1
|
Jiao Z, Zhang M, Ning J, Yao H, Yan X, Wu Z, Wu D, Liu Y, Zhang M, Wang L, Wang D. The oncoprotein SET promotes serine-derived one-carbon metabolism by regulating SHMT2 enzymatic activity. Proc Natl Acad Sci U S A 2025; 122:e2412854122. [PMID: 40339130 DOI: 10.1073/pnas.2412854122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/27/2025] [Indexed: 05/10/2025] Open
Abstract
Cancer cells frequently reprogram one-carbon metabolic pathways to fulfill their vigorous demands of biosynthesis and antioxidant defense for survival and proliferation. Dysfunction of oncogenes or tumor suppressor genes is critically involved in this process, but the precise mechanisms by which cancer cells actively trigger one-carbon metabolic alterations remain incompletely elucidated. Here, by using untargeted metabolomic analysis, we identify the oncoprotein SE translocation (SET) as a key regulator of one-carbon metabolism in cancer cells. SET physically interacts with mitochondrial SHMT2 and facilitates SHMT2 enzymatic activity. Loss of SET profoundly suppresses serine-derived one-carbon metabolic flux, whereas reexpression of ectopic SET leads to the opposite effect. Notably, although the presence of SHMT2 is critical for SET-mediated one-carbon metabolic alterations, the depletion of SHMT2 alone is insufficient to antagonize SET-induced tumor growth, probably due to functional compensation by its cytosolic isozyme SHMT1 upon SHMT2 knockdown. Instead, pharmacological targeting of cellular SHMT (including both SHMT1 and SHMT2) activity results in dramatic suppression of SET-induced tumor growth. Moreover, by using a Kras/Lkb1 mutation-driven lung tumor mouse model, we demonstrate that the loss of SET compromises both tumor formation and intratumoral SHMT2 enzymatic activity. Clinically, the overexpression of SET and SHMT2 is observed in lung tumors, both of which correlate with poor prognosis. Our study reveals a SET-SHMT2 axis in regulating serine-derived one-carbon metabolism and uncovers one-carbon metabolic reprogramming as a mechanism for SET-driven tumorigenesis.
Collapse
Affiliation(s)
- Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Jingyuan Ning
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dexuan Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Du Y, Kajino T, Shimada Y, Takahashi T, Taguchi A. Mir-494-3p enhances aggressive phenotype of non-small cell lung cancer cells by regulating SET/I2PP2A. Sci Rep 2025; 15:15441. [PMID: 40316770 PMCID: PMC12048640 DOI: 10.1038/s41598-025-99558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
A high level of miR-494-3p expression has been associated with poor prognosis of non-small cell lung cancer (NSCLC) patients. However, its role in NSCLC development and progression remains elusive. Analyses of the Clinical Proteomic Tumor Analysis Consortium and the Cancer Genome Atlas databases showed overexpression of miR-494-3p in both lung adenocarcinoma and lung squamous cell carcinoma cases. Furthermore, bioinformatic analysis revealed that representative pathways associated with cancer metastasis were enriched with genes positively correlated with miR-494-3p expression levels, suggesting possible involvement of miR-494-3p in the aggressive properties of NSCLC. To identify potential targets of miR-494-3p, genes inversely correlated with miR-494-3p in the mRNA expression datasets of NSCLC cell lines obtained from the Cancer Dependency Map were examined in the present study. Integration of RNA sequencing analysis of NSCLC cells with miR-494-3p inhibition and a bioinformatic search of miRNA target prediction algorithms resulted in identification of SET/I2PP2A as a direct target of miR-494-3p. The findings indicate that suppression of SET/I2PP2A by miR-494-3p promotes NSCLC cell migration and invasion, but not viability, thus indicating miR-494-3p and its downstream molecules as potential therapeutic targets for aggressive NSCLC phenotypes.
Collapse
Affiliation(s)
- Yuwen Du
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Yukako Shimada
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | | | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan.
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan.
| |
Collapse
|
3
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
4
|
Lingling G, Qingxing Y, Jianbo X, Weijie W, Dan L. MiR-145-5p regulates granulosa cell proliferation by targeting the SET gene in KGN cells. J Reprod Dev 2024; 70:372-378. [PMID: 39313372 DOI: 10.1262/jrd.2024-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
MiR-145-5p has been implicated in the development and progression of various disorders, and it is primarily recognized as a tumor suppressor in numerous cancers types. Its expression has been reported to decrease in the granulosa cells of patients with polycystic ovarian syndrome (PCOS). This study aimed to investigate whether miR-145-5p plays a role in granulosa cell proliferation and to shed light on the underlying pathological mechanisms of follicular development in patients with PCOS. Follicular fluid samples were collected from patients with PCOS and healthy individuals. The Cell Counting Kit-8 and bromodeoxyuridine assays were performed to assess KGN cell proliferation. The expression of miR-145-5p was significantly decreased in PCOS granulosa cells than in control cells, whereas the expression of SET was increased. Furthermore, miR-145-5p suppressed the proliferation of KGN cells. SET was identified as a direct target of miR-145-5p. Additionally, SET promoted the proliferation of KGN cells, and knockdown of SET counteracted the effect of the miR-145-5p inhibitor. Therefore, miR-145-5p regulates granulosa cell proliferation by targeting the SET in KGN cells; this process may be a potential pathological pathway that contributes to follicular developmental disorders in PCOS.
Collapse
Affiliation(s)
- Gao Lingling
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Yang Qingxing
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Xu Jianbo
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Wang Weijie
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| | - Lu Dan
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225001, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Jiangsu 225001, China
| |
Collapse
|
5
|
Antoniu S, Rascu S. Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders. Expert Opin Investig Drugs 2024; 33:1135-1142. [PMID: 39394816 DOI: 10.1080/13543784.2024.2416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach. AREAS COVERED Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD. EXPERT OPINION PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department Medicine II/Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Iasi, Romania
| | - Setfan Rascu
- Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania
| |
Collapse
|
6
|
Gupta P, Venuti A, Savoldy M, Harold A, Zito FA, Taverniti V, Romero-Medina MC, Galati L, Sirand C, Shahzad N, Shuda M, Gheit T, Accardi R, Tommasino M. Merkel Cell Polyomavirus targets SET/PP2A complex to promote cellular proliferation and migration. Virology 2024; 597:110143. [PMID: 38917692 PMCID: PMC11552451 DOI: 10.1016/j.virol.2024.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Merkel Cell Carcinoma (MCC) is a rare neuroendocrine skin cancer. In our previous work, we decoded genes specifically deregulated by MCPyV early genes as opposed to other polyomaviruses and established functional importance of NDRG1 in inhibiting cellular proliferation and migration in MCC. In the present work, we found the SET protein, (I2PP2A, intrinsic inhibitor of PP2A) upstream of NDRG1 which was modulated by MCPyV early genes, both in hTERT-HK-MCPyV and MCPyV-positive (+) MCC cell lines. Additionally, MCC dermal tumour nodule tissues showed strong SET expression. Inhibition of the SET-PP2A interaction in hTERT-HK-MCPyV using the small molecule inhibitor, FTY720, increased NDRG1 expression and inhibited cell cycle regulators, cyclinD1 and CDK2. SET inhibition by shRNA and FTY720 also decreased cell proliferation and colony formation in MCPyV(+) MCC cells. Overall, these results pave a path for use of drugs targeting SET protein for the treatment of MCC.
