1
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
2
|
Lu P, Tsang T, Badowski MS, Pennington ME, Meade‐Tollin LC. Evaluation of the Clinical Safety of the Low-Cost Warburg Therapy for the Treatment of Patients With Advanced Cancers. Cancer Med 2024; 13:e70469. [PMID: 39629677 PMCID: PMC11615646 DOI: 10.1002/cam4.70469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Rising cancer care costs are becoming cost prohibitive for lower income people worldwide. We developed the Warburg protocol as a low-cost option for the treatment of cancer that was inspired. It was developed to exploit an Achilles heel which is a hallmark of cancer cells; the metabolic requirement for higher levels of glucose than normal cells. OBJECTIVE The purpose of this report is to assess the clinical safety and affordability of the Warburg therapy as an option for patients with advanced cancers. METHODS Between 2021 and 2023, 251 patients with advanced cancers received a total of 8542 treatments with the Warburg therapy. To restrict the supply of blood glucose to cancerous tumors, regular human insulin was administered (IV) sufficient to reduce blood glucose concentrations to hypoglycemic levels for 40-60 min. Subroutine doses of fluorouracil and cyclophosphamide were administered intravenously during this hypoglycemic period. Food or intravenous glucose was given as needed to return blood glucose to euglycemic levels after treatment. Patient symptoms, status, vitals, blood glucose, and hypoglycemic symptoms were monitored throughout treatment. Various blood parameters were measured before and after patients' course of treatment. RESULTS There were no irreversible adverse reactions in advanced tumor patients of different ages and different cancer types after treatment. There was no significant fluctuation in blood glucose levels in diabetic and non-diabetic patients after treatment, and the weight, vital index and blood biochemical index of patients before and after multiple treatments exhibited little variation. CONCLUSION Warburg therapy for the treatment of advanced tumors is clinically feasible, and safe for multiple treatments. It is inexpensive and widely applicable to different patient groups.
Collapse
Affiliation(s)
- Peihua Lu
- Department of Hematology and OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
- School of MedicineJiangnan UniversityWuxiChina
| | - Tom Tsang
- American Goodwill Mission to China Inc. 501(c) (3)TucsonArizonaUSA
- Warburg MedicalChongqingChina
| | | | | | - Linda C. Meade‐Tollin
- American Goodwill Mission to China Inc. 501(c) (3)TucsonArizonaUSA
- Department of SurgeryUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
3
|
Islam MM, Sultana N, Liu C, Mao A, Katsube T, Wang B. Impact of dietary ingredients on radioprotection and radiosensitization: a comprehensive review. Ann Med 2024; 56:2396558. [PMID: 39320122 PMCID: PMC11425709 DOI: 10.1080/07853890.2024.2396558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Radiation exposure poses significant health risks, particularly in radiotherapy and nuclear accidents. Certain dietary ingredients offer potential radioprotection and radiosensitization. In this review, we explore the impact of dietary ingredients, including vitamins, minerals, antioxidants, and other bioactive compounds, on radiation sensitivity and their potential for radioprotection. Radiosensitizers reoxygenate hypoxic tumor cells, increase the radiolysis of water molecules, and regulate various molecular mechanisms to induce cytotoxicity and inhibit DNA repair in irradiated tumor cells. Several dietary ingredients, such as vitamins C, E, selenium, and phytochemicals, show promise in protecting against radiation by reducing radiation-induced oxidative stress, inflammation, and DNA damage. Radioprotectors, such as ascorbic acid, curcumin, resveratrol, and genistein, activate and modulate various signaling pathways, including Keap1-Nrf2, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), STAT3, and mitogen-activated protein kinase (MAPK), in response to radiation-induced oxidative stress, regulating inflammatory cytokine expression, and promoting DNA damage repair and cell survival. Conversely, natural dietary radiosensitizers impede these pathways by enhancing DNA damage and inducing apoptosis in irradiated tumor cells. Understanding the molecular basis of these effects may aid in the development of effective strategies for radioprotection and radiosensitization in cancer treatment. Dietary interventions have the potential to enhance the efficacy of radiation therapy and minimize the side effects associated with radiation exposure.
Collapse
Affiliation(s)
- Md Monirul Islam
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Nahida Sultana
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Chang Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Aihong Mao
- Center of Medical Molecular Biology Research, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, PR China
| | - Takanori Katsube
- Institute for Radiological Science, Quantum Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Bing Wang
- Institute for Radiological Science, Quantum Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Targeting carbohydrate metabolism in colorectal cancer - synergy between DNA-damaging agents, cannabinoids, and intermittent serum starvation. Oncoscience 2024; 11:99-105. [PMID: 39534512 PMCID: PMC11556254 DOI: 10.18632/oncoscience.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy is a therapy of choice for many cancers. However, it is often inefficient for long-term patient survival and is usually accompanied by multiple adverse effects. The adverse effects are mainly associated with toxicity to normal cells, frequently resulting in immune system depression, nausea, loss of appetite and metabolic changes. In this respect, the combination of chemotherapy with cannabinoids, especially non-psychoactive, such as cannabidiol, cannabinol and other minor cannabinoids, as well as terpenes, may become very useful. This is especially pertinent because the mechanisms of anticancer effects of cannabinoids on cancer cells are often different from conventional chemotherapeutics. In addition, cannabinoids help alleviate chemotherapy-induced adverse effects, regulate sleep and appetite, and are shown to have analgesic properties. Another component for achieving potential anti-cancer synergism is regulating nutrient availability and metabolism by calorie restriction and intermittent fasting in cancer cells. As tumours require a lot of energy to grow and because glucose is constantly available, malignant cells often opt to use glucose as a primary source of ATP production through substrate-level phosphorylation (fermentation) rather than through oxidative phosphorylation. Thus, periodic depletion of cancer cells of primary fuel, glucose, could result in a strong synergy in killing cancer cells by chemo- and possibly radiotherapy when combined with cannabinoids. This commentary will discuss what is known about such combinatorial treatments, including potential mechanisms and future protocols.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
5
|
Chen K, Li T, Diao H, Wang Q, Zhou X, Huang Z, Wang M, Mao Z, Yang Y, Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett 2024; 598:217109. [PMID: 39002692 DOI: 10.1016/j.canlet.2024.217109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Tiane Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Honglin Diao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Qikai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojia Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zhihua Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Mingyue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Wenhua Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Ennouri S, Daoud N, Berrazegua Y, El Benna H, Korbi S, Rachdi H, Mejri N, Labidi S, Boussen H. VARIATIONS IN DIETARY HABITS DURING CANCER TREATMENT: RESULTS OF A CROSS-SECTIONAL SURVEY. Acta Clin Croat 2024; 63:80-88. [PMID: 39959318 PMCID: PMC11827403 DOI: 10.20471/acc.2024.63.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/26/2021] [Indexed: 02/18/2025] Open
Abstract
We aimed to explore variations in dietary habits in cancer patients according to clinical and demographic characteristics. We conducted a cross-sectional survey on cancer patients treated with systemic therapy. The survey included 42 items concerning demographic and clinical data, observed dietary modifications and oncologist implication. All patients gave their informed consent to participate in the study. Statistical Package for Social Sciences for Windows software version 20 was used on statistical analysis. The study involved 110 patients (female 71.8% and male 28.2%), mean age 53.4 years. They were treated mostly for breast cancer (58.2%). Patients reduced or stopped taking canned products (70%), milk (59.1%), red meat (80%), processed meat (76.4%), fatty food (88%) and sugar (83.6%). Conversely, preferred food were fish (73.6%), fruits and vegetables (95.5%), and honey (54.5%). Weight loss of 5 kg or more was higher among patients on a sugar restrictive diet (p=0.026). Thirty-five patients discussed diet with their oncologist. Patients received information on diet from the internet and other patients. Our findings suggested that patients were aware of the role of a balanced diet and made many changes. However, most of the patient information was derived from informal sources.
