis. Moreover, A20 prevents necroptosis in AML by targeting the necroptosis effector RIPK1, and anthracycline-induced necroptosis is abrogated in A20High AML. These findings suggest that NF-κB-driven A20 overexpression plays a role in failed chemotherapy induction and highlights the potential of targeting an alternative cell death pathway in AML.
Collapse
MESH Headings
- Humans
- Necroptosis/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
- Tumor Necrosis Factor alpha-Induced Protein 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- NF-kappa B/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Cell Line, Tumor
- Anthracyclines/pharmacology
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Animals
- Female
- Male
- Mice
- Middle Aged
Collapse
Affiliation(s)
- Ashley E Culver-Cochran
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, USA.
- University of Cincinnati Cancer Center, Cincinnati, USA.
| |
Collapse
|
2
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
3
|
Karimian Ensaf P, Goodarzi MT, Homayouni Tabrizi M, Neamati A, Hosseinyzadeh SS. A novel nanoformulation of parthenolide coated with polydopamine shows selective cytotoxicity and induces apoptosis in gastric cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4435-4445. [PMID: 38108837 DOI: 10.1007/s00210-023-02907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
An anticancer agent derived from a natural product, parthenolide (PN), was studied to formulate PN into poly(lactic-co-glycolic acid) (PLGA). Polydopamine (PDA) was employed to modify the surface of PN-PLGA. Following characterization, the PN-PLGA-PDA was evaluated for its in vitro release, cytotoxicity, and ability to induce apoptosis using flow cytometry and real-time quantitative PCR. According to the present study, PN-PLGA-PDA had a size of 195.5 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. The SEM results confirmed the size and spherical shape of the nanoparticles. The percentage of encapsulation efficiency was 96.9%. The zeta potential of PN-PLGA-PDA was - 31.8 mV which was suitable for its stability. FTIR spectra of the PN-PLGA-PDA indicated the chemical stability of the PN due to intermolecular hydrogen bonds between polymer and drug. The release of PN from PN-PLGA-PDA in PBS (pH 7.4) was only 20% during the first 48 h and less than 40% during 144 h. PN-PLGA-PDA exhibited anticancer properties in a dose-dependent manner that was more cytotoxic against cancer cells than normal cells. Moreover, real-time qPCR results indicated that the formulation activated apoptosis genes to exert its cytotoxic effect and activate the NF-kB pathway. Based on our findings, PN-PLGA-PDA could serve as a potential treatment for cancer.
Collapse
Affiliation(s)
| | | | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Samira Sadat Hosseinyzadeh
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
4
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
5
|
Damiescu R, Yücer R, Klauck SM, Bringmann G, Efferth T, Dawood M. Jozimine A 2, a Dimeric Naphthylisoquinoline (NIQ) Alkaloid, Shows In Vitro Cytotoxic Effects against Leukemia Cells through NF-κB Inhibition. Int J Mol Sci 2024; 25:3087. [PMID: 38542061 PMCID: PMC10970593 DOI: 10.3390/ijms25063087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Naphthylisoquinoline (NIQ) alkaloids are rising as a promising class of secondary metabolites with pharmaceutical potential. NF-κB has already been recognized as a significant modulator of cancer proliferation and drug resistance. We have previously reported the mechanisms behind the cytotoxic effect of dioncophylline A, an NIQ monomer, in leukemia cells. In the current study, we have investigated the cytotoxic effect of jozimine A2, an NIQ dimer, on leukemia cells in comparison to a second, structurally unsymmetric dimer, michellamine B. To this end, molecular docking was applied to predict the binding affinity of the dimers towards NF-κB, which was then validated through microscale thermophoresis. Next, cytotoxicity assays were performed on CCRF-CEM cells and multidrug-resistant CEM/ADR5000 cells following treatment. Transcriptome analysis uncovered the molecular networks affected by jozimine A2 and identified the cell cycle as one of the major affected processes. Cell death modes were evaluated through flow cytometry, while angiogenesis was measured with the endothelial cell tube formation assay on human umbilical vein endothelial cells (HUVECs). The results indicated that jozimine A2 bound to NF-κB, inhibited its activity and prevented its translocation to the nucleus. In addition, jozimine A2 induced cell death through apoptosis and prevented angiogenesis. Our study describes the cytotoxic effect of jozimine A2 on leukemia cells and explains the interactions with the NF-κB signaling pathway and the anticancer activity.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and University Hospital, 69120 Heidelberg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany (R.Y.); (T.E.)
| |
Collapse
|
6
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ramachandra N, Gupta M, Schwartz L, Todorova T, Shastri A, Will B, Steidl U, Verma A. Role of IL8 in myeloid malignancies. Leuk Lymphoma 2023; 64:1742-1751. [PMID: 37467070 DOI: 10.1080/10428194.2023.2232492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.
Collapse
Affiliation(s)
- Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Tihomira Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
8
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
9
|
Canevarolo RR, Cury NM, Yunes JA. The Expression and Activation of the NF-κB Pathway Correlate with Methotrexate Resistance and Cell Proliferation in Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:1880. [PMID: 37895229 PMCID: PMC10606671 DOI: 10.3390/genes14101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although its prognosis continually improves with time, a significant proportion of patients still relapse from the disease because of the leukemia's resistance to therapy. Methotrexate (MTX), a folic-acid antagonist, is a chemotherapy agent commonly used against ALL and as an immune-system suppressant for rheumatoid arthritis that presents multiple and complex mechanisms of action and resistance. Previous studies have shown that MTX modulates the nuclear factor kappa B (NF-κB) pathway, an important family of transcription factors involved in inflammation, immunity, cell survival, and proliferation which are frequently hyperactivated in ALL. Using a gene set enrichment analysis of publicly available gene expression data from 161 newly diagnosed pediatric ALL patients, we found the Tumor necrosis factor α (TNF-α) signaling pathway via NF-κB to be the most enriched Cancer Hallmark in MTX-poor-responder patients. A transcriptomic analysis using a panel of ALL cell lines (six B-cell precursor acute lymphoblastic leukemia and seven T-cell acute lymphoblastic leukemia) also identified the same pathway as differentially enriched among MTX-resistant cell lines, as well as in slowly dividing cells. To better understand the crosstalk between NF-κB activity and MTX resistance, we genetically modified the cell lines to express luciferase under an NF-κB-binding-site promoter. We observed that the fold change in NF-κB activity triggered by TNF-α (but not MTX) treatment correlated with MTX resistance and proliferation across the lines. At the individual gene level, NFKB1 expression was directly associated with a poorer clinical response to MTX and with both an increased TNF-α-triggered NF-κB activation and MTX resistance in the cell lines. Despite these results, the pharmacological inhibition (using BAY 11-7082 and parthenolide) or stimulation (using exogenous TNF-α supplementation) of the NF-κB pathway did not alter the MTX resistance of the cell lines significantly, evidencing a complex interplay between MTX and NF-κB in ALL.
