1
|
Zhao J, Tang B, Shen P, Zeng H, Wei Q. Empowering PARP inhibition through rational combination: Mechanisms of PARP inhibitors and combinations with a focus on the treatment of metastatic castration-resistant prostate cancer. Crit Rev Oncol Hematol 2025; 210:104698. [PMID: 40089046 DOI: 10.1016/j.critrevonc.2025.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have revolutionized the treatment of many cancers. Metastatic castration-resistant prostate cancer (mCRPC) is an area where PARP inhibitors are intensively studied; the efficacy with PARP inhibitor monotherapy in patients with homologous recombination repair mutations following novel hormonal therapy have prompted the investigation of combination therapy, with adding an androgen receptor pathway inhibitor (ARPI) being one focus of research. Data on PARP inhibitor monotherapy and combination therapy for mCRPC are accumulating, and it is important to navigate through the complex data to inform treatment decision. Here we review the mechanisms of action of PARP inhibitors, their pharmacological properties, the synergistic activity of PARP inhibitors plus other drug classes, and the clinical evidence on monotherapy and combination therapy in patients with mCRPC. We propose key considerations in the selection of agents and treatment sequence for mCRPC, such as efficacy, toxicity profiles, biomarkers, and interactions with concomitant medications.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Guzman J, Weigelt K, Neumann A, Tripal P, Schmid B, Winter Z, Palmisano R, Culig Z, Cronauer MV, Muschler P, Wullich B, Taubert H, Wach S. NanoLuc Binary Technology as a methodological approach: an important new tool for studying the localization of androgen receptor and androgen receptor splice variant V7 homo and heterodimers. BMC Cancer 2024; 24:346. [PMID: 38500100 PMCID: PMC10949640 DOI: 10.1186/s12885-024-12110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Angela Neumann
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Zoltán Winter
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Marcus V Cronauer
- Institute of Pathology, Universitätsklinikum Bonn, Universität Bonn, Bonn, 53127, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany.
| | - Sven Wach
- Department of Urology and Pediatric Urology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, 91054, Germany
| |
Collapse
|
3
|
Asemota S, Effah W, Young KL, Holt J, Cripe L, Ponnusamy S, Thiyagarajan T, Hwang DJ, He Y, Mcnamara K, Johnson D, Wang Y, Grimes B, Khosrosereshki Y, Hollingsworth TJ, Fleming MD, Pritchard FE, Hendrix A, Khan F, Fan M, Makowski L, Yin Z, Sasano H, Hayes DN, Pfeffer LM, Miller DD, Narayanan R. Identification of a targetable JAK-STAT enriched androgen receptor and androgen receptor splice variant positive triple-negative breast cancer subtype. Cell Rep 2023; 42:113461. [PMID: 37979170 PMCID: PMC10872270 DOI: 10.1016/j.celrep.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kirsten L Young
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Keely Mcnamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yinan Wang
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN 38138, USA
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - T J Hollingsworth
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Martin D Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Farhan Khan
- Department of Pathology, Methodist Hospital, Memphis, TN 38104, USA
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Zheng Yin
- Biomedical and Informatics Services Core, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - D Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Lawrence M Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
4
|
Martinez MJ, Lyles RD, Peinetti N, Grunfeld AM, Burnstein KL. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience 2023; 26:107681. [PMID: 37705955 PMCID: PMC10495664 DOI: 10.1016/j.isci.2023.107681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.
Collapse
Affiliation(s)
- Maria J. Martinez
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rolando D.Z. Lyles
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Nahuel Peinetti
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Alex M. Grunfeld
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL 33136, USA
| | - Kerry L. Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
5
|
Chen QH. Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers (Basel) 2023; 15:3308. [PMID: 37444418 DOI: 10.3390/cancers15133308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
A variety of microtubule-stabilizing cytotoxic agents (MSA) with diverse chemical scaffolds have been discovered from marine sponges, microorganisms, and plants. Two MSAs, docetaxel and cabazitaxel, are the exclusive chemotherapeutics that convey a survival benefit in patients with castration-resistant prostate cancer (CRPC). Additional MSAs have been investigated for their potential in treating prostate cancer in both clinical and preclinical settings. Independent of promoting mitotic arrest, MSAs can suppress the nuclear accumulation of androgen receptor (AR), which is the driving force for prostate cancer cell growth and progression. The alternative mechanism not only helps to better understand the clinical efficacy of docetaxel and cabazitaxel for AR-driven CRPC but also provides an avenue to seek better treatments for various forms of prostate cancer. The dual mechanisms of action enable MSAs to suppress AR-null prostate cancer cell proliferation by cell mitosis pathway and to interfere with the AR signaling pathway in AR positive cells. MSA chemotherapeutics, being administered alone or in combination with other therapeutics, may serve as the optimal therapeutic option for patients with either castration-sensitive or castration-resistant prostate cancer. This review provides an overview of the anti-prostate cancer profiles (including preclinical and clinical studies, and clinical use) of diverse MSAs, as well as the mechanism of action.
Collapse
Affiliation(s)
- Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
| |
Collapse
|
6
|
Zhang G, Wang Z, Bavarva J, Kuhns KJ, Guo J, Ledet EM, Qian C, Lin Y, Fang Z, Zabaleta J, Valle LD, Hu JJ, Mandal D, Liu W. A Recurrent ADPRHL1 Germline Mutation Activates PARP1 and Confers Prostate Cancer Risk in African American Families. Mol Cancer Res 2022; 20:1776-1784. [PMID: 35816343 DOI: 10.1158/1541-7786.mcr-21-0874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/15/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
African American (AA) families have the highest risk of prostate cancer. However, the genetic factors contributing to prostate cancer susceptibility in AA families remain poorly understood. We performed whole-exome sequencing of one affected and one unaffected brother in an AA family with hereditary prostate cancer. The novel non-synonymous variants discovered only in the affected individuals were further analyzed in all affected and unaffected men in 20 AA-PC families. Here, we report one rare recurrent ADPRHL1 germline mutation (c.A233T; p.D78V) in four of the 20 families affected by prostate cancer. The mutation co-segregates with prostate cancer in two families and presents in two affected men in the other two families, but was absent in 170 unrelated healthy AA men. Functional characterization of the mutation in benign prostate cells showed aberrant promotion of cell proliferation, whereas expression of the wild-type ADPRHL1 in prostate cancer cells suppressed cell proliferation and oncogenesis. Mechanistically, the ADPRHL1 mutant activates PARP1, leading to an increased H2O2 or cisplatin-induced DNA damage response for prostate cancer cell survival. Indeed, the PARP1 inhibitor, olaparib, suppresses prostate cancer cell survival induced by mutant ADPRHL1. Given that the expression levels of ADPRHL1 are significantly high in normal prostate tissues and reduce stepwise as Gleason scores increase in tumors, our findings provide genetic, biochemical, and clinicopathological evidence that ADPRHL1 is a tumor suppressor in prostate tissue. A loss of function mutation in ADPRHL1 induces prostate tumorigenesis and confers prostate cancer susceptibility in high-risk AA families. IMPLICATIONS This study highlights a potential strategy for ADPRHL1 mutation detection in prostate cancer-risk assessment and a potential therapeutic application for individuals with prostate cancer in AA families.
