1
|
Fayoumi A. BCOR abnormalities in endometrial stromal sarcoma. Gynecol Oncol Rep 2025; 57:101672. [PMID: 39877469 PMCID: PMC11773205 DOI: 10.1016/j.gore.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Endometrial stromal tumors (ESTs) are uncommon mesenchymal tumors of the reproductive system associated with heterogeneous histomolecular features. According to the World Health Organization (WHO), ESTs are classified into benign endometrial stromal nodules (BESN) and endometrial stromal sarcomas (ESSs), which are further divided into low-grade and high-grade subtypes. High-grade ESS is frequently associated with YWHAE-NUTM2 gene fusions, while a newly recognized subtype with BCOR rearrangements, including fusions, alterations, and internal tandem duplications (ITDs), has recently been incorporated into the molecular classification of ESS. BCOR, a transcriptional corepressor of BCL-6, contributes to tumor progression through its role in polycomb repressive complex 1 (PRC1), underscoring its importance in oncogenesis and potential as a therapeutic target. Advances in molecular diagnostics, such as next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH), have improved the precision of diagnosing BCOR-altered ESS, enabling better prognostic stratification. These findings also support the development of targeted therapies, including CDK4/6 inhibitors and immunotherapies targeting PD-1 and CTLA-4 pathways. Despite these advancements, barriers such as limited access to molecular diagnostics and the high cost of novel therapies remain significant challenges. This review bridges molecular and clinical insights into ESS, emphasizing the diagnostic, prognostic, and therapeutic implications of BCOR rearrangements. By integrating these advances into clinical practice, it aims to improve outcomes for patients with this rare and aggressive malignancy.
Collapse
Affiliation(s)
- Abdulkareem Fayoumi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
2
|
Lee J, Yoon SE, Kim SJ, Kim WS, Cho J. Mutational characteristics of extranodal NK/T-cell lymphoma analyzed in relation to clinical prognostic indices. Ann Hematol 2024:10.1007/s00277-024-06035-w. [PMID: 39589496 DOI: 10.1007/s00277-024-06035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024]
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is a malignant lymphoma that is associated with Epstein-Barr virus (EBV) infection and poor prognosis. Several clinical risk stratification tools for ENKTL patients have been developed; however, their relationship with molecular alterations of tumor is unclear. We performed panel-based next generation sequencing (NGS) on formalin-fixed paraffin-embedded tissue of 40 ENKTL patients and analyzed them with the clinicopathological features. Patients with over 60 years of age, non-nasal type, stage III-IV, and distant lymph node involvement were 14 (35.0%), 11 (27.5%), 13 (32.5%), and 11 (27.5%), respectively. EBV DNA was detected in the blood of 30 patients (75.0%). In the NGS analysis, mutations involving the JAK/STAT pathway were the most common (n = 17, 42.5%), followed by epigenetic modifier (n = 12, 30.3%), NF-κB pathway (n = 11, 27.5%), tumor suppressor (n = 10, 25.5%), and RAS/MAPK pathway (n = 9, 22.5%). Among these, alterations involving tumor suppressor (P = 0.022) and RAS/MAPK pathway (P = 0.008) were statistically significant poor prognostic factors. Tumor suppressor gene mutations were statistically significantly related to stage III-IV (P = 0.006), distant lymph node involvement (P = 0.002), and prognostic index for natural killer cell lymphoma-EBV (PINK-E) high risk group (P = 0.017). However, alterations involving RAS/MAPK pathway did not significantly correlated with PINK-E or its components. Alterations involving tumor suppressor genes and RAS/MAPK pathway are associated with poor prognosis in ENKTL patients. Tumor suppressor gene mutations are generally correlated with previously known risk factors; however, RAS/MAPK pathway alterations are not.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irown-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irown-ro, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
3
|
Chang YC, Tsai HJ, Huang TY, Su NW, Su YW, Chang YF, Chen CGS, Lin J, Chang MC, Chen SJ, Chen HC, Lim KH, Chang KC, Kuo SH. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol 2024; 103:2917-2930. [PMID: 38671297 DOI: 10.1007/s00277-024-05698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024]
Abstract
The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - To-Yu Huang
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | | | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Sung-Hsin Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Kato S, Hamada M, Okamoto A, Yamashita D, Miyoshi H, Arai H, Satou A, Gion Y, Sato Y, Tsuyuki Y, Miyata-Takata T, Takata K, Asano N, Takahashi E, Ohshima K, Tomita A, Hosoda W, Nakamura S, Okuno Y. EBV+ nodal T/NK-cell lymphoma associated with clonal hematopoiesis and structural variations of the viral genome. Blood Adv 2024; 8:2138-2147. [PMID: 38429084 PMCID: PMC11068532 DOI: 10.1182/bloodadvances.2023012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV)-positive (EBV+) nodal T- and natural killer (NK)-cell lymphoma is a peripheral T-cell lymphoma (EBV+ nPTCL) that presents as a primary nodal disease with T-cell phenotype and EBV-harboring tumor cells. To date, the genetic aspect of EBV+ nPTCL has not been fully investigated. In this study, whole-exome and/or whole-genome sequencing was performed on 22 cases of EBV+ nPTCL. TET2 (68%) and DNMT3A (32%) were observed to be the most frequently mutated genes whose presence was associated with poor overall survival (P = .004). The RHOA p.Gly17Val mutation was identified in 2 patients who had TET2 and/or DNMT3A mutations. In 4 patients with TET2/DNMT3A alterations, blood cell-rich tissues (the bone marrow [BM] or spleen) were available as paired normal samples. Of 4 cases, 3 had at least 1 identical TET2/DNMT3A mutation in the BM or spleen. Additionally, the whole part of the EBV genome was sequenced and structural variations (SVs) were found frequent among the EBV genomes (63%). The most frequently identified type of SV was deletion. In 1 patient, 4 pieces of human chromosome 9, including programmed death-ligand 1 gene (PD-L1) were identified to be tandemly incorporated into the EBV genome. The 3' untranslated region of PD-L1 was truncated, causing a high-level of PD-L1 protein expression. Overall, the frequent TET2 and DNMT3A mutations in EBV+ nPTCL seem to be closely associated with clonal hematopoiesis and, together with the EBV genome deletions, may contribute to the pathogenesis of this intractable lymphoma.
Collapse
Affiliation(s)
- Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
- Center for Clinical Pathology, Fujita Health University Hospital, Toyoake, Japan
| | - Motoharu Hamada
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akinao Okamoto
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Hospital Organization Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Haruto Arai
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Yuka Gion
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
- Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences, Iyo, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuta Tsuyuki
- Center for Clinical Pathology, Fujita Health University Hospital, Toyoake, Japan
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Tomoko Miyata-Takata
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsuyoshi Takata
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoko Asano
- Department of Clinical Laboratory, Nagano Prefectural Suzaka Hospital, Suzaka, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Tralongo P, Bakacs A, Larocca LM. EBV-Related Lymphoproliferative Diseases: A Review in Light of New Classifications. Mediterr J Hematol Infect Dis 2024; 16:e2024042. [PMID: 38882456 PMCID: PMC11178045 DOI: 10.4084/mjhid.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent virus that can be detected in the vast majority of the population. Most people are asymptomatic and remain chronically infected throughout their lifetimes. However, in some populations, EBV has been linked to a variety of B-cell lymphoproliferative disorders (LPDs), such as Burkitt lymphoma, classic Hodgkin lymphoma, and other LPDs. T-cell LPDs have been linked to EBV in part of peripheral T-cell lymphomas, angioimmunoblastic T-cell lymphomas, extranodal nasal natural killer/T-cell lymphomas, and other uncommon histotypes. This article summarizes the current evidence for EBV-associated LPDs in light of the upcoming World Health Organization classification and the 2022 ICC classification.
Collapse
Affiliation(s)
- Pietro Tralongo
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Arianna Bakacs
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Luigi Maria Larocca
- Division of Anatomic Pathology and Histology - Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| |
Collapse
|
7
|
Zhang YH, Tao Q, Zhang WY, Zhao S, Liu WP, Gao LM. Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1. Genes Genomics 2024; 46:203-212. [PMID: 37523130 DOI: 10.1007/s13258-023-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.