Collapse
Affiliation(s)
| | - Nathalia Moreno Cury
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
| | - José Andrés Yunes
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil
| |
Collapse
|
10
|
Bruserud Ø, Reikvam H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3711. [PMID: 37509370 PMCID: PMC10378128 DOI: 10.3390/cancers15143711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein kinase CK2 (also known as casein kinase 2) is one of the main contributors to the human phosphoproteome. It is regarded as a possible therapeutic strategy in several malignant diseases, including acute myeloid leukemia (AML), which is an aggressive bone marrow malignancy. CK2 is an important regulator of intracellular signaling in AML cells, especially PI3K-Akt, Jak-Stat, NFκB, Wnt, and DNA repair signaling. High CK2 levels in AML cells at the first time of diagnosis are associated with decreased survival (i.e., increased risk of chemoresistant leukemia relapse) for patients receiving intensive and potentially curative antileukemic therapy. However, it is not known whether these high CK2 levels can be used as an independent prognostic biomarker because this has not been investigated in multivariate analyses. Several CK2 inhibitors have been developed, but CX-4945/silmitasertib is best characterized. This drug has antiproliferative and proapoptotic effects in primary human AML cells. The preliminary results from studies of silmitasertib in the treatment of other malignancies suggest that gastrointestinal and bone marrow toxicities are relatively common. However, clinical AML studies are not available. Taken together, the available experimental and clinical evidence suggests that the possible use of CK2 inhibition in the treatment of AML should be further investigated.
Collapse
Affiliation(s)
- Øystein Bruserud
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
11
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Kotsiafti A, Giannakas K, Christoforou P, Liapis K. Progress toward Better Treatment of Therapy-Related AML. Cancers (Basel) 2023; 15:cancers15061658. [PMID: 36980546 PMCID: PMC10046015 DOI: 10.3390/cancers15061658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) comprises 10-20% of all newly diagnosed cases of AML and is related to previous use of chemotherapy or ionizing radiotherapy for an unrelated malignant non-myeloid disorder or autoimmune disease. Classic examples include alkylating agents and topoisomerase II inhibitors, whereas newer targeted therapies such as poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors have emerged as causative agents. Typically, t-AML is characterized by adverse karyotypic abnormalities and molecular lesions that confer a poor prognosis. Nevertheless, there are also cases of t-AML without poor-risk features. The management of these patients remains controversial. We describe the causes and pathophysiology of t-AML, putting emphasis on its mutational heterogeneity, and present recent advances in its treatment including CPX-351, hypomethylating agent plus venetoclax combination, and novel, molecularly targeted agents that promise to improve the cure rates. Evidence supporting personalized medicine for patients with t-AML is presented, as well as the authors' clinical recommendations.
Collapse
Affiliation(s)
| | | | - Panagiotis Christoforou
- Pathophysiology Department, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Konstantinos Liapis
- Dragana Campus, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece
| |
Collapse
|
13
|
Nath P, Modak S, Aktar T, Maiti S, Ghosh A, Singh R, Debnath M, Saha B, Maiti D. Olive leaves extract alleviates inflammation and modifies the intrinsic apoptotic signal in the leukemic bone marrow. Front Immunol 2023; 13:1054186. [PMID: 36741365 PMCID: PMC9894250 DOI: 10.3389/fimmu.2022.1054186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Current anti-leukemic chemotherapies with multiple targets suffer from side effects. Synthetic drugs with huge off-target effects are detrimental to leukemic patients. Therefore, natural plant-based products are being increasingly tested for new anti-leukemic therapy with fewer or no side effects. Herein, we report the effect of ethanolic olive leaves extract (EOLE) on the K562 cell line and on the bone marrow (BM) of N-ethyl-N-nitrosourea (ENU)-induced leukemic mice. Methods Using standard methodologies, we assessed viability, chromatin condensation, and induction of apoptosis in EOLE-treated K562 cells in-vitro. The anti-leukemic activity of EOLE was assayed by measuring ROS, levels of various cytokines, expression of iNOS and COX-2 gene, and changes in the level of important apoptosis regulatory and cell signaling proteins in-vivo. Result K562 cells underwent apoptotic induction after exposure to EOLE. In the BM of leukemic mice, EOLE therapy decreased the number of blast cells, ROS generation, and expression of NF-κB and ERK1/2. IL-6, IL-1β, TNF-α, iNOS, and COX-2 were among the inflammatory molecules that were down-regulated by EOLE therapy. Additionally, it decreased the expression of anti-apoptotic proteins BCL2A1, BCL-xL, and MCL-1 in the BM of leukemic mice. Discussion Chronic inflammation and anomalous apoptotic mechanism both critically contribute to the malignant transformation of cells. Inflammation in the tumor microenvironment promotes the growth, survival, and migration of cancer cells, accelerating the disease. The current investigation showed that EOLE treatment reduces inflammation and alters the expression of apoptosis regulatory protein in the BM of leukemic mice, which may halt the progression of the disease.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Snehashish Modak
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Tamanna Aktar
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Sharanya Maiti
- Delhi Public School Megacity, Kolkata, West Bengal, India
| | - Anisha Ghosh
- Delhi Public School Megacity, Kolkata, West Bengal, India
| | - Riddha Singh
- Hariyana Vidyamandir, Kolkata, West Bengal, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Debasish Maiti
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India,*Correspondence: Debasish Maiti, ;
| |
Collapse
|
14
|
Wang X, Bajpai AK, Gu Q, Ashbrook DG, Starlard-Davenport A, Lu L. Weighted gene co-expression network analysis identifies key hub genes and pathways in acute myeloid leukemia. Front Genet 2023; 14:1009462. [PMID: 36923792 PMCID: PMC10008864 DOI: 10.3389/fgene.2023.1009462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. However, there is a gap in understanding the molecular basis of the disease, partly because key genes associated with AML have not been extensively explored. In the current study, we aimed to identify genes that have strong association with AML based on a cross-species integrative approach. Methods: We used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules significantly correlated with human AML, and further selected the genes exhibiting a significant difference in expression between AML and healthy mouse. Protein-protein interactions, transcription factors, gene function, genetic regulation, and coding sequence variants were integrated to identify key hub genes in AML. Results: The cross-species approach identified a total of 412 genes associated with both human and mouse AML. Enrichment analysis confirmed an association of these genes with hematopoietic and immune-related functions, phenotypes, processes, and pathways. Further, the integrated analysis approach identified a set of important module genes including Nfe2, Trim27, Mef2c, Ets1, Tal1, Foxo1, and Gata1 in AML. Six of these genes (except ETS1) showed significant differential expression between human AML and healthy samples in an independent microarray dataset. All of these genes are known to be involved in immune/hematopoietic functions, and in transcriptional regulation. In addition, Nfe2, Trim27, Mef2c, and Ets1 harbor coding sequence variants, whereas Nfe2 and Trim27 are cis-regulated, making them attractive candidates for validation. Furthermore, subtype-specific analysis of the hub genes in human AML indicated high expression of NFE2 across all the subtypes (M0 through M7) and enriched expression of ETS1, LEF1, GATA1, and TAL1 in M6 and M7 subtypes. A significant correlation between methylation status and expression level was observed for most of these genes in AML patients. Conclusion: Findings from the current study highlight the importance of our cross-species approach in the identification of multiple key candidate genes in AML, which can be further studied to explore their detailed role in leukemia/AML.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Akhilesh K Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Qingqing Gu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
16
|
Huang K, Xie L, Wang F. A Novel Defined Pyroptosis-Related Gene Signature for the Prognosis of Acute Myeloid Leukemia. Genes (Basel) 2022; 13:2281. [PMID: 36553549 PMCID: PMC9778227 DOI: 10.3390/genes13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed necrotic cell death, but its potential prognostic value in acute myeloid leukemia (AML) remains unclear. On the basis of available AML data from TCGA and TARGET databases, a 10-gene signature model was constructed to effectively predict AML prognosis by performing LASSO Cox regression analysis, which showed that patients with a low-risk score had a significantly better prognosis than that of the high-risk group, and receiver operator characteristic (ROC) analysis achieved superior performance in the prognostic model. The model was further well-verified in an external GEO cohort. Multivariable Cox regression analysis showed that, in addition to age, the risk score was an independent poor survival factor for AML patients, and a nomogram model was constructed with high accuracy. Moreover, the high-risk group generally had higher cytolytic activity and increased levels of infiltrating immune cells, including tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs), which could be related to the expression of immune checkpoint genes. Additionally, low-risk AML patients may have a better response from traditional chemotherapeutic drugs. In conclusion, a pyroptosis-related gene signature can independently predict the prognosis of AML patients with sufficient predictive power, and pyroptosis plays an important role in the immune microenvironment of AML, which may be used to develop a new effective therapeutic method for AML in the future.