Collapse
Affiliation(s)
- Guanyi Zhang
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zemin Wang
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jasmin Bavarva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Katherine J Kuhns
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jianhui Guo
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elisa M Ledet
- Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| | - Chiping Qian
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yuan Lin
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans Louisiana
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Diptasri Mandal
- Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| | - Wanguo Liu
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| |
Collapse
|
7
|
Damuka N, Orr ME, Bansode AH, Krizan I, Miller M, Lee J, Macauley SL, Whitlow CT, Mintz A, Craft S, Solingapuram Sai KK. Preliminary mechanistic insights of a brain-penetrant microtubule imaging PET ligand in a tau-knockout mouse model. EJNMMI Res 2022; 12:41. [PMID: 35881263 PMCID: PMC9325934 DOI: 10.1186/s13550-022-00912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Microtubules (MTs) are critical for cell structure, function, and survival. MT instability may contribute to Alzheimer's disease (AD) pathogenesis as evidenced by persistent negative regulation (phosphorylation) of the neuronal microtubule-associated protein tau. Hyperphosphorylated tau, not bound to MTs, forms intraneuronal pathology that correlates with dementia and can be tracked using positron emission tomography (PET) imaging. The contribution of MT instability in AD remains unknown, though it may be more proximal to neuronal dysfunction than tau accumulation. Our lab reported the first brain-penetrant MT-based PET ligand, [11C]MPC-6827, and its PET imaging with this ligand in normal rodents and non-human primates demonstrated high brain uptake and excellent pharmacokinetics. Target engagement and mechanism of action using in vitro, in vivo, and ex vivo methods were evaluated here. METHODS In vitro cell uptake assay was performed in SH-SY5Y neuronal cells with [11C]MPC-6827, with various MT stabilizing and destabilizing agents. To validate the in vitro results, wild type (WT) mice (n = 4) treated with a brain-penetrant MT stabilizing drug (EpoD) underwent microPET/CT brain imaging with [11C]MPC-6827. To determine the influence of tau protein on radiotracer binding in the absence of protein accumulation, we utilized tau knockout (KO) mice. In vivo microPET imaging, ex vivo biodistribution, and autoradiography studies were performed in tau KO and WT mice (n = 6/group) with [11C]MPC-6827. Additionally, α, β, and acetylated tubulin levels in both brain samples were determined using commercially available cytoskeleton-based MT kit and capillary electrophoresis immunoblotting assays. RESULTS Cell uptake demonstrated higher radioactive uptake with MT destabilizing agents and lower uptake with stabilizing agents compared to untreated cells. Similarly, acute treatment with EpoD in WT mice decreased [11C]MPC-6827 brain uptake, assessed with microPET/CT imaging. Compared to WT mice, tau KO mice expressed significantly lower β tubulin, which contains the MPC-6827 binding domain, and modestly lower levels of acetylated α tubulin, indicative of unstable MTs. In vivo imaging revealed significantly higher [11C]MPC-6827 uptake in tau KOs than WT, particularly in AD-relevant brain regions known to express high levels of tau. Ex vivo post-PET biodistribution and autoradiography confirmed the in vivo results. CONCLUSIONS Collectively, our data indicate that [11C]MPC-6827 uptake inversely correlates with MT stability and may better reflect the absence of tau than total tubulin levels. Given the radiotracer binding does not require the presence of aggregated tau, we hypothesize that [11C]MPC-6827 may be particularly useful in preclinical stages of AD prior to tau deposition. Our study provides immediate clarity on high uptake of the MT-based radiotracer in AD brains, which directly informs clinical utility in MT/tau-based PET imaging studies.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Miranda E. Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Jillian Lee
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Shannon L. Macauley
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | | - Akiva Mintz
- Department of Radiology, Columbia Medical Center, New York, NY 10032 USA
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | |
Collapse
|
8
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
9
|
Khan T, Becker TM, Scott KF, Descallar J, de Souza P, Chua W, Ma Y. Prognostic and Predictive Value of Liquid Biopsy-Derived Androgen Receptor Variant 7 (AR-V7) in Prostate Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:868031. [PMID: 35372002 PMCID: PMC8971301 DOI: 10.3389/fonc.2022.868031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
In advanced prostate cancer, access to recent diagnostic tissue samples is restricted and this affects the analysis of the association of evolving biomarkers such as AR-V7 with metastatic castrate resistance. Liquid biopsies are emerging as alternative analytes. To clarify clinical value of AR-V7 detection from liquid biopsies, here we performed a meta-analysis on the prognostic and predictive value of androgen receptor variant 7 (AR-V7) detected from liquid biopsy for patients with prostate cancer (PC), three databases, the Embase, Medline, and Scopus were searched up to September 2021. A total of 37 studies were included. The effects of liquid biopsy AR-V7 status on overall survival (OS), radiographic progression-free survival (PFS), and prostate-specific antigen (PSA)-PFS were calculated with RevMan 5.3 software. AR-V7 positivity detected in liquid biopsy significantly associates with worse OS, PFS, and PSA-PFS (P <0.00001). A subgroup analysis of patients treated with androgen receptor signaling inhibitors (ARSi such as abiraterone and enzalutamide) showed a significant association of AR-V7 positivity with poorer OS, PFS, and PSA-PFS. A statistically significant association with OS was also found in taxane-treated patients (P = 0.04), but not for PFS (P = 0.21) or PSA-PFS (P = 0.93). For AR-V7 positive patients, taxane treatment has better OS outcomes than ARSi (P = 0.01). Study quality, publication bias and sensitivity analysis were integrated in the assessment. Our data show that liquid biopsy AR-V7 is a clinically useful biomarker that is associated with poor outcomes of ARSi-treated castrate resistant PC (CRPC) patients and thus has the potential to guide patient management and also to stratify patients for clinical trials. More studies on chemotherapy-treated patients are warranted.
Collapse
Affiliation(s)
- Tanzila Khan
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- Centre of Circulating Tumour Cell Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Therese M. Becker
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- Centre of Circulating Tumour Cell Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Joseph Descallar
- South West Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
- Medical Oncology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Yafeng Ma
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- Centre of Circulating Tumour Cell Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
- *Correspondence: Yafeng Ma,
| |
Collapse
|
10
|
Damuka N, Martin TJ, Bansode AH, Krizan I, Martin CW, Miller M, Whitlow CT, Nader MA, Solingapuram Sai KK. Initial Evaluations of the Microtubule-Based PET Radiotracer, [11C]MPC-6827 in a Rodent Model of Cocaine Abuse. Front Med (Lausanne) 2022; 9:817274. [PMID: 35295607 PMCID: PMC8918945 DOI: 10.3389/fmed.2022.817274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeMicrotubules (MTs) are structural units made of α and β tubulin subunits in the cytoskeleton responsible for axonal transport, information processing, and signaling mechanisms—critical for healthy brain function. Chronic cocaine exposure affects the function, organization, and stability of MTs in the brain, thereby impairing overall neurochemical and cognitive processes. At present, we have no reliable, non-invasive methods to image MTs for cocaine use disorder (CUD). Recently we reported the effect of cocaine in patient-derived neuroblastoma SH-SY5Y cells. Here we report preliminary results of a potential imaging biomarker of CUD using the brain penetrant MT-based radiotracer, [11C]MPC-6827, in an established rodent model of cocaine self-administration (SA).MethodsCell uptake studies were performed with [11C]MPC-6827 in SH-SY5Y cells, treated with or without cocaine (n = 6/group) at 30 and 60 min incubations. MicroPET/CT brain scans were performed in rats at baseline and 35 days after cocaine self-administration and compared with saline-treated rats as controls (n = 4/sex). Whole-body post-PET biodistribution, plasma metabolite assay, and brain autoradiography were performed in the same rats from imaging.ResultsCocaine-treated SH-SY5Y cells demonstrated a ∼26(±4)% decrease in radioactive uptake compared to non-treated controls. Both microPET/CT imaging and biodistribution results showed lower (∼35 ± 3%) [11C]MPC-6827 brain uptake in rats that had a history of cocaine self-administration compared to the saline-treated controls. Plasma metabolite assays demonstrate the stability (≥95%) of the radiotracer in both groups. In vitro autoradiography also demonstrated lower radioactive uptake in cocaine rats compared to the control rats. [11C]MPC-6827’s in vitro SH-SY5Y neuronal cell uptake, in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and in vitro autoradiography results corroborated well with each other, demonstrating decreased radioactive brain uptake in cocaine self-administered rats versus controls. There were no significant differences either in cocaine intake or in [11C]MPC-6827 uptake between the male and female rats.ConclusionsThis project is the first to validate in vivo imaging of the MT-associations with CUD in a rodent model. Our initial observations suggest that [11C]MPC-6827 uptake decreases in cocaine self-administered rats and that it may selectively bind to destabilized tubulin units in the brain. Further longitudinal studies correlating cocaine intake with [11C]MPC-6827 PET brain measures could potentially establish the MT scaffold as an imaging biomarker for CUD, providing researchers and clinicians with a sensitive tool to better understand the biological underpinnings of CUD and tailor new treatments.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Conner W. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Kiran Kumar Solingapuram Sai,
| |
Collapse
|
11
|
Gurioli G, Conteduca V, Brighi N, Scarpi E, Basso U, Fornarini G, Mosca A, Nicodemo M, Banna GL, Lolli C, Schepisi G, Ravaglia G, Bondi I, Ulivi P, De Giorgi U. Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel. BMC Med 2022; 20:48. [PMID: 35101049 PMCID: PMC8805338 DOI: 10.1186/s12916-022-02244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cabazitaxel improves overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC) patients progressing after docetaxel. In this prospective study, we evaluated the prognostic role of CTC gene expression on cabazitaxel-treated patients and its association with plasma androgen receptor (AR) copy number (CN). METHODS Patients receiving cabazitaxel 20 or 25 mg/sqm for mCRPC were enrolled. Digital PCR was performed to assess plasma AR CN status. CTC enrichment was assessed using the AdnaTest EMT-2/StemCell kit. CTC expression analyses were performed for 17 genes. Data are expressed as hazard ratio (HR) or odds ratio (OR) and 95% CI. RESULTS Seventy-four patients were fully evaluable. CTC expression of AR-V7 (HR=2.52, 1.24-5.12, p=0.011), AKR1C3 (HR=2.01, 1.06-3.81, p=0.031), AR (HR=2.70, 1.46-5.01, p=0.002), EPCAM (HR=3.75, 2.10-6.71, p< 0.0001), PSMA (HR=2.09, 1.19-3.66, p=0.01), MDK (HR=3.35, 1.83-6.13, p< 0.0001), and HPRT1 (HR=2.46, 1.44-4.18, p=0.0009) was significantly associated with OS. ALDH1 (OR=5.50, 0.97-31.22, p=0.05), AR (OR=8.71, 2.32-32.25, p=0.001), EPCAM (OR=7.26, 1.47-35.73, p=0.015), PSMA (OR=3.86, 1.10-13.50, p=0.035), MDK (OR=6.84, 1.87-24.98, p=0.004), and HPRT1 (OR=7.41, 1.82-30.19, p=0.005) expression was associated with early PD. AR CN status was significantly correlated with AR-V7 (p=0.05), EPCAM (p=0.02), and MDK (p=0.002) expression. In multivariable model, EPCAM and HPRT1 CTC expression, plasma AR CN gain, ECOG PS=2, and liver metastases and PSA were independently associated with poorer OS. In patients treated with cabazitaxel 20 mg/sqm, median OS was shorter in AR-V7 positive than negative patients (6.6 versus 14 months, HR=3.46, 1.47-8.17], p=0.004). CONCLUSIONS Baseline CTC biomarkers may be prognosticators for cabazitaxel-treated mCRPC patients. Cabazitaxel at lower (20 mg/sqm) dose was associated with poorer outcomes in AR-V7 positive patients compared to AR-V7 negative patients in a post hoc subgroup analysis. TRIAL REGISTRATION Clinicaltrials.gov NCT03381326 . Retrospectively registered on 18 December 2017.