Collapse
Affiliation(s)
- Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Tao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Shen CQ, He GQ, Wan Z, Lin C, Yang X, Lu XX, Zhu YP, Gao J, Guo X. "Sandwich" protocol based on modified SMILE regimen for children with newly extranodal NK/T cell lymphoma, nasal type: a single-arm, single-center clinical study. Ann Hematol 2023; 102:3143-3152. [PMID: 37486391 PMCID: PMC10567983 DOI: 10.1007/s00277-023-05375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL), which is a rare form of mature T/NK cell lymphoma in children, currently lacks a standardized first-line treatment approach. However, a treatment protocol known as the "sandwich" regimen has been used in children newly diagnosed with ENKTL. This protocol combines the administration of methotrexate, ifosfamide, etoposide, pegaspargase, and dexamethasone (referred to as SMILE) with the addition of radiotherapy (RT). From September 2017 to December 2020, a total of five patients were included in the study, consisting of three males and two females. The median age of onset was 10.6 years (range, 9.8 to 14.0 years). Among the patients, four had nasal/nasopharyngeal disease at stage II, while one patient had extra nasal disease involving the skin at stage IV. The median EBV-DNA level in plasma was 1.68 × 103 copies/ml (range, 0.44 to 21.1 × 103copies/ml). All the patients had good overall response after 2 cycles of chemotherapy and radiotherapy, including 4 of the patients who had a complete response and 1 of the patients with partial remission. The patient with stage IV received allogeneic hematopoietic stem cell transplantation after the EBV-DNA level was elevated again during treatment. One patient in the low-risk group experienced grade 4 oral mucositis, while no other severe complications or treatment-related deaths were observed. The median follow-up period was 22 months (range, 5 to 57 months). All five patients successfully completed their treatment, with four patients achieving event-free survival, and one patient was lost to follow-up. The median OS time and EFS time was 33 months (range: 18-57 months) and 20 months (range: 5-47 months), respectively. The sandwich protocol has demonstrated a high response rate, good tolerance to chemotherapy, and no treatment-related fatalities. However, further confirmation is necessary through additional clinical studies involving larger sample sizes. Clinical trial registration number: Due to modified SMILE regimens with sandwiched radiotherapy yielded promising outcomes in children ENKTL, we have carried out a phase II multicenter clinical trial (ChiCTR220005954) for children ENKTL in China to further verify the efficacy and safety.
Collapse
Affiliation(s)
- Cheng-Qi Shen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Guo-Qian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Zhi Wan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Chao Lin
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Xue Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Xiao-Xi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China
| | - Yi-Ping Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Tian XP, Cao Y, Cai J, Zhang YC, Zou QH, Wang JN, Fang Y, Wang JH, Guo SB, Cai QQ. Novel target and treatment agents for natural killer/T-cell lymphoma. J Hematol Oncol 2023; 16:78. [PMID: 37480137 PMCID: PMC10362755 DOI: 10.1186/s13045-023-01483-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The rapidly increasing use of high-throughput screening had produced a plethora of expanding knowledge on the molecular basis of natural killer/T-cell lymphoma (NKTCL), which in turn has revolutionized the treatment. Specifically, the use of asparaginase-containing regimens has led to substantial improvement in survival outcomes in NKTCL patients. Novel treatment strategies that are currently under development include cell-surface-targeted antibodies, immune checkpoint inhibitors, Epstein-Barr virus targeted cytotoxic T lymphocyte, immunomodulatory agents, chimeric antigen receptor T cells, signaling pathway inhibitors and epigenetic targeted agents. In almost all cases, initial clinical studies of newly developed treatment are conducted in patients relapsed, and refractory NKTCL due to very limited treatment options. This review summarizes the results of these novel treatments for NKTCL and discusses their potential for likely use in NKTCL in a wider setting in the future.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu-Chen Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qi-Hua Zou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin-Ni Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Hui Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Song-Bin Guo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Costa RDO, Pereira J, Lage LADPC, Baiocchi OCG. Extranodal NK-/T-cell lymphoma, nasal type: what advances have been made in the last decade? Front Oncol 2023; 13:1175545. [PMID: 37529691 PMCID: PMC10388588 DOI: 10.3389/fonc.2023.1175545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Extranodal NK-/T-cell lymphoma (ENKTCL) is a rare and highly aggressive malignancy with significant racial and geographic variations worldwide. In addition to the formerly "nasal-type" initial description, these lymphomas are predominantly extranodal in origin and typically cause vascular damage and tissue destruction, and although not fully understood, Epstein-Barr virus (EBV) has an important role in its pathogenesis. Initial assessment must include a hematopathology review of representative and viable tumor areas without necrosis for adequate immunohistochemistry studies, including EBV-encoded small RNA (EBER) in situ hybridization (ISH). Positron emission tomography with 18-fluorodeoxyglucose (18F-FDG-PET/CT) for accurate staging is essential, and most patients will have localized disease (IE/IIE) at diagnosis. Apart from other T-cell malignancies, the best treatment even for localized cases is combined modality therapy (chemotherapy plus radiotherapy) with non-anthracycline-based regimens. For advanced-stage disease, l-asparaginase-containing regimens have shown improved survival, but relapsed and refractory cases have very poor outcomes. Nowadays, even with a better understanding of pathogenic pathways, up-front therapy is completely based on chemotherapy and radiotherapy, and treatment-related mortality is not low. Future strategies targeting signaling pathways and immunotherapy are evolving, but we need to better identify those patients with dismal outcomes in a pre-emptive way. Given the rarity of the disease, international collaborations are urgently needed, and clinical trials are the way to change the future.
Collapse
Affiliation(s)
- Renata de Oliveira Costa
- Department of Hematology, Faculdade de Ciências Médicas de Santos (FCMS), Centro Universitário Lusíadas (Unilus), Santos, São Paulo, Brazil
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
| | - Juliana Pereira
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Otávio César Guimarães Baiocchi
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Universidade Federal de Sao Paulo (Unifesp), São Paulo, Brazil
| |
Collapse
|
11
|
Muhamad IR, Che Ibrahim NB, Hussain FA. Evaluation of Signal Transducer and Activator of Transcription 3 (STAT-3) Protein Expression in Non-Hodgkin Lymphoma Cases in Hospital USM. Diagnostics (Basel) 2023; 13:diagnostics13091649. [PMID: 37175040 PMCID: PMC10178068 DOI: 10.3390/diagnostics13091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Evolving targeted therapy on Janus Associated Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, especially pertaining to STAT-3 protein in non-Hodgkin lymphoma (NHL), provides new treatment strategies. STAT-3 protein also relates to the prognostication of NHL. Hence, we aimed to evaluate the expression of STAT-3 protein in NHL cases diagnosed in Hospital Universiti Sains Malaysia (USM). METHODS A retrospective cross sectional study using formalin fixed paraffin embedded (FFPE) tissue blocks of 95 NHL cases were obtained. STAT-3 immunostaining was performed and evaluated. The proportion and association between the expression of STAT-3 protein with subtypes of NHL were statistically analyzed. RESULTS The majority of the cases (78.9%) had positive STAT-3 protein expression. 64.2% were among aggressive B cell NHL, whilst 20.0% of them were diffuse large B cell lymphoma, a non-germinal center B subtype (DLBCL-NGCB). There is also an association between STAT-3 protein expression with DLBCL subtypes (p = 0.046). CONCLUSION Our study demonstrated a remarkable expression of STAT-3 protein in NHL, in which DLBCL subtypes had significant association. A larger scale study with a combination of JAK protein evaluation should be undertaken in the future.
Collapse
Affiliation(s)
- Izyan Rifhana Muhamad
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Noorul Balqis Che Ibrahim
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
12
|
Major A, Porcu P, Haverkos BM. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15051366. [PMID: 36900160 PMCID: PMC10000128 DOI: 10.3390/cancers15051366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an aggressive extranodal non-Hodgkin lymphoma (NHL) with poor outcomes, particularly in advanced-stage and relapsed/refractory disease. Emerging research on molecular drivers of ENKTL lymphomagenesis by next-generation and whole genome sequencing has revealed diverse genomic mutations in multiple signaling pathways, with the identification of multiple putative targets for novel therapeutic agents. In this review, we summarize the biological underpinnings of newly-understood therapeutic targets in ENKTL with a focus on translational implications, including epigenetic and histone regulatory aberrations, activation of cell proliferation signaling pathways, suppression of apoptosis and tumor suppressor genes, changes in the tumor microenvironment, and EBV-mediated oncogenesis. In addition, we highlight prognostic and predictive biomarkers which may enable a personalized medicine approach toward ENKTL therapy.