Collapse
Affiliation(s)
- Sana Ennouri
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Nouha Daoud
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Yosra Berrazegua
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Houda El Benna
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Sinene Korbi
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Haifa Rachdi
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Nesrine Mejri
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Soumaya Labidi
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| | - Hammouda Boussen
- Medical Oncology Department SOMA, Abderrahmen Mami Hospital, Ariana, Tunisia; Faculty of Medicine of Tunis, Tunis El Manar University, Tunis
| |
Collapse
|
8
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
11
|
Buono R, Tucci J, Cutri R, Guidi N, Mangul S, Raucci F, Pellegrini M, Mittelman SD, Longo VD. Fasting-Mimicking Diet Inhibits Autophagy and Synergizes with Chemotherapy to Promote T-Cell-Dependent Leukemia-Free Survival. Cancers (Basel) 2023; 15:5870. [PMID: 38136414 PMCID: PMC10741737 DOI: 10.3390/cancers15245870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jonathan Tucci
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Raffaello Cutri
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Novella Guidi
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Serghei Mangul
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Franca Raucci
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 801 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Steven D. Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Division of Pediatric Endocrinology, UCLA Mattel Children’s Hospital, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095, USA
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
McKenzie ND, Ahmad S, Awada A, Kuhn TM, Recio FO, Holloway RW. Prognostic features of the tumor microenvironment in high-grade serous ovarian cancer and dietary immunomodulation. Life Sci 2023; 333:122178. [PMID: 37839778 DOI: 10.1016/j.lfs.2023.122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is a particularly lethal malignancy that is prognostically influenced by the immune profile of the tumor microenvironment (TME). TME immune profiles have been sub-categorized according to features associated with both survival outcomes as well as response to systemic therapies. Five suggested immune phenotypes have been described and correlated with overall survival outcomes. Phenotypes associated with shorter overall survival rates appear to have prominent immunosuppressive features within their TME. The opportunity to triage patients according to their prognostic TME profile might allow selection of individual patients with poor prognostic features who could most benefit from innovative immunomodulatory treatment strategies. Two potential strategies to indirectly manipulate the TME (and oncologic outcomes) are alteration of the gut microbiome composition and alteration of TME metabolism through dietary interventions. Experimental dietary modifications in humans designed for influencing cancer outcomes are only beginning to be studied in a prospective fashion. Herein we summarize prognostic TME features in HGSOC and potential opportunities for immunomodulation via dietary and gut microbial interventions.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA.
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA.
| | - Ahmad Awada
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA
| | - Theresa M Kuhn
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA
| | - Fernando O Recio
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA
| | - Robert W Holloway
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA
| |
Collapse
|
13
|
Thompson S, Madsen LT, Bazzell A. Impact of Fasting on Patients With Cancer: An Integrative Review. J Adv Pract Oncol 2023; 14:608-619. [PMID: 38196666 PMCID: PMC10715290 DOI: 10.6004/jadpro.2023.14.7.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background Patients with cancer often pursue nutrition as an avenue to positively impact their care management and disease outcomes. Nutritional interventions are increasing in popularity, especially intermittent fasting as an adjunct to chemotherapy. However, limited research is available on the impact of intermittent fasting on patients with cancer. Methods A comprehensive literature search was conducted using Ovid MEDLINE, Ovid EMBASE, and CINAHL databases. Results 514 articles were identified from the three databases. Seven studies remained after applying inclusion and exclusion criteria. The seven studies included in this review examined fasting compliance, malnutrition, therapy side effects, endocrine parameters, quality of life measures, and cancer outcomes. Data suggest overall good compliance, no malnutrition, minimal side effects, a trend toward improved endocrine parameters, unchanged quality of life (QOL), and mixed results for cancer outcomes. Conclusion Intermittent fasting as an adjunct to chemotherapy in normal-weight patients with cancer has potential as a safe, tolerable, and feasible nutritional intervention that could positively impact treatment outcomes and QOL. Large-scale randomized controlled trials are needed to validate these findings and determine what future role intermittent fasting may play in cancer management.
Collapse
Affiliation(s)
- Samantha Thompson
- From Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lydia T Madsen
- From Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Bazzell
- From Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Skaraitė I, Maccioni E, Petrikaitė V. Anticancer Activity of Sunitinib Analogues in Human Pancreatic Cancer Cell Cultures under Normoxia and Hypoxia. Int J Mol Sci 2023; 24:ijms24065422. [PMID: 36982496 PMCID: PMC10049421 DOI: 10.3390/ijms24065422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic cancer remains one of the deadliest cancer types. It is usually characterized by high resistance to chemotherapy. However, cancer-targeted drugs, such as sunitinib, recently have shown beneficial effects in pancreatic in vitro and in vivo models. Therefore, we chose to study a series of sunitinib derivatives developed by us, that were proven to be promising compounds for cancer treatment. The aim of our research was to evaluate the anticancer activity of sunitinib derivatives in human pancreatic cancer cell lines MIA PaCa-2 and PANC-1 under normoxia and hypoxia. The effect on cell viability was determined by the MTT assay. The compound effect on cell colony formation and growth was established by clonogenic assay and the activity on cell migration was estimated using a ‘wound healing’ assay. Six out of 17 tested compounds at 1 µM after 72 h of incubation reduced cell viability by 90% and were more active than sunitinib. Compounds for more detailed experiments were chosen based on their activity and selectivity towards cancer cells compared to fibroblasts. The most promising compound EMAC4001 was 24 and 35 times more active than sunitinib against MIA PaCa-2 cells, and 36 to 47 times more active against the PANC-1 cell line in normoxia and hypoxia. It also inhibited MIA PaCa-2 and PANC-1 cell colony formation. Four tested compounds inhibited MIA PaCa-2 and PANC-1 cell migration under hypoxia, but none was more active than sunitinib. In conclusion, sunitinib derivatives possess anticancer activity in human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cell lines, and they are promising for further research.