Collapse
Affiliation(s)
- Purnima Gupta
- International Agency for Research on Cancer, Lyon, France.
| | - Assunta Venuti
- International Agency for Research on Cancer, Lyon, France
| | - Michelle Savoldy
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesco A Zito
- Bari Dipartimento dei Servizi, U.O.C. di Anatomia Patologica, Istituto Tumori IRCCS "Giovanni Paolo II", Italy
| | | | | | - Luisa Galati
- International Agency for Research on Cancer, Lyon, France
| | - Cecilia Sirand
- International Agency for Research on Cancer, Lyon, France
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tarik Gheit
- International Agency for Research on Cancer, Lyon, France.
| | - Rosita Accardi
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
7
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
8
|
Xu W, Yao H, Wu Z, Yan X, Jiao Z, Liu Y, Zhang M, Wang D. Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis. Nat Commun 2024; 15:1362. [PMID: 38355937 PMCID: PMC10867109 DOI: 10.1038/s41467-024-45585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors. SET interacts and collaborates with ZBTB11 to promote lung cancer cell migration and invasion, primarily through SET-ZBTB11 complex-mediated transcriptional activation of matrix metalloproteinase-9 (MMP9). Additionally, by transcriptional repression of proline-rich Gla protein 2 (PRRG2), ZBTB11 links Yes-associated protein 1 (YAP1) activation to drive lung tumor metastasis independently of SET-ZBTB11 complex. Loss of ZBTB11 suppresses distal metastasis in a lung tumor mouse model. Overexpression of ZBTB11 is recapitulated in human metastatic lung tumors and correlates with diminished survival. Our study demonstrates ZBTB11 as a key metastatic regulator and reveals diverse mechanisms by which ZBTB11 modulates lung tumor metastasis.
Collapse
Affiliation(s)
- Wenbin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Kohyanagi N, Kitamura N, Ikeda S, Shibutani S, Sato K, Ohama T. PP2A inhibitor SET promotes mTORC1 and Bmi1 signaling through Akt activation and maintains the colony-formation ability of cancer cells. J Biol Chem 2024; 300:105584. [PMID: 38141761 PMCID: PMC10826185 DOI: 10.1016/j.jbc.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Nao Kitamura
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan.
| |
Collapse
|
10
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
12
|
Stillger K, Neundorf I. Cell-permeable peptide-based delivery vehicles useful for subcellular targeting and beyond. Cell Signal 2023:110796. [PMID: 37423344 DOI: 10.1016/j.cellsig.2023.110796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Personal medicine aims to provide tailor-made diagnostics and treatments and has been emerged as a promising but challenging strategy during the last years. This includes the active delivery and localization of a therapeutic compound to a targeted site of action within a cell. An example being targeting the interference of a distinct protein-protein interaction (PPI) within the cell nucleus, mitochondria or other subcellular location. Therefore, not only the cell membrane has to be overcome but also the final intracellular destination has to be reached. One approach which fulfills both requirements is to use short peptide sequences that are able to translocate into cells as targeting and delivery vehicles. In fact, recent progress in this field demonstrates how these tools can modulate the pharmacological parameters of a drug without compromising its biological activity. Beside classical targets that are addressed by various small molecule drugs such as receptors, enzymes, or ion channels, PPIs have received increasing attention as potential therapeutic targets. Within this review, we will provide a recent update on cell-permeable peptides targeting subcellular destinations. We include chimeric peptide probes that combine cell-penetrating peptides (CPPs) and a targeting sequence, as well peptides having intrinsic cell-permeability and which are often used to target PPIs.
Collapse
Affiliation(s)
- Katharina Stillger
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
13
|
Aakula A, Sharma M, Tabaro F, Nätkin R, Kamila J, Honkanen H, Schapira M, Arrowsmith C, Nykter M, Westermarck J. RAS and PP2A activities converge on epigenetic gene regulation. Life Sci Alliance 2023; 6:e202301928. [PMID: 36858798 PMCID: PMC9979842 DOI: 10.26508/lsa.202301928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
RAS-mediated human cell transformation requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A). However, the phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation. As examples, RAS and PP2A co-regulate the same phosphorylation sites on HDAC1/2, KDM1A, MTA1/2, RNF168, and TP53BP1. We validate RAS- and PP2A-elicited regulation of HDAC1/2 chromatin recruitment, of RNF168-TP53BP1 interaction, and of gene expression. Consistent with their known synergistic effects in cancer, RAS activation and PP2A inhibition resulted in epigenetic reporter derepression and activation of oncogenic transcription. Transcriptional derepression by PP2A inhibition was associated with an increase in euchromatin and a decrease in global DNA methylation. Collectively, the results indicate that epigenetic protein complexes constitute a significant point of convergence for RAS hyperactivity and PP2A inhibition in cancer. Furthermore, the work provides an important resource for future studies focusing on phosphoregulation of epigenetic gene regulation in cancer and in other RAS/PP2A-regulated cellular processes.
Collapse
Affiliation(s)
- Anna Aakula
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Francesco Tabaro
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Reetta Nätkin
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jesse Kamila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Henrik Honkanen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
The repression of oncoprotein SET by the tumor suppressor p53 reveals a p53-SET-PP2A feedback loop for cancer therapy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:81-93. [PMID: 35881220 DOI: 10.1007/s11427-021-2123-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023]
Abstract
The oncoprotein SET is frequently overexpressed in many types of tumors and contributes to malignant initiation and progression through multiple mechanisms, including the hijacking of the tumor suppressors p53 and PP2A. Targeting aberrant SET represents a promising strategy for cancer intervention. However, the mechanism by which endogenous SET is regulated in cancer cells remains largely unknown. Here, we identified the tumor suppressor p53 as a key regulator that transcriptionally repressed the expression of SET in both normal and cancer cells. In addition, p53 stimulated PP2A phosphatase activity via p53-mediated transcriptional repression of SET, whereby SET-mediated inhibition of PP2A was alleviated. Moreover, targeting the interaction between SET and PP2A catalytic subunit (PP2Ac) with FTY720 enhanced stress-induced p53 activation via PP2A-mediated dephosphorylation of p53 on threonine 55 (Thr55). Therefore, our findings uncovered a previously unknown p53-SET-PP2A regulatory feedback loop. To functionally potentiate this feedback loop, we designed a combined therapeutic strategy by simultaneously administrating a p53 activator and SET antagonist in cancer cells and observed a dramatic synergistic effect on tumor suppression. Our study reveals mechanistic insight into the regulation of the oncoprotein SET and raises a potential strategy for cancer therapy by stimulating the p53-SET-PP2A feedback loop.
Collapse
|
15
|
The Pivotal Role of Protein Phosphatase 2A (PP2A) in Brain Tumors. Int J Mol Sci 2022; 23:ijms232415717. [PMID: 36555359 PMCID: PMC9779694 DOI: 10.3390/ijms232415717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathology; interestingly, PP2A appears to be essential for controlling cell growth and may be involved in cancer development. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. To leverage the potential clinical utility of combination PP2A inhibition and radiotherapy treatment, it is vital that novel highly specific PP2A inhibitors be developed. In this review, the existing literature on the role of PP2A in brain tumors, especially in gliomas and glioblastoma (GBM), was analyzed. Interestingly, the review focused on the role of PP2A inhibitors, focusing on CIP2A inhibition, as CIP2A participated in tumor cell growth by stimulating cell-renewal survival, cellular proliferation, evasion of senescence and inhibition of apoptosis. This review suggested CIP2A inhibition as a promising strategy in oncology target therapy.