Collapse
Affiliation(s)
- Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linka Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Hadzic M, Sun Y, Tomic N, Tsirvouli E, Kuiper M, Pojskic L. Halogenated boroxine increases propensity to apoptosis in leukemia (UT-7) but not non-tumor cells in vitro. FEBS Open Bio 2022; 13:143-153. [PMID: 36369656 PMCID: PMC9811610 DOI: 10.1002/2211-5463.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
A hallmark of the development of solid and hematological malignancies is the dysregulation of apoptosis, which leads to an imbalance between cell proliferation, cell survival and death. Halogenated boroxine [K2 (B3 O3 F4 OH)] (HB) is a derivative of cyclic anhydride of boronic acid, with reproducible anti-tumor and anti-proliferative effects in different cell models. Notably, these changes are observed to be more profound in tumor cells than in normal cells. Here, we investigated the underlying mechanisms through an extensive evaluation of (a) deregulated target genes and (b) their interactions and links with main apoptotic pathway genes upon treatment with an optimized concentration of HB. To provide deeper insights into the mechanism of action of HB, we performed identification, visualization, and pathway association of differentially expressed genes (DEGs) involved in regulation of apoptosis among tumor and non-tumor cells upon HB treatment. We report that HB at a concentration of 0.2 mg·mL-1 drives tumor cells to apoptosis, whereas non-tumor cells are not affected. Comparison of DEG profiles, gene interactions and pathway associations suggests that the HB effect and tumor-'selectivity' can be explained by Bax/Bak-independent mitochondrial depolarization by ROS generation and TRAIL-like activation, followed by permanent inhibition of NFκB signaling pathway specifically in tumor cells.
Collapse
Affiliation(s)
- Maida Hadzic
- Institute for Genetic Engineering and BiotechnologyUniversity of SarajevoBosnia and Herzegovina
| | - Yitong Sun
- Institute for BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Nikolina Tomic
- Institute for Genetic Engineering and BiotechnologyUniversity of SarajevoBosnia and Herzegovina
| | - Eirini Tsirvouli
- Institute for BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Martin Kuiper
- Institute for BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Lejla Pojskic
- Institute for Genetic Engineering and BiotechnologyUniversity of SarajevoBosnia and Herzegovina
| |
Collapse
|
18
|
Jakobsen I, Sundkvist M, Björn N, Gréen H, Lotfi K. Early changes in gene expression profiles in AML patients during induction chemotherapy. BMC Genomics 2022; 23:752. [PMCID: PMC9664790 DOI: 10.1186/s12864-022-08960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Elucidation of the genetic mechanisms underlying treatment response to standard induction chemotherapy in AML patients is warranted, in order to aid in risk-adapted treatment decisions as novel treatments are emerging. In this pilot study, we explored the treatment-induced expression patterns in a small cohort of AML patients by analyzing differential gene expression (DGE) over the first 2 days of induction chemotherapy.
Methods
Blood samples were collected from ten AML patients at baseline (before treatment initiation) and during the first 2 days of treatment (Day 1; approximately 24 h, and Day 2; approximately 48 h after treatment initiation, respectively) and RNA was extracted for subsequent RNA sequencing. DGE between time points were assessed by pairwise analysis using the R package edgeR version 3.18.1 in all patients as well as in relation to treatment response (complete remission, CR, vs non-complete remission, nCR). Ingenuity Pathway Analysis (Qiagen) software was used for pathway analysis and visualization.
Results
After initial data quality control, two patients were excluded from further analysis, resulting in a final cohort of eight patients with data from all three timepoints. DGE analysis demonstrated activation of pathways with genes directly or indirectly associated with NF-κB signaling. Significant activation of the NF-κB pathway was seen in 50% of the patients 2 days after treatment start, while iNOS pathway effects could be identified already after 1 day. nCR patients displayed activation of pathways associated with cell cycle progression, oncogenesis and anti-apoptotic behavior, including the STAT3 pathway and Salvage pathways of pyrimidine ribonucleotides. Notably, a significant induction of cytidine deaminase, an enzyme responsible for the deamination of Ara-C, could be observed between baseline and Day 2 in the nCR patients but not in patients achieving CR.
Conclusions
In conclusion, we show that time-course analysis of gene expression represents a feasible approach to identify relevant pathways affected by standard induction chemotherapy in AML patients. This poses as a potential method for elucidating new drug targets and biomarkers for categorizing disease aggressiveness and evaluating treatment response. However, more studies on larger cohorts are warranted to elucidate the transcriptional basis for drug response.