Collapse
Affiliation(s)
- Ajay Major
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Pierluigi Porcu
- Division of Medical Oncology and Hematopoietic Stem Cell Transplantation, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bradley M. Haverkos
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-848-0414
| |
Collapse
|
13
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
14
|
Kim JJ, Kim HY, Choi Z, Hwang SY, Jeong H, Choi JR, Yoon SE, Kim WS, Kim SH, Kim HJ, Shin SY, Lee ST, Kim SJ. In-depth circulating tumor DNA sequencing for prognostication and monitoring in natural killer/T-cell lymphomas. Front Oncol 2023; 13:1109715. [PMID: 36845680 PMCID: PMC9954142 DOI: 10.3389/fonc.2023.1109715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Background Epstein-Barr virus (EBV) quantitation and current imaging modalities are used for diagnosis and disease monitoring in Extranodal NK/T cell lymphoma (ENKTL) but have limitations. Thus, we explored the utility of circulating tumor DNA (ctDNA) as a diagnostic biomarker. Methods Through in-depth sequencing of 118 blood samples collected longitudinally at different time points from 45 patients, we examined the mutational profile of each sample, estimated its impact on the clinical outcome, and assessed its role as a biomarker in comparison with EBV DNA quantitation. Results The ctDNA concentration was correlated with treatment response, stage, and EBV DNA quantitation. The detection rate of ctDNA mutation was 54.5%, with BCOR (21%) being the most commonly mutated gene in newly diagnosed patients; TP53 mutation (33%) was the most prevalent in patients that experienced a relapse. Additionally, patients in complete remission exhibited a rapid clearance of ENKTL-related somatic mutations, while relapsed patients frequently presented with persisting or emerging mutations. We detected ctDNA mutations in EBV-negative patients (50%) and mutation clearance in EBV-positive patients in remission, suggesting ctDNA genotyping as an efficient complementary monitoring method for ENKTL. Additionally, mutated DDX3X (PFS HR, 8.26) in initial samples predicted poor outcome. Conclusion Our results suggest that ctDNA analysis can be used to genotype at diagnosis and estimate the tumor burden in patients with ENKTL. Furthermore, ctDNA dynamics indicate the potential use of testing it to monitor therapeutic responses and develop new biomarkers for precision ENKTL therapy.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Zisun Choi
- Dxome Co. Ltd, 8, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - So yoon Hwang
- Dxome Co. Ltd, 8, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hansol Jeong
- Dxome Co. Ltd, 8, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Dxome Co. Ltd, 8, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sang Eun Yoon
- Division of Haematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Seog Kim
- Division of Haematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Yong Shin
- Department of Laboratory Medicine, Korea Worker’s Compensation & Welfare Service, Taebaek Hospital, Taebaek-si, Gangwon-do, Republic of Korea,*Correspondence: Sang-Yong Shin, ; Seung-Tae Lee, ; Seok Jin Kim,
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Dxome Co. Ltd, 8, Seongnam-si, Gyeonggi-do, Republic of Korea,*Correspondence: Sang-Yong Shin, ; Seung-Tae Lee, ; Seok Jin Kim,
| | - Seok Jin Kim
- Division of Haematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea,*Correspondence: Sang-Yong Shin, ; Seung-Tae Lee, ; Seok Jin Kim,
| |
Collapse
|
15
|
Chen J, Zuo Z, Gao Y, Yao X, Guan P, Wang Y, Li Z, Liu Z, Hong JH, Deng P, Chan JY, Cheah DMZ, Lim J, Chai KXY, Chia BKH, Pang JWL, Koh J, Huang D, He H, Sun Y, Liu L, Liu S, Huang Y, Wang X, You H, Saraf SA, Grigoropoulos NF, Li X, Bei J, Kang T, Lim ST, Teh BT, Huang H, Ong CK, Tan J. Aberrant JAK-STAT signaling-mediated chromatin remodeling impairs the sensitivity of NK/T-cell lymphoma to chidamide. Clin Epigenetics 2023; 15:19. [PMID: 36740715 PMCID: PMC9900953 DOI: 10.1186/s13148-023-01436-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/29/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Natural killer/T-cell lymphoma (NKTL) is a rare type of aggressive and heterogeneous non-Hodgkin's lymphoma (NHL) with a poor prognosis and limited therapeutic options. Therefore, there is an urgent need to exploit potential novel therapeutic targets for the treatment of NKTL. Histone deacetylase (HDAC) inhibitor chidamide was recently approved for treating relapsed/refractory peripheral T-cell lymphoma (PTCL) patients. However, its therapeutic efficacy in NKTL remains unclear. METHODS We performed a phase II clinical trial to evaluate the efficacy of chidamide in 28 relapsed/refractory NKTL patients. Integrative transcriptomic, chromatin profiling analysis and functional studies were performed to identify potential predictive biomarkers and unravel the mechanisms of resistance to chidamide. Immunohistochemistry (IHC) was used to validate the predictive biomarkers in tumors from the clinical trial. RESULTS We demonstrated that chidamide is effective in treating relapsed/refractory NKTL patients, achieving an overall response and complete response rate of 39 and 18%, respectively. In vitro studies showed that hyperactivity of JAK-STAT signaling in NKTL cell lines was associated with the resistance to chidamide. Mechanistically, our results revealed that aberrant JAK-STAT signaling remodels the chromatin and confers resistance to chidamide. Subsequently, inhibition of JAK-STAT activity could overcome resistance to chidamide by reprogramming the chromatin from a resistant to sensitive state, leading to synergistic anti-tumor effect in vitro and in vivo. More importantly, our clinical data demonstrated that combinatorial therapy with chidamide and JAK inhibitor ruxolitinib is effective against chidamide-resistant NKTL. In addition, we identified TNFRSF8 (CD30), a downstream target of the JAK-STAT pathway, as a potential biomarker that could predict NKTL sensitivity to chidamide. CONCLUSIONS Our study suggests that chidamide, in combination with JAK-STAT inhibitors, can be a novel targeted therapy in the standard of care for NKTL. TRIAL REGISTRATION ClinicalTrials.gov, NCT02878278. Registered 25 August 2016, https://clinicaltrials.gov/ct2/show/NCT02878278.
Collapse
Affiliation(s)
- Jinghong Chen
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Zhixiang Zuo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Yan Gao
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Xiaosai Yao
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Peiyong Guan
- grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yali Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Zhimei Li
- grid.410724.40000 0004 0620 9745Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Zhilong Liu
- grid.410570.70000 0004 1760 6682Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Han Hong
- grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Deng
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Jason Yongsheng Chan
- grid.410724.40000 0004 0620 9745Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Ming Zhe Cheah
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Jingquan Lim
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Kelila Xin Ye Chai
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Burton Kuan Hui Chia
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Jane Wan Lu Pang
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Joanna Koh
- grid.410724.40000 0004 0620 9745Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Haixia He
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Yichen Sun
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Lizhen Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Shini Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Yuhua Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Xiaoxiao Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Hua You
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Sahil Ajit Saraf
- grid.163555.10000 0000 9486 5048Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Xiaoqiu Li
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinxin Bei
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Tiebang Kang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060 China
| | - Soon Thye Lim
- grid.410724.40000 0004 0620 9745Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore ,grid.410724.40000 0004 0620 9745Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Bin Tean Teh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore ,grid.410724.40000 0004 0620 9745Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore. .,Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China. .,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch 2023; 482:227-244. [PMID: 36216980 PMCID: PMC9852222 DOI: 10.1007/s00428-022-03414-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
EBV-associated lymphoproliferative disorders (LPD) include conditions of B, T, and NK cell derivation with a wide clinicopathological spectrum ranging from indolent, self-limiting, and localized conditions to highly aggressive lymphomas. Since the 2016 World Health Organization (WHO) lymphoma classification, progress has been made in understanding the biology of the EBV-associated LPDs. The diagnostic criteria of EBV+ mucocutaneous ulcer and lymphomatoid granulomatosis have been refined, and a new category of EBV-positive polymorphic B cell LPD was introduced to encompass the full spectrum of EBV-driven B cell disorders. The differential diagnosis of these conditions is challenging. This report will present criteria to assist the pathologist in diagnosis. Within the group of EBV-associated T and NK cell lymphomas, a new provisional entity is recognized, namely, primary nodal EBV+ T or NK cell lymphoma. The EBV + T and NK cell LPDs in children have undergone major revisions. In contrast to the 2016 WHO classification, now four major distinct groups are recognized: hydroa vacciniforme (HV) LPD, severe mosquito bite allergy, chronic active EBV (CAEBV) disease, and systemic EBV-positive T cell lymphoma of childhood. Two forms of HV LPD are recognized: the classic and the systemic forms with different epidemiology, clinical presentation, and prognosis. The subclassification of PTLD, not all of which are EBV-positive, remains unaltered from the 2016 WHO classification. This review article summarizes the conclusions and the recommendations of the Clinical Advisory Committee (CAC), which are summarized in the International Consensus Classification of Mature Lymphoid Neoplasms.
Collapse
|
17
|
High-dose extended-field radiotherapy plus chemotherapy improved survival in extranodal NK/T-cell lymphoma in a real-life setting: results from the multicenter T-Cell Brazil Project. Sci Rep 2022; 12:20557. [PMID: 36446856 PMCID: PMC9709053 DOI: 10.1038/s41598-022-25034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural-killer/T-cell lymphoma (ENKTL) is a rare and aggressive Epstein-Barr virus related mature T-cell and natural-killer malignancy. Although highly prevalent in South America, few studies covering data from this geographic location have been published. Therefore, this study aims to report clinical characteristics, prognostic factors, and outcomes in a multicenter cohort of ENKTL patients from Brazil. This retrospective, observational and multicenter study included 98 ENKTL patients treated during two decades in Brazil. Data were extracted from the T-Cell Brazil Project database. In our cohort, 59/98 patients (60.2%) were male, with a median age of 50 years. Sixty-two patients (63.3%) had B-symptoms, 26/98 (26.5%) had Eastern Cooperative Oncology Group scale ≥ 2; 16/98 (16.3%) presented extranasal disease and 34.7% (34/98) were advanced-stage (Ann Arbor/Cotswolds III/IV). The median follow-up for the whole cohort was 49 months, with an estimated 2-year overall survival (OS) and progression-free survival (PFS) of 51.1% and 17.7%, respectively. In early-stage disease (IE/IIE), the median OS was 21.8 months for patients treated with concurrent radiotherapy plus chemotherapy (CCRT-VIPD [etoposide/vp-16, ifosfamide, cisplatin and dexamethasone), 16.2 months for sequential chemoradiotherapy (SCRT) followed by asparaginase-based regimens, and 56.7 months for SCRT followed by CHOP-like (cyclophosphamide, doxorrubicin, vincristine and prednisone) treatments, p = 0.211. CCRT was associated with higher rates of early-mortality, hematological toxicity, and mucositis. Median OS was 8.2 months for patients with advanced-stage disease receiving regimens containing asparaginase compared to 3.2 months for anthracycline-based therapy, p = 0.851. Chemo-radiotherapy (CRT) regimens demonstrated better OS (p = 0.001) and PFS (p = 0.007) than chemotherapy alone. Multivariate analysis revealed anemia, relapsed/refractory (R/R) disease and radiotherapy omission as poor outcome predictors for OS. Lymphopenia and radiotherapy omission adversely affected PFS. Concerning progression of disease within 24-months (POD-24), clinical stage III/IV was a poor outcome predictor. In this real-life Brazilian cohort, ENKTL presented dismal outcomes. Radiation therapy was an independent factor for increased OS and PFS, but CCRT regimens were associated with higher toxicities. Polychemotherapy based on anti-multi drug resistant agents was not associated with survival benefit in either early or advanced-stage disease in our patient cohort.