Collapse
Affiliation(s)
- Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.,Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Umberto Basso
- Medical Oncology Unit 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Giuseppe Fornarini
- Medical Oncology Department, IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alessandra Mosca
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Maurizio Nicodemo
- Medical Oncology, Ospedale Sacro Cuore don Calabria, Negrar, Verona, Italy
| | | | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Isabella Bondi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
12
|
AR Structural Variants and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:195-211. [DOI: 10.1007/978-3-031-11836-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Effect of ethanol and cocaine on [ 11C]MPC-6827 uptake in SH-SY5Y cells. Mol Biol Rep 2021; 48:3871-3876. [PMID: 33880672 PMCID: PMC8172511 DOI: 10.1007/s11033-021-06336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 10/26/2022]
Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.
Collapse
|
14
|
Gjyrezi A, Xie F, Voznesensky O, Khanna P, Calagua C, Bai Y, Kung J, Wu J, Corey E, Montgomery B, Mace S, Gianolio DA, Bubley GJ, Balk SP, Giannakakou P, Bhatt RS. Taxane resistance in prostate cancer is mediated by decreased drug-target engagement. J Clin Invest 2021; 130:3287-3298. [PMID: 32478682 DOI: 10.1172/jci132184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023] Open
Abstract
Despite widespread use of taxanes, mechanisms of action and resistance in vivo remain to be established, and there is no way of predicting who will respond to therapy. This study examined prostate cancer (PCa) xenografts and patient samples to identify in vivo mechanisms of taxane action and resistance. Docetaxel drug-target engagement was assessed by confocal anti-tubulin immunofluorescence to quantify microtubule bundling in interphase cells and aberrant mitoses. Tumor biopsies from metastatic PCa patients obtained 2 to 5 days after their first dose of docetaxel or cabazitaxel were processed to assess microtubule bundling, which correlated with clinical response. Microtubule bundling was evident in PCa xenografts 2 to 3 days after docetaxel treatment but was decreased or lost with acquired resistance. Biopsies after treatment with leuprolide plus docetaxel showed extensive microtubule bundling as did biopsies obtained 2 to 3 days after initiation of docetaxel or cabazitaxel in 2 patients with castration-resistant PCa with clinical responses. In contrast, microtubule bundling in biopsies 2 to 3 days after the first dose of docetaxel was markedly lower in 4 nonresponding patients. These findings indicate that taxanes target both mitotic and interphase cells in vivo and that resistance is through mechanisms that impair drug-target engagement. Moreover, the findings suggest that microtubule bundling after initial taxane treatment may be a predictive biomarker for clinical response.
Collapse
Affiliation(s)
- Ada Gjyrezi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Fang Xie
- Division of Hematology and Oncology, Department of Medicine, and
| | - Olga Voznesensky
- Division of Hematology and Oncology, Department of Medicine, and
| | - Prateek Khanna
- Division of Hematology and Oncology, Department of Medicine, and
| | - Carla Calagua
- Division of Hematology and Oncology, Department of Medicine, and
| | - Yang Bai
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Justin Kung
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Bruce Montgomery
- Department of Medicine and Oncology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Sandrine Mace
- Research and Development, Sanofi, Vitry-sur-Seine, France
| | | | - Glenn J Bubley
- Division of Hematology and Oncology, Department of Medicine, and
| | - Steven P Balk
- Division of Hematology and Oncology, Department of Medicine, and
| | - Paraskevi Giannakakou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical Center, New York, New York, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, New York, USA
| | - Rupal S Bhatt
- Division of Hematology and Oncology, Department of Medicine, and
| |
Collapse
|
15
|
Yu B, Liu Y, Luo H, Fu J, Li Y, Shao C. Androgen receptor splicing variant 7 (ARV7) inhibits docetaxel sensitivity by inactivating the spindle assembly checkpoint. J Biol Chem 2021; 296:100276. [PMID: 33428943 PMCID: PMC7948795 DOI: 10.1016/j.jbc.2021.100276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 10/29/2022] Open
Abstract
The clinical efficacy of docetaxel (DTX) in prostate cancer treatment is barely satisfactory due to diverse responses of the patients, including the development of resistance. Recently, aberrant androgen receptor (AR) signaling, including expression of the constitutively active ARV7, was reported to contribute to DTX resistance. However, the underlying molecular mechanism remains largely unknown. Of note, previous studies have highlighted that ARV7, unlike its parental AR, potentially favors the expression of some genes involved in cell cycle progression. Since DTX mainly targets microtubule dynamics and mitosis, we wanted to test whether ARV7 plays a specific role in mitotic regulation and whether this activity is involved in DTX resistance. In the present study, we found that ARV7 mediates DTX sensitivity through inactivating the spindle assembly checkpoint (SAC) and promoting mitotic slippage. By shifting the balance to the slippage pathway, ARV7-expressing cells are more likely to escape from mitotic death induced by acute DTX treatment. Furthermore, we also identified E2 enzyme UBE2C as the primary downstream effector of ARV7 in promoting the SAC inactivation and premature degradation of cyclin B1. Moreover, we showed that combination treatment of DTX and an inhibitor of mitotic exit can exert synergistic effect in high ARV7-expressing prostate cancer cells. In sum, our work identified a novel role of ARV7 in promoting DTX resistance and offering a potential path to combat DTX resistance related to abnormal activation of the AR signaling and mitotic dysregulation.
Collapse
Affiliation(s)
- Bingbing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haoge Luo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chen Shao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Indications for chemotherapy have increased in prostate cancer (PCA), many of which are shared with new hormonal agents (NHA). With no head to head comparison available, defining the optimal sequence and identifying biomarkers to predict response, has been a focus of intense research in PCA. We aim to summarize the best currently available evidence in all stages of disease to help guide therapy. RECENT FINDINGS In metastatic castration-resistant prostate cancer, Cabazitaxel has shown improved radiographic progression-free survival over another NHA after Docetaxel and one NHA. For hormone sensitive PCA (mHSPC) multiple meta-analyses have shown combination therapy with Docetaxel or an NHA to be superior to androgen deprivation therapy alone, yet no clear benefit over each other. For peri-interventional chemotherapy with local therapy, there is currently only one positive prospective trial, for very high-risk disease. SUMMARY Cabazitaxel is underutilized and should be used earlier. NHAs should not be used in succession as there is significant cross resistance. Combination therapy should be used in mHSPC, yet there is no clear benefit for any combination. Peri-interventional chemotherapy might have a benefit for a small group of patients with very high-risk disease, yet this must be carefully evaluated, and side effects must be taken into account.