Collapse
|
19
|
Wang ZX, Wang S, Qiao XP, Li WB, Shi JT, Wang YR, Chen SW. Design, synthesis and biological evaluation of novel pyrazinone derivatives as PI3K/HDAC dual inhibitors. Bioorg Med Chem 2022; 74:117067. [DOI: 10.1016/j.bmc.2022.117067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
|
20
|
Bhattacharyya S, Law S. Environmental pollutant ENU induced leukemic NF-kB signaling amelioration by Eclipta alba in murine model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2435-2449. [PMID: 34420458 DOI: 10.1080/09603123.2021.1969341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Exposure to N-nitroso compounds (NOCs) in our environment via pesticides, tobacco, and smoked meat can be potentially carcinogenic. The induction of N-N' ethylnitrosourea (ENU), a genotoxic NOC, leads to leukemogenesis. The study aimed to explore the ameliorating effect of the Ayurvedic herb Eclipta alba on the bone marrow cells of ENU-induced leukemic mice. Eclipta alba is investigated for its anti-cancer effect on various cell lines, but never on haematological malignant models. Theefficacy of the extract was explored on leukemia by changes in body weight, survivability, peripheral blood hemogram, bone marrow cytological, histological, and cell culture studies pre-and post-treatment. The treated group revealed significant immunomodulation of the expressional profile of NF-kB family and IL-1β in marrow cells, by flow-cytometry, and immunofluorescence study. Through our experimental endeavour we depicted the cellular mechanism, signaling modality and tried to establish the anti-cancer potency of Eclipta alba on ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata-West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata-West Bengal, India
| |
Collapse
|
21
|
Nath P, Majumder D, Debnath R, Debnath M, Singh Sekhawat S, Maiti D. Immunotherapeutic potential of ethanolic olive leaves extract (EOLE) and IL-28B combination therapy in ENU induced animal model of leukemia. Cytokine 2022; 156:155913. [DOI: 10.1016/j.cyto.2022.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
22
|
Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, AlWadaani D, Trivilegio T, AlSubait A, AlTuwaijri A, Abudawood M, Almuzzaini B. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One 2022; 17:e0267855. [PMID: 35511922 PMCID: PMC9071118 DOI: 10.1371/journal.pone.0267855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
Most of the AML patients in remission develop multidrug resistance after the first-line therapy and relapse. AML stem cells have gained attention for their chemoresistance potentials. Chemoresistance is a multifactorial process resulting from altered survival signaling pathways and apoptosis regulators such as MAPK, NF-κB activation and ROS production. We targeted the survival pathway p38 MAPK, NF-κB and ROS generation in human chemoresistant AML stem cell line KG1a, susceptible to enhance cell sensitivity to the chemotherapy drug 5-Fluorouridine, compared to the chemosensitive AML cell line HL60. After confirming the phenotypic characterization of KG1a and HL60 cells using flow cytometry and transcriptomic array analyses, cell treatment with the NF-κB inhibitor IKKVII resulted in a complete induction of apoptosis, and a few p38 MAPK inhibitor SB202190-treated cells underwent apoptosis. No change in the apoptosis status was observed in the ROS scavenger N-acetylcysteine-treated cells. The p38 MAPK pathway blockade enhanced the KG1a cell sensitivity to 5-Fluorouridine, which was associated with the upregulation of microribonucleic acid-(miR-)328-3p, as determined by the microarray-based miRNA transcriptomic analysis. The downregulation of the miR-210-5p in SB202190-treated KG1a cells exposed to FUrd was monitored using RT-qPCR. The miR-328-3p is known for the enhancement of cancer cell chemosensitivity and apoptosis induction, and the downregulation of miR-210-5p is found in AML patients in complete remission. In conclusion, we highlighted the key role of the p38 MAPK survival pathway in the chemoresistance capacity of the AML stem cells and potentially involved miRNAs, which may pave the way for the development of a new therapeutic strategy targeting survival signaling proteins and reduce the rate of AML relapse.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Postgraduate program, King Saud University, Riyadh, Saudi Arabia
| | - Nouran Abu AlSaud
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deemah AlWadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Arwa AlSubait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abeer AlTuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| |
Collapse
|
23
|
Tang X, Chen F, Xie LC, Liu SX, Mai HR. Targeting metabolism: A potential strategy for hematological cancer therapy. World J Clin Cases 2022; 10:2990-3004. [PMID: 35647127 PMCID: PMC9082716 DOI: 10.12998/wjcc.v10.i10.2990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most hematological cancer-related relapses and deaths are caused by metastasis; thus, the importance of this process as a target of therapy should be considered. Hematological cancer is a type of cancer in which metabolism plays an essential role in progression. Therefore, we are required to block fundamental metastatic processes and develop specific preclinical and clinical strategies against those biomarkers involved in the metabolic regulation of hematological cancer cells, which do not rely on primary tumor responses. To understand progress in this field, we provide a summary of recent developments in the understanding of metabolism in hematological cancer and a general understanding of biomarkers currently used and under investigation for clinical and preclinical applications involving drug development. The signaling pathways involved in cancer cell metabolism are highlighted and shed light on how we could identify novel biomarkers involved in cancer development and treatment. This review provides new insights into biomolecular carriers that could be targeted as anticancer biomarkers.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Li-Chun Xie
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Si-Xi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| |
Collapse
|
24
|
Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep 2022; 49:3321-3331. [PMID: 35028852 DOI: 10.1007/s11033-021-07073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.
Collapse
|
25
|
Huang R, Liao X, Li Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2424-2452. [PMID: 35240791 DOI: 10.3934/mbe.2022112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
26
|
Abdelghany WM, El Husseiny NM, Fekry GH, Korayem OH, Helmy R. Study of Tumor Necrosis Factor-Alpha-Induced Protein 3 Gene Single-Nucleotide Variants in JAK2 V617F-Positive Myeloproliferative Disorders: A Case–Control Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and Objectives: Myeloproliferative neoplasms (MPNs) are Philadelphia negative disorders involving polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF). Although JAK2 mutation is almost involved, other several mutations are linked to MPNs risk and prognosis. TNFAIP3 genetic mutations are related to several cancers and autoimmune diseases. Our study aimed to demonstrate the effects of rs2230926_T/G & rs5029939_C/G SNVs of TNFAIP3 gene on the risk and prognosis of JAK2 V617F positive MPNs.
Methods: Matched 2 groups in age, sex and race were enrolled in our research; 80 MPNs cases group and 130 normal healthy controls group with follow up of MPNs cases for 3 years. Taqman assay probes involved in real time polymerase chain reaction (PCR) were utilized for variants analysis.
Results: The rs2230926 & rs5029939 SNVs were in modest linkage disequilibrium (LD) in MPNs cases. The observed frequencies of G allele and its genotypes of both variants were more prevalent in MPNs patients than normal controls. The bleeding symptoms and the presence of splenomegaly were more existent in the heterozygous genotype and the combined G involved genotypes respectively. The overall survival (OS) was lower in G containing genotypes of both variants but the progression free survival (PFS) was affected only in rs5029939 SNV.
Conclusion: Our study revealed the association of G containing genotypes of both rs2230926 & rs5029939 SNVs to the increased MPNs incidence as well to poor clinical course and prognosis of JAK2 V617F positive MPNs disorders in Egyptian ethnic.
Collapse
|
27
|
Zhang J, Peng Y, He Y, Xiao Y, Wang Q, Zhao Y, Zhang T, Wu C, Xie Y, Zhou J, Yu W, Lu D, Bai H, Chen T, Guo P, Zhang Q. GPX1-associated prognostic signature predicts poor survival in patients with acute myeloid leukemia and involves in immunosuppression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166268. [PMID: 34536536 DOI: 10.1016/j.bbadis.2021.166268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Treatment of acute myeloid leukemia (AML) remains a challenge. It is urgent to understand the microenvironment to improve therapy and prognosis. METHODS Bioinformatics methods were used to analyze transcription expression profile of AML patient samples with complete clinical information from UCSC Xena TCGA-AML datasets and validate with GEO datasets. Western blot, qPCR, RNAi and CCK8 assay were used to assay the effect of GPX1 expression on AML cell viability and the expression of genes of interest. RESULTS Our analyses revealed that highly expressed GPX1 in AML patients links to unfavorable prognosis. GPX1 expression was positively associated with not only fraction levels of myeloid-derived suppressor cells (MDSCs), monocytes and T cell exhaustion, the expression levels of MDSC markers, MDSC-promoting CCR2 and immune inhibitory checkpoints (TIM3/Gal-9, SIRPα and VISTA), but also negatively with low fraction levels of CD4+ and CD8+ T cells. Silencing GPX1 expression reduced AML cell viability and CCR2 expression. Moreover, GPX1-targetd kinases were PKC family, SRC family, SYK and PAK1, which promote AML progression and the resistance to therapy. Furthermore, Additionally, GPX1-associated prognostic signature (GPS) is an independent risk factor with high area under curve (AUC) values of receiver operating characteristic (ROC) curves. High risk group based on GPS enriched not only with endocytosis which transfers mitochondria to favor AML cell survival in response to chemotherapy, but also NOTCH, WNT and TLR signaling which promote therapy resistance. CONCLUSION Our results revealed the significant involvement of GPX1 in AML immunosuppression via and provided a prognostic signature for AML patients.