Collapse
|
16
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
17
|
Han D, Wang L, Long L, Su P, Luo D, Zhang H, Li Z, Chen B, Zhao W, Zhang N, Wang X, Liang Y, Li Y, Hu G, Yang Q. The E3 Ligase TRIM4 Facilitates SET Ubiquitin-Mediated Degradation to Enhance ER-α Action in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201701. [PMID: 35843886 PMCID: PMC9443474 DOI: 10.1002/advs.202201701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Estrogen receptor alpha (ER-α) action is critical for hormone-dependent breast cancer, and ER-α dysregulation can lead to the emergence of resistance to endocrine therapy. Here, it is found that TRIM4 is downregulated in tamoxifen (TAM)-resistant breast cancer cells, while the loss of TRIM4 is associated with an unfavorable prognosis. In vitro and in vivo experiments confirm that TRIM4 increased ER-α expression and the sensitivity of breast cancer cells to TAM. Mechanistically, TRIM4 is found to target SET, and TRIM4-SET interactions are mediated by the RING and B-box domains of TRIM4 and the carboxyl terminus of SET. Moreover, it is determined that TRIM4 catalyzed the K48-linked polyubiquitination of SET (K150 and K172), promoting its proteasomal degradation and disassociation from p53 and PP2A. Once released, p53 and PP2A are able to further promote ESR1 gene transcription and enhance mRNA stability. Moreover, univariate and multivariate Cox proportional hazards regression analyses confirm that TRIM4 expression is an independent predictor of overall survival and recurrence-free survival outcomes in patients with ER-α positive breast cancer. Taken together, the data highlights a previously undiscovered mechanism and suggest that TRIM4 is a valuable biomarker that can be analyzed to predict response to endocrine therapy in breast cancer patients.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Lijuan Wang
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Li Long
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
- Mianyang Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaMianyangSichuan621000China
| | - Peng Su
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Dan Luo
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Hanwen Zhang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Zheng Li
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Bing Chen
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Wenjing Zhao
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Ning Zhang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Xiaolong Wang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yiran Liang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yaming Li
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Guohong Hu
- The Key Laboratory of Stem Cell BiologyInstitute of Health SciencesShanghai Institutes for Biological SciencesChinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineUniversity of Chinese Academy of SciencesShanghai200233China
| | - Qifeng Yang
- Department of Breast Surgery, General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
- Pathology Tissue BankQilu Hospital of Shandong UniversityJinanShandong250012China
- Research Institute of Breast CancerShandong UniversityJinanShandong250012China
| |
Collapse
|
18
|
Rupp T, Debasly S, Genest L, Froget G, Castagné V. Therapeutic Potential of Fingolimod and Dimethyl Fumarate in Non-Small Cell Lung Cancer Preclinical Models. Int J Mol Sci 2022; 23:ijms23158192. [PMID: 35897763 PMCID: PMC9330228 DOI: 10.3390/ijms23158192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
New therapies are required for patients with non-small cell lung cancer (NSCLC) for which the current standards of care poorly affect the patient prognosis of this aggressive cancer subtype. In this preclinical study, we aim to investigate the efficacy of Fingolimod, a described inhibitor of sphingosine-1-phosphate (S1P)/S1P receptors axis, and Dimethyl Fumarate (DMF), a methyl ester of fumaric acid, both already approved as immunomodulators in auto-immune diseases with additional expected anti-cancer effects. The impact of both drugs was analyzed with in vitro cell survival analysis and in vivo graft models using mouse and human NSCLC cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated that Fingolimod and DMF repressed tumor progression without apparent adverse effects in vivo in three preclinical mouse NSCLC models. In vitro, Fingolimod did not affect either the tumor proliferation or the cytotoxicity, although DMF reduced tumor cell proliferation. These results suggest that Fingolimod and DMF affected tumor progression through different cellular mechanisms within the tumor microenvironment. Fingolimod and DMF might uncover potential therapeutic opportunities in NSCLC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- Correspondence: or ; Tel.: +33-(0)2-43-69-36-07
| | - Solène Debasly
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Université de Reims-Champagne-Ardenne, Campus Moulin de la Housse, 51687 Reims, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Guillaume Froget
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Vincent Castagné
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| |
Collapse
|
19
|
Gao L, Wang S, Xu J, Lu D, Cui Y. SET improved oocyte maturation by serine/threonine protein phosphatase 2A and inhibited oocyte apoptosis in mouse oocytes. Reprod Biol 2022; 22:100668. [PMID: 35728284 DOI: 10.1016/j.repbio.2022.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
SET is a multifunctional protein involved in a variety of molecular processes such as cell apoptosis and cell-cycle regulation. In ovaries SET is predominantly expressed in theca cells and oocytes. In polycystic ovary syndrome (PCOS) patients the expression of SET was increased than healthy people. The current study was designed to determine whether SET plays a role in oocyte maturation and apoptosis, which may provide clues for the underlying pathological mechanism of follicular development in PCOS patients. Oocytes at germinal vesicle (GV) stage were collected from 6-week-old female ICR mice ovaries. The expression of SET was manipulated by AdCMV-SET and AdH1-SiRNA/SET adenoviruses. SET overexpression improved oocyte maturation whereas SET knockdown inhibited oocyte maturation. Moreover, SET negatively regulated serine/threonine protein phosphatase 2A (PP2A) activity in oocytes. Treatment with PP2A inhibitor okadaic acid (OA) promoted oocyte maturation. Furthermore, PP2A knockdown confirmed the role of PP2A in oocyte maturation, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition on oocyte maturation. The central role of PP2A in SET-mediated regulation of oocyte maturation was confirmed by the finding that SET increased the expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) and PP2A inhibited their expressions. Besides, SET inhibited oocyte apoptosis through decreasing the expression of caspase 3 and caspases 8, while PP2A had no effect on oocyte apoptosis. SET promoted oocyte maturation by inhibiting PP2A activity and inhibited oocyte apoptosis in mouse in-vitro cultured oocytes, which may provide a pathologic pathway leading to impaired oocyte developmental competence in PCOS.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Siying Wang
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jianbo Xu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Second-Generation JK-206 Targets the Oncogenic Signal Mediator RHOA in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14071604. [PMID: 35406376 PMCID: PMC8997135 DOI: 10.3390/cancers14071604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Ras homologous A (RHOA), a signal mediator and a GTPase, is known to be associated with the progression of gastric cancer (GC), which is the fourth most common cause of death in the world. Previously, we designed pharmacologically optimized inhibitors against RHOA, including JK-136 and JK-139. Based on this previous work, we performed lead optimization and designed novel RHOA inhibitors for greater anti-GC potency. Two of these compounds, JK-206 and JK-312, could successfully inhibit the viability and migration of GC cell lines. Furthermore, using transcriptomic analysis of GC cells treated with JK-206, we revealed that the inhibition of RHOA might be associated with the inhibition of the mitogenic pathway. Therefore, JK-206 treatment for RHOA inhibition may be a new therapeutic strategy for regulating GC proliferation and migration.
Collapse
|
21
|
Gadallah M, Asaad NY, Shabaan M, Elkholy SS, Samara MY, Taie D. Role of SET oncoprotein in hepatocellular carcinoma: An immunohistochemical study. J Immunoassay Immunochem 2022; 43:420-434. [PMID: 35156535 DOI: 10.1080/15321819.2022.2034646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer of the liver and it is the fourth most common cause of cancer related death worldwide. In Egypt, liver cancer constitutes the most common cause of mortality-related cancer. This study aimed to evaluate the immunohistochemical expression of SET oncoprotein in HCC tissues in comparison with its expression in non tumorous liver tissues and to correlate its expression with clinicopathological parameters. This study investigated 100 cases of HCC (including tumorous and non tumorous tissues). One hundred percent of tumorous and non-tumorous tissues were positive for SET expression. The mean and median values of H-score for SET expression were higher in tumorous than non tumorous tissues (P = .03). Higher SET expression was significantly correlated with larger tumor size (P = .012), positive lymphovascular invasion (P = .028), and shorter overall survival (P < .001). SET expression in tumor tissues is the most independent factor to affect the overall survival of HCC patients. SET plays a role in hepatocarcinogenesis proved by the increase of SET expression from non-tumorous to tumorous tissues. Also, SET can be used as a prognostic indicator and a novel target therapy in HCC patients.