Collapse
|
17
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
18
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
19
|
Chen Y, Lan T. Molecular Origin, Expression Regulation, and Biological Function of Androgen Receptor Splicing Variant 7 in Prostate Cancer. Urol Int 2020; 105:337-353. [PMID: 32957106 DOI: 10.1159/000510124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The problem of resistance to therapy in prostate cancer (PCa) is multifaceted. Key determinants of drug resistance include tumor burden and growth kinetics, tumor heterogeneity, physical barriers, immune system and microenvironment, undruggable cancer drivers, and consequences of therapeutic pressures. With regard to the fundamental importance of the androgen receptor (AR) in all stages of PCa from tumorigenesis to progression, AR is postulated to have a continued critical role in castration-resistant prostate cancer (CRPC). Suppression of AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all AR-directed therapies. However, AR-targeting agents ultimately lead to AR aberrations that promote PCa progression and drug resistance. Among these AR aberrations, androgen receptor variant 7 (AR-V7) is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-AR therapies in CRPC. Meanwhile, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. In the present review of the current literature, we have summarized the origin, alternative splicing, expression induction, protein conformation, interaction with coregulators, relationship with AR-FL, transcriptional activity, and biological function of AR-V7 in PCa development and therapeutic resistance. We hope this review will help further understand the molecular origin, expression regulation, and role of AR-V7 in the progression of PCa and provide insight into the design of novel selective inhibitors of AR-V7 in PCa treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Surgery and Anesthesiology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China
| | - Tian Lan
- Department of Urology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China,
| |
Collapse
|
20
|
Muniyan S, Rachagani S, Parte S, Halder S, Seshacharyulu P, Kshirsagar P, Siddiqui JA, Vengoji R, Rauth S, Islam R, Mallya K, Datta K, Xi L, Das A, Teply BA, Kukreja RC, Batra SK. Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clin Cancer Res 2020; 26:5720-5734. [PMID: 32847934 DOI: 10.1158/1078-0432.ccr-20-1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Docetaxel plays an indispensable role in the management of advanced prostate cancer. However, more than half of patients do not respond to docetaxel, and those good responders frequently experience significant cumulative toxicity, which limits its dose duration and intensity. Hence, a second agent that could increase the initial efficacy of docetaxel and maintain tolerability at biologically effective doses may improve outcomes for patients. EXPERIMENTAL DESIGN We determined phosphodiesterase 5 (PDE5) expression levels in human and genetically engineered mouse (GEM) prostate tissues and tumor-derived cell lines. Furthermore, we investigated the therapeutic benefits and underlying mechanism of PDE5 inhibitor sildenafil in combination with docetaxel using in vitro, Pten conditional knockout (cKO), derived tumoroid and xenograft prostate cancer models. RESULTS PDE5 expression was higher in both human and mouse prostate tumors and cancer cell lines compared with normal tissues/cells. In GEM prostate-derived cell lines, PDE5 expression increased from normal prostate (wild-type) epithelial cells to androgen-dependent and castrated prostate-derived cell lines. The addition of physiologically achievable concentrations of sildenafil enhanced docetaxel-induced prostate cancer cell growth inhibition and apoptosis in vitro, reduced murine 3D tumoroid growth, and in vivo tumorigenicity as compared with docetaxel alone. Furthermore, sildenafil enhanced docetaxel-induced NO and cGMP levels thereby augmenting antitumor activity. CONCLUSIONS Our results demonstrate that sildenafil's addition could sensitize docetaxel chemotherapy in prostate cancer cells at much lesser concentration than needed for inducing cell death. Thus, the combinatorial treatment of sildenafil and docetaxel may improve anticancer efficacy and reduce chemotherapy-induced side-effects among patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Anindita Das
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin A Teply
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh C Kukreja
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Sekino Y, Teishima J. Molecular mechanisms of docetaxel resistance in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:676-685. [PMID: 35582222 PMCID: PMC8992564 DOI: 10.20517/cdr.2020.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023]
Abstract
Docetaxel (DTX) chemotherapy offers excellent initial response and confers significant survival benefit in patients with castration-resistant prostate cancer (CRPC). However, the clinical utility of DTX is compromised when primary and acquired resistance are encountered. Therefore, a more thorough understanding of DTX resistance mechanisms may potentially improve survival in patients with CRPC. This review focuses on DTX and discusses its mechanisms of resistance. We outline the involvement of tubulin alterations, androgen receptor (AR) signaling/AR variants, ERG rearrangements, drug efflux/influx, cancer stem cells, centrosome clustering, and phosphoinositide 3-kinase/AKT signaling in mediating DTX resistance. Furthermore, potential biomarkers for DTX treatment and therapeutic strategies to circumvent DTX resistance are reviewed.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
22
|
Xu J, Qiu Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J Androl 2020; 21:270-278. [PMID: 30924449 PMCID: PMC6498727 DOI: 10.4103/aja.aja_10_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genomics technology have led to the massive discovery of new drug targets for prostate cancer; however, none of the currently available therapeutics is curative. One of the greatest challenges is drug resistance. Combinations of therapies with distinct mechanisms of action represent a promising strategy that has received renewed attention in recent years. Combination therapies exert cancer killing functions through either concomitant targeting of multiple pro-cancer factors or more effective inhibition of a single pathway. Theoretically, the combination therapy can improve efficacy and efficiency compared with monotherapy. Although increasing numbers of drug combinations are currently being tested in clinical trials, the mechanisms by which these combinations can overcome drug resistance have yet to be fully understood. The purpose of this review is to summarize recent work on therapeutic combinations in the treatment of castration-resistant prostate cancer and discuss emerging mechanisms underlying drug resistance. In addition, we provide an overview of the current preclinical mechanistic studies on potential therapeutic combinations to overcome drug resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Abstract
The development and progression of metastatic castration-resistant prostate cancer is the major challenge in the treatment of advanced prostate cancer. The androgen receptor signaling pathway remains active in metastatic castration-resistant prostate cancer. Docetaxel and cabazitaxel are the first- and second-line chemotherapy, respectively, for patients with metastatic castration-resistant prostate cancer. These two taxanes, in general, function by (i) inhibiting mitosis and inducing apoptosis and (ii) preventing microtubule-dependent cargo trafficking. In prostate cancer, taxanes have been reported to inhibit the nuclear translocation and activity of the androgen receptor. However, whether this is attainable or not clinically remains controversial. In this review, we will provide a comprehensive view of the effects of taxanes on androgen receptor signaling in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Bai
- College of Life Sciences, Jilin University, Changchun 130012, China.,Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | | | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Foroni C, Zarovni N, Bianciardi L, Bernardi S, Triggiani L, Zocco D, Venturella M, Chiesi A, Valcamonico F, Berruti A. When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients. Biomedicines 2020; 8:biomedicines8050131. [PMID: 32455948 PMCID: PMC7277361 DOI: 10.3390/biomedicines8050131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/28/2023] Open
Abstract
We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance to standard-of-care treatments (AR-V7 transcript, AR T878A point mutation and AR gene amplification) were evaluated by digital PCR in 15 samples from patients affected by Castration-Resistant Prostate Cancer (CRPC). Plasma was processed to obtain circulating RNA and DNA using protocols based on tumor EVs enrichment through immuno-affinity and peptide-affinity compared to generic extraction kits. Our results showed that immuno-affinity enrichment prior to RNA extraction clearly outperforms the generic isolation method in the detection of AR-V7, also allowing for a distinction between responder (R) and non-responder (NR) patients. The T878A mutation was detected, overall, in nine out of 15 samples and no approach alone was able to reveal mutations in all harboring samples, showing that the employed methods complement each other. AR amplification was detected in the majority of CRPC samples analysed using either cell-free DNA (cfDNA) or exosome isolation kits (80%). We demonstrated that selective isolation of a subset of circulating exosomes enriched for tumor origin, rather than analysis of total plasma exosomes, or total plasma nucleic acids, increases sensitivity and specificity for the detection of specific alterations.
Collapse
Affiliation(s)
- Chiara Foroni
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
- Correspondence: (C.F.); (N.Z.)
| | - Natasa Zarovni
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
- Correspondence: (C.F.); (N.Z.)
| | - Laura Bianciardi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Simona Bernardi
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Davide Zocco
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Marta Venturella
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Antonio Chiesi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Francesca Valcamonico
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| |
Collapse
|
25
|
The Role of Crosstalk between AR3 and E2F1 in Drug Resistance in Prostate Cancer Cells. Cells 2020; 9:cells9051094. [PMID: 32354165 PMCID: PMC7290672 DOI: 10.3390/cells9051094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/20/2023] Open
Abstract
Background: Drug resistance is one of the most prevalent causes of death in advanced prostate cancer patients. Combination therapies that target cancer cells via different mechanisms to overcome resistance have gained increased attention in recent years. However, the optimal drug combinations and the underlying mechanisms are yet to be fully explored. Aim and methods: The aim of this study is to investigate drug combinations that inhibit the growth of drug-resistant cells and determine the underlying mechanisms of their actions. In addition, we also established cell lines that are resistant to combination treatments and tested new compounds to overcome the phenomenon of double drug-resistance. Results: Our results show that the combination of enzalutamide (ENZ) and docetaxel (DTX) effectively inhibit the growth of prostate cancer cells that are resistant to either drug alone. The downregulation of transcription factor E2F1 plays a crucial role in cellular inhibition in response to the combined therapy. Notably, we found that the androgen receptor (AR) variant AR3 (a.k.a. AR-V7), but not AR full length (AR-FL), positively regulates E2F1 expression in these cells. E2F1 in turn regulates AR3 and forms a positive regulatory feedforward loop. We also established double drug-resistant cell lines that are resistant to ENZ+DTX combination therapy and found that the expression of both AR3 and E2F1 was restored in these cells. Furthermore, we identified that auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, overcame drug resistance and inhibited the growth of drug-resistant prostate cancer cells both in vitro and in vivo. Conclusion and significance: This proof-of-principle study demonstrates that targeting the E2F1/AR3 feedforward loop via a combination therapy or a multi-targeting drug could circumvent castration resistance in prostate cancer.