Collapse
MESH Headings
- Aged
- Antigens, Differentiation/genetics
- B7 Antigens/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Glutathione Peroxidase/genetics
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Immune Tolerance/genetics
- Immunosuppression Therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- Prognosis
- Receptors, CCR2/genetics
- Receptors, Immunologic/genetics
- Receptors, Notch/genetics
- Risk Factors
- Syk Kinase/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/genetics
- p21-Activated Kinases/genetics
- Glutathione Peroxidase GPX1
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuhui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Tin Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Deqin Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Bai
- Medical Laboratory Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, Guizhou, China.
| | - Tenxiang Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang 550004, Guizhou, China.
| | - Penxiang Guo
- Department of Hematology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang 550002, Guizhou, China.
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
28
|
Wang SY, Shih YH, Shieh TM, Tseng YH. Proteasome Inhibitors Interrupt the Activation of Non-Canonical NF-κB Signaling Pathway and Induce Cell Apoptosis in Cytarabine-Resistant HL60 Cells. Int J Mol Sci 2021; 23:ijms23010361. [PMID: 35008789 PMCID: PMC8745175 DOI: 10.3390/ijms23010361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Over half of older patients with acute myeloid leukemia (AML) do not respond to cytotoxic chemotherapy, and most responders relapse because of drug resistance. Cytarabine is the main drug used for the treatment of AML. Intensive treatment with high-dose cytarabine can increase the overall survival rate and reduce the relapse rate, but it also increases the likelihood of drug-related side effects. To optimize cytarabine treatment, understanding the mechanism underlying cytarabine resistance in leukemia is necessary. In this study, the gene expression profiles of parental HL60 cells and cytarabine-resistant HL60 (R-HL60) cells were compared through gene expression arrays. Then, the differential gene expression between parental HL60 and R-HL60 cells was measured using KEGG software. The expression of numerous genes associated with the nuclear factor κB (NF-κB) signaling pathway changed during the development of cytarabine resistance. Proteasome inhibitors inhibited the activity of non-canonical NF-κB signaling pathway and induced the apoptosis of R-HL60 cells. The study results support the application and possible mechanism of proteasome inhibitors in patients with relapsed or refractory leukemia.
Collapse
Affiliation(s)
- Shuo-Yu Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +88-673-121-101 (ext. 6356)
| |
Collapse
|
29
|
Abed El Rahman SKED, Elshafy SSA, Samra M, Ali HM, Mohamed RA. PIM2 and NF-κβ gene expression in a sample of AML and ALL Egyptian patients and its relevance to response to treatment. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The relation between PIM2 and the transcriptional factor NF κβ have been controversial in literature. The significance of PIM2 and NF-κβ genes expression on the incidence of acute leukemia (AML and ALL) and its relevance to the response rate was evaluated. Sixty de novo acute leukemia patients were stratified in 2 groups: 30 acute myeloid leukemia (AML) and 30 acute lymphoblastic leukemia (ALL) patients and compared to 30 sex- and age-matched controls. The expression level of PIM2 and NF κβ genes was measured using quantitative real-time polymerase chain reaction (QRT-PCR). The patients were followed with clinical examination and complete blood counts.
Results
The expression level of PIM2 gene was significantly higher in AML patients (P<0.001) compared to the control group. The mean expression level of NF κβ gene was significantly high in AML and ALL patients compared to the healthy control group (P=0.037 and P<0.001; respectively). The overall survival in AML patients was higher in NF κβ gene low expressers compared to high expressers (P=0.047). The number of AML patients who achieved complete remission was significantly higher in PIM2 gene low expressers in comparison to PIM2 gene high expressers (P=0.042).
Conclusion
PIM2 and NF κβ genes might have a role in the pathogenesis of acute leukemia, poor overall survival, and failure of response to induction therapy.
Collapse
|
30
|
Tian Y, Jiang Y, Dong X, Chang Y, Chi J, Chen X. miR-149-3p suppressed epithelial-mesenchymal transition and tumor development in acute myeloid leukemia. Hematology 2021; 26:840-847. [PMID: 34674612 DOI: 10.1080/16078454.2021.1990502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is a form of primary acute leukemia with high mortality. Our previous study demonstrated that miR-149-3p was down-regulated in chemoresistant acute leukemia cells. However, the biological function of miR-149-3p in AML needs to be further explored. METHODS Herein, the expression of miR-149-3p was overexpressed/silenced in U-937 human AML cells via transfection with miR-149-3p agomir/antagomir. The effect of miR-149-3p on U-937-induced tumor growth was investigated using a xenograft nude mouse model. RESULTS The results showed that miR-149-3p overexpression inhibited the proliferation and increased the apoptosis of U-937 cells. In addition, miR-149-3p suppressed epithelial-mesenchymal transition in U-937 cells, as demonstrated by the miR-149-3p agomir-induced increase in E-cadherin expression and decrease in vimentin expression. The in vivo experiments demonstrated that miR-149-3p suppressed tumor progression. CONCLUSION In conclusion, the findings revealed the association of miR-149-3p with the development of AML and suggest that miR-149-3p is a potential therapeutic candidate for AML.