Collapse
|
18
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Genetics Abnormalities with Clinical Impact in Primary Cutaneous Lymphomas. Cancers (Basel) 2022; 14:cancers14204972. [PMID: 36291756 PMCID: PMC9599538 DOI: 10.3390/cancers14204972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The genetic landscape of cutaneous T-cell lymphomas analyzed by sequencing high throughput techniques shows a heterogeneous somatic mutational profile and genomic copy number variations in the TCR signaling effectors, the NF-κB elements, DNA damage/repair elements, JAK/STAT pathway elements and epigenetic modifiers. A mutational and genomic stratification of these patients provides new opportunities for the development or repurposing of (personalized) therapeutic strategies. The genetic heterogeneity in cutaneous B-cell lymphoma parallels with the specific subtype. Damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations or CDKN2A deletions are useful for diagnostic purposes. The more indolent forms, as the primary cutaneous lymphoma of follicle center cell (somatic mutations in TNFRSF14 and 1p36 deletions) and the cutaneous lymphoproliferative disorder of the marginal zone cells (FAS gene), present with a more restricted pattern of genetic alterations. Abstract Primary cutaneous lymphomas comprise a heterogeneous group of extranodal non-Hodgkin lymphomas (NHL) that arise from skin resident lymphoid cells and are manifested by specific lymphomatous cutaneous lesions with no evidence of extracutaneous disease at the time of diagnosis. They may originate from mature T-lymphocytes (70% of all cases), mature B-lymphocytes (25–30%) or, rarely, NK cells. Cutaneous T-cell lymphomas (CTCL) comprise a heterogeneous group of T-cell malignancies including Mycosis Fungoides (MF) the most frequent subtype, accounting for approximately half of CTCL, and Sézary syndrome (SS), which is an erythrodermic and leukemic subtype characterized by significant blood involvement. The mutational landscape of MF and SS by NGS include recurrent genomic alterations in the TCR signaling effectors (i.e., PLCG1), the NF-κB elements (i.e., CARD11), DNA damage/repair elements (TP53 or ATM), JAK/STAT pathway elements or epigenetic modifiers (DNMT3). Genomic copy number variations appeared to be more prevalent than somatic mutations. Other CTCL subtypes such as primary cutaneous anaplastic large cell lymphoma also harbor genetic alterations of the JAK/STAT pathway in up to 50% of cases. Recently, primary cutaneous aggressive epidermotropic T-cell lymphoma, a rare fatal subtype, was found to contain a specific profile of JAK2 rearrangements. Other aggressive cytotoxic CTCL (primary cutaneous γδ T-cell lymphomas) also show genetic alterations in the JAK/STAT pathway in a large proportion of patients. Thus, CTCL patients have a heterogeneous genetic/transcriptional and epigenetic background, and there is no uniform treatment for these patients. In this scenario, a pathway-based personalized management is required. Cutaneous B-cell lymphoma (CBCL) subtypes present a variable genetic profile. The genetic heterogeneity parallels the multiple types of specialized B-cells and their specific tissue distribution. Particularly, many recurrent hotspot and damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations and BLIMP1 or CDKN2A deletions are useful for diagnostic and prognostic purposes for this aggressive subtype from other indolent CBCL forms.
Collapse
|
20
|
Tse E, Fox CP, Glover A, Yoon SE, Kim WS, Kwong YL. Extranodal natural killer/T-cell lymphoma: An overview on pathology and clinical management. Semin Hematol 2022; 59:198-209. [PMID: 36805888 DOI: 10.1053/j.seminhematol.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Natural killer (NK)/T-cell lymphomas arise mainly from NK-cells and occasionally T-cells, and are universally infected with Epstein Barr virus (EBV). They are uncommon lymphomas more prevalent in Asian and Central/South American populations. NK/T-cell lymphomas are clinically aggressive and predominantly extranodal. The most commonly involved sites are the nasal cavity, followed by non-nasal sites including the skin, gastrointestinal tract and testis. The diagnosis of extranodal NK/T-cell lymphoma is established with histological and immunohistochemical examination, together with the demonstration of EBV in the tumour cells. Staging by positron emission tomography computed tomography is essential to inform the optimal management. Plasma EBV DNA quantification should be performed as it serves as a marker for prognostication and treatment response. Survival outcomes of patients with early-stage disease are good following treatment with nonanthracycline based chemotherapy, together with sequential/concurrent radiotherapy. For advanced-stage disease, asparaginase-containing regimens are mostly used and allogeneic haematopoietic stem cell transplantation should be considered for those at high risk of relapse. Salvage chemotherapy is largely ineffective for relapsed/refractory disease, which has a grave prognosis. Novel therapeutic approaches including immune check-point blockade, EBV-specific cytotoxic T-cells, and monoclonal antibodies are being investigated to improve outcomes for those with high risk and relapsed/refractory disease.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Alexander Glover
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Dong G, Liu X, Wang L, Yin W, Bouska A, Gong Q, Shetty K, Chen L, Sharma S, Zhang J, Lome-Maldonado C, Quintanilla-Martinez L, Li Y, Song JY, Zhang W, Shi Y, Wang J, Kong L, Wu X, Wang J, Liu HG, Kong L, Sun W, Liu W, Wang L, McKeithan TW, Iqbal J, Chan WC. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 2022; 36:2064-2075. [PMID: 35697790 PMCID: PMC10499270 DOI: 10.1038/s41375-022-01623-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023]
Abstract
Extra-nodal NK/T-cell lymphoma, nasal type (ENKTCL) is a highly aggressive Epstein-Barr virus associated lymphoma, typically presenting in the nasal and paranasal areas. We assembled a large series of ENKTCL (n = 209) for comprehensive genomic analysis and correlative clinical study. The International Lymphoma Prognostic Index (IPI), site of disease, stage, lymphadenopathy, and hepatomegaly were associated with overall survival. Genetic analysis revealed frequent oncogenic activation of the JAK/STAT3 pathway and alterations in tumor suppressor genes (TSGs) and genes associated with epigenomic regulation. Integrated genomic analysis including recurrent mutations and genomic copy number alterations using consensus clustering identified seven distinct genetic clusters that were associated with different clinical outcomes, thus constituting previously unrecognized risk groups. The genetic profiles of ENTKCLs from Asian and Hispanic ethnic groups showed striking similarity, indicating shared pathogenetic mechanism and tumor evolution. Interestingly, we discovered a novel functional cooperation between activating STAT3 mutations and loss of the TSG, PRDM1, in promoting NK-cell growth and survival. This study provides a genetic roadmap for further analysis and facilitates investigation of actionable therapeutic opportunities in this aggressive lymphoma.
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lifu Wang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenjuan Yin
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Kunal Shetty
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lu Chen
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jibin Zhang
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Carmen Lome-Maldonado
- Departamento de Patologia, Instituto Nacional de Cancerologia, 14080, Ciudad de México, Mexico
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Yunfei Shi
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 100142, Beijing, China
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Lingbo Kong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Hong-Gang Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenyong Sun
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
22
|
Genetic and immunohistochemical profiling of NK/T-cell lymphomas reveals prognostically relevant BCOR-MYC association. Blood Adv 2022; 7:178-189. [PMID: 35882439 PMCID: PMC9837655 DOI: 10.1182/bloodadvances.2022007541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is an Epstein-Barr virus-positive, aggressive lymphoma with a heterogeneous cell of origin and variable clinical course. Several clinical prognostic indices have been proposed for ENKTL; however, there are few pathological biomarkers. This multi-institutional study sought to identify histologically assessable prognostic factors. We investigated mutation profiles by targeted next-generation sequencing (NGS) and immunohistochemical assessments of expression of MYC, Tyr705-phosphorylated (p-)STAT3, and CD30 in 71 ENKTL samples. The median age of the patients was 66 years (range, 6-100). The most frequent mutations were in STAT3 (27%), JAK3 (4%), KMT2D (19%), TP53 (13%), BCOR (10%), and DDX3X (7%). Immunohistochemistry (IHC) revealed that ENKTLs with STAT3 mutations exhibited higher expression of pSTAT3 and CD30. BCOR mutations were associated with increased MYC expression. Univariate analysis in the entire cohort showed that stage (II, III, or IV), BCOR mutations, TP53 mutations, and high MYC expression (defined as ≥40% positive neoplastic cells) were associated with reduced overall survival (OS). Multivariate modeling identified stage (II, III, or IV) and high MYC expression as independent adverse prognostic factors. In a subgroup analysis of patients treated with anthracycline (AC)-free chemotherapy and/or radiotherapy (RT) with curative intent, BCOR but not high MYC expression was an independent adverse prognostic factor. In conclusion, activating STAT3 mutations are common in ENKTLs and are associated with increased CD30 expression. MYC overexpression is, at least in part, associated with deleterious BCOR mutations, and this BCOR-MYC linkage may have prognostic significance, underscoring the potential utility of IHC for MYC in risk stratification of patients with ENKTL.