Collapse
|
26
|
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules 2020; 25:E1035. [PMID: 32106609 PMCID: PMC7179125 DOI: 10.3390/molecules25051035] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Natural compounds extracted from plants have gained immense importance in the fight against cancer cells due to their lesser toxicity and potential therapeutic effects. Raddeanin A (RA), an oleanane type triterpenoid is a major compound isolated from Anemone raddeana Regel. As an anticancer agent, RA induces apoptosis, cell cycle arrest, inhibits invasion, migration and angiogenesis in malignant cell lines as well as in preclinical models. In this systemic review, the pharmacological effects of RA and its underlying molecular mechanisms were carefully analyzed and potential molecular targets have been highlighted. The apoptotic potential of RA can be mediated through the modulation of Bcl-2, Bax, caspase-3, caspase-8, caspase-9, cytochrome c and poly-ADP ribose polymerase (PARP) cleavage. PI3K/Akt signaling pathway serves as the major molecular target affected by RA. Furthermore, RA can block cell proliferation through inhibition of canonical Wnt/β-catenin signaling pathway in colorectal cancer cells. RA can also alter the activation of NF-κB and STAT3 signaling pathways to suppress invasion and metastasis. RA has also exhibited promising anticancer potential against drug resistant cancer cells and can enhance the anticancer effects of several chemotherapeutic agents. Overall, RA may function as a promising compound in combating cancer, although further in-depth study is required under clinical settings to validate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | | | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
27
|
Lombard AP, Gao AC. Resistance Mechanisms to Taxanes and PARP Inhibitors in Advanced Prostate Cancer. ACTA ACUST UNITED AC 2020; 10:16-22. [PMID: 32258820 DOI: 10.1016/j.coemr.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical landscape concerning advanced prostate cancer is rapidly changing and reaching beyond androgen deprivation therapy and androgen receptor targeted therapies. Taxane chemotherapy is a critical tool in the management of advanced prostate cancer. Additionally, novel drug classes such as PARP inhibitors are being investigated. Despite tremendous progress, resistance to therapy remains as a major impediment to further improvement. Resistance mechanisms appear diverse and are not fully known or understood. This review will highlight recent advances in research regarding mechanisms of resistance to both taxanes (such as increased drug efflux capacity) and PARP inhibitors (such as reversion mutations which restore DNA-repair proficiency). Understanding resistance to therapy promises to remove barriers blocking progress toward improved patient outcomes.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA.,UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.,VA Northern California Health Care System Sacramento, CA, USA
| |
Collapse
|
28
|
Iacovelli R, Ciccarese C, Schinzari G, Rossi E, Maiorano BA, Astore S, D'Angelo T, Cannella A, Pirozzoli C, Teberino MA, Pierconti F, Martini M, Tortora G. Biomarkers of response to advanced prostate cancer therapy. Expert Rev Mol Diagn 2020; 20:195-205. [PMID: 31986925 DOI: 10.1080/14737159.2020.1707669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Prostate cancer (PCa) is one of the most common adult malignancies worldwide, and a major leading cause of cancer-related death in men in Western societies. In the last years, the prognosis of advanced PCa patients has been impressively improved thanks to the development of different therapeutic agents, including taxanes (docetaxel and cabazitaxel), second-generation anti-hormonal agents (abiraterone and enzalutamide), and the radiopharmaceutical Radium-223. However, great efforts are still needed to properly select the most appropriate treatment for each single patient.Areas covered: Several prognostic or predictive biomarkers have been studied, none of which has an established validated role in daily clinical practice. This paper analyzed the major biomarkers (including PSA, androgen receptor (AR) splice variants, βIII-tubulin, ALP, circulating tumor cells, and DNA repair genes) with a potential prognostic and/or predictive role in advanced PCa patients.Expert commentary: Surrogate biomarkers - measurable, reproducible, closely associated with tumor behavior and linked to relevant clinical outcomes - are urgently needed to improve PCa patient management.
Collapse
Affiliation(s)
- Roberto Iacovelli
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Ciccarese
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Schinzari
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Ernesto Rossi
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Brigida Anna Maiorano
- Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Serena Astore
- Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Tatiana D'Angelo
- Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonella Cannella
- Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Celeste Pirozzoli
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Anna Teberino
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Pierconti
- Institute of Pathological Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Maurizio Martini
- Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy.,Institute of Pathological Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Giampaolo Tortora
- Department of Medical Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Department of Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
29
|
Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, Sumpter BG, Fernandez E, Johnson D, Du Z, Pfeffer LM, Getzenberg RH, McEwan IJ, Miller DD, Narayanan R. Orally Bioavailable Androgen Receptor Degrader, Potential Next-Generation Therapeutic for Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2019; 25:6764-6780. [PMID: 31481513 DOI: 10.1158/1078-0432.ccr-19-1458] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Androgen receptor (AR)-targeting prostate cancer drugs, which are predominantly competitive ligand-binding domain (LBD)-binding antagonists, are inactivated by common resistance mechanisms. It is important to develop next-generation mechanistically distinct drugs to treat castration- and drug-resistant prostate cancers. EXPERIMENTAL DESIGN Second-generation AR pan antagonist UT-34 was selected from a library of compounds and tested in competitive AR binding and transactivation assays. UT-34 was tested using biophysical methods for binding to the AR activation function-1 (AF-1) domain. Western blot, gene expression, and proliferation assays were performed in various AR-positive enzalutamide-sensitive and -resistant prostate cancer cell lines. Pharmacokinetic and xenograft studies were performed in immunocompromised rats and mice. RESULTS UT-34 inhibits the wild-type and LBD-mutant ARs comparably and inhibits the in vitro proliferation and in vivo growth of enzalutamide-sensitive and -resistant prostate cancer xenografts. In preclinical models, UT-34 induced the regression of enzalutamide-resistant tumors at doses when the AR is degraded; but, at lower doses, when the AR is just antagonized, it inhibits, without shrinking, the tumors. This indicates that degradation might be a prerequisite for tumor regression. Mechanistically, UT-34 promotes a conformation that is distinct from the LBD-binding competitive antagonist enzalutamide and degrades the AR through the ubiquitin proteasome mechanism. UT-34 has a broad safety margin and exhibits no cross-reactivity with G-protein-coupled receptor kinase and nuclear receptor family members. CONCLUSIONS Collectively, UT-34 exhibits the properties necessary for a next-generation prostate cancer drug.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Rene Houtman
- PamGene International, Den Bosch, the Netherlands
| | | | | | - Elias Fernandez
- Biochemistry and Cell & Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ziyun Du
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Iain J McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
- West Cancer Center, Memphis, Tennessee
| |
Collapse
|
30
|
Shao C, Yu B, Liu Y. Androgen receptor splicing variant 7: Beyond being a constitutively active variant. Life Sci 2019; 234:116768. [PMID: 31445027 DOI: 10.1016/j.lfs.2019.116768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
In prostate cancer development, the androgen receptor (AR) signaling plays a crucial role during both formation of early prostate lesions and progression to the lethal, incurable castration resistant stage. Accordingly, numerous approaches have been developed to inhibit AR activity including androgen deprivation therapy, application of the AR antagonists as well as the use of taxanes. However, these treatments, although effective initially, resistance inevitably occur for most of the patients within several years and limiting the therapeutic efficacy. Of note, alterations and reactivation of the AR signaling pathway have been demonstrated as the major reasons for the observed resistance. Accumulating evidences have suggested that synthesis of AR splicing variants, in particular, the constitutively active AR-V7, is one of the most important mechanisms that contribute to the abnormal AR signaling. In addition, clinical data also highlight the potential of using AR-V7 as a predictive biomarker and a therapeutic target in metastatic castration resistant prostate cancer (mCRPC). In this review, we summarize the recent findings concerning the specific role of AR-V7 in CRPC progression, drug resistance and its potential value in clinical assessment.