Collapse
Affiliation(s)
- Ieva Skaraitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-68629383
| |
Collapse
|
16
|
Blaževitš O, Di Tano M, Longo VD. Fasting and fasting mimicking diets in cancer prevention and therapy. Trends Cancer 2023; 9:212-222. [PMID: 36646607 DOI: 10.1016/j.trecan.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Fasting mimicking diets (FMDs) are emerging as effective dietary interventions with the potential to improve healthspan and decrease the incidence of cancer and other age-related diseases. Unlike chronic dietary restrictions or water-only fasting, FMDs represent safer and less challenging options for cancer patients. FMD cycles increase protection in healthy cells while sensitizing cancer cells to various therapies, partly by generating complex environments that promote differential stress resistance (DSR) and differential stress sensitization (DSS), respectively. More recent data indicate that FMD cycles enhance the efficacy of a range of drugs targeting different cancers in mice by stimulating antitumor immunity. Here, we report on the effects of FMD cycles on cancer prevention and treatment and the mechanisms implicated in these effects.
Collapse
Affiliation(s)
- Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Liu X, Peng S, Tang G, Xu G, Xie Y, Shen D, Zhu M, Huang Y, Wang X, Yu H, Huang M, Luo Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine 2023; 90:104496. [PMID: 36863257 PMCID: PMC9996234 DOI: 10.1016/j.ebiom.2023.104496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND More than ten randomized clinical trials are being tested to evaluate the efficacy, effectiveness and safety of a fasting-mimicking diet (FMD) combined with different antitumor agents. METHODS UMI-mRNA sequencing, Cell-cycle analysis, Label retention, metabolomics, Multilabeling et al. were used to explore mechanisms. A tandem mRFP-GFP-tagged LC3B, Annexin-V-FITC Apoptosis, TUNEL, H&E, Ki-67 and animal model was used to search for synergistic drugs. FINDINGS Here we showed that fasting or FMD retards tumor growth more effectively but does not increase 5-fluorouracil/oxaliplatin (5-FU/OXA) sensitivity to apoptosis in vitro and in vivo. Mechanistically, we demonstrated that CRC cells would switch from an active proliferative to a slow-cycling state during fasting. Furthermore, metabolomics shows cell proliferation was decreased to survive nutrient stress in vivo, as evidenced by a low level of adenosine and deoxyadenosine monophosphate. CRC cells would decrease proliferation to achieve increased survival and relapse after chemotherapy. In addition, these fasting-induced quiescent cells were more prone to develop drug-tolerant persister (DTP) tumor cells postulated to be responsible for cancer relapse and metastasis. Then, UMI-mRNA sequencing uncovered the ferroptosis pathway as the pathway most influenced by fasting. Combining fasting with ferroptosis inducer treatment leads to tumor inhibition and eradication of quiescent cells by boosting autophagy. INTERPRETATION Our results suggest that ferroptosis could improve the antitumor activity of FMD + chemotherapy and highlight a potential therapeutic opportunity to avoid DTP cells-driven tumor relapse and therapy failure. FUNDING A full list of funding bodies can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| | - Shaoyong Peng
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guannan Tang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Gaopo Xu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yumo Xie
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Dingcheng Shen
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Mingxuan Zhu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yaoyi Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Huichuan Yu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
18
|
Ruze R, Chen Y, Xu R, Song J, Yin X, Wang C, Xu Q. Obesity, diabetes mellitus, and pancreatic carcinogenesis: Correlations, prevention, and diagnostic implications. Biochim Biophys Acta Rev Cancer 2023; 1878:188844. [PMID: 36464199 DOI: 10.1016/j.bbcan.2022.188844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The prevalence of obesity, diabetes mellitus (DM), and pancreatic cancer (PC) has been consistently increasing in the last two decades worldwide. Sharing various influential risk factors in genetics and environmental inducers in pathogenesis, the close correlations of these three diseases have been demonstrated in plenty of clinical studies using multiple parameters among different populations. On the contrary, most measures aimed to manage and treat obesity and DM effectively reduce the risk and prevent PC occurrence, yet certain drugs can inversely promote pancreatic carcinogenesis instead. Most importantly, an elevation of blood glucose with or without a reduction in body weight, along with other potential tools, may provide valuable clues for detecting PC at an early stage in patients with obesity and DM, favoring a timely intervention and prolonging survival. Herein, the epidemiological and etiological correlations among these three diseases and the supporting clinical evidence of their connections are first summarized to favor a better and more thorough understanding of obesity- and DM-related pancreatic carcinogenesis. After comparing the distinct impacts of different weight-lowering and anti-diabetic treatments on the risk of PC, the possible diagnostic implications of hyperglycemia and weight loss in PC screening are also addressed in detail.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| |
Collapse
|
19
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Zalyte E, Cicenas J. Starvation mediates pancreatic cancer cell sensitivity to ferroptosis via ERK1/2, JNK and changes in the cell mesenchymal state. Int J Mol Med 2022; 49:84. [PMID: 35514314 PMCID: PMC9106375 DOI: 10.3892/ijmm.2022.5140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a highly metastatic and therapy‑resistant disease. In the present study, the prospects of a novel approach to kill pancreatic cancer cells were examined: Starvation combined with ferroptosis induction. Established pancreatic cancer cell lines (Miapaca2, Panc‑1, Su.86.86 and T3M4), as well as a unique cell line, Capan‑26, which was originally derived in the authors' laboratory, were used. Cells were deprived from growth factors, amino acids and pseudo‑starved using treatment with mTOR inhibitors; erastin was used to induce ferroptosis. Cell viability and lipid peroxidation measurements using flow cytometry revealed that the starved pancreatic cancer cells reacted differently to ferroptosis induction: The Panc‑1, Su.86.86 and T3M4 cells gained sensitivity, while the Miapaca2 cells acquired resistance. Fluorescence microscopy revealed that ERK1/2 translocated to the nucleus of the starved pancreatic cancer cells. Moreover, ERK1/2 pharmacological inhibition with SCH772984 prevented erastin‑induced ferroptosis in the starved Panc‑1, Su.86.86 and T3M4 cells. Confocal microscopy also indicated JNK activation. However, the inhibition of this kinase revealed its unexpected role in oxidative stress management: Treatment with the JNK inhibitor, SP600125, increased the viability of pseudo‑starved cells following erastin treatment. In addition, the FBS‑starved Miapaca2 and Capan‑26 cells transitioned between epithelial and mesenchymal cell states. The results were further confirmed using wound healing assays, western blot analysis and microscopic analysis of epithelial‑to‑mesenchymal transition (EMT) markers. Mesenchymal properties were associated with a higher sensitivity to erastin, whereas epithelial‑like cells were more resistant. Finally, it was demonstrated that compounds targeting EMT‑related signaling pathways increased cell sensitivity to erastin. On the whole, these results confirm that in starved pancreatic cancer cells, ERK1/2 and JNK signaling, as well as switching between epithelial and mesenchymal states mediates sensitivity to erastin and reveal novel therapeutic prospects of the combination of starvation with ferroptosis induction.