Collapse
|
23
|
Witalisz-Siepracka A, Klein K, Zdársky B, Stoiber D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front Immunol 2022; 13:947568. [PMID: 35865518 PMCID: PMC9294167 DOI: 10.3389/fimmu.2022.947568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Bernhard Zdársky
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
- *Correspondence: Dagmar Stoiber,
| |
Collapse
|
24
|
Kayadiol exerted anticancer effects through p53-mediated ferroptosis in NKTCL cells. BMC Cancer 2022; 22:724. [PMID: 35778693 PMCID: PMC9250166 DOI: 10.1186/s12885-022-09825-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma (NKTCL) is a highly aggressive type of non-Hodgkin lymphoma that facing the treatment challenges. Natural compounds are important sources for drug development because of their diverse biological and chemical properties, among which terpenoids have strong anticancer activities. METHODS The human NK/T cell lymphoma cell line YT and peripheral blood lymphocytes isolated from NKTCL patients were treated with different concentrations of kayadiol. Then, the following experiments were performed: CCK-8 assay for cell viability, reactive oxygen species (ROS) and glutathione (GSH) assay and co-treatment with NAC, reduced GSH, or ferrostatin-1 for ferroptosis, the proteome profiling for elucidating signaling pathways, and western blot for the expression of p53, SCL7A11, and GPX4. siRNA and CRISPR/Cas9 plasmid for p53 knockout was designed and transfected into YT cells to evaluate the causal role of p53 in kayadiol-induced ferroptosis. The synergistic effect was evaluated by CCK8 assay after co-treatment of kayadiol with L-asparaginase or cisplatin. RESULTS In this study, we found that kayadiol, a diterpenoid extracted from Torreya nucifera, exerted significant killing effect on NKTCL cells without killing the healthy lymphocytes. Subsequently, we observed that kayadiol treatment triggered significant ferroptosis events, including ROS accumulation and GSH depletion. ROS scavenger NAC, GSH, and ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed kayadiol-induced cell death in NKTCL cells. Furthermore, kayadiol decreased the expression of SLC7A11 and GPX4, the negative regulatory proteins for ferroptosis. We then demonstrated that p53 was the key mediator of kayadiol-induced ferroptosis by SLC7A11/GPX4 axis through p53 knockout experiments. In addition, kayadiol exerted a synergistic effect with L-asparaginase and cisplatin in NKTCL cells. CONCLUSION Taken together, our results suggested that the natural product kayadiol exerted anticancer effects through p53-mediated ferroptosis in NK/T cell lymphoma cells. Hence, it can serve as an effective alternative in the treatment of NK/T cell lymphoma, especially for patients exhibiting chemoresistance.
Collapse
|
25
|
Lim JQ, Huang D, Chan JY, Laurensia Y, Wong EKY, Cheah DMZ, Chia BKH, Chuang WY, Kuo MC, Su YJ, Cai QQ, Feng Y, Rao H, Feng LN, Wei PP, Chen JR, Han BW, Lin GW, Cai J, Fang Y, Tan J, Hong H, Liu Y, Zhang F, Li W, Poon MLM, Ng SB, Jeyasekharan A, Ha JCH, Khoo LP, Chin ST, Pang WL, Kee R, Cheng CL, Grigoropoulos NF, Tang T, Tao M, Farid M, Puan KJ, Xiong J, Zhao WL, Khor CC, Hwang W, Kim WS, Campo E, Tan P, Teh BT, Chng WJ, Rötzschke O, Tousseyn T, Huang HQ, Rozen S, Lim ST, Shih LY, Bei JX, Ong CK. A genomic-augmented multivariate prognostic model for the survival of Natural-killer/T-cell lymphoma patients from an international cohort. Am J Hematol 2022; 97:1159-1169. [PMID: 35726449 DOI: 10.1002/ajh.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
With lowering costs of sequencing and genetic profiling techniques, genetic drivers can now be detected readily in tumors but current prognostic models for Natural-killer/T cell lymphoma (NKTCL) have yet to fully leverage on them for prognosticating patients. Here, we used next-generation sequencing to sequence 260 NKTCL tumors, and trained a genomic prognostic model (GPM) with the genomic mutations and survival data from this retrospective cohort of patients using LASSO Cox regression. The GPM is defined by the mutational status of 13 prognostic genes and is weakly correlated with the risk-features in International Prognostic Index (IPI), Prognostic Index for Natural-Killer cell lymphoma (PINK) and PINK-Epstein-Barr virus (PINK-E). Cox-proportional hazard multivariate regression also showed that the new GPM is independent and significant for both progression-free survival (PFS, HR: 3.73, 95% CI 2.07-6.73; P<0.001) and overall survival (OS, HR: 5.23, 95% CI 2.57-10.65; P=0.001) with known risk-features of these indices. When we assign an additional risk-score to samples, which are mutant for the GPM, the Harrell's C-indices of GPM-augmented IPI, PINK and PINK-E improved significantly (P<0.001, χ2 test) for both PFS and OS. Thus, we report on how genomic mutational information could steer towards better prognostication of NKTCL patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Quan Lim
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore.,ONCO-ACP, Duke-NUS Medical School, 8 College Road, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore.,ONCO-ACP, Duke-NUS Medical School, 8 College Road, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Yurike Laurensia
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Esther Kam Yin Wong
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Daryl Ming Zhe Cheah
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Burton Kuan Hui Chia
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Chang Gung University, Taoyuan, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Jiun Su
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Qing-Qing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfen Feng
- Guangdong Provincial People's Hospital.,Guangdong Academy of Medical Sciences
| | - Huilan Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Na Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pan-Pan Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie-Rong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo-Wei Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Wang Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Huangming Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanhui Liu
- Guangdong Provincial People's Hospital.,Guangdong Academy of Medical Sciences
| | - Fen Zhang
- Guangdong Provincial People's Hospital.,Guangdong Academy of Medical Sciences
| | - Wenyu Li
- Guangdong Provincial People's Hospital.,Guangdong Academy of Medical Sciences
| | - Michelle L M Poon
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Anand Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Jeslin Chian Hung Ha
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Lay Poh Khoo
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Suk Teng Chin
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Wan Lu Pang
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Rebecca Kee
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Chee Leong Cheng
- Department of Pathology, Singapore General Hospital, 20 College Road, Academia, Singapore
| | | | - Tiffany Tang
- ONCO-ACP, Duke-NUS Medical School, 8 College Road, Singapore
| | - Miriam Tao
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Mohamad Farid
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Singapore, Singapore
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiea Chuen Khor
- Genome Institute of Singapore, 60 Biopolis Street Genome, Singapore
| | - William Hwang
- Director's office, National Cancer Centre, Singapore
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Elias Campo
- Consorci Institut D'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Genome Institute of Singapore, 60 Biopolis Street Genome, Singapore.,Division of Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Sinagpore, Singapore
| | - Thomas Tousseyn
- KU Leuven, Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, Herestraat 49, Leuven, Belgium.,UZ Leuven, Department of Pathology, Leuven, Belgium
| | - Hui-Qiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Steve Rozen
- Division of Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore.,Office of Education, Duke-NUS Medical School, Singapore
| | - Lee-Yung Shih
- Chang Gung University, Taoyuan, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore.,Genome Institute of Singapore, 60 Biopolis Street Genome, Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore
| |
Collapse
|
26
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
27
|
Lei T, Chang Y, Zhang L, Zhang M. The Effect of Chronic Rhinosinusitis on the Staging and Prognosis of Extranodal Natural Killer/T-Cell Lymphoma: A Single-Center Retrospective Analysis. Front Oncol 2022; 12:878559. [PMID: 35449572 PMCID: PMC9016184 DOI: 10.3389/fonc.2022.878559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, extranodal natural killer/T-cell lymphoma (ENKTL) patients frequently had a history of chronic rhinosinusitis (CRS) before onset, and the correlation between the two diseases has not been systematically reported at present. In this study, we applied the method-retrospective analysis-to explore the relationship between CRS and ENKTL. We collected clinical data and the length of CRS history before onset in 214 patients diagnosed with ENKTL and found that the length of CRS history was correlated with the stage of 182 ENKTL patients whose primary sites were upper aerodigestive tract (UAT) (χ 2 = 21.317, p = 0.046, n = 182); the Spearman correlation coefficient was 0.162 (p = 0.029). There was no significant difference in stage of the non-UAT-ENKTL patients (χ 2 = 18.910, p = 0.091, n = 32). The COX multivariate regression analysis showed that CRS history was an independent prognostic predictor for PFS of the UAT-ENKTL patients (p = 0.004), and patients without CRS had significantly better PFS than the more than 15 years CRS history group (p = 0.001). Our findings suggested that we should not ignore the existence of chronic inflammation of the nasal cavity in ENKTL patients. It is better to treat CRS as soon as possible in clinical practice to reduce the possibility of the occurrence or progression of UAT-ENKTL.