Collapse
Affiliation(s)
- Chen Shao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
31
|
Caffo O, Maines F, Kinspergher S, Veccia A, Messina C. Sequencing strategies in the new treatment landscape of prostate cancer. Future Oncol 2019; 15:2967-2982. [PMID: 31424285 DOI: 10.2217/fon-2019-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the last 10 years, a number of new agents approved for the treatment of metastatic castration-resistant prostate cancer have led to a significant improvement in overall survival. The addition of new agents to androgen deprivation therapy has also allowed a paradigmatic change in the treatment of metastatic hormone-sensitive prostate cancer by improving overall survival in comparison with androgen deprivation therapy alone. Furthermore, recent data concerning the efficacy of three different androgen receptor-targeting agents in patients with nonmetastatic castration-resistant prostate cancer have opened up new scenarios for future patients' management. Defining the best sequencing strategies for men with prostate cancer is a currently unmet medical need, and choosing treatment is often challenging for clinicians because of the lack of direct comparisons of the available agents. The aim of this paper is to provide a comprehensive review of the literature concerning current sequencing strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento 38112, Italy
| | - Francesca Maines
- Department of Medical Oncology, Santa Chiara Hospital, Trento 38112, Italy
| | | | - Antonello Veccia
- Department of Medical Oncology, Santa Chiara Hospital, Trento 38112, Italy
| | - Carlo Messina
- Department of Medical Oncology, Santa Chiara Hospital, Trento 38112, Italy
| |
Collapse
|
32
|
Shiota M, Ushijima M, Imada K, Kashiwagi E, Takeuchi A, Inokuchi J, Tatsugami K, Kajioka S, Eto M. Cigarette smoking augments androgen receptor activity and promotes resistance to antiandrogen therapy. Prostate 2019; 79:1147-1155. [PMID: 31077419 DOI: 10.1002/pros.23828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cigarette smoking is associated with worse outcomes in prostate cancer, whose growth is dependent on androgen receptor (AR) signaling. We aimed to elucidate the biological effect of cigarette smoking on AR signaling and its clinical influence on oncological outcome. METHODS Gene expression levels after exposure to tobacco smoke condensate (TSC) were evaluated by quantitative real-time polymerase chain reaction and Western blot analysis in prostate cancer cells. Cellular sensitivities to enzalutamide and docetaxel after TSC exposure were evaluated using a prostate cancer cell proliferation assay. Prognosis was compared between current smokers and nonsmokers when treated with AR-axis-targeting (ARAT) agent enzalutamide and docetaxel. RESULTS Expression of AR variants as well as prostate-specific antigen was augmented after TSC exposure, which occurred after Akt phosphorylation. These inductions were suppressed by Akt inhibitor LY294002 as well as antioxidant N-acetylcysteine. Consistently, TSC exposure augmented cellular resistance to enzalutamide. In clinical data, cigarette smoking was associated with worse progression-free survival and cancer-specific survival when patients with prostate cancer were treated with ARAT agents but not docetaxel. CONCLUSIONS It was suggested that cigarette smoking leads to detrimental oncological outcome when prostate cancer patients are treated with ARAT agents through induction of aberrant AR signaling. Accordingly, we recommend that patients with advanced prostate cancer should refrain from cigarette smoking.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Imada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Honda M, Kimura T, Kamata Y, Tashiro K, Kimura S, Koike Y, Sato S, Yorozu T, Furusato B, Takahashi H, Kiyota H, Egawa S. Differential expression of androgen receptor variants in hormone-sensitive prostate cancer xenografts, castration-resistant sublines, and patient specimens according to the treatment sequence. Prostate 2019; 79:1043-1052. [PMID: 30998834 DOI: 10.1002/pros.23816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Androgen receptor variants (AR-vs), especially AR-v7 and AR-v 5, 6, and 7 exon-skipped (AR-v567es), are reportedly key players in the development of castration-resistant prostate cancer (CRPC). We previously established a mouse xenograft model (JDCaP) from a metastatic skin lesion from a Japanese patient with CRPC and that was revealed to exhibit androgen sensitivity. In the present study, we established multiple castration-resistant xenograft models from JDCaP mice to investigate the biological features of CRPC. METHODS Tissue from JDCaP mice was transplanted into male and female nude mice, and after serial passaging, castration-resistant sublines (JDCaP-CR2M and JDCaP-CR4M in male mice, JDCaP-CR2F and JDCaP-CR4F in female mice) were established. We investigated anti-androgen and testosterone sensitivity and the messenger RNA expression pattern of full-length AR and AR-vs. In addition, we compared AR protein levels of patient specimens among primary, local-recurrent, and two skin-metastatic tumors. RESULTS All JDCaP-CR sublines showed continuous growth following the administration of bicalutamide, although the effects of testosterone varied among sublines. Parental JDCaP and JDCaP-CR2M, JDCaP-CR4M, and JDCaP-CR4F sublines expressed AR-v7, whereas JDCaP-CR2F exhibited elevated AR-v567es expression resulting from genomic deletion, which was confirmed by DNA sequencing. Moreover, we confirmed AR-v7 expression in the tumor of the original patient after androgen-deprivation therapy. CONCLUSIONS Each JDCaP-CR subline showed different AR-v-expression patterns, with JDCaP-CR2F expressing AR-v567es due to genomic deletion. Our results indicated that AR-vs emerged after androgen-deprivation therapy and appeared essential for acquisition of castration resistance.
Collapse
Affiliation(s)
- Mariko Honda
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kojiro Tashiro
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoji Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Koike
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shun Sato
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yorozu
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Bungo Furusato
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kiyota
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Xia H, Hu C, Bai S, Lyu J, Zhang BY, Yu X, Zhan Y, Zhao L, Dong Y. Raddeanin A down-regulates androgen receptor and its splice variants in prostate cancer. J Cell Mol Med 2019; 23:3656-3664. [PMID: 30905075 PMCID: PMC6484324 DOI: 10.1111/jcmm.14267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant progression of prostate cancer is a major cause of prostate cancer mortality, and increased expression and activity of the full-length and the splice variants of androgen receptor (AR) have been indicated to drive castration resistance. Consequently, there is an urgent need to develop agents that can target both the full-length and the splice variants of AR for more effective treatment of prostate cancer. In the present study, we showed that raddeanin A (RA), an oleanane-type triterpenoid saponin, suppresses the transcriptional activities of both the full-length and the splice variants of AR. This is attributable to their decreased expression as a result of RA induction of proteasome-mediated degradation and inhibition of the transcription of the AR gene. We further showed the potential of using RA to enhance the growth inhibitory efficacy of docetaxel, the first-line chemotherapy for prostate cancer. This study identifies RA as a new agent to target both the full-length and the splice variants of AR and provides a rationale for further developing RA for prostate cancer treatment.
Collapse
Affiliation(s)
- Hongyan Xia
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Cheng Hu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Shanshan Bai
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
- Department of Structural and Cellular BiologyTulane University School of MedicineTulane Cancer CenterNew OrleansLouisiana
| | - Jing Lyu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | | | - Xianghui Yu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Yang Zhan
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Lijing Zhao
- School of NursingJilin UniversityChangchunChina
| | - Yan Dong
- Department of Structural and Cellular BiologyTulane University School of MedicineTulane Cancer CenterNew OrleansLouisiana
| |
Collapse
|
35
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
36
|
Worroll D, Galletti G, Gjyrezi A, Nanus DM, Tagawa ST, Giannakakou P. Androgen receptor nuclear localization correlates with AR-V7 mRNA expression in circulating tumor cells (CTCs) from metastatic castration resistance prostate cancer patients. Phys Biol 2019; 16:036003. [PMID: 30763921 DOI: 10.1088/1478-3975/ab073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) signaling drives prostate cancer (PC) progression and remains active upon transition to castration resistant prostate cancer (CRPC). Active AR signaling is achieved through the nuclear accumulation of AR following ligand binding and through expression of ligand-independent, constitutively active AR splice variants, such as AR-V7, which is the most commonly expressed variant in metastatic CRPC (mCRPC) patients. Most currently approved PC therapies aim to abrogate AR signaling and activity by inhibiting this ligand-mediated nuclear translocation. In a prospective multi-institutional clinical study, we recently showed that taxane based chemotherapy is also capable of impairing AR nuclear localization (ARNL) in circulating tumor cells (CTCs) from CRPC patients, whereas taxane induced decreases in ARNL were associated with response. Thus, quantitative assessment of ARNL in CTCs can be used to monitor therapeutic response in patients and help guide clinical decisions. Here, we describe the development and implementation of quantitative high throughput (QHT) image analysis algorithms to aid in CTC identification and quantitative assessment of percent ARNL (%ARNL). We applied this algorithm to fifteen CRPC patients at the start of taxane chemotherapy, quantified %ARNL in CTCs, and correlated with expression of AR-V7 mRNA (from CTCs enriched via negative, CD45+ depletion of peripheral blood) and with biochemical (prostate specific antigen; PSA) response to taxane chemotherapy. We found that CTCs from AR-V7 positive patients had higher baseline %ARNL compared to CTCs from AR-V7 negative patients, consistent with the constitutive nuclear localization of AR-V7. In addition, lower %ARNL in CTCs at baseline was associated with biochemical response to taxane chemotherapy. High inter- and intra-patient heterogeneity was also observed. As ARNL is required for active AR signaling, the QHT algorithms described herein can provide prognostic and/or predictive value in future clinical studies.
Collapse
Affiliation(s)
- Daniel Worroll
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
37
|
Tagawa ST, Antonarakis ES, Gjyrezi A, Galletti G, Kim S, Worroll D, Stewart J, Zaher A, Szatrowski TP, Ballman KV, Kita K, Tasaki S, Bai Y, Portella L, Kirby BJ, Saad F, Eisenberger MA, Nanus DM, Giannakakou P. Expression of AR-V7 and ARv 567es in Circulating Tumor Cells Correlates with Outcomes to Taxane Therapy in Men with Metastatic Prostate Cancer Treated in TAXYNERGY. Clin Cancer Res 2019; 25:1880-1888. [PMID: 30301829 PMCID: PMC6432911 DOI: 10.1158/1078-0432.ccr-18-0320] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/11/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Biomarkers aiding treatment optimization in metastatic castration-resistant prostate cancer (mCRPC) are scarce. The presence or absence of androgen receptor (AR) splice variants, AR-V7 and ARv567es, in mCRPC patient circulating tumor cells (CTC) may be associated with taxane treatment outcomes.Experimental Design: A novel digital droplet PCR (ddPCR) assay assessed AR-splice variant expression in CTCs from patients receiving docetaxel or cabazitaxel in TAXYNERGY (NCT01718353). Patient outcomes were examined according to AR-splice variant expression, including prostate-specific antigen (PSA)50 response and progression-free survival (PFS). RESULTS Of the 54 evaluable patients, 36 (67%) were AR-V7+, 42 (78%) were ARv567es+, 29 (54%) were double positive, and 5 (9%) were double negative. PSA50 response rates at any time were numerically higher for AR-V7- versus AR-V7+ (78% vs. 58%; P = 0.23) and for ARv567es- versus ARv567es+ (92% vs. 57%; P = 0.04) patients. When AR-V mRNA status was correlated with change in nuclear AR from cycle 1 day 1 to day 8 (n = 24), AR-V7+ patients (n = 16) had a 0.4% decrease versus a 12.9% and 26.7% decrease in AR-V7-/ARv567es- (n = 3) and AR-V7-/ARv567es+ (n = 5) patients, respectively, suggesting a dominant role for AR-V7 over ARv567es. Median PFS was 12.02 versus 8.48 months for AR-V7- versus AR-V7+ (HR = 0.38; P = 0.01), and 12.71 versus 7.29 months for ARv567es- versus ARv567es+ (HR = 0.37; P = 0.02). For AR-V7+, AR-V7-/ARv567es+, and AR-V7-/ARv567es- patients, median PFS was 8.48, 11.17, and 16.62 months, respectively (P = 0.0013 for trend). CONCLUSIONS Although detection of both CTC-specific AR-V7 and ARv567es by ddPCR influenced taxane outcomes, AR-V7 primarily mediated the prognostic impact. The absence of both variants was associated with the best response and PFS with taxane treatment.See related commentary by Dehm et al., p. 1696.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Docetaxel/pharmacology
- Docetaxel/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Humans
- Kallikreins/blood
- Male
- Middle Aged
- Neoplastic Cells, Circulating/metabolism
- Prednisone/pharmacology
- Prednisone/therapeutic use
- Progression-Free Survival
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Taxoids/pharmacology
- Taxoids/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Scott T Tagawa
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York.