Collapse
Affiliation(s)
- Marwa Gadallah
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy Yousef Asaad
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Shabaan
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Saad Elkholy
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Manar Yousef Samara
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Doha Taie
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| |
Collapse
|
22
|
Pan H, Pan Z, Guo F, Meng F, Zu L, Fan Y, Li Y, Li M, Du X, Zhang X, Shao Y, Wei M, Li X, Zhou Q. MicroRNA-1915-3p inhibits cell migration and invasion by targeting SET in non-small-cell lung cancer. BMC Cancer 2021; 21:1218. [PMID: 34774019 PMCID: PMC8590782 DOI: 10.1186/s12885-021-08961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCLC). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. Methods The expression of miR-1915-3p and SET nuclear proto-oncogene (SET) in NSCLC tissues were examined by quantitative real-time PCR (qRT-PCR). Migratory and invasive abilities of lung cancer were tested by wound healing and transwell invasion assay. The direct target genes of miR-1915-3p were measured by dual-luciferase reporter assay and western blot. Finally, the regulation between METTL3/YTHDF2/KLF4 axis and miR-1915-3p were evaluated by qRT-PCR, promoter reporter assay and chromatin immunoprecipitation (CHIP). Results miR-1915-3p was downregulated in NSCLC tissues and cell lines, and inversely associated with clinical TNM stage and overall survival. Functional assays showed that miR-1915-3p significantly suppressed migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC cells. Furthermore, miR-1915-3p directly bound to the 3′untranslated region (3′UTR) of SET and modulated the expression of SET. SET inhibition could recapitulate the inhibitory effects on cell migration, invasion and EMT of miR-1915-3p, and restoration of SET expression could abrogate these effects induced by miR-1915-3p through JNK/Jun and NF-κB signaling pathways. What’s more, miR-1915-3p expression was regulated by METTL3/YTHDF2 m6A axis through transcription factor KLF4. Conclusions These findings demonstrate that miR-1915-3p function as a tumor suppressor by targeting SET and may have an anti-metastatic therapeutic potential for lung cancer treatment.
Collapse
Affiliation(s)
- Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanrong Meng
- Tianjin Prenatal Diagnostic Center, Obstetrics and Gynecology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengjie Li
- Sichuan Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinxin Du
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuwen Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Thoracic Surgery, Yizheng People's Hospital, Yangzhou, Jiangsu Province, China
| | - Yi Shao
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China. .,Sichuan Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Dacol EC, Wang S, Chen Y, Lepique AP. The interaction of SET and protein phosphatase 2A as target for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188578. [PMID: 34116173 DOI: 10.1016/j.bbcan.2021.188578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
In cancer cells, tumor suppressor proteins loss-of-function are usually the result of genetic mutations. Protein Phosphatase 2A is a tumor suppressor that inactivates several signaling pathways through removal of phosphate residues important for other proteins stability and/or activation. Different from other tumor suppressors, PP2A is, in many cancer types, inactivated by endogenous inhibitors. In physiological conditions, these inhibitors are important to balance PP2A activity. However, in cancer cells, overexpression of these inhibitors can keep PP2A inactive, resulting in sustained activation of mitogenic signaling pathways and transcription factors, metabolic reprogramming, with the resulting cancer progression and the resistance to anti-cancer therapies. One of these endogenous inhibitors is the protein SET (SE Translocation). SET is a multifunctional protein, which high expression has been associated with several types of cancer, as well as other diseases such as Alzheimer's disease. Disruption of the interaction between SET and PP2A to rescue the activity of PP2A may represent a new therapeutic strategy and opportunity for cancer treatment. This review brings up-to-date advances on the interactions between SET and PP2A and their biological consequences. Moreover, we review reported inhibitors of SET-PP2A interaction under investigation as therapeutic opportunities for the treatment of cancers.
Collapse
Affiliation(s)
- E C Dacol
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Prof. Lineu Prestes, 1730, room 136, Biomedicas IV Building, São Paulo CEP 05508-000, SP, Brazil
| | - S Wang
- Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Y Chen
- Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - A P Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Prof. Lineu Prestes, 1730, room 136, Biomedicas IV Building, São Paulo CEP 05508-000, SP, Brazil.
| |
Collapse
|
24
|
Deregulation of protein phosphatase 2A inhibitor SET is associated with malignant progression in breast cancer. Sci Rep 2021; 11:14238. [PMID: 34244560 PMCID: PMC8270961 DOI: 10.1038/s41598-021-93620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
To understand the mechanism underlying metastasis, identification of a mechanism-based and common biomarker for circulating tumour cells (CTCs) in heterogenous breast cancer is needed. SET, an endogenous inhibitor of protein phosphatase 2A, was overexpressed in all subtypes of invasive breast carcinoma tissues. Treatment with SET-targeted siRNAs reduced the motility of MCF-7 and MDA-MB-231 cells in transwell assay. SET knockdown reduced the number of mammospheres by 60–70% in MCF-7 and MDA-MB-231 cells, which was associated with the downregulation of OCT4 and SLUG. Hence, we analysed the presence of SET-expressing CTCs (SET-CTCs) in 24 breast cancer patients. CTCs were enriched using a size-based method and then immunocytochemically analysed using an anti-SET antibody. SET-CTCs were detected in 6/6 (100%) patients with recurrent breast cancer with a median value of 12 (12 cells/3 mL blood), and in 13/18 (72.2%) patients with stage I–III breast cancer with a median value of 2.5, while the median value of healthy controls was 0. Importantly, high numbers of SET-CTCs were correlated with lymph node metastasis in patients with stage I–III disease. Our results indicate that SET contributes to breast cancer progression and can act as a potential biomarker of CTCs for the detection of metastasis.
Collapse
|
25
|
Serifi I, Besta S, Karetsou Z, Giardoglou P, Beis D, Niewiadomski P, Papamarcaki T. Targeting of SET/I2PP2A oncoprotein inhibits Gli1 transcription revealing a new modulator of Hedgehog signaling. Sci Rep 2021; 11:13940. [PMID: 34230583 PMCID: PMC8260731 DOI: 10.1038/s41598-021-93440-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
The Hedgehog (Hh)/Gli signaling pathway controls cell proliferation and differentiation, is critical for the development of nearly every tissue and organ in vertebrates and is also involved in tumorigenesis. In this study, we characterize the oncoprotein SET/I2PP2A as a novel regulator of Hh signaling. Our previous work has shown that the zebrafish homologs of SET are expressed during early development and localized in the ciliated organs. In the present work, we show that CRISPR/Cas9-mediated knockdown of setb gene in zebrafish embryos resulted in cyclopia, a characteristic patterning defect previously reported in Hh mutants. Consistent with these findings, targeting setb gene using CRISPR/Cas9 or a setb morpholino, reduced Gli1-dependent mCherry expression in the Hedgehog reporter zebrafish line Tg(12xGliBS:mCherry-NLS). Likewise, SET loss of function by means of pharmacological inhibition and gene knockdown prevented the increase of Gli1 expression in mammalian cells in vitro. Conversely, overexpression of SET resulted in an increase of the expression of a Gli-dependent luciferase reporter, an effect likely attributable to the relief of the Sufu-mediated inhibition of Gli1. Collectively, our data support the involvement of SET in Gli1-mediated transcription and suggest the oncoprotein SET/I2PP2A as a new modulator of Hedgehog signaling.
Collapse
Affiliation(s)
- Iliana Serifi
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece.,Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 451 10, Ioannina, Greece
| | - Simoni Besta
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece
| | - Zoe Karetsou
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece
| | - Panagiota Giardoglou
- Developmental Biology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27, Athens, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27, Athens, Greece
| | | | - Thomais Papamarcaki
- Laboratory of Biological Chemistry, Medical Department, School of Health Sciences, University of Ioannina, 451 10, Ioannina, Greece. .,Department of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 451 10, Ioannina, Greece.