Collapse
Affiliation(s)
- Egle Zalyte
- Proteomics Centre, Institute of Biochemistry, Vilnius University Life Sciences Centre, LT-10257 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University Life Sciences Centre, LT-10257 Vilnius, Lithuania
| | - Jonas Cicenas
- Proteomics Centre, Institute of Biochemistry, Vilnius University Life Sciences Centre, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, CH-3027 Bern, Switzerland
| |
Collapse
|
21
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
22
|
Proske A, Bossen J, von Frieling J, Roeder T. Low-protein diet applied as part of combination therapy or stand-alone normalizes lifespan and tumor proliferation in a model of intestinal cancer. Aging (Albany NY) 2021; 13:24017-24036. [PMID: 34766923 PMCID: PMC8610115 DOI: 10.18632/aging.203692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Tumors of the intestinal tract are among the most common tumor diseases in humans, but, like many other tumor entities, show an unsatisfactory prognosis with a need for effective therapies. To test whether nutritional interventions and a combination with a targeted therapy can effectively cure these cancers, we used the fruit fly Drosophila as a model. In this system, we induced tumors by EGFR overexpression in intestinal stem cells. Limiting the amount of protein in the diet restored life span to that of control animals. In combination with a specific EGFR inhibitor, all major tumor-associated phenotypes could be rescued. This form of treatment was also successful in a real treatment scenario, which means when they started after the full tumor phenotype was expressed. In conclusion, reduced protein administration can be a very promising form of adjuvant cancer therapy.
Collapse
Affiliation(s)
- Alina Proske
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Judith Bossen
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Jakob von Frieling
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| |
Collapse
|
23
|
[Ramadan fasting during treatment with external beam radiotherapy]. Bull Cancer 2021; 109:331-337. [PMID: 34776116 DOI: 10.1016/j.bulcan.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Many Muslim cancer patients insist on fasting during the month of Ramadan, even during treatment. The purpose of this observational study is to study the practice of fasting, in patients receiving external radiation therapy. METHODS Our study was conducted during the month of Ramadan 1441 (2018) in the radiotherapy department of Ibn Rochd University Hospital of Casablanca. We included all patients who received external radiotherapy during this period. We thus collected the characteristics of patients, disease and treatment modalities. After an interview, with a pre-established questionnaire, we were able to establish the observance of the fast. RESULTS We collected a total of 209 patients. The most frequently represented locations were breast cancer followed by gynecological cancers in 35.4% and 18.7% respectively. All our patients were fasting Ramadan before the diagnosis of cancer, however, only 39.2% were fasting during the treatment by radiotherapy, and just 40% of patients have discussed the possibility of fasting with their oncologist. In multivariate analysis, the stage of the disease was the only factor related to the fasting status of our patients. DISCUSSION Even under treatment, many of our patients fast during the month of Ramadan. Further studies are needed to evaluate the tolerance of fasting in order to better answer the question "can I fast?".
Collapse
|
24
|
|
25
|
Tang CC, Huang TC, Tien FM, Lin JM, Yeh YC, Lee CY. Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study. Nutrients 2021; 13:nu13093268. [PMID: 34579145 PMCID: PMC8471174 DOI: 10.3390/nu13093268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Short-term calorie reduction (SCR) requires individuals to reduce their calorie intake to less than 50% of normal requirements and has shown good tolerance and potential benefits in prior studies addressing gynecological cancer patients. More studies are needed to further confirm its safety, feasibility, and effects in patients with different cancers, including hematological malignancies. This pilot cohort study with a matched-pair comparison group was registered at ClinicalTrails.gov [201810112RIND]. Adult patients diagnosed with advanced-stage diffuse large-B cell lymphoma were recruited (SCR group) and matched with one comparison patient (comparison group), each in a manner blinded to their outcomes. The SCR group undertook at least two cycles of 48 h water fast along with their chemotherapy R-CHOP. Descriptive analysis and generalized estimating equations were used to analyze the data. Six participants completed multiple cycles of SCR and were compared to their six counterparts in the comparison group. The results showed that SCR is safe and feasible in terms of a high compliance rate and stable nutritional status. The SCR was associated with benefits in post-chemotherapy hematological parameters (i.e., erythrocyte [p < 0.001] and lymphocyte counts [p < 0.001]). More randomized controlled trials are needed to validate the effects of SCR on different types of cancer populations.
Collapse
Affiliation(s)
- Chia-Chun Tang
- School of Nursing, College of Medicine, National Taiwan University, Taipei 100025, Taiwan; (C.-C.T.); (Y.-C.Y.)
| | - Tai-Chung Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan; (T.-C.H.); (F.-M.T.)
| | - Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan; (T.-C.H.); (F.-M.T.)
| | - Jing-Meei Lin
- Department of Dietetics, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Chen Yeh
- School of Nursing, College of Medicine, National Taiwan University, Taipei 100025, Taiwan; (C.-C.T.); (Y.-C.Y.)
| | - Ching-Yi Lee
- Department of Nursing, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 88436)
| |
Collapse
|
26
|
Nutritional Interventions Targeting Gut Microbiota during Cancer Therapies. Microorganisms 2021; 9:microorganisms9071469. [PMID: 34361904 PMCID: PMC8303428 DOI: 10.3390/microorganisms9071469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is increasingly being recognized for its influence on intestinal and extra-intestinal disorders such as cancer. Today, diet is the most studied environmental modulator of gut microbiota, capable of altering or improving it in terms of richness and diversity. Recent evidence from several preclinical and clinical trials suggested that gut microbiota composition could modulate cancer therapies (toxicities, treatment responses) and vice versa. This review highlights the latest research on the bidirectional associations between gut microbiota and cancer. We also dissect the role of gut microbiota during cancer therapies in terms of toxicity and treatment response and, in turn, how cancer therapies could impact gut microbiota composition and functions. In this context, we summarize the state-of-the-art research regarding the role of various nutritional interventions-prebiotics, dietary strategies, and dietary restrictions-as cutting-edge possibilities to modulate gut microbiota during cancer therapies.