| | | | - Ada Gjyrezi
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | | | - Seaho Kim
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Daniel Worroll
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | | | | | | | - Karla V Ballman
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Katsuhiro Kita
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Shinsuke Tasaki
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Yang Bai
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Luigi Portella
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | - Brian J Kirby
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
- Cornell University, Ithaca, New York
| | - Fred Saad
- University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Mario A Eisenberger
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - David M Nanus
- Weill Cornell Medicine/Meyer Cancer Center, New York, New York
| | | |
Collapse
|
38
|
Shiota M, Dejima T, Yamamoto Y, Takeuchi A, Imada K, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Eto M. Collateral resistance to taxanes in enzalutamide-resistant prostate cancer through aberrant androgen receptor and its variants. Cancer Sci 2018; 109:3224-3234. [PMID: 30051622 PMCID: PMC6172053 DOI: 10.1111/cas.13751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/22/2018] [Indexed: 01/09/2023] Open
Abstract
Currently, the optimal sequential use of androgen receptor (AR) axis-targeted agents and taxane chemotherapies remains undetermined. We aimed to elucidate the resistance status between taxanes and enzalutamide, and the functional role of the AR axis. Enzalutamide-resistant 22Rv1 cells showed collateral resistance to taxanes, including docetaxel and cabazitaxel. However, taxane-resistant cells showed no collateral resistance to enzalutamide; taxane-resistant cells expressed comparable protein levels of full-length AR and AR variants. Knockdown of both full-length AR and AR variants rendered cells sensitive to taxanes, whereas knockdown of AR variants sensitized cells to enzalutamide, but not to taxanes. In contrast, overexpression of full-length AR rendered cells resistant to taxanes. Consistently, the prostate-specific antigen response and progression-free survival in docetaxel chemotherapy were worse in cases with prior use of ARAT agents compared with cases without. Collateral resistance to taxanes was evident after obtaining enzalutamide resistance, and aberrant AR signaling might be involved in taxane resistance.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Dejima
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshiaki Yamamoto
- Department of UrologyGraduate School of MedicineYamaguchi UniversityUbeJapan
| | - Ario Takeuchi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenjiro Imada
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eiji Kashiwagi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Junichi Inokuchi
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Katsunori Tatsugami
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shunichi Kajioka
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory MedicineGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masatoshi Eto
- Department of UrologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
39
|
Armstrong CM, Gao AC. Current strategies for targeting the activity of androgen receptor variants. Asian J Urol 2018; 6:42-49. [PMID: 30775247 PMCID: PMC6363599 DOI: 10.1016/j.ajur.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Current therapies for advanced prostate cancer, such as enzalutamide and abiraterone, focus on inhibiting androgen receptor (AR) activity and reducing downstream signaling pathways to inhibit tumor growth. Unfortunately, cancer cells are very adaptable and, over time, these cells develop mechanisms by which they can circumvent therapeutics. One of the many mechanisms that have been discovered is the generation of AR variants. These variants are generated through alternative splicing of the full length AR and often lack the ligand binding domain. This leads to forms of the AR that are constitutively active that continue to promote prostate cancer cell growth even in the absence of ligand. The high prevalence of AR variants and their role in disease progression have prompted a number of studies investigating ways to inhibited AR variant expression and activity. Among these are the anti-helminthic drug, niclosamide, which selectively promotes degradation of AR variants over full length AR and re-sensitizes anti-androgen resistant prostate cancer cells to treatment with enzalutamide and abiraterone. Other AR variant targeting mechanisms include interfering with AR variant co-activators and the development of drugs that bind to the DNA or N-terminal AR domains, which are retained in most AR variants. The clinical efficacy of treating prostate cancer by targeting AR variants is under investigation in several clinical trials. In this review, we provide an overview of the most relevant AR variants and discuss current AR variant targeting strategies.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California, Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.,VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
40
|
Dalal K, Morin H, Ban F, Shepherd A, Fernandez M, Tam KJ, Li H, LeBlanc E, Lack N, Prinz H, Rennie PS, Cherkasov A. Small molecule-induced degradation of the full length and V7 truncated variant forms of human androgen receptor. Eur J Med Chem 2018; 157:1164-1173. [PMID: 30193215 DOI: 10.1016/j.ejmech.2018.08.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
The androgen receptor (AR) is a hormone-activated transcription factor that regulates the development and progression of prostate cancer (PCa) and represents one of the most well-established drug targets. Currently clinically approved small molecule inhibitors of AR, such as enzalutamide, are built upon a common chemical scaffold that interacts with the AR by the same mechanism of action. These inhibitors eventually fail due to the emergence of drug-resistance in the form of AR mutations and expression of truncated AR splice variants (e.g. AR-V7) that are constitutively active, signalling the progression of the castration-resistant state of the disease. The urgent need therefore continues for novel classes of AR inhibitors that can overcome drug resistance, especially since AR signalling remains important even in late-stage advanced PCa. Previously, we identified a collection of 10-benzylidene-10H-anthracen-9-ones that effectively inhibit AR transcriptional activity, induce AR degradation and display some ability to block recruitment of hormones to the receptor. In the current work, we extended the analysis of the lead compounds, and used methods of both ligand- and structure-based drug design to develop a panel of novel 10-benzylidene-10H-anthracen-9-one derivatives capable of suppressing transcriptional activity and protein expression levels of both full length- and AR-V7 truncated forms of human androgen receptor. Importantly, the developed compounds efficiently inhibited the growth of AR-V7 dependent prostate cancer cell-lines which are completely resistant to all current anti-androgens.
Collapse
Affiliation(s)
- Kush Dalal
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Helene Morin
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Ashley Shepherd
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Michael Fernandez
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Kevin J Tam
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Huifang Li
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Eric LeBlanc
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Nathan Lack
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Helge Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| | - Paul S Rennie
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre (VPC), 2660 Oak Street, Vancouver, British Columbia, V6H3Z6, Canada.
| |
Collapse
|
41
|
Li J, Fu X, Cao S, Li J, Xing S, Li D, Dong Y, Cardin D, Park HW, Mauvais-Jarvis F, Zhang H. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem 2018; 293:12719-12729. [PMID: 29934310 DOI: 10.1074/jbc.ra118.003075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated nuclear receptor that plays a critical role in normal prostate physiology, as well as in the development and progression of prostate cancer. In addition to the classical paradigm in which AR exerts its biological effects in the nucleus by orchestrating the expression of the androgen-regulated transcriptome, there is considerable evidence supporting a rapid, nongenomic activity mediated by membrane-associated AR. Although the genomic action of AR has been studied in depth, the molecular events governing AR transport to the plasma membrane and the downstream AR signaling cascades remain poorly understood. In this study, we report that AR membrane transport is microtubule-dependent. Disruption of the function of kinesin 5B (KIF5B), but not of kinesin C3 (KIFC3), interfered with AR membrane association and signaling. Co-immunoprecipitation and pulldown assays revealed that AR physically interacts with KIF5B and that androgen enhances this interaction. Furthermore, we show that heat shock protein 27 (HSP27) is activated by membrane-associated AR and that HSP27 plays an important role in mediating AR-mediated membrane-to-nuclear signal transduction. Together, these results indicate that AR membrane translocation is mediated by the microtubule cytoskeleton and the motor protein KIF5B. By activating HSP27, membrane-associated AR potentiates the transcriptional activity of nuclear AR. We conclude that disruption of AR membrane translocation may represent a potential strategy for targeting AR signaling therapeutically in prostate cancer.