| |
Collapse
|
26
|
Meeusen B, Cortesi EE, Domènech Omella J, Sablina A, Ventura JJ, Janssens V. PPP2R4 dysfunction promotes KRAS-mutant lung adenocarcinoma development and mediates opposite responses to MEK and mTOR inhibition. Cancer Lett 2021; 520:57-67. [PMID: 34216687 DOI: 10.1016/j.canlet.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
KRAS-mutant lung adenocarcinomas represent the largest molecular subgroup of non-small cell lung cancers (NSCLC) and are notorious for their dismal survival perspectives. To gain more insights in etiology and therapeutic response, we focused on the tumor suppressor Protein Phosphatase 2A (PP2A) as a player in KRAS oncogenic signaling. We report that the PP2A activator PTPA (encoded by PPP2R4) is commonly affected in NSCLC by heterozygous loss and low-frequent loss-of-function mutation, and this is specifically associated with poorer overall survival of KRAS-mutant lung adenocarcinoma patients. Reduced or mutant PPP2R4 expression in A549 cells increased anchorage-independent growth in vitro and xenograft growth in vivo, correlating with increased Ki67 and c-MYC expression. Moreover, KrasG12D-induced lung tumorigenesis was significantly accelerated in Ppp2r4 gene trapped mice as compared to Ppp2r4 wild-type. A confined kinase inhibitor screen revealed that PPP2R4-depletion induced resistance against selumetinib (MEK inhibitor), but unexpectedly sensitized cells for temsirolimus (mTOR inhibitor), in vitro and in vivo. Our findings underscore a clinically relevant role for PTPA loss-of-function in KRAS-mutant NSCLC etiology and kinase inhibitor response.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium; Laboratory for Mechanisms of Cell Transformation, VIB Center for Cancer Biology & Dept. Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
27
|
Lee YQ, Rajadurai P, Abas F, Othman I, Naidu R. Proteomic Analysis on Anti-Proliferative and Apoptosis Effects of Curcumin Analog, 1,5-bis(4-Hydroxy-3-Methyoxyphenyl)-1,4-Pentadiene-3-One-Treated Human Glioblastoma and Neuroblastoma Cells. Front Mol Biosci 2021; 8:645856. [PMID: 33996900 PMCID: PMC8119891 DOI: 10.3389/fmolb.2021.645856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Curcumin analogs with excellent biological properties have been synthesized to address and overcome the poor pharmacokinetic profiles of curcumin. This study aims to investigate the cytotoxicity, anti-proliferative, and apoptosis-inducing ability of curcumin analog, MS13 on human glioblastoma U-87 MG, and neuroblastoma SH-SY5Y cells, and to examine the global proteome changes in these cells following treatment. Our current findings showed that MS13 induced potent cytotoxicity and anti-proliferative effects on both cells. Increased caspase-3 activity and decreased bcl-2 concentration upon treatment indicate that MS13 induces apoptosis in these cells in a dose- and time-dependent manner. The label-free shotgun proteomic analysis has defined the protein profiles in both glioblastoma and neuroblastoma cells, whereby a total of nine common DEPs, inclusive of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), alpha-enolase (ENO1), heat shock protein HSP 90-alpha (HSP90AA1), Heat shock protein HSP 90-beta (HSP90AB1), Eukaryotic translation initiation factor 5A-1 (EFI5A), heterogenous nuclear ribonucleoprotein K (HNRNPK), tubulin beta chain (TUBB), histone H2AX (H2AFX), and Protein SET were identified. Pathway analysis further elucidated that MS13 may induce its anti-tumor effects in both cells via the common enriched pathways, “Glycolysis” and “Post-translational protein modification.” Conclusively, MS13 demonstrates an anti-cancer effect that may indicate its potential use in the management of brain malignancies.
Collapse
Affiliation(s)
- Yee Qian Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Pathmanathan Rajadurai
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, Seri Kembangan, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
28
|
Zhao M, Yang C, Chai S, Yuan Y, Zhang J, Cao P, Wang Y, Xiao X, Wu K, Yan H, Liu J, Sun S. Curcumol and FTY720 synergistically induce apoptosis and differentiation in chronic myelomonocytic leukemia via multiple signaling pathways. Phytother Res 2020; 35:2157-2170. [PMID: 33274566 DOI: 10.1002/ptr.6968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Chronic myelomonocytic leukemia (CML) is a myeloid tumor characterized by MDS (myelodysplastic syndrome) and MPN (myeloproliferative neoplasms). Allogeneic hematopoietic stem cell transplantation, chemotherapy, interferon, and targeted therapy are the main treatment methods for CML. Tyrosine kinase inhibitors (TKIs) are also a treatment option, and patients are currently recommended to take these drugs throughout their lives to prevent CML recurrence. Therefore, there is a need to investigate and identify other potential chemotherapy drugs. Currently, research on CML treatment with a single drug has shown little progress. Fingolimod (FTY720), an FDA-approved drug used to treat relapsing multiple sclerosis, has also shown great potential in the treatment of lymphocytic leukemia. In our study, we find that FTY720 and curcumol have a significant inhibitory effect on K562 cells, K562/ADR cells, and CD34+ cells from CML patients. RNAseq data analysis shows that regulation of apoptosis and differentiation pathways are key pathways in this process. Besides, BCR/ABL-Jak2/STAT3 signaling, PI3K/Akt-Jnk signaling, and activation of BH3-only genes are involved in CML inhibition. In a K562 xenograft mouse model, therapy with curcumol and FTY720 led to significant inhibition of tumor growth and induction of apoptosis. To summarize, curcumol and FTY720 synergistically inhibit proliferation involved in differentiation and induce apoptosis in CML cells. Therefore, synergistic treatment with two drugs could be the next choice of treatment for CML.
Collapse
Affiliation(s)
- Mingri Zhao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Siyu Chai
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Yijun Yuan
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Pengfei Cao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Huiwen Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
29
|
Goguet-Rubio P, Amin P, Awal S, Vigneron S, Charrasse S, Mechali F, Labbé JC, Lorca T, Castro A. PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules 2020; 10:biom10111586. [PMID: 33266510 PMCID: PMC7700614 DOI: 10.3390/biom10111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.
Collapse
|
30
|
Zhu J, Shi L, Du G, Li L, Liu M. Upregulated SET Promotes Cell Survival Through Activating Akt/NF-κB Signal in Colorectal Carcinoma. Cancer Manag Res 2020; 12:4735-4745. [PMID: 32606964 PMCID: PMC7310974 DOI: 10.2147/cmar.s255930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose SET has been proven to be an oncogene, which promotes the initiation and progression in several kinds of malignant carcinomas. However, the expression and its functional roles in colorectal carcinoma (CRC) remained unknown. Materials and Methods CRC tissues samples, CRC cell lines and xenograft mouse tumors were used in this study. The mRNA and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and Western blot (WB), respectively. siRNAs were used to silence the gene expression. Cell viability, cell proliferation, colony formation, and apoptosis were measured by MTS assay, EdU incorporation assay, plated colony formation assay, and flow cytometry, respectively. Western blot was applied to evaluate the levels of Akt, p-Akt, c-Myc and cyclin D1. Xenograft mouse model was performed to observe the role of SET in vivo. Results Our results revealed that SET was up-regulated in CRC, and the expression of SET was increased with the development of CRC. SET knockdown in vitro attenuated cell proliferation activity, and increased cell apoptosis in CRC cells. Moreover, the knockdown of SET reduces tumorigenic potential in nude mice. For the mechanism, knockdown of SET promoted the dephosphorylation of Akt, followed by suppressing the translocation of NF-κB to nucleus. In addition, SET knockdown-mediated dephosphorylation of Akt downregulated the expression of c-Myc and Cyclin D1, which inhibited the cell survival in CRC. Conclusion Our results indicated that SET promoted cell survival via activating Akt/NF-κB signaling pathway in CRC, which strongly suggested that SET might be a potential therapeutic target in the colorectal carcinoma treatment.
Collapse
Affiliation(s)
- Jianjun Zhu
- Department of Medical Cellular Biology and Genetics, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Lihong Shi
- Department of Human Anatomy, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Genlai Du
- Department of Medical Cellular Biology and Genetics, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Li Li
- Department of Medical Cellular Biology and Genetics, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ming Liu
- Department of Medical Cellular Biology and Genetics, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| |
Collapse
|
31
|
Peroxynitrite promotes serine-62 phosphorylation-dependent stabilization of the oncoprotein c-Myc. Redox Biol 2020; 34:101587. [PMID: 32512497 PMCID: PMC7280771 DOI: 10.1016/j.redox.2020.101587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Stabilization of c-Myc oncoprotein is dependent on post-translational modifications, especially its phosphorylation at serine-62 (S62), which enhances its tumorigenic potential. Herein we report that increase in intracellular superoxide induces phospho-stabilization and activation of c-Myc in cancer cells. Importantly, sustained phospho-S62 c-Myc was necessary for promoting superoxide dependent chemoresistance as non-phosphorylatable S62A c-Myc was insensitive to the redox impact when subjected to chemotherapeutic insults. This redox-dependent sustained S62 phosphorylation occurs through nitrative inhibition of phosphatase, PP2A, brought about by peroxynitrite, a reaction product of superoxide and nitric oxide. We identified a conserved tyrosine residue (Y238) in the c-Myc targeting subunit B56α of PP2A, which is selectively amenable to nitrative inhibition, further preventing holoenzyme assembly. In summary, we have established a novel mechanism wherein the pro-oxidant microenvironment stimulates a pro-survival milieu and reinforces tumor maintenance as a functional consequence of c-Myc activation through its sustained S62 phosphorylation via inhibition of phosphatase PP2A. Significance statement Increased peroxynitrite signaling in tumors causes sustained S62 c-Myc phosphorylation by PP2A inhibition. This is critical to promoting c-Myc stabilization and activation which promotes chemoresistance and provides significant proliferative and growth advantages to osteosarcomas.