Collapse
|
27
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
28
|
Panebianco C, Trivieri N, Villani A, Terracciano F, Latiano TP, Potenza A, Perri F, Binda E, Pazienza V. Improving Gemcitabine Sensitivity in Pancreatic Cancer Cells by Restoring miRNA-217 Levels. Biomolecules 2021; 11:639. [PMID: 33925948 PMCID: PMC8146031 DOI: 10.3390/biom11050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Nadia Trivieri
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Fulvia Terracciano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Tiziana Pia Latiano
- Oncology Unit Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Elena Binda
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| |
Collapse
|
29
|
Fasting and fasting-mimicking diets for chemotherapy augmentation. GeroScience 2021; 43:1201-1216. [PMID: 33410090 DOI: 10.1007/s11357-020-00317-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
The increasingly older population in most developed countries will likely experience aging-related chronic diseases such as diabetes, metabolic syndrome, heart and lung diseases, osteoporosis, arthritis, dementia, and/or cancer. Genetic and environmental factors, but also lifestyle choices including physical activity and dietary habits, play essential roles in disease onset and progression. Sixty-five percent of Americans diagnosed with cancer now survive more than 5 years, making the need for informed lifestyle choices particularly important to successfully complete their treatment, increase the recovery from the cytotoxic therapy options, and improve cancer-free survival. This review will discuss the findings on the use of prolonged fasting, as well as fasting-mimicking diets to augment cancer treatment. Preclinical studies in rodents strongly support the implementation of these dietary interventions and a small number of clinical trials begin to provide encouraging results for cancer patients and cancer survivors.
Collapse
|
30
|
Deligiorgi MV, Liapi C, Trafalis DT. How Far Are We from Prescribing Fasting as Anticancer Medicine? Int J Mol Sci 2020; 21:ijms21239175. [PMID: 33271979 PMCID: PMC7730661 DOI: 10.3390/ijms21239175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the survival of normal cells, while killing cancer cells. (2) Methods: the present narrative review presents the basic aspects of the hormonal, molecular, and cellular response to fasting, focusing on the interrelationship of fasting with oxidative stress. It also presents nonclinical and clinical evidence concerning the implementation of fasting as adjuvant to chemotherapy, highlighting current challenges and future perspectives. (3) Results: there is ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy. The relevant clinical research is encouraging, albeit still in its infancy. The path forward for implementing fasting in oncology is a personalized approach, entailing counteraction of current challenges, including: (i) patient selection; (ii) fasting patterns; (iii) timeline of fasting and refeeding; (iv) validation of biomarkers for assessment of fasting; and (v) establishment of protocols for patients’ monitoring. (4) Conclusion: prescribing fasting as anticancer medicine may not be far away if large randomized clinical trials consolidate its safety and efficacy.
Collapse
|
31
|
Inhibition of pyruvate dehydrogenase kinase influence microbiota and metabolomic profile in pancreatic cancer xenograft mice. BMC Res Notes 2020; 13:540. [PMID: 33208188 PMCID: PMC7672971 DOI: 10.1186/s13104-020-05384-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Despite recent advances in treatment options, pancreatic cancer remains the most deadly major cancer. Targeting metabolism represents an emerging anti-cancer strategy. Results Metagenomic 16S analysis was employed to explore the effect of Dichloroacetate (DCA) on the composition of the fecal microbiota and metabolomic profile was assessed on in vivo pancreatic cancer mouse xenograft model. Pancreatic cancer xenograft mice displayed a shift of microbiota’ profile as compared to control mice without DCA treatment and a significant decrease of the purine bases inosine xanthine together with their metabolically-related compound hypoxanthine were observed in the DCA treated group as compared to the control group. Two aminoacids methionine and aspartic acid resulted decreased and increased respectively. DCA affects tumor environment and studies are needed in order to understand whether DCA supplementation could be supportive as synergistic approach to enhance the efficacy of existing cancer treatments in pancreatic cancer patients.
Collapse
|
32
|
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 2020; 40:1669-1681. [PMID: 33153820 DOI: 10.1016/j.clnu.2020.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Studies suggest that fasting before or during chemotherapy may induce differential stress resistance, reducing the adverse effects of chemotherapy and enhancing the efficacy of drugs. In this article, we review the effects of fasting, including intermittent, periodic, water-only short-term fasting, and caloric restriction on the responsiveness of tumor cells to cytotoxic drugs, their protective effect on normal cells, and possible mechanisms of action. METHODS We could not perform a systematic review due to the wide variation in the study population, design, dependent measures, and outcomes (eg, type of cancer, treatment variation, experimental setting, etc.). However, a systematic approach to search and review literature was used. The electronic databases PubMed (MEDLINE), Scopus, and Embase were searched up to July 2020. RESULTS Fasting potentially improves the response of tumor cells to chemotherapy by (1) repairing DNA damage in normal tissues (but not tumor cells); (2) upregulating autophagy flux as a protection against damage to organelles and some cancer cells; (3) altering apoptosis and increasing tumor cells' sensitivity to the apoptotic stimuli, and preventing apoptosis-mediated damage to normal cells; (4) depleting regulatory T cells and improving the stimulation of CD8 cells; and (5) accumulating unfolded proteins and protecting cancer cells from immune surveillance. We also discuss how 'fasting-mimicking diet' as a modified form of fasting enables patients to eat a low calorie, low protein, and low sugar diet while achieving similar metabolic outcomes of fasting. CONCLUSION This review suggests the potential benefits of fasting in combination with chemotherapy to reduce tumor progression and increase the effectiveness of chemotherapy. However, with limited human trials, it is not possible to generalize the findings from animal and in vitro studies. More human studies with adequate sample size and follow-ups are required to confirm these findings.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sepideh Rahmani
- Department of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saman Khalesi
- Physical Activity Research Group, Appleton Institute & School of Health Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Feasibility, Process, and Effects of Short-Term Calorie Reduction in Cancer Patients Receiving Chemotherapy: An Integrative Review. Nutrients 2020; 12:nu12092823. [PMID: 32942683 PMCID: PMC7551502 DOI: 10.3390/nu12092823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Recent preclinical studies have shown the potential benefits of short-term calorie reduction (SCR) on cancer treatment. In this integrative review, we aimed to identify and synthesize current evidence regarding the feasibility, process, and effects of SCR in cancer patients receiving chemotherapy. PubMed, Cumulative Index to Nursing and Allied Health Literature, Ovid Medline, PsychINFO, and Embase were searched for original research articles using various combinations of Medical Subject Heading terms. Among the 311 articles identified, seven studies met the inclusion criteria. The majority of the reviewed studies were small randomized controlled trials or cohort study with fair quality. The results suggest that SCR is safe and feasible. SCR is typically arranged around the chemotherapy, with the duration ranging from 24 to 96 h. Most studies examined the protective effects of SCR on normal cells during chemotherapy. The evidence supports that SCR had the potential to enhance both the physical and psychological wellbeing of patients during chemotherapy. SCR is a cost-effective intervention with great potential. Future well-controlled studies with sufficient sample sizes are needed to examine the full and long-term effects of SCR and its mechanism of action.