Collapse
|
28
|
Yim J, Koh J, Kim S, Song SG, Bae JM, Yun H, Sung JY, Kim TM, Park SH, Jeon YK. Clinicopathologic and Genetic Features of Primary T-cell Lymphomas of the Central Nervous System: An Analysis of 11 Cases Using Targeted Gene Sequencing. Am J Surg Pathol 2022; 46:486-497. [PMID: 34980830 PMCID: PMC8923358 DOI: 10.1097/pas.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) of peripheral T-cell lineage (T-PCNSL) is rare, and its genetic and clinicopathologic features remain unclear. Here, we present 11 cases of T-PCNSL in immunocompetent individuals from a single institute, focusing on their genetic alterations. Seven cases were subject to targeted panel sequencing covering 120 lymphoma-related genes. Nine of the eleven cases were classified as peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), of which one was of γδT-cell lineage. There was one case of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma and another of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) of αβT-cell lineage. The male to female ratio was 7 : 4 and the age ranged from 3 to 75 years (median, 61 y). Most patients presented with neurological deficits (n=10) and showed multifocal lesions (n=9) and deep brain structure involvement (n=9). Tumor cells were mostly small-to-medium, and T-cell monoclonality was detected in all nine evaluated cases. PTCL-NOS was CD4-positive (n=4), CD8-positive (n=3), mixed CD4-positive and CD8-positive (n=1), or CD4/CD8-double-negative (n=1, γδT-cell type). Cytotoxic molecule expression was observed in 4 (67%) of the 6 evaluated cases. Pathogenic alterations were found in 4 patients: one PTCL-NOS case had a frameshift mutation in KMT2C, another PTCL-NOS case harbored a truncating mutation in TET2, and another (γδT-cell-PTCL-NOS) harbored NRAS G12S and JAK3 M511I mutations, and homozygous deletions of CDKN2A and CDKN2B. The ENKTL (αβT-cell lineage) case harbored mutations in genes ARID1B, FAS, TP53, BCOR, KMT2C, POT1, and PRDM1. In conclusion, most of the T-PCNSL were PTCL-NOS, but sporadic cases of other subtypes including γδT-cell lymphoma, anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, and ENKTL were also encountered. Immunophenotypic analysis, clonality test, and targeted gene sequencing along with clinicoradiologic evaluation, may be helpful for establishing the diagnosis of T-PCNSL. Moreover, this study demonstrates genetic alterations with potential diagnostic and therapeutic utility in T-PCNSL.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Anaplastic Lymphoma Kinase/metabolism
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/metabolism
- Central Nervous System Neoplasms/pathology
- Child
- Child, Preschool
- Female
- Humans
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Male
- Middle Aged
- Young Adult
Collapse
Affiliation(s)
| | - Jiwon Koh
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Sehui Kim
- Department of Pathology
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine
| | | | - Jeong Mo Bae
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University School of Medicine
| | - Tae Min Kim
- Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Yoon Kyung Jeon
- Department of Pathology
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
30
|
Sun KH(M, Wong YT(H, Cheung KM(C, Yuen C(M, Chan YT(T, Lai WY(J, Chao C(D, Fan WS(K, Chow YK(K, Law MF, Tam HC(T. Update on Molecular Diagnosis in Extranodal NK/T-Cell Lymphoma and Its Role in the Era of Personalized Medicine. Diagnostics (Basel) 2022; 12:diagnostics12020409. [PMID: 35204500 PMCID: PMC8871212 DOI: 10.3390/diagnostics12020409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK)/T-cell lymphoma (NKTCL) is an aggressive malignancy with unique epidemiological, histological, molecular, and clinical characteristics. It occurs in two pathological forms, namely, extranodal NKTCL (ENKTCL) and aggressive NK leukemia, according to the latest World Health Organization (WHO) classification. Epstein–Barr virus (EBV) infection has long been proposed as the major etiology of lymphomagenesis. The adoption of high-throughput sequencing has allowed us to gain more insight into the molecular mechanisms of ENKTCL, which largely involve chromosome deletion and aberrations in Janus kinase (JAK)-signal transducer and activator of transcription (STAT), programmed cell death protein-1 (PD-1)/PD-ligand 1 (PD-L1) pathways, as well as mutations in tumor suppressor genes. The molecular findings could potentially influence the traditional chemoradiotherapy approach, which is known to be associated with significant toxicity. This article will review the latest molecular findings in NKTCL and recent advances in the field of molecular diagnosis in NKTCL. Issues of quality control and technical difficulties will also be discussed, along with future prospects in the molecular diagnosis and treatment of NKTCL.
Collapse
Affiliation(s)
- Ka-Hei (Murphy) Sun
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | | | - Ka-Man (Carmen) Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Carmen (Michelle) Yuen
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | - Yun-Tat (Ted) Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Yan (Jennifer) Lai
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Chun (David) Chao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Sum (Katie) Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Yuen-Kiu (Karen) Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Man-Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
- Correspondence:
| | - Ho-Chi (Tommy) Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| |
Collapse
|
31
|
Mundy-Bosse BL, Weigel C, Wu YZ, Abdelbaky S, Youssef Y, Casas SB, Polley N, Ernst G, Young KA, McConnell KK, Nalin AP, Wu KG, Broughton M, Lordo MR, Altynova E, Hegewisch-Solloa E, Enriquez-Vera DY, Dueñas D, Barrionuevo C, Yu SC, Saleem A, Suarez CJ, Briercheck EL, Molina-Kirsch H, Loughran TP, Weichenhan D, Plass C, Reneau JC, Mace EM, Gamboa FV, Weinstock DM, Natkunam Y, Caligiuri MA, Mishra A, Porcu P, Baiocchi RA, Brammer JE, Freud AG, Oakes CC. Identification and targeting of the developmental blockade in extranodal natural killer/T cell lymphoma. Blood Cancer Discov 2022; 3:154-169. [PMID: 35247900 PMCID: PMC9414823 DOI: 10.1158/2643-3230.bcd-21-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (ENKTL) is an aggressive, rare lymphoma of natural killer (NK) cell origin with poor clinical outcomes. Here we used phenotypic and molecular profiling, including epigenetic analyses, to investigate how ENKTL ontogeny relates to normal NK-cell development. We demonstrate that neoplastic NK cells are stably, but reversibly, arrested at earlier stages of NK-cell maturation. Genes downregulated in the most epigenetic immature tumors were associated with polycomb silencing along with genomic gain and overexpression of EZH2. ENKTL cells exhibited genome-wide DNA hypermethylation. Tumor-specific DNA methylation gains were associated with polycomb-marked regions, involving extensive gene silencing and loss of transcription factor binding. To investigate therapeutic targeting, we treated novel patient-derived xenograft (PDX) models of ENKTL with the DNA hypomethylating agent, 5-azacytidine. Treatment led to reexpression of NK-cell developmental genes, phenotypic NK-cell differentiation, and prolongation of survival. These studies lay the foundation for epigenetic-directed therapy in ENKTL. SIGNIFICANCE Through epigenetic and transcriptomic analyses of ENKTL, a rare, aggressive malignancy, along with normal NK-cell developmental intermediates, we identified that extreme DNA hypermethylation targets genes required for NK-cell development. Disrupting this epigenetic blockade in novel PDX models led to ENKTL differentiation and improved survival. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Bethany L. Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Yue-Zhong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Salma Abdelbaky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Susana Beceiro Casas
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicholas Polley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gabrielle Ernst
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Karen A. Young
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Kathleen K. McConnell
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Ansel P. Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Kevin G. Wu
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Megan Broughton
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew R. Lordo
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Ekaterina Altynova
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | - Daniela Dueñas
- Instituto Nacional de Enfermedades Neoplasticas, Lima, Peru
| | | | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Carlos J. Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Edward L. Briercheck
- Department of Medicine, Division of Hematology and Medical Oncology, Fred Hutchinson Cancer Research Institute and the University of Washington, Seattle, Washington
| | | | - Thomas P. Loughran
- Division of Hematology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Dieter Weichenhan
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John C. Reneau
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Liga Nacional Contra el Cáncer, Guatemala City, Guatemala
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anjali Mishra
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jonathan E. Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Aharon G. Freud
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Pathology, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| |
Collapse
|
32
|
Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022; 14:cancers14030597. [PMID: 35158865 PMCID: PMC8833626 DOI: 10.3390/cancers14030597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Natural killer (NK)/T-cell lymphomas are aggressive extranodal Epstein–Barr virus (EBV)-positive malignancies. They can be divided into three subtypes: nasal (involving the nose and upper aerodigestive tract), non-nasal (involving skin, gastrointestinal tract, testis and other organs) and disseminated (involving multiple organs). Lymphoma cells are positive for CD3ε, CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asians. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial at diagnosis and follow-up. Stage I/II patients receive non-athracycline asparaginse-containing regimens, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients receive asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT). Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches include PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial. Abstract Natural killer (NK)/T-cell lymphomas are aggressive malignancies. Epstein–Barr virus (EBV) infection in lymphoma cells is invariable. NK/T-cell lymphomas are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nasal cavity and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other extranodal sites. Disseminated NK/T-cell lymphoma involves multiple organs, rarely presenting with a leukaemic phase. Lymphoma cells are positive for CD3ε (not surface CD3), CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asian patients. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial evaluations at diagnosis and follow-up. Stage I/II patients typically receive non-athracycline regimens containing asparaginse, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients are treated with asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable cases. Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches are needed, involving PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial in selected patients. Future strategies may include targeting of signalling pathways and driver mutations.