Collapse
|
32
|
Arribas RL, Bordas A, Domènech Omella J, Cedillo JL, Janssens V, Montiel C, de Los Ríos C. An okadaic acid fragment analogue prevents nicotine-induced resistance to cisplatin by recovering PP2A activity in non-small cell lung cancer cells. Bioorg Chem 2020; 100:103874. [PMID: 32361056 DOI: 10.1016/j.bioorg.2020.103874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
We herein report the design, synthesis, and functional impact of an okadaic acid (OA) small analogue, ITH12680, which restores the activity of phosphoprotein phosphatase 2A (PP2A), whose deficient activity has been implicated in nicotine-mediated tumor progression and chemoresistance in non-small cell lung cancer (NSCLC). For its design, we paid attention to the structure of the PP2A-OA complex, where the C16-C38 OA fragment confers PP2A affinity and selectivity, but it is not involved in the inhibitory effect. Confirming this hypothesis, PP2A activity was not inhibited by ITH12680. By contrast, the compound partially restored OA-exerted PP2A inhibition in vitro. Moreover, flow cytometry and immunoblotting experiments revealed that ITH12680 reversed nicotine-induced cisplatin resistance in NSCLC cells, as it prevented nicotine-induced reduction of Bax expression and inhibited nicotine-mediated activation of cell survival and proliferation kinases, Akt and ERK1/2. Our findings suggest that the rescue of nicotine-inhibited PP2A activity could diminish the resistance to cisplatin treatment observed in NSCLC patients who continue smoking.
Collapse
Affiliation(s)
- Raquel L Arribas
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Judit Domènech Omella
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Herestraat 49, B-3000 Leuven, & LKI (Leuven Cancer Institute), Belgium
| | - Jose Luis Cedillo
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Veerle Janssens
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Herestraat 49, B-3000 Leuven, & LKI (Leuven Cancer Institute), Belgium
| | - Carmen Montiel
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain.
| | - Cristóbal de Los Ríos
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006 Madrid, Spain.
| |
Collapse
|
33
|
Shishodia G, Koul S, Koul HK. Protocadherin 7 is overexpressed in castration resistant prostate cancer and promotes aberrant MEK and AKT signaling. Prostate 2019; 79:1739-1751. [PMID: 31449679 DOI: 10.1002/pros.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/29/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Castrate resistant prostate cancer (CRPC) accounts for almost all prostate cancer (PCa) deaths. Aberrant activation of ERK/MEK and PI3K/AKT signaling pathways plays an important role in subsets of patients with CRPC. The role of protocadherin 7 (PCDH7) in modulating these signaling pathways is investigated for the first time in PCa in the present investigation. METHODS PCDH7 expression was analyzed in CRPC/neuroendocrine prostate cancer (NEPC) dataset. Protein expression was assessed by Western blotting and immunohistochemistry, and messenger RNA (mRNA) by quantitative real-time polymerase chain reaction. Small hairpin ribonucleic acid was used to knockdown PCDH7. Colony formation, cell migration, and invasion studies were done using standard protocols. RESULTS PCDH7 amplification/mRNA upregulation was observed in 41% of patients in CRPC/NEPC dataset. PCDH7 was also overexpressed in CRPC cells. Increased PCDH protein expression was observed during tumor progression in PCa tissues and in TRAMP mice. Epidermal growth factor treatment resulted in aberrant activation of ERK/AKT. Knockdown of PCDH7 decreased ERK, AKT, and RB phosphorylation and reduced colony formation, decreased cell invasion, and cell migration. CONCLUSIONS These data show for the first time that PCDH7 is overexpressed in a large number of patients with CRPC and suggest that PCDH7 may be an attractive target in subsets of patients with CRPC for whom there is no cure to-date.
Collapse
Affiliation(s)
- Gauri Shishodia
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
| | - Sweaty Koul
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Department of Urology, LSU Health Sciences Center, Shreveport, Louisiana
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Overton Brooks Veterans Administrative Medical Center, Shreveport, Louisiana
| |
Collapse
|
34
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21. Exp Mol Pathol 2019; 110:104285. [DOI: 10.1016/j.yexmp.2019.104285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 11/19/2022]
|
36
|
Distribution of SET/I2PP2A protein in gastrointestinal tissues. PLoS One 2019; 14:e0222845. [PMID: 31557212 PMCID: PMC6762106 DOI: 10.1371/journal.pone.0222845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
SET (also called I2PP2A and TIF-1) is a multi-functional protein that regulates a variety of cell signaling including nucleosome assembly, histone binding, and tumorigenesis. Elevated SET protein levels are observed in various human tumors, and are correlated with poor prognosis and drug-resistance. We recently reported that SET protein levels in cancer cells were positively correlated with poor prognosis of gastric cancer patients. Using immunohistochemistry, SET protein was observed not only in cancer cells, but also in some interstitial cells. However, the tissue distribution of SET has not been investigated. Here we performed co-immunofluorescent staining to characterize SET protein distribution in gastrointestinal tissues. We found that even though the positive rate is much lower than epithelial cells, SET protein is also expressed in non-epithelial cells, such as monocytes/macrophages, neural cells, myofibroblasts, and smooth muscle cells. Our results indicate an extensive role of SET in a variety of cell types.
Collapse
|
37
|
Liu Y, Jia Y, Fu X, He P. TAF-Iβ deficiency inhibits proliferation and promotes apoptosis by rescuing PP2A and inhibiting the AKT/GSK-3β pathway in leukemic cells. Exp Ther Med 2019; 18:3801-3808. [PMID: 31611934 PMCID: PMC6781801 DOI: 10.3892/etm.2019.8012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Template-activating factor Iβ (TAF-Iβ) has been associated with numerous pathophysiological processes and has been reported as an oncogene responsible for the regulation of important signaling pathways in various types of solid tumor; however, few studies have investigated the role of TAF-Iβ in leukemia. The present study reported the upregulated expression of TAF-Iβ in 36 patients with acute leukemia and six leukemic cell lines. In addition, TAF-Iβ-knockdown (KD) cells were generated via RNA interference. TAF-Iβ KD not only inhibited the proliferation of leukemia cells but also induced apoptosis. Furthermore, it was revealed that the mechanism underlying these effects may be associated with the upregulation of protein phosphatase type 2A and inhibition of the protein kinase B/glycogen synthase kinase-3β signaling pathway. Collectively, the findings demonstrated that TAF-Iβ serves an important role in various types of leukemia and may be considered as a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Yao S, Li L, Sun X, Hua J, Zhang K, Hao L, Liu L, Shi D, Zhou H. FTY720 Inhibits MPP +-Induced Microglial Activation by Affecting NLRP3 Inflammasome Activation. J Neuroimmune Pharmacol 2019; 14:478-492. [PMID: 31069623 DOI: 10.1007/s11481-019-09843-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons and excessive microglial activation in the substantia nigra pars compacta (SNpc). In the present study, we aimed to demonstrate the therapeutic effectiveness of the potent sphingosine-1-phosphate receptor antagonist fingolimod (FTY720) in an animal model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and to identify the potential mechanisms underlying these therapeutic effects. C57BL/6J mice were orally administered FTY720 before subcutaneous injection of MPTP. Open-field and rotarod tests were performed to determine the therapeutic effect of FTY720. The damage to dopaminergic neurons and the production of monoamine neurotransmitters were assessed using immunohistochemistry, high-performance liquid chromatography, and flow cytometry. Immunofluorescence (CD68- positive) and enzyme-linked immunosorbent assay were used to analyze the activation of microglia, and the levels of activated signaling molecules were measured using Western blotting. Our findings indicated that FTY720 significantly attenuated MPTP-induced behavioral deficits, reduced the loss of dopaminergic neurons, and increased dopamine release. FTY720 directly inhibited MPTP-induced microglial activation in the SNpc, suppressed the production of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α in BV-2 microglial cells treated with 1-methyl-4-phenylpyridinium (MPP+), and subsequently decreased apoptosis in SH-SY5Y neuroblastoma cells. Moreover, in MPP+-treated BV-2 cells and primary microglia, FTY720 treatment significantly attenuated the increases in the phosphorylation of PI3K/AKT/GSK-3β, reduced ROS generation and p65 activation, and also inhibited the activation of NLRP3 inflammasome and caspase-1. In conclusion, FTY720 may reduce PD progression by inhibiting NLRP3 inflammasome activation via its effects on ROS generation and p65 activation in microglia. These findings provide novel insights into the mechanisms underlying the therapeutic effects of FTY720, suggesting its potential as a novel therapeutic strategy against PD. Graphical Abstract FTY720 may reduce ROS production by inhibiting the PI3K/AKT/GSK-3β signaling pathway, while at the same time reducing p65 phosphorylation, thus decreasing NLRP3 inflammasome activation through these two pathways, ultimately reducing microglia activation-induced neuronal damage.