Collapse
Affiliation(s)
- Yaoyao Tian
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yongfang Jiang
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiushuai Dong
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yuying Chang
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jia Chi
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xi Chen
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
31
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
32
|
Hou Y, Zi J, Ge Z. High Expression of RhoF Predicts Worse Overall Survival: A Potential Therapeutic Target for non-M3 Acute Myeloid Leukemia. J Cancer 2021; 12:5530-5542. [PMID: 34405015 PMCID: PMC8364661 DOI: 10.7150/jca.52648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
Rho GTPases are involved in multiple human malignancies and diverse biological functions. However, the patterns and prognostic significance of the expression of RhoD subfamily in acute myeloid leukemia (AML) remain unknown. Here, we detected the expressions of RhoD subfamily genes in AML on the basis of several published datasets and analyzed the survival of RhoD subfamily across the TCGA profiles and in a GEO series. We found that the expression of RhoF, but not RhoD, increased in AML patients in TCGA and GEO (all P<0.001); the survival analysis of two independent cohorts demonstrated that higher RhoF expression was significantly associated with poorer overall survival (OS) (P<0.001), whereas RhoD expression had no significant effect on OS in patients with AML (P>0.05); the subgroup analysis showed that high RhoF expression was correlated with poor 1-, 3-, and 5-year OS (P<0.05 for all); upregulated RhoF expression had a more significant prognostic value for OS in the younger patients (age<60), the intensive chemotherapy group, and wild-type groups (IDH1, NRAS, and TP53) (P<0.05 for all). Multivariate analysis indicated high RhoF expression as a strongly independent unfavorable prognostic factor for OS in patients without transplantation (P<0.05). Furthermore, a higher RhoF expression was closely associated with an older age, intermediate-/poor-risk cytogenetics and mutations in IDH1, NRAS, and TP53. RhoF expression was negatively correlated with BM blasts (P=0.020) and WBC (P=0.003). These findings suggest that high RhoF expression is associated with worsening OS in AML patients and is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Yue Hou
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Jie Zi
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| |
Collapse
|
33
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous type of blood cancer, which presents with a high rate of mortality especially in elderly patients. Better understanding of critical players, such as molecules with tumor suppressive properties, may help to fine-tune disease classification and thereby treatment modalities for this detrimental disease. Here, we summarize well-known and established tumor suppressors as well as emerging tumor suppressors, including transcription factors (TCFs) and other transcriptional regulators, such as epigenetic modulators. In addition, we look into the versatile field of miRNAs also interfering with tumorigenesis and progression, which offer new possibilities in AML diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Jacqueline Wallwitz
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Aigner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
35
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
36
|
Gritsenko A, Yu S, Martin-Sanchez F, Diaz-del-Olmo I, Nichols EM, Davis DM, Brough D, Lopez-Castejon G. Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front Immunol 2020; 11:565924. [PMID: 33101286 PMCID: PMC7555430 DOI: 10.3389/fimmu.2020.565924] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-18 and IL-1β are potent pro-inflammatory cytokines that contribute to inflammatory conditions such as rheumatoid arthritis and Alzheimer's disease. They are produced as inactive precursors that are activated by large macromolecular complexes called inflammasomes upon sensing damage or pathogenic signals. NLRP3 inflammasome activation is regarded to require a priming step that causes NLRP3 and IL-1β gene upregulation, and also NLRP3 post-translational licencing. A subsequent activation step leads to the assembly of the complex and the cleavage of pro-IL-18 and pro-IL-1β by caspase-1 into their mature forms, allowing their release. Here we show that human monocytes, but not monocyte derived macrophages, are able to form canonical NLRP3 inflammasomes in the absence of priming. NLRP3 activator nigericin caused the processing and release of constitutively expressed IL-18 in an unprimed setting. This was mediated by the canonical NLRP3 inflammasome that was dependent on K+ and Cl- efflux and led to ASC oligomerization, caspase-1 and Gasdermin-D (GSDMD) cleavage. IL-18 release was impaired by the NLRP3 inhibitor MCC950 and by the absence of NLRP3, but also by deficiency of GSDMD, suggesting that pyroptosis is the mechanism of release. This work highlights the readiness of the NLRP3 inflammasome to assemble in the absence of priming in human monocytes and hence contribute to the very early stages of the inflammatory response when IL-1β has not yet been produced. It is important to consider the unprimed setting when researching the mechanisms of NLRP3 activation, as to not overshadow the pathways that occur in the absence of priming stimuli, which might only enhance this response.
Collapse
Affiliation(s)
- Anna Gritsenko
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ines Diaz-del-Olmo
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Daniel M. Davis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
37
|
Li S, Chen X, Wang J, Meydan C, Glass JL, Shih AH, Delwel R, Levine RL, Mason CE, Melnick AM. Somatic Mutations Drive Specific, but Reversible, Epigenetic Heterogeneity States in AML. Cancer Discov 2020; 10:1934-1949. [PMID: 32938585 DOI: 10.1158/2159-8290.cd-19-0897] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic allele diversity is linked to inferior prognosis in acute myeloid leukemia (AML). However, the source of epiallele heterogeneity in AML is unknown. Herein we analyzed epiallele diversity in a genetically and clinically annotated AML cohort. Notably, AML driver mutations linked to transcription factors and favorable outcome are associated with epigenetic destabilization in a defined set of susceptible loci. In contrast, AML subtypes linked to inferior prognosis manifest greater abundance and highly stochastic epiallele patterning. We report an epiallele outcome classifier supporting the link between epigenetic diversity and treatment failure. Mouse models with TET2 or IDH2 mutations show that epiallele diversity is especially strongly induced by IDH mutations, precedes transformation to AML, and is enhanced by cooperation between somatic mutations. Furthermore, epiallele complexity was partially reversed by epigenetic therapies in AML driven by TET2/IDH2, suggesting that epigenetic therapy might function in part by reducing population complexity and fitness of AMLs. SIGNIFICANCE: We show for the first time that epigenetic clonality is directly linked to specific mutations and that epigenetic allele diversity precedes and potentially contributes to malignant transformation. Furthermore, epigenetic clonality is reversible with epigenetic therapy agents.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
- The Jackson Laboratory Cancer Center, Bar Harbor, Maine
- The Department of Genetics and Genomic Sciences, The University of Connecticut Health Center, Farmington, Connecticut
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut
| | - Xiaowen Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jiahui Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Jacob L Glass
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan H Shih
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, the Netherlands
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
38
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
39
|
Zhang H, Xu H, Zhang R, Zhao X, Liang M, Wei F. Chemosensitization by 4-hydroxyphenyl retinamide-induced NF-κB inhibition in acute myeloid leukemia cells. Cancer Chemother Pharmacol 2020; 86:257-266. [PMID: 32696214 DOI: 10.1007/s00280-020-04115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Inherent and/or acquired multi-drug resistance might be the instigator of treatment failure for acute myeloid leukemia (AML). In the current study, we aimed to explored the chemosensitizing effect of 4-HPR on AML therapy. METHODS Luciferase reporter assays were used to test the effect of 4-HPR on transcriptional signaling pathways. The quantitative real-time polymerase chain reaction and immunoblots were used to confirm the role of 4-HPR in NF-κB inhibition, apoptosis, and drug resistance. MTT and flow cytometry assays were applied to test the drug response and chemosensitizing effect of 4-HPR with AML cell lines and primary AML samples. RESULTS 4-HPR suppressed tumor necrosis factor-α- and daunorubin-induced NF-κB activation in AML cell lines. The expression of anti-apoptotic gene, BCL2, was downregulated, while expressions of pro-apoptotic genes, cIAP, XIAP, and BID, were increased after 4-HPR treatment. Immunoblots showed decreased p65-NF-κB, IκBα, and MDR1, but increased cleaved poly (ADP-ribose) polymerase and BIM. A low concentration of 4-HPR chemosensitized AML cells to daunorubin treatment in vitro. CONCLUSION 4-HPR-induced NF-κB inhibition was the main driver of the chemosensitizing effect observed in AML cell lines and primary AML samples. These results highlight that 4-HPR might be a promising chemosensitizing agent in AML therapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis
- Cell Proliferation
- Daunorubicin/pharmacology
- Drug Synergism
- Fenretinide/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Haoyu Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Ranran Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Xinying Zhao
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Ming Liang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fenggui Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
40
|
Reikvam H. Inhibition of NF-κB Signaling Alters Acute Myelogenous Leukemia Cell Transcriptomics. Cells 2020; 9:E1677. [PMID: 32664684 PMCID: PMC7408594 DOI: 10.3390/cells9071677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematological malignancy. The pathophysiology of the disease depends on cytogenetic abnormalities, gene mutations, aberrant gene expressions, and altered epigenetic regulation. Although new pharmacological agents have emerged during the last years, the prognosis is still dismal and new therapeutic strategies are needed. The transcription factor nuclear factor-κB (NF-κB) is regarded a possible therapeutic target. In this study, we investigated the alterations in the global gene expression profile (GEP) in primary AML cells derived from 16 consecutive patients after exposure to the NF-κB inhibitor BMS-345541. We identified a profound and highly discriminative transcriptomic profile associated with NF-κB inhibition. Bioinformatical analyses identified cytokine/interleukin signaling, metabolic regulation, and nucleic acid binding/transcription among the major biological functions influenced by NF-κB inhibition. Furthermore, several key genes involved in leukemogenesis, among them RUNX1 and CEBPA, in addition to NFKB1 itself, were influenced by NF-κB inhibition. Finally, we identified a significant impact of NF-κB inhibition on the expression of genes included in a leukemic stem cell (LSC) signature, indicating possible targeting of LSCs. We conclude that NF-κB inhibition significantly altered the expression of genes central to the leukemic process.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Down-Regulation/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Ontology
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/metabolism
- Signal Transduction
- Transcriptome/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Håkon Reikvam
- Institute of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
41
|
Control of Murine Primordial Follicle Growth Activation by IκB/NFκB Signaling. Reprod Sci 2020; 27:2063-2074. [PMID: 32542534 DOI: 10.1007/s43032-020-00225-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
The transcription factor NFκB has been associated with the timing of menopause in a large human genome-wide association study. Furthermore, preclinical studies demonstrate that loss of Tumor necrosis factor alpha (Tnfα) or its receptor Tnfr2 slows primordial follicle growth activation (PFGA). Although Tnfα:receptor signaling stimulates NFκB and may mechanistically link these findings, very little is known about NFκB signaling in PFGA. Because signaling downstream of Tnfα/Tnfr2 ligand/receptor interaction has not been interrogated as relates to PFGA, we evaluated the expression of key NFκB signaling proteins in primordial and growing follicles, as well as during ovarian aging. We show that key members of the NFκB pathway, including subunits, activating kinases, and inhibitory proteins, are expressed in the murine ovary. Furthermore, the subunits p65 and p50, and the cytosolic inhibitory proteins IκBα and IκBβ, are present in ovarian follicles, including at the primordial stage. Finally, we assessed PFGA in genetically modified mice (AKBI) previously demonstrated to be resistant to inflammatory stress-induced NFκB activation due to overexpression of the NFκB inhibitory protein IκBβ. Consistent with the hypothesis that NFκB plays a key role in PFGA, AKBI mice exhibit slower PGFA than wild-type (WT) controls, and their ovaries contain nearly twice the number of primordial follicles as WT both at early and late reproductive ages. These data provide mechanistic insight on the control of PFGA and suggest that targeting NFκB at the level of IκB proteins may be a tractable route to slowing the rate of PFGA in women faced with early ovarian demise.