Collapse
|
34
|
Haskins CP, Champ CE, Miller R, Vyfhuis MAL. Nutrition in Cancer: Evidence and Equality. Adv Radiat Oncol 2020; 5:817-823. [PMID: 33083643 PMCID: PMC7557144 DOI: 10.1016/j.adro.2020.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Poor nutrition is highly implicated in the pathogenesis of cancer and affects the survival of patients during and after completion of definitive therapies. Mechanistic evidence accumulated over the last century now firmly places dysregulated cellular energetics within the emerging hallmarks of cancer. Nutritional intervention studies often aim to either enhance treatment effect or treat nutritional deficiencies that portend poor prognoses. Patients living within food priority areas have a high risk of nutritional need and are more likely to develop comorbidities, including diabetes, hypertension, renal disease, and cardiovascular risk factors. Unfortunately, there is currently a paucity of data analyzing the impact of food priority areas on cancer outcomes. METHODS Therefore, we performed a review of the literature focusing on the molecular and clinical interplay of cancer and nutrition, the importance of clinical trials in elucidating how to intervene in this setting and the significance of including citizens who live in food priority areas in these future prospective studies. CONCLUSIONS Given the importance of nutrition as an emerging hallmark of cancer, further research must be aimed at directing the optimal nutrition strategy throughout oncologic treatments, including the supplementation of nutritious foods to those that are otherwise unable to attain them.
Collapse
Affiliation(s)
- Christopher P Haskins
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Colin E Champ
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Robert Miller
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Melissa A L Vyfhuis
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
35
|
Duckett ME, Curran KM, Leeper HJ, Ruby CE, Bracha S. Fasting reduces the incidence of vincristine-associated adverse events in dogs. Vet Comp Oncol 2020; 19:61-68. [PMID: 33448618 PMCID: PMC7891372 DOI: 10.1111/vco.12638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Fasting has been shown to decrease chemotherapy‐associated adverse events (AEs), in part through insulin‐like growth factor (IGF‐1) reduction, and may induce a protective effect on normal cells during chemotherapy treatment in mice and people. The purpose of this study was to evaluate the effect of fasting on constitutional, bone marrow and gastrointestinal (GI) AEs, and serum glucose, IGF‐1 and insulin levels in dogs receiving vincristine. The study was a prospective, crossover clinical trial in tumour‐bearing dogs. Dogs were randomized to be fasted for 24 to 28 hours prior to and 6 hours following their first or second vincristine treatment, and fed normally for the alternate dose. A significant reduction in nausea, anorexia, lethargy and serum insulin was observed when dogs were fasted; however, no significant differences were found in other GI symptoms, neutrophil count, serum glucose or IGF‐1. Fasting prior to vincristine therapy is a safe and effective treatment modality that helped mitigate constitutional and GI AEs in tumour‐bearing dogs.
Collapse
Affiliation(s)
- Margaret E Duckett
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Carl E Ruby
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
36
|
Mota Reyes C, Yurteri Ü, Friess H, Ekin Demir I. Future directions of neoadjuvant therapy in pancreatic cancer. Oncoscience 2020; 7:44-46. [PMID: 32923514 PMCID: PMC7458337 DOI: 10.18632/oncoscience.506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Neoadjuvant therapy with conventional chemotherapies have visibly improved the prognosis of locally advanced pancreatic cancer (PCa). However, molecular targeted therapies that have provided durable responses in other tumor entities, have not yet found access into neoadjuvant therapy of PCa. In fact, due to the presence of the tumor burden serving as an antigen source for T cell priming, neoadjuvant chemotherapy may unleash a more potent antitumoral immune response than adjuvant or palliative chemotherapy.
Collapse
Affiliation(s)
- Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ümmügülsüm Yurteri
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| |
Collapse
|
37
|
Bose S, Allen AE, Locasale JW. The Molecular Link from Diet to Cancer Cell Metabolism. Mol Cell 2020; 78:1034-1044. [PMID: 32504556 PMCID: PMC7305994 DOI: 10.1016/j.molcel.2020.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Malignant cells remodel their metabolism to meet the demands of uncontrolled cell proliferation. These demands lead to differential requirements in energy, biosynthetic precursors, and signaling intermediates. Both genetic programs arising from oncogenic events and transcriptional programs and epigenomic events are important in providing the necessary metabolic network activity. Accumulating evidence has established that environmental factors play a major role in shaping cancer cell metabolism. For metabolism, diet and nutrition are the major environmental aspects and have emerged as key components in determining cancer cell metabolism. In this review, we discuss these emerging concepts in cancer metabolism and how diet and nutrition influence cancer cell metabolism.