Collapse
Affiliation(s)
- Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Longjun Li
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Xin Sun
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Jun Hua
- Department of Clinical Pharmacy, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Keqi Zhang
- Institute of Microscope Science and Technology, Ningbo Yongxin Optics Co. Ltd., 385 Mingzhu Road, Hi-tech Industry Park, Ningbo, 315040, China
| | - Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
39
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
40
|
Deregulation of SET is Associated with Tumor Progression and Predicts Adverse Outcome in Patients with Early-Stage Colorectal Cancer. J Clin Med 2019; 8:jcm8030346. [PMID: 30871013 PMCID: PMC6463201 DOI: 10.3390/jcm8030346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
SET nuclear proto-oncogene (SET) deregulation is a novel molecular target in metastatic colorectal cancer (CRC). However, its role in CRC progression and its potential clinical impact in early-stage CRC patients remain unknown. Here, we studied the biological effects of SET on migration using wound-healing and transwell assays, and anchorage-independent cell growth using soft agar colony formation assays after ectopic SET modulation. SET was analyzed by immuno-staining in 231 early-stage CRC patients, and miR-199b expression was quantified by real-time PCR in a set of CRC patients. Interestingly, SET enhances cell migration, markedly affects the colony-forming ability, promotes epithelial to mesenchymal transition, and induces the expression of the MYC proto-oncogene (c-MYC) in CRC cells. SET overexpression was detected in 15.4% of cases and was associated with worse Eastern Cooperative Oncology Group (ECOG) status (p = 0.021) and relapse in stage-II CRC patients (p = 0.008). Moreover, SET overexpression predicted shorter overall survival (p < 0.001) and time to metastasis (p < 0.001), and its prognostic value was particularly evident in elderly patients. MiR-199b downregulation was identified as a molecular mechanism to deregulate SET in patients with localized disease. In conclusion, SET overexpression is a common alteration in early-stage CRC, playing an oncogenic role associated with progression and aggressiveness, and portends a poor outcome. Thus, SET emerges as a novel potential molecular target with clinical impact in early-stage in CRC.
Collapse
|
41
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
42
|
Liu P, Xiang Y, Liu X, Zhang T, Yang R, Chen S, Xu L, Yu Q, Zhao H, Zhang L, Liu Y, Si Y. Cucurbitacin B Induces the Lysosomal Degradation of EGFR and Suppresses the CIP2A/PP2A/Akt Signaling Axis in Gefitinib-Resistant Non-Small Cell Lung Cancer. Molecules 2019; 24:molecules24030647. [PMID: 30759826 PMCID: PMC6384961 DOI: 10.3390/molecules24030647] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation are initially sensitive to EGFR-tyrosine kinase inhibitors (TKIs) treatment, but soon develop an acquired resistance. The treatment effect of EGFR-TKIs-resistant NSCLC patients still faces challenges. Cucurbitacin B (CuB), a triterpene hydrocarbon compound isolated from plants of various families and genera, elicits anticancer effects in a variety of cancer types. However, whether CuB is a viable treatment option for gefitinib-resistant (GR) NSCLC remains unclear. Here, we investigated the anticancer effects and underlying mechanisms of CuB. We report that CuB inhibited the growth and invasion of GR NSCLC cells and induced apoptosis. The inhibitory effect of CuB occurred through its promotion of the lysosomal degradation of EGFR and the downregulation of the cancerous inhibitor of protein phosphatase 2A/protein phosphatase 2A/Akt (CIP2A/PP2A/Akt) signaling axis. CuB and cisplatin synergistically inhibited tumor growth. A xenograft tumor model indicated that CuB inhibited tumor growth in vivo. Immunohistochemistry results further demonstrated that CuB decreased EGFR and CIP2A levels in vivo. These findings suggested that CuB could suppress the growth and invasion of GR NSCLC cells by inducing the lysosomal degradation of EGFR and by downregulating the CIP2A/PP2A/Akt signaling axis. Thus, CuB may be a new drug candidate for the treatment of GR NSCLC.
Collapse
Affiliation(s)
- Pengfei Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Yuchen Xiang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Rui Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Sen Chen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Li Xu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| | - Huzi Zhao
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China.
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
43
|
Targeting SET to restore PP2A activity disrupts an oncogenic CIP2A-feedforward loop and impairs triple negative breast cancer progression. EBioMedicine 2019; 40:263-275. [PMID: 30651219 PMCID: PMC6412013 DOI: 10.1016/j.ebiom.2018.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) remains difficult to be targeted. SET and cancerous inhibitor of protein phosphatase 2A (CIP2A) are intrinsic protein-interacting inhibitors of protein phosphatase 2A (PP2A) and frequently overexpressed in cancers, whereas reactivating PP2A activity has been postulated as an anti-cancer strategy. Here we explored this strategy in TNBC. Methods Data from The Cancer Genome Atlas (TCGA) database was analyzed. TNBC cell lines were used for in vitro studies. Cell viability was examined by MTT assay. The apoptotic cells were examined by flow cytometry and Western blot. A SET-PP2A protein-protein interaction antagonist TD19 was used to disrupt signal transduction. In vivo efficacy of TD19 was tested in MDA-MB-468-xenografted animal model. Findings TCGA data revealed upregulation of SET and CIP2A and positive correlation of these two gene expressions in TNBC tumors. Ectopic SET or CIP2A increased cell viability, migration, and invasion of TNBC cells. Notably ERK inhibition increased PP2A activity. ERK activation is known crucial for Elk-1 activity, a transcriptional factor regulating CIP2A expression, we hypothesized an oncogenic feedforward loop consisting of pERK/pElk-1/CIP2A/PP2A. This loop was validated by knockdown of PP2A and ectopic expression of Elk-1, showing reciprocal changes in loop members. In addition, ectopic expression of SET increased pAkt, pERK, pElk-1 and CIP2A expressions, suggesting a positive linkage between SET and CIP2A signaling. Moreover, TD19 disrupted this CIP2A-feedforward loop by restoring PP2A activity, demonstrating in vitro and in vivo anti-cancer activity. Mechanistically, TD19 downregulated CIP2A mRNA via inhibiting pERK-mediated Elk-1 nuclear translocation thereby decreased Elk-1 binding to the CIP2A promoter. Interpretation These findings suggested that a novel oncogenic CIP2A-feedforward loop contributes to TNBC progression and targeting SET to disrupt this oncogenic CIP2A loop showed therapeutic potential in TNBC.