Collapse
Affiliation(s)
- Jianzhuo Li
- School of Life Sciences, Jilin University, Changchun, China 130012; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, China 130012
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Jing Li
- School of Medicine, Jilin University, Changchun, China 130012
| | - Shu Xing
- School of Life Sciences, Jilin University, Changchun, China 130012
| | - Dongying Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Derrick Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Hee-Won Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Franck Mauvais-Jarvis
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana 70119
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
42
|
Lombard AP, Liu L, Cucchiara V, Liu C, Armstrong CM, Zhao R, Yang JC, Lou W, Evans CP, Gao AC. Intra versus Inter Cross-resistance Determines Treatment Sequence between Taxane and AR-Targeting Therapies in Advanced Prostate Cancer. Mol Cancer Ther 2018; 17:2197-2205. [PMID: 29891490 DOI: 10.1158/1535-7163.mct-17-1269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023]
Abstract
Current treatments for castration resistant prostate cancer (CRPC) largely fall into two classes: androgen receptor (AR)-targeted therapies such as the next-generation antiandrogen therapies (NGAT), enzalutamide and abiraterone, and taxanes such as docetaxel and cabazitaxel. Despite improvements in outcomes, patients still succumb to the disease due to the development of resistance. Further complicating the situation is lack of a well-defined treatment sequence and potential for cross-resistance between therapies. We have developed several models representing CRPC with acquired therapeutic resistance. Here, we utilized these models to assess putative cross-resistance between treatments. We find that resistance to enzalutamide induces resistance to abiraterone and vice versa, but resistance to neither alters sensitivity to taxanes. Acquired resistance to docetaxel induces cross-resistance to cabazitaxel but not to enzalutamide or abiraterone. Correlating responses with known mechanisms of resistance indicates that AR variants are associated with resistance to NGATs, whereas the membrane efflux protein ABCB1 is associated with taxane resistance. Mechanistic studies show that AR variant-7 (AR-v7) is involved in NGAT resistance but not resistance to taxanes. Our findings suggest the existence of intra cross-resistance within a drug class (i.e., within NGATs or within taxanes), whereas inter cross-resistance between drug classes does not develop. Furthermore, our data suggest that resistance mechanisms differ between drug classes. These results may have clinical implications by showing that treatments of one class can be sequenced with those of another, but caution should be taken when sequencing similar classed drugs. In addition, the development and use of biomarkers indicating resistance will improve patient stratification for treatment. Mol Cancer Ther; 17(10); 2197-205. ©2018 AACR.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urology, University of California, Davis, California
| | - Liangren Liu
- Department of Urology, University of California, Davis, California
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Vito Cucchiara
- Department of Urology, University of California, Davis, California
| | - Chengfei Liu
- Department of Urology, University of California, Davis, California
| | | | - Ruining Zhao
- Department of Urology, University of California, Davis, California
- Department of Urology, General Hospital of NingXia Medical University, Ningxia Huizuzizhiqu, China
| | - Joy C Yang
- Department of Urology, University of California, Davis, California
| | - Wei Lou
- Department of Urology, University of California, Davis, California
| | - Christopher P Evans
- Department of Urology, University of California, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Allen C Gao
- Department of Urology, University of California, Davis, California.
- UC Davis Comprehensive Cancer Center, University of California, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
43
|
Lin JZ, Wang ZJ, De W, Zheng M, Xu WZ, Wu HF, Armstrong A, Zhu JG. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget 2018; 8:41064-41077. [PMID: 28455956 PMCID: PMC5522277 DOI: 10.18632/oncotarget.17026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/01/2017] [Indexed: 01/29/2023] Open
Abstract
Resistance to docetaxel is a major clinical problem in advanced prostate cancer. The overexpression of AXL receptor tyrosine kinase (AXL) has been correlated with chemotherapeutic drug resistance. However, the role of AXL expression in docetaxel resistance in prostate cancer is yet unclear. In this study, we demonstrate that AXL is overexpressed and activated independent of Gas6 in docetaxel-resistant prostate cancer cells (PC3-DR and DU145-DR). Moreover, we show that forced overexpression of AXL in PC3 and DU145 cells is sufficient to induce resistance to docetaxel in these cell lines. Notably, genetic or pharmacologic inhibition of AXL in the resistant models suppressed cell proliferation, migration, invasion, and tumor growth, and these effects were significantly augmented when AXL inhibition was combined with docetaxel treatment. Mechanistically, we found that AXL inhibition led to reversion of the epithelial-mesenchymal transition (EMT) phenotype and decreased the expression of ATP-binding cassette B1 (ABCB1). Overall, our results identify AXL as an important mediator of docetaxel resistance in prostate cancer. We propose that AXL-targeted therapy, in combination with docetaxel, has the potential to improve the response to docetaxel therapy and reduce resistance induced by prolonged docetaxel therapy in prostate cancer.
Collapse
Affiliation(s)
- Jian-Zhong Lin
- Department of Urology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Zeng-Jun Wang
- Department of Urology, The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei De
- Department of Biochemistry and Molecular biology, Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei-Zhang Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Fei Wu
- Department of Urology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Alex Armstrong
- Department of Pharmacology, University of Manchester, Manchester, England
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Inhibiting autophagy overcomes docetaxel resistance in castration-resistant prostate cancer cells. Int Urol Nephrol 2018; 50:675-686. [PMID: 29460131 PMCID: PMC5878207 DOI: 10.1007/s11255-018-1801-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022]
Abstract
Background This study investigates the docetaxel-resistant mechanism and explores the effect of tea polyphenols (TP) on autophagy and its related mechanism in human castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145. Methods Immunofluorescence assay and annexin V-FITC/PI double staining flow cytometry were used to analyze the apoptosis and autophagy of PC3 and DU145 cells. The expression of autophagy-related proteins was detected by western bolt. Results Docetaxel could induce autophagy and apoptosis, together with the expression increase in p-JNK, p-Bcl-2 and Beclin1. The level of autophagy was remarkably decreased, but apoptosis was increased after combining with TP. In addition, the expression of p-mTOR was increased after combining with TP. Conclusion Docetaxel induces protective autophagy in CRPC cells by JNK pathway activation and then Bcl-2 phosphorylation and Beclin1 dissociation. TP activates mTOR pathway, which ultimately inhibits docetaxel-induced autophagy and improves therapeutic efficacy of docetaxel in CRPC cells.
Collapse
|
45
|
Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect 2017; 6:R146-R161. [PMID: 29030409 PMCID: PMC5640574 DOI: 10.1530/ec-17-0118] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PC) remains a leading cause of cancer-related deaths among men worldwide, despite continuously improved treatment strategies. Patients with metastatic disease are treated by androgen deprivation therapy (ADT) that with time results in the development of castration-resistant prostate cancer (CRPC) usually established as metastases within bone tissue. The androgen receptor (AR) transcription factor is the main driver of CRPC development and of acquired resistance to drugs given for treatment of CRPC, while a minority of patients have CRPC that is non-AR driven. Molecular mechanisms behind epithelial AR reactivation in CRPC include AR gene amplification and overexpression, AR mutations, expression of constitutively active AR variants, intra-tumoural and adrenal androgen synthesis and promiscuous AR activation by other factors. This review will summarize AR alterations of clinical relevance for patients with CRPC, with focus on constitutively active AR variants, their possible association with AR amplification and structural rearrangements as well as their ability to predict patient resistance to AR targeting drugs. The review will also discuss AR signalling in the tumour microenvironment and its possible relevance for metastatic growth and therapy.
Collapse
Affiliation(s)
- Emma Jernberg
- Department of Medical biosciencesUmeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical biosciencesUmeå University, Umeå, Sweden
| | | |
Collapse
|
46
|
Visconti R, Grieco D. Fighting tubulin-targeting anticancer drug toxicity and resistance. Endocr Relat Cancer 2017; 24:T107-T117. [PMID: 28808045 DOI: 10.1530/erc-17-0120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023]
Abstract
Tubulin-targeting drugs, like taxanes and vinca alkaloids, are among the most effective anticancer therapeutics used in the clinic today. Specifically, anti-microtubule cancer drugs (AMCDs) have proven to be effective in the treatment of castration-resistant prostate cancer and triple-negative breast cancer. AMCDs, however, have limiting toxicities that include neutropenia and neurotoxicity, and, in addition, tumor cells can become resistant to the drugs after long-term use. Co-targeting mitotic progression/slippage with inhibition of the protein kinases WEE1 and MYT1 that regulate CDK1 kinase activity may improve AMCD efficacy, reducing the acquisition of resistance by the tumor and side effects from the drug and/or its vehicle. Other possible treatments that improve outcomes in the clinic for these two drug-resistant cancers, including new formulations of the AMCDs and pursuing different molecular targets, will be discussed.
Collapse
Affiliation(s)
- Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology 'G. Salvatore'Italian National Council of Research, Napoli, Italy
| | - Domenico Grieco
- Ceinge-Biotecnologie AvanzateNapoli, Italy
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
47
|
Targeting MRP4 expression by anti-androgen treatment reverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer. Oncol Lett 2017; 14:1748-1756. [PMID: 28789405 DOI: 10.3892/ol.2017.6357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that docetaxel (DTX) may improve the overall survival of patients with castration-resistant prostate cancer (CRPC). However, its effectiveness is limited with time, and tumor escape is eventually inevitable. DTX resistance is the main reason for the failure of chemotherapy for CRPC. In the present study, the expression status of multidrug resistance protein 4 (MRP4) in DTX-resistant prostate cancer cells was investigated, and it was explored whether anti-androgen treatment may inhibit MRP4 expression and overcome DTX resistance. DTX-resistant C4-2/D cells were established by exposing DTX-sensitive C4-2/S cells to gradually increasing concentrations of DTX. MRP4 gene expression and the effect of androgen signaling on its expression were assessed by reverse transcription-polymerase chain reaction and western blotting. Intracellular and extracellular concentrations of DTX were detected by high-