Collapse
|
33
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
34
|
Wang Y, Tan H, Yu T, Ma X, Chen X, Jing F, Zou L, Shi H. The identification of gene signatures in patients with extranodal NK/T-cell lymphoma from a pair of twins. BMC Cancer 2021; 21:1303. [PMID: 34872521 PMCID: PMC8650233 DOI: 10.1186/s12885-021-09023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background There is no unified treatment standard for patients with extranodal NK/T-cell lymphoma (ENKTL). Cancer neoantigens are the result of somatic mutations and cancer-specific. Increased number of somatic mutations are associated with anti-cancer effects. Screening out ENKTL-specific neoantigens on the surface of cancer cells relies on the understanding of ENKTL mutation patterns. Hence, it is imperative to identify ENKTL-specific genes for ENKTL diagnosis, the discovery of tumor-specific neoantigens and the development of novel therapeutic strategies. We investigated the gene signatures of ENKTL patients. Methods We collected the peripheral blood of a pair of twins for sequencing to identify unique variant genes. One of the twins is diagnosed with ENKTL. Seventy samples were analyzed by Robust Multi-array Analysis (RMA). Two methods (elastic net and Support Vector Machine-Recursive Feature Elimination) were used to select unique genes. Next, we performed functional enrichment analysis and pathway enrichment analysis. Then, we conducted single-sample gene set enrichment analysis of immune infiltration and validated the expression of the screened markers with limma packages. Results We screened out 126 unique variant genes. Among them, 11 unique genes were selected by the combination of elastic net and Support Vector Machine-Recursive Feature Elimination. Subsequently, GO and KEGG analysis indicated the biological function of identified unique genes. GSEA indicated five immunity-related pathways with high signature scores. In patients with ENKTL and the group with high signature scores, a proportion of functional immune cells are all of great infiltration. We finally found that CDC27, ZNF141, FCGR2C and NES were four significantly differential genes in ENKTL patients. ZNF141, FCGR2C and NES were upregulated in patients with ENKTL, while CDC27 was significantly downregulated. Conclusion We identified four ENKTL markers (ZNF141, FCGR2C, NES and CDC27) in patients with extranodal NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Huaicheng Tan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangqi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liqun Zou
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China. .,Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Bigas A, Rodriguez-Sevilla JJ, Espinosa L, Gallardo F. Recent advances in T-cell lymphoid neoplasms. Exp Hematol 2021; 106:3-18. [PMID: 34879258 DOI: 10.1016/j.exphem.2021.12.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
T Cells comprise many subtypes of specified lymphocytes, and their differentiation and function take place in different tissues. This cellular diversity is also observed in the multiple ways T-cell transformation gives rise to a variety of T-cell neoplasms. This review covers the main types of T-cell malignancies and their specific characteristics, emphasizing recent advances at the cellular and molecular levels as well as differences and commonalities among them.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain; Institut Josep Carreras contra la Leucemia, Barcelona, Spain.
| | | | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
36
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Gozzi F, Cimino L, Masia F, Moretti M, Foroni M, De Marco L, Pellegrini D, De Raeve H, Ricci S, Tamagnini I, Tafuni A, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3). Cancers (Basel) 2021; 13:6021. [PMID: 34885131 PMCID: PMC8656853 DOI: 10.3390/cancers13236021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
EBV is the first known oncogenic virus involved in the development of several tumors. The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Francesco Masia
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Marina Moretti
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - David Pellegrini
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Hendrik De Raeve
- Pathology, University Hospital Brussels, 1090 Brussels, Belgium;
- Pathology, O.L.V. Hospital Aalst, 9300 Aalst, Belgium
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| |
Collapse
|
37
|
Primary breast CD20-positive extranodal NK/T cell lymphoma with stomach involvement: a case report and literature review. Diagn Pathol 2021; 16:103. [PMID: 34749754 PMCID: PMC8573996 DOI: 10.1186/s13000-021-01166-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background We present a unique case of primary breast CD20-positive extranodal NK/T cell lymphoma with stomach involvement in a young Chinese female patient. Case presentation The patient presented with a mass in her right breast that rapidly increased in size over approximately 2 months. Upper gastrointestinal endoscopy showed a giant serpentine ulcer in the stomach. Biopsy was performed, and microscopic inspection revealed that the fibrous tissue was diffusely involved by medium to large abnormal lymphocytes. The cytoplasm was low to moderate. The tumor cells had irregular nuclei and inconspicuous nucleoli. The lymphoid cells were strongly immunoreactive to CD20, CD3, CD4, CD56, TIA-1, EBER, and Ki-67 (90%). Epstein-Barr virus genomes were also found in tumor cells by in situ hybridization. A whole-body positron emission tomography (PET)-CT scan revealed intense FDG uptake in the right breast and greater curvature of the stomach. Monoclonal rearrangements of the T cell receptor (TCR-γ) and immunoglobulin heavy chain (IgH) were identified by genetic analysis. Whole-genome next-generation sequencing was performed, and up to 12 gene mutations, including a frameshift mutation in exon 4 of the BCOR (G97Rfs*87; 44.3%) gene and a base substitution mutation (Q61H 17.6%) in exon 3 of the KRAS gene, were detected. Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using the database for annotation, visualization, and integrated discovery, which showed that rare primary breast CD20-positive extranodal NK/T cell lymphoma had a unique genetic background compared with diffuse large B cell lymphoma and extranodal NK/T cell lymphoma without CD20 expression. The patient received four cycles of the modified SMILE regimen. The second whole-body PET-CT scan revealed that the right breast mass was significantly smaller than before; additionally, FDG uptake in the stomach wall disappeared. Conclusions Systemic examination, extensive immunohistochemistry, and molecular profiling are essential for an accurate diagnosis. More similar cases are required to clarify the biological pathways and even the potential molecular mechanisms of rare lymphomas, which may help direct further treatment.
Collapse
|
38
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
39
|
Xu L, Qin Y, Liu M, Jiao J, Tu D, Zhang M, Yan D, Song X, Sun C, Zhu F, Wang X, Sang W, Xu K. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med Chem 2021; 22:1530-1540. [PMID: 34503423 DOI: 10.2174/1871520621666210908103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non-Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. OBJECTIVE The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. METHODS The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. RESULTS NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. CONCLUSION NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongyun Tu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Meng Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xiangmin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| |
Collapse
|
40
|
Dong G, Li Y, Lee L, Liu X, Shi Y, Liu X, Bouska A, Gong Q, Kong L, Wang J, Lou CH, McKeithan TW, Iqbal J, Chan WC. Genetic manipulation of primary human natural killer cells to investigate the functional and oncogenic roles of PRDM1. Haematologica 2021; 106:2427-2438. [PMID: 32732362 PMCID: PMC8409030 DOI: 10.3324/haematol.2020.254276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Extra-nodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTCL) is a highly aggressive lymphoma, in which the tumor suppressor gene PRDM1 is frequently lost or inactivated. We employed two different CRISPR/Cas9 approaches to generate PRDM1-/- primary NK cells to study the role of this gene in NK-cell homeostasis. PRDM1-/- NK cells showed a marked increase in cloning efficiency, higher proliferation rate and less apoptosis compared with their wild-type counterparts. Gene expression profiling demonstrated a marked enrichment in pathways associated with proliferation, cell cycle, MYC, MYB and TCR/NK signaling in PRDM1-/- NK cells, but pathways associated with normal cellular functions including cytotoxic functions were downregulated, suggesting that the loss of PRDM1 shifted NK cells toward proliferation and survival rather than the performance of their normal functions. We were also able to further modify a PRDM1-deleted clone to introduce heterozygous deletions of common tumor suppressor genes in ENKTCL such as TP53, DDX3X, and PTPN6. We established an in vitro model to elucidate the major pathways through which PRDM1 mediates its homeostatic control of NK cells. This approach can be applied to the study of other relevant genetic lesions and oncogenic collaborations in lymphoma pathogenesis.