Collapse
|
44
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
45
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
46
|
Fujiki H, Sueoka E, Watanabe T, Suganuma M. The concept of the okadaic acid class of tumor promoters is revived in endogenous protein inhibitors of protein phosphatase 2A, SET and CIP2A, in human cancers. J Cancer Res Clin Oncol 2018; 144:2339-2349. [PMID: 30341686 PMCID: PMC6244643 DOI: 10.1007/s00432-018-2765-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE The okadaic acid class of tumor promoters, which are inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A), induced tumor promotion in mouse skin, rat glandular stomach, and rat liver. Endogenous protein inhibitors of PP2A, SET and CIP2A, were up-regulated in various human cancers, so it is vital to review the essential mechanisms of tumor promotion by the okadaic acid class compounds, together with cancer progression by SET and CIP2A in humans. RESULTS AND DISCUSSION The first part of this review introduces the okadaic acid class compounds and the mechanism of tumor promotion: (1) inhibition of PP1 and PP2A activities of the okadaic acid class compounds; (2) some topics of tumor promotion; (3) TNF-α gene expression as a central mediator in tumor promotion; (4) exposure to the okadaic acid class of tumor promoters in relation to human cancer. The second part emphasizes the overexpression of SET and CIP2A in cancer progression, and the anticancer activity of SET antagonists as follows: (5) isolation and characterization of SET; (6) isolation and characterization of CIP2A; (7) progression of leukemia with SET; (8) progression of breast cancer with SET and CIP2A; (9) progression of lung cancer with SET; (10) anti-carcinogenic effects of SET antagonists OP449 and FTY720; and also (11) TNF-α-inducing protein of Helicobacter pylori, which is a clinical example of the okadaic acid pathway. CONCLUSIONS The overexpression of endogenous protein inhibitors of PP2A, SET and CIP2A, is tightly linked to the progression of various human cancers, as well as Alzheimer's disease.
Collapse
Affiliation(s)
- Hirota Fujiki
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Eisaburo Sueoka
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Tatsuro Watanabe
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| |
Collapse
|
47
|
Brander DM, Friedman DR, Volkheimer AD, Christensen DJ, Rassenti LZ, Kipps TJ, Guadalupe E, Chen Y, Zhang D, Wang X, Davis C, Owzar K, Weinberg JB. SET alpha and SET beta mRNA isoforms in chronic lymphocytic leukaemia. Br J Haematol 2018; 184:605-615. [PMID: 30443898 DOI: 10.1111/bjh.15677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
Alteration in RNA splicing is implicated in carcinogenesis and progression. Mutations in spliceosome genes and alternative splicing of other genes have been noted in chronic lymphocytic leukaemia (CLL), a common B cell malignancy with heterogeneous outcomes. We previously demonstrated that differences in the amount of SET oncoprotein (a physiological inhibitor of the serine/threonine phosphatase, PP2A) is associated with clinical aggressiveness in patients with CLL. It is unknown if alternative splicing of gene transcripts regulating kinases and phosphatases affects disease pathobiology and CLL progression. We show here for the first time that mRNA levels of the alternatively spliced SET isoforms, SETA and SETB (SETα and SETβ), significantly correlate with disease severity (overall survival and time-to-first-treatment) in CLL patients. In addition, we demonstrate that relative increase of SETA to SETB mRNA can discriminate patients with a more aggressive disease course within the otherwise favourable CLL risk classifications of IGHV mutated and favourable hierarchical fluorescence in situ hybridisation groups. We validate our finding by showing comparable relationships of SET mRNA with disease outcomes using samples from an independent CLL cohort from a separate institution. These findings indicate that alternative splicing of SET, and potentially other signalling cascade molecules, influences CLL biology and patient outcomes.
Collapse
Affiliation(s)
- Danielle M Brander
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - Daphne R Friedman
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA.,Durham VA Medical Center, Durham, NC, USA
| | | | | | - Laura Z Rassenti
- University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | - Thomas J Kipps
- University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | | | - Youwei Chen
- Duke University Medical Center, Durham, NC, USA
| | - Dadong Zhang
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - Xi Wang
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | | | - Kouros Owzar
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA
| | - J Brice Weinberg
- Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Durham, NC, USA.,Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
48
|
Huang CY, Hung MH, Shih CT, Hsieh FS, Kuo CW, Tsai MH, Chang SS, Hsiao YJ, Chen LJ, Chao TI, Chen KF. Antagonizing SET Augments the Effects of Radiation Therapy in Hepatocellular Carcinoma through Reactivation of PP2A-Mediated Akt Downregulation. J Pharmacol Exp Ther 2018; 366:410-421. [PMID: 29914877 DOI: 10.1124/jpet.118.249102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that SET functions as an oncoprotein and promotes cancer survival and therapeutic resistance. However, whether SET affects radiation therapy (RT)-mediated anticancer effects has not yet been explored. We investigated the impact of SET on RT sensitivity in hepatocellular carcinoma (HCC). Using colony and hepatosphere formation assays, we found that RT-induced proliferative inhibition was critically associated with SET expression. We next tested a novel SET antagonist, N4-(3-ethynylphenyl)-6,7-dimethoxy-N2-(4-phenoxyphenyl) quinazoline-2,4-diamine (EMQA), in combination with RT. We showed that additive use of EMQA significantly enhanced the effects of RT against HCC in vitro and in vivo. Notably, compared with mice receiving either RT or EMQA alone, the growth of PLC5 xenografted tumor in mice receiving RT plus EMQA was significantly reduced without compromising treatment tolerability. Furthermore, we proved that antagonizing SET to restore protein phosphatase 2A-mediated phospho-Akt (p-AKT) downregulation was responsible for the synergism between EMQA and RT. Our data demonstrate a new oncogenic property of SET and provide preclinical evidence that combining a SET antagonist and RT may be effective for treatment of HCC. Further investigation is warranted to validate the clinical relevance of this approach.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Man-Hsin Hung
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Chi-Ting Shih
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Feng-Shu Hsieh
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Chiung-Wen Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Ming-Hsien Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Shih-Shin Chang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Yung-Jen Hsiao
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Li-Ju Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Tzu-I Chao
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Kuen-Feng Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| |
Collapse
|
49
|
SET Overexpression is Associated with Worse Recurrence-Free Survival in Patients with Primary Breast Cancer Receiving Adjuvant Tamoxifen Treatment. J Clin Med 2018; 7:jcm7090245. [PMID: 30154367 PMCID: PMC6162815 DOI: 10.3390/jcm7090245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Adjuvant tamoxifen reduces the recurrence rate of estrogen receptor (ER)-positive breast cancer. Previous in vitro studies have suggested that tamoxifen can affect the cancerous inhibitor of protein phosphatase 2A (CIP2A)/protein phosphatase 2A (PP2A)/phosphorylation Akt (pAkt) signaling in ER-negative breast cancer cells. In addition to CIP2A, SET nuclear proto-oncogene (SET) oncoprotein is another intrinsic inhibitor of PP2A, participating in cancer progression. In the current study, we explored the clinical significance of SET, CIP2A, PP2A, and Akt in patients with ER-positive breast cancer receiving adjuvant tamoxifen. A total of 218 primary breast cancer patients receiving adjuvant tamoxifen with a median follow-up of 106 months were analyzed, of which 17 (7.8%) experienced recurrence or metastasis. In an immunohistochemical (IHC) stain, SET overexpression was independently associated with worse recurrence-free survival (RFS) (hazard ratio = 3.72, 95% confidence interval 1.26–10.94, p = 0.017). In silico analysis revealed mRNA expressions of SET, PPP2CA, and AKT1 significantly correlated with worse RFS. In vitro, SET overexpression reduced tamoxifen-induced antitumor effects and drove luciferase activity in an Estrogen receptor element (ERE)-dependent manner. In conclusion, SET is a prognostic biomarker in patients with primary ER-positive breast cancer receiving adjuvant tamoxifen and may contribute to the failure of the tamoxifen treatment by modulating the ER signaling. Our study warrants further investigation into the potential role of SET in ER-positive breast cancer.
Collapse
|
50
|
Comment on 'MicroRNA-199b-5p attenuates TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma'. Br J Cancer 2018; 118:1028-1029. [PMID: 29551773 PMCID: PMC5931086 DOI: 10.1038/s41416-018-0013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 11/08/2022] Open
|