Collapse
|
42
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
43
|
Labbozzetta M, Notarbartolo M, Poma P. Can NF-κB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View. Int J Mol Sci 2020; 21:ijms21093070. [PMID: 32349210 PMCID: PMC7246796 DOI: 10.3390/ijms21093070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR), of the innate and acquired types, is one of major problems in treating tumor diseases with a good chance of success. In this review, we examine the key role of nuclear factor-kappa B (NF-κB) to induce MDR in three tumor models characterized precisely by innate or acquired MDR, in particular triple negative breast cancer (TNBC), hepatocellular carcinoma (HCC), and acute myeloid leukemia (AML). We also present different pharmacological approaches that our group have employed to reduce the expression/activation of this transcriptional factor and thus to restore chemo-sensitivity. Finally, we examine the latest scientific evidence found by other groups, the most significant clinical trials regarding NF-κB, and new perspectives on the possibility to consider this transcriptional factor a valid drug target in neoplastic diseases.
Collapse
|
44
|
Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo. Blood 2020; 135:167-180. [PMID: 31805184 DOI: 10.1182/blood.2019002045] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a key regulator of inflammation and cancer progression, with an important role in leukemogenesis. Despite its therapeutic potential, targeting NF-κB using pharmacologic inhibitors has proven challenging. Here, we describe a myeloid cell-selective NF-κB inhibitor using an miR-146a mimic oligonucleotide conjugated to a scavenger receptor/Toll-like receptor 9 agonist (C-miR146a). Unlike an unconjugated miR146a, C-miR146a was rapidly internalized and delivered to the cytoplasm of target myeloid cells and leukemic cells. C-miR146a reduced expression of classic miR-146a targets (IRAK1 and TRAF6), thereby blocking activation of NF-κB in target cells. IV injections of C-miR146a mimic to miR-146a-deficient mice prevented excessive NF-κB activation in myeloid cells, and thus alleviated myeloproliferation and mice hypersensitivity to bacterial challenge. Importantly, C-miR146a showed efficacy in dampening severe inflammation in clinically relevant models of chimeric antigen receptor (CAR) T-cell-induced cytokine release syndrome. Systemic administration of C-miR146a oligonucleotide alleviated human monocyte-dependent release of IL-1 and IL-6 in a xenotransplanted B-cell lymphoma model without affecting CD19-specific CAR T-cell antitumor activity. Beyond anti-inflammatory functions, miR-146a is a known tumor suppressor commonly deleted or expressed at reduced levels in human myeloid leukemia. Using The Cancer Genome Atlas acute myeloid leukemia data set, we found an inverse correlation of miR-146a levels with NF-κB-related genes and with patient survival. Correspondingly, C-miR146a induced cytotoxic effects in human MDSL, HL-60, and MV4-11 leukemia cells in vitro. The repeated IV administration of C-miR146a inhibited expression of NF-κB target genes and thereby thwarted progression of disseminated HL-60 leukemia. Our results show the potential of using myeloid cell-targeted miR-146a mimics for the treatment of inflammatory and myeloproliferative disorders.
Collapse
|
45
|
Nehrbas J, Butler JT, Chen DW, Kurre P. Extracellular Vesicles and Chemotherapy Resistance in the AML Microenvironment. Front Oncol 2020; 10:90. [PMID: 32117744 PMCID: PMC7033644 DOI: 10.3389/fonc.2020.00090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicle (EV) trafficking provides for a constitutive mode of cell-cell communication within tissues and between organ systems. Different EV subtypes have been identified that transfer regulatory molecules between cells, influencing gene expression, and altering cellular phenotypes. Evidence from a range of studies suggests that EV trafficking enhances cell survival and resistance to chemotherapy in solid tumors. In acute myeloid leukemia (AML), EVs contribute to the dynamic crosstalk between AML cells, hematopoietic elements and stromal cells and promote adaptation of compartmental bone marrow (BM) function through transport of protein, RNA, and DNA. Careful analysis of leukemia cell EV content and phenotypic outcomes provide evidence that vesicles are implicated in transferring several known key mediators of chemoresistance, including miR-155, IL-8, and BMP-2. Here, we review the current understanding of how EVs exert their influence in the AML niche, and identify research opportunities to improve outcomes for relapsed or refractory AML patients.
Collapse
Affiliation(s)
- Jill Nehrbas
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Butler
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.,Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Liang Y, Li E, Zhang H, Zhang L, Tang Y, Wanyan Y. Silencing of lncRNA UCA1 curbs proliferation and accelerates apoptosis by repressing SIRT1 signals by targeting miR-204 in pediatric AML. J Biochem Mol Toxicol 2020; 34:e22435. [PMID: 31916649 DOI: 10.1002/jbt.22435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
The long noncoding RNA urothelial carcinoma-associated 1 (UCA1) has been reported to sustain the proliferation of acute myeloid leukemia (AML) cells through downregulating cell cycle regulators p27kip1 . Yet, the foundational mechanism of UCA1 in AML pathologies remains unclear. Herein, we found an escalation of UCA1 expression and suppression of miR-204 expression in pediatric AML patients and cells. UCA1 silencing suppressed cell proliferative abilities, promoted apoptotic rates, decreased Ki67, and increased cleaved caspase-3 in AML cells. Moreover, UCA1 sponged miR-204 and suppressed its expression. UCA1 overexpression inversed the miR-204 suppressed proliferation and promoted apoptosis. UCA1 also boosted the expression of SIRT1, a miR-204 target, via the sponging interaction. Furthermore, miR-204 inhibited inducible nitric oxide synthase and cyclooxygenase-2 expression, while UCA1 overexpression inversed the inhibitory effects in AML cells. Our findings concluded that UCA1 downregulation repressed cell proliferation and promoted apoptosis through inactivating SIRT1 signals by upregulating miR-204 in pediatric AML.