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Logan Lee
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunfei Shi
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaoqian Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alyssa Bouska
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lingbo Kong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jinhui Wang
- Department of Mol and Cell Biol , City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Chih-Hong Lou
- The Gene Editing and Viral Vector Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
41
|
Chan JY, Lim JQ, Ong CK. Towards Next Generation Biomarkers in Natural Killer/T-Cell Lymphoma. Life (Basel) 2021; 11:838. [PMID: 34440582 PMCID: PMC8398475 DOI: 10.3390/life11080838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an Epstein-Barr virus-associated non-Hodgkin lymphoma linked to an aggressive clinical course and poor prognosis. Despite an improvement in survival outcomes with the incorporation of novel agents including immune checkpoint inhibitors in the treatment of NKTCL, a significant proportion of patients still relapse or remain refractory to treatment. Several clinical prognostic models have been developed for NKTCL patients treated in the modern era, though the optimal approach to risk stratification remains to be determined. Novel molecular biomarkers derived from multi-omic profiling have recently been developed, with the potential to improve diagnosis, prognostication and treatment of this disease. Notably, a number of potential biomarkers have emerged from a better understanding of the tumor immune microenvironment and inflammatory responses. This includes a recently described 3'UTR structural variant in the PD-L1 gene, which confers susceptibility to checkpoint immunotherapy. In this review, we summarize the biomarker landscape of NKTCL and highlight emerging biomarkers with the potential for clinical implementation.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Blood Cancer Centre, Singapore 169857, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore
| |
Collapse
|
42
|
Epstein-Barr Virus-Associated T- and NK-Cell Lymphoproliferative Diseases: A Review of Clinical and Pathological Features. Cancers (Basel) 2021; 13:cancers13133315. [PMID: 34282778 PMCID: PMC8268319 DOI: 10.3390/cancers13133315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In most Epstein–Barr virus (EBV)-infected individuals, the virus establishes a lifelong latent infection with no specific clinical manifestation. However, EBV primary infection and secondary reactivation may cause various EBV-associated lymphoproliferative disorders (LPD), including hematologic malignancies. Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV, more commonly encountered in Asians and Latin Americans. They encompass a spectrum of disorders ranging from indolent reactive lesions to malignant and aggressive diseases. Despite novel insights from high-throughput molecular studies, the pathogenesis of these disorders is not well understood, and EBV-positive T/NK LPD diagnoses remain challenging due to their rarity and considerable overlap. Indeed, this article discusses new insights into EBV-positive T/NK LPD and focuses on diagnosis challenges, describing the difficulties to clarify the borders between overlapping LPD subtypes. Abstract Epstein–Barr virus (EBV) is a ubiquitous virus detected in up to 95% of the general population. Most people are asymptomatic, while some may develop a wide range of EBV-associated lymphoproliferative disorders (LPD). Among them, EBV-positive T/NK LPD are uncommon diseases defined by the proliferation of T- or NK-cells infected by EBV. The 2017 World Health Organization (WHO) classification recognizes the following entities characterized by different outcomes: chronic active EBV infection of T- or NK-cell types (cutaneous and systemic forms), systemic EBV-positive T-cell lymphoma of childhood, EBV-positive aggressive NK-cell leukemia, extra nodal NK/T-cell lymphoma nasal type, and the new provisional entity known as primary EBV-positive nodal T/NK-cell lymphoma. In addition, EBV associated-hemophagocytic lymphohistiocytosis is part of EBV-positive T/NK LPD, but has not been included in the WHO classification due to its reactive nature. Despite novel insights from high-throughput molecular studies, EBV-positive NK/T-cell LPD diagnoses remain challenging, especially because of their rarity and overlap. Until now, an accurate EBV-positive NK/T LPD diagnosis has been based on its clinical presentation and course correlated with its histological features. This review aims to summarize clinical, pathological and molecular features of EBV-positive T/NK LPD subtypes and to provide an overview of new understandings regarding these rare disorders.
Collapse
|
43
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
44
|
Lee JY, Kim JH, Bang H, Cho J, Ko YH, Kim SJ, Kim WS. EGR1 as a potential marker of prognosis in extranodal NK/T-cell lymphoma. Sci Rep 2021; 11:10342. [PMID: 33990633 PMCID: PMC8121831 DOI: 10.1038/s41598-021-89754-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extranodal natural killer T-cell lymphoma (ENKTL) is an aggressive malignancy with a dismal prognosis. In the present study, gene expression profiling was performed to provide more information on ENKTL molecular signature and offer a rationale for further investigation of prognostic markers in ENKTL. NanoString nCounter Analysis encompassing 133 target genes was used to compare gene expression levels of 43 ENKTL tumor samples. The majority of the patients were under 60 years of age (79.1%); 32 (74.4%) patients had nasal type ENKTL and 23 patients (53.5%) had intermediate/high risk ENKTL based on the prognostic index for natural killer cell lymphoma (PINK). The median follow-up was 15.9 months and the median overall survival (OS) was 16.1 months (95% CI 13.0-69.8). EGR1 upregulation was consistently identified in the localized stage with a low risk of prognostic index based on the PINK. Among the six significantly relevant genes for EGR1 expression, high expression levels of genes, including CD59, GAS1, CXCR7, and RAMP3, were associated with a good survival prognosis. The in vitro test showed EGR1 modulated the transcriptional activity of the target genes including CD59, GAS1, CXCR7, and RAMP3. Downregulation of EGR1 and its target genes significantly inhibited apoptosis and decreased chemosensitivity and attenuated radiation-induced apoptosis. The findings showed EGR1 may be a candidate for prognostic markers in ENKTL. Considerable additional characterization may be necessary to fully understand EGR1.
Collapse
Affiliation(s)
- Ji Yun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heejin Bang
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
45
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
46
|
Affiliation(s)
- Young Hyeh Ko
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
- Department of Pathology, Hanyang University Hospital, Seoul, Korea
| |
Collapse
|
47
|
Susan SSH, Ng SB, Wang S, Tan SY. Diagnostic approach to T- and NK-cell lymphoproliferative disorders in the gastrointestinal tract. Semin Diagn Pathol 2021; 38:21-30. [PMID: 34016481 DOI: 10.1053/j.semdp.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Most gastrointestinal NK and T cell lymphomas are aggressive in behavior, although in recent years a subset of indolent lymphoproliferative disorders have been described, which must be distinguished from their more malignant mimics. Intestinal T-cell lymphomas may arise from intra-epithelial lymphocytes and display epitheliotropism, such as enteropathy-associated T-cell lymphoma and monomorphic epitheliotropic intestinal T-cell lymphoma. They are both aggressive in behavior but differ in their clinic-pathological features. On the other hand, intra-epithelial lymphocytes are not prominent in intestinal T-cell lymphoma, NOS, which is a diagnosis of exclusion and probably represents a heterogeneous group of entities. Indolent lymphoproliferative disorders of NK- and T-cells of both CD8 and CD4 subsets share a chronic, recurring clinical course but display differences from each other. CD8+ T-cell lymphoproliferative disorder of GI tract has a low proliferative fraction and does not progress nor undergo large cell transformation. Whilst NK-cell enteropathy runs an indolent clinical course, it may display a high proliferation fraction. On the other hand, CD4+ indolent T-cell lymphoproliferative disorder displays variable proliferation rates and may progress or transform after a number of years. In Asia and South America, it is not uncommon to see involvement of the gastrointestinal tract by EBV-associated extranodal NK/T cell lymphoma, nasal type, which must be distinguished from NK cell enteropathy and EBV-associated mucocutaneous ulcers.
Collapse
Affiliation(s)
- Swee-Shan Hue Susan
- Department of Pathology, National University Hospital Health Service, Singapore, Singapore; Department of Pathology, National University of Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Siok-Bian Ng
- Department of Pathology, National University of Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital Health Service, Singapore, Singapore
| | - Soo-Yong Tan
- Department of Pathology, National University of Singapore Yong Loo Lin School of Medicine, Singapore, Singapore.
| |
Collapse
|
48
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
49
|
Sánchez-Romero C, Bologna-Molina R, Paes de Almeida O, Santos-Silva AR, Prado-Ribeiro AC, Brandão TB, Carlos R. Extranodal NK/T cell lymphoma, nasal type: An updated overview. Crit Rev Oncol Hematol 2021; 159:103237. [PMID: 33493634 DOI: 10.1016/j.critrevonc.2021.103237] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/09/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTCL-NT) is an aggressive malignancy associated with Epstein-Barr virus infection, with a geographic and racial predilection for some Asian and Latin American countries. ENKTCL-NT manifests as a necrotic process affecting nasal or upper aerodigestive structures and, rarely, extranasal sites such as skin, and the gastrointestinal tract. ENKTCL-NT was characterized by its poor prognosis irrespective of clinical stage and therapy. However, during the last two decades, advances in its clinicopathologic, genetic and molecular characterization have been achieved, as have changes in the chemotherapy regimens that, in combination with radiotherapy, are significantly improving the survival of these patients, especially in initial stages. For these reasons, we present an overview of the historical background of ENKTCL-NT along with an updated review of its potential etiological factors, clinicopathologic and molecular features, as well as its prognostic models, current treatment protocols, and future directions on potential promising therapeutic approaches.
Collapse
Affiliation(s)
- Celeste Sánchez-Romero
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba, Sao Paulo 1314‑903, Brazil; Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango, Mexico.
| | - Ronell Bologna-Molina
- Molecular Pathology Area, Faculty of Dentistry, Universidad de la República, Montevideo, Uruguay; Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Oslei Paes de Almeida
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba, Sao Paulo 1314‑903, Brazil
| | - Alan Roger Santos-Silva
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba, Sao Paulo 1314‑903, Brazil
| | - Ana Carolina Prado-Ribeiro
- Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Thaís Bianca Brandão
- Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Román Carlos
- Department of Pathology, Integra Cancer Center, Guatemala City, Guatemala
| |
Collapse
|
50
|
Cribbs AP, Filippakopoulos P, Philpott M, Wells G, Penn H, Oerum H, Valge-Archer V, Feldmann M, Oppermann U. Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function. Front Immunol 2021; 12:626255. [PMID: 33717143 PMCID: PMC7953504 DOI: 10.3389/fimmu.2021.626255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.
Collapse
Affiliation(s)
- Adam P Cribbs
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | | | - Martin Philpott
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Graham Wells
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom
| | - Henry Penn
- Arthritis Centre, Northwick Park Hospital, Harrow, United Kingdom
| | - Henrik Oerum
- Roche Innovation Center Copenhagen A/S, Hørsholm, Denmark
| | - Viia Valge-Archer
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Marc Feldmann
- Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, United Kingdom.,Freiburg Institute of Advanced Studies, Freiburg, Germany.,Oxford Centre for Translational Myeloma Research, Oxford, United Kingdom
| |
Collapse
|