Collapse
Affiliation(s)
- Shree Bose
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
38
|
Zhang J, Deng Y, Khoo BL. Fasting to enhance Cancer treatment in models: the next steps. J Biomed Sci 2020; 27:58. [PMID: 32370764 PMCID: PMC7201989 DOI: 10.1186/s12929-020-00651-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Short-term fasting (STF) is a technique to reduce nutrient intake for a specific period. Since metabolism plays a pivotal role in tumor progression, it can be hypothesized that STF can improve the efficacy of chemotherapy. Recent studies have demonstrated the efficacy of STF in cell and animal tumor models. However, large-scale clinical trials must be conducted to verify the safety and effectiveness of these diets. In this review, we re-examine the concept of how metabolism affects pathophysiological pathways. Next, we provided a comprehensive discussion of the specific mechanisms of STF on tumor progression, derived through studies carried out with tumor models. There are currently at least four active clinical trials on fasting and cancer treatment. Based on these studies, we highlight the potential caveats of fasting in clinical applications, including the onset of metabolic syndrome and other metabolic complications during chemotherapy, with a particular focus on the regulation of the epithelial to mesenchymal pathway and cancer heterogeneity. We further discuss the advantages and disadvantages of the current state-of-art tumor models for assessing the impact of STF on cancer treatment. Finally, we explored upcoming fasting strategies that could complement existing chemotherapy and immunotherapy strategies to enable personalized medicine. Overall, these studies have the potential for breakthroughs in cancer management.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
39
|
Krstic J, Pieber TR, Prokesch A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:231-259. [PMID: 32475475 DOI: 10.1016/bs.ircmb.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary interventions combined with cancer drugs represent a clinically valid polytherapy. In particular nutrient restriction (NR) in the form of varied fasting or caloric restriction regimens holds great clinical promise, conceptually due to the voracious anabolic appetite of cancer cells. This metabolic dependency is driven by a strong selective pressure to increasingly acquire biomass of a proliferating tumor and can be therapeutically exploited as vulnerability. A host of preclinical data suggest that NR can potentiate the efficacy of, or alleviate resistance to, cancer drugs. However, complicating clinical implementation are the many variables involved, such as host biology, cancer stage and type, oncogenic mutation landscape, tumor heterogeneity, variations in treatment modalities, and patient compliance to NR protocols. This calls for systematic preclinical screens and co-clinical studies to predict effective combinations of NR with cancer drugs and to allow for patient stratification regarding responsiveness to polytherapy. Such screen-and-stratify pipelines should consider tumor heterogeneity as well as the role of immune effectors in the tumor microenvironment and may lead to biomarker discovery advancing the oncology field toward personalized options with improved translatability to clinical settings. This opinion-based review provides a critical overview of recent literature investigating NR for cancer treatment, pinpoints limitations of current studies, and suggests standardizations and refinements for future studies and trials. The proposed measures aim to increase the translational value of preclinical data and effectively harness the vast potential of NR as adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
40
|
Maugeri A, Vinciguerra M. The Effects of Meal Timing and Frequency, Caloric Restriction, and Fasting on Cardiovascular Health: an Overview. J Lipid Atheroscler 2020; 9:140-152. [PMID: 32821727 PMCID: PMC7379067 DOI: 10.12997/jla.2020.9.1.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD), which is the leading cause of death worldwide, is strongly affected by diet. Diet can affect CVD directly by modulating the composition of vascular plaques, and indirectly by affecting the rate of aging. This review summarizes research on the relationships of fasting, meal timing, and meal frequency with CVD incidence and progression. Relevant basic research studies, epidemiological studies, and clinical studies are highlighted. In particular, we discuss both intermittent and periodic fasting interventions with the potential to prevent and treat CVD.
Collapse
Affiliation(s)
- Andrea Maugeri
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
41
|
Castejón M, Plaza A, Martinez-Romero J, Fernandez-Marcos PJ, de Cabo R, Diaz-Ruiz A. Energy Restriction and Colorectal Cancer: A Call for Additional Research. Nutrients 2020; 12:E114. [PMID: 31906264 PMCID: PMC7019819 DOI: 10.3390/nu12010114] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
: Colorectal cancer has the second highest cancer-related mortality rate, with an estimated 881,000 deaths worldwide in 2018. The urgent need to reduce the incidence and mortality rate requires innovative strategies to improve prevention, early diagnosis, prognostic biomarkers, and treatment effectiveness. Caloric restriction (CR) is known as the most robust nutritional intervention that extends lifespan and delays the progression of age-related diseases, with remarkable results for cancer protection. Other forms of energy restriction, such as periodic fasting, intermittent fasting, or fasting-mimicking diets, with or without reduction of total calorie intake, recapitulate the effects of chronic CR and confer a wide range of beneficial effects towards health and survival, including anti-cancer properties. In this review, the known molecular, cellular, and organismal effects of energy restriction in oncology will be discussed. Energy-restriction-based strategies implemented in colorectal models and clinical trials will be also revised. While energy restriction constitutes a promising intervention for the prevention and treatment of several malignant neoplasms, further investigations are essential to dissect the interplay between fundamental aspects of energy intake, such as feeding patterns, fasting length, or diet composition, with all of them influencing health and disease or cancer effects. Currently, effectiveness, safety, and practicability of different forms of fasting to fight cancer, particularly colorectal cancer, should still be contemplated with caution.
Collapse
Affiliation(s)
- Maria Castejón
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
| | - Adrian Plaza
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, Institute IMDEA Food (CEI, UAM/CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain;
| | - Pablo Jose Fernandez-Marcos
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Rafael de Cabo
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
42
|
Starvation-Induced Differential Virotherapy Using an Oncolytic Measles Vaccine Virus. Viruses 2019; 11:v11070614. [PMID: 31284426 PMCID: PMC6669668 DOI: 10.3390/v11070614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting normal cells against off-target lysis. Human colorectal carcinoma (CRC) cell lines as well as human normal colon cell lines were subjected to various starvation regimes and infected with MeV-GFP. The applied fasting regimes were either short-term (24 h pre-infection) or long-term (24 h pre- plus 96 h post-infection). Cell-killing features of (i) virotherapy, (ii) starvation, as well as (iii) the combination of both were analyzed by cell viability assays and virus growth curves. Remarkably, while long-term low-serum, standard glucose starvation potentiated the efficacy of MeV-mediated cell killing in CRC cells, it was found to be decreased in normal colon cells. Interestingly, viral replication of MeV-GFP in CRC cells was decreased in long-term-starved cells and increased after short-term low-glucose, low-serum starvation. In conclusion, starvation-based virotherapy has the potential to differentially enhance MeV-mediated oncolysis in the context of CRC cancer patients while protecting normal colon cells from unwanted off-target effects.