Collapse
Affiliation(s)
- Yu Liang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Erwei Li
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongliang Zhang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Zhang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Tang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Wanyan
- Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica 2019; 105:22-37. [PMID: 31806687 PMCID: PMC6939535 DOI: 10.3324/haematol.2018.211342] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023] Open
Abstract
Hematopoietic stem cells (HSC) sustain blood production over the entire life-span of an organism. It is of extreme importance that these cells maintain self-renewal and differentiation potential over time in order to preserve homeostasis of the hematopoietic system. Many of the intrinsic aspects of HSC are affected by the aging process resulting in a deterioration in their potential, independently of their microenvironment. Here we review recent findings characterizing most of the intrinsic aspects of aged HSC, ranging from phenotypic to molecular alterations. Historically, DNA damage was thought to be the main cause of HSC aging. However, over recent years, many new findings have defined an increasing number of biological processes that intrinsically change with age in HSC. Epigenetics and chromatin architecture, together with autophagy, proteostasis and metabolic changes, and how they are interconnected, are acquiring growing importance for understanding the intrinsic aging of stem cells. Given the increase in populations of older subjects worldwide, and considering that aging is the primary risk factor for most diseases, understanding HSC aging becomes particularly relevant also in the context of hematologic disorders, such as myelodysplastic syndromes and acute myeloid leukemia. Research on intrinsic mechanisms responsible for HSC aging is providing, and will continue to provide, new potential molecular targets to possibly ameliorate or delay aging of the hematopoietic system and consequently improve the outcome of hematologic disorders in the elderly. The niche-dependent contributions to hematopoietic aging are discussed in another review in this same issue of the Journal.
Collapse
Affiliation(s)
- Eva Mejia-Ramirez
- Center for Regenerative Medicine in Barcelona (CMRB), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Maria Carolina Florian
- Center for Regenerative Medicine in Barcelona (CMRB), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain .,Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany EM-R and MCF contributed equally to this work
| |
Collapse
|
48
|
Marcos-Villar L, Nieto A. The DOT1L inhibitor Pinometostat decreases the host-response against infections: Considerations about its use in human therapy. Sci Rep 2019; 9:16862. [PMID: 31727944 PMCID: PMC6856118 DOI: 10.1038/s41598-019-53239-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with acute myeloid leukemia frequently present translocations of MLL gene. Rearrangements of MLL protein (MLL-r) in complexes that contain the histone methyltransferase DOT1L are common, which elicit abnormal methylation of lysine 79 of histone H3 at MLL target genes. Phase 1 clinical studies with pinometostat (EPZ-5676), an inhibitor of DOT1L activity, demonstrated the therapeutic potential for targeting DOT1L in MLL-r leukemia patients. We previously reported that down-regulation of DOT1L increases influenza and vesicular stomatitis virus replication and decreases the antiviral response. Here we show that DOT1L inhibition also reduces Sendai virus-induced innate response and its overexpression decreases influenza virus multiplication, reinforcing the notion of DOT1L controlling viral replication. Accordingly, genes involved in the host innate response against pathogens (RUBICON, TRIM25, BCL3) are deregulated in human lung epithelial cells treated with pinometostat. Concomitantly, deregulation of some of these genes together with that of the MicroRNA let-7B, may account for the beneficial effects of pinometostat treatment in patients with MLL-r involving DOT1L. These results support a possible increased vulnerability to infection in MLL-r leukemia patients undergoing pinometostat treatment. Close follow up of infection should be considered in pinometostat therapy to reduce some severe side effects during the treatment.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| |
Collapse
|
49
|
Ablation of miR-146b in mice causes hematopoietic malignancy. Blood Adv 2019; 2:3483-3491. [PMID: 30530754 DOI: 10.1182/bloodadvances.2018017954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 12/23/2022] Open
Abstract
Excessive and constitutive activation of nuclear factor-κB (NF-κB) leads to abnormal cell proliferation and differentiation, leading to the development of malignant tumors, including lymphoma. MicroRNA 146a (miR-146a) and miR-146b, both of which carry an identical seed sequence, have been shown to contribute to inflammatory diseases and tumors by suppressing the expression of key molecules required for NF-κB activation. However, the functional and physiological differences between miR-146a and miR-146b in disease onset have not been fully elucidated. In this study, we generated miR-146b-knockout (KO) and miR-146a-KO mice by genome editing and found that both strains developed hematopoietic malignancies such as B-cell lymphoma and acute myeloid leukemia during aging. However, the B-cell lymphomas observed in miR-146a- and miR-146b-KO mice were histologically different in their morphology, and the malignancy rate is lower in miR-146b mice than miR-146a mice. Upon mitogenic stimulation, the expression of miR-146a and miR-146b was increased, but miR-146b expression was lower than that of miR-146a. Using a previously developed screening system for microRNA targets, we observed that miR-146a and miR-146b could target the same mRNAs, including TRAF6, and inhibit subsequent NF-κB activity. Consistent with these findings, both miR-146a- and miR-146b-KO B cells showed a high proliferative capacity. Taken together, sustained NF-κB activation in miR-146b KO mice could lead to the development of hematopoietic malignancy with aging.
Collapse
|
50
|
Xiao H, Cheng Q, Wu X, Tang Y, Liu J, Li X. ADAR1 may be involved in the proliferation of acute myeloid leukemia cells via regulation of the Wnt pathway. Cancer Manag Res 2019; 11:8547-8555. [PMID: 31572009 PMCID: PMC6759212 DOI: 10.2147/cmar.s210504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose Acute myeloid leukemia (AML) is the most common type of leukemia and characterized by the malignant growth of leukemic cells. Adenosine deaminases acting on RNA 1 (ADAR1) have been shown to participate in the proliferation of cancer cells and progression of various cancers. However, the role of ADAR1 in AML has not been investigated. Patients and methods We compared the expression levels of ADAR1 between samples obtained from different AML patients and controls using quantitative-polymerase chain reaction and Western blotting. We also investigated the functional role and possible mechanisms via silencing the expression of ADAR1 in vitro and in vivo. Results We found that the mRNA and protein levels of ADAR1 were significantly higher in AML patients. The mRNA expression of ADAR1 was positively correlated with the ratio of leukemic cells. Additionally, silencing of ADAR1 expression significantly suppressed the proliferation of AML cells and induced G0/1 arrest. For the analysis of the mechanism, the quantitative-polymerase chain reaction and Western blotting results revealed that ADAR1 knockdown resulted in the decreased expression of Wingless-Int (Wnt) effectors including β-catenin, c-Myc, transcription factor 4, and cyclin D2. In the nude mouse model, inhibition of ADAR1 expression reduced the tumorigenic potential and decreased the expression o]f Wnt effectors. Conclusion These results demonstrate that ADAR1 may be involved in the regulation of the proliferation of AML cells partially via regulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Han Xiao
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xinyu Wu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yishu Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|