Collapse
|
43
|
de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:209. [PMID: 31113478 PMCID: PMC6530042 DOI: 10.1186/s13046-019-1189-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
Growing preclinical evidence shows that short-term fasting (STF) protects from toxicity while enhancing the efficacy of a variety of chemotherapeutic agents in the treatment of various tumour types. STF reinforces stress resistance of healthy cells, while tumor cells become even more sensitive to toxins, perhaps through shortage of nutrients to satisfy their needs in the context of high proliferation rates and/or loss of flexibility to respond to extreme circumstances. In humans, STF may be a feasible approach to enhance the efficacy and tolerability of chemotherapy. Clinical research evaluating the potential of STF is in its infancy. This review focuses on the molecular background, current knowledge and clinical trials evaluating the effects of STF in cancer treatment. Preliminary data show that STF is safe, but challenging in cancer patients receiving chemotherapy. Ongoing clinical trials need to unravel if STF can also diminish toxicity and increase efficacy of chemotherapeutic regimes in daily practice.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
44
|
Panebianco C, Potenza A, Andriulli A, Pazienza V. Exploring the microbiota to better understand gastrointestinal cancers physiology. Clin Chem Lab Med 2019; 56:1400-1412. [PMID: 29630505 DOI: 10.1515/cclm-2017-1163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Gastrointestinal cancers account for around 40% of cancer-related deaths worldwide, representing a global health burden. There is a growing body of evidence highlighting the link between microbiota and gastrointestinal tumorigenesis and/or resistance to therapy. In the present manuscript, we reviewed the published studies on the relationship between the microbiota and the different gastrointestinal tumors, namely, gastric, colorectal and esophageal, including also the cancer of accessory organs such as liver and pancreas. There is an emergent interest in the manipulation of gastrointestinal microflora in order to understand the gastrointestinal tumorigenesis' processes and the establishment of chemoresistance mechanisms.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Angelo Andriulli
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy, Phone: +39-0882.416281, Fax: +39-0882.410271
| |
Collapse
|
45
|
Klement RJ, Pazienza V. Impact of Different Types of Diet on Gut Microbiota Profiles and Cancer Prevention and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E84. [PMID: 30934960 PMCID: PMC6524347 DOI: 10.3390/medicina55040084] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Abstract
: Diet is frequently considered as a food regimen focused on weight loss, while it is actually the sum of food consumed by the organism. Western diets, modern lifestyle, sedentary behaviors, smoking habits, and drug consumption have led to a significant reduction of gut microbial diversity, which is linked to many non-communicable diseases (NCDs). The latter kill 40 million people each year, equivalent to more than 70% of all deaths globally. Among NCDs, tumors play a major role, being responsible for 29% of deaths from NCDs. A link between diet, microbiota, and cancer prevention and treatment has recently been unveiled, underlining the importance of a new food culture based on limiting dietary surplus and on preferring healthier foods. Here, we review the effects of some of the most popular "cancer-specific" diets on microbiota composition and their potential impact on cancer prevention and treatment.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422 Schweinfurt, Germany.
| | - Valerio Pazienza
- Gastroenterology Unit IRCCS "Casa Sollievo della Sofferenza", Hospital San Giovanni Rotondo, 71013 Foggia, Italy.
| |
Collapse
|
46
|
Panebianco C, Eddine FBN, Forlani G, Palmieri G, Tatangelo L, Villani A, Xu L, Accolla R, Pazienza V. Probiotic Bifidobacterium lactis, anti-oxidant vitamin E/C and anti-inflammatory dha attenuate lung inflammation due to pm2.5 exposure in mice. Benef Microbes 2018; 10:69-75. [PMID: 30525952 DOI: 10.3920/bm2018.0060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The incidence of asthma and allergic diseases of the airways is constantly increasing, both in the industrialised and developing countries, due to harmful and excessive quantities of air pollution. Although some studies have shown an effect of dietary supplementation of specific nutrients (especially with anti-oxidant and anti-inflammatory properties) in reducing airways inflammatory response, the results are not yet conclusive and the science is still at its infancy. Our hypothesis is that combining such nutrients could provide more benefits than using them alone. The aim of the research project proposed here is to investigate whether specific combinations of nutrients (docosahexanoic acid, vitamin C and E, and Bifidobacterium lactis strain BB-12®, included in an engineered diet) can act synergistically to reduce inflammation given by high level of air pollution. Beside the role of docosahexanoic acid, vitamins C and E on airways inflammatory disease, no study examined the effect of the supplementation of this probiotic strain in pathological conditions caused by air pollution so far. Herein we used a well-established in vivo model for the study of pollution effects, which consists in female BALB/c mice receiving by pharyngeal aspiration either a sham or a particulate matter with diameter <2.5 μm (PM 2.5) containing aerosol. Before treatment, mice were fed either a chow or a supplemented diet. By performing histological analyses and gene expression profiles on lung sections and serum measurement of the cytokine interleukin 10, we found that a specific combination of all the aforementioned nutrients rather than nutrients alone had a synergistic protective effect against PM2.5-induced inflammation. In conclusion, our study support that a supplemental nutritional intervention based on a combination of the probiotic B. lactis BB-12, the anti-oxidant vitamin C and E, and the anti-inflammatory docosahexanoic acid represents a rational option for alleviating air pollution-related lung inflammation.
Collapse
Affiliation(s)
- C Panebianco
- 1 Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza Hospital, viale dei Cappuccini n. 1, 71013 San Giovanni Rotondo (FG), Italy
| | - F Bou Nasser Eddine
- 2 Laboratories of General Pathology and Immunology, Department of Medicine and Surgery, School of Medicine, University of Insubria, via O. Rossi 9 - Padiglione Biffi, 21100 Varese, Italy
| | - G Forlani
- 2 Laboratories of General Pathology and Immunology, Department of Medicine and Surgery, School of Medicine, University of Insubria, via O. Rossi 9 - Padiglione Biffi, 21100 Varese, Italy
| | - G Palmieri
- 3 Allevamenti Plaisant, Tecnopolo Rome, Via Castel Romano 100, 00128 Rome, Italy
| | - L Tatangelo
- 3 Allevamenti Plaisant, Tecnopolo Rome, Via Castel Romano 100, 00128 Rome, Italy
| | - A Villani
- 1 Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza Hospital, viale dei Cappuccini n. 1, 71013 San Giovanni Rotondo (FG), Italy
| | - L Xu
- 4 VIVA Nutritional Product LLC, P.O. Box 932, New York, NY 10272, USA
| | - R Accolla
- 4 VIVA Nutritional Product LLC, P.O. Box 932, New York, NY 10272, USA.,5 a-T4H Consulting LLC, 341 Monmouth St, #410D, Jersey City, NJ 07302, USA
| | - V Pazienza
- 1 Gastroenterology Unit, IRCCS Casa Sollievo della Sofferenza Hospital, viale dei Cappuccini n. 1, 71013 San Giovanni Rotondo (FG), Italy
| |
Collapse
|
47
|
Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 2018; 73:e814s. [PMID: 30540126 PMCID: PMC6257056 DOI: 10.6061/clinics/2018/e814s] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.
Collapse
Affiliation(s)
- Fernanda Antunes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Adolfo Garcia Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Angélica Jardim Costa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Ana Carolina Nascimento
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | | | - Gustavo José Silva Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
48
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Guidi N, Longo VD. Periodic fasting starves cisplatin-resistant cancers to death. EMBO J 2018; 37:embj.201899815. [PMID: 29875131 DOI: 10.15252/embj.201899815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Novella Guidi
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| |
Collapse
|
50
|
Tataranni T, Agriesti F, Ruggieri V, Mazzoccoli C, Simeon V, Laurenzana I, Scrima R, Pazienza V, Capitanio N, Piccoli C. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles. Oncotarget 2018; 8:41265-41281. [PMID: 28476035 PMCID: PMC5522241 DOI: 10.18632/oncotarget.17172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism.
Collapse
Affiliation(s)
- Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza", Hospital San Giovanni Rotondo (FG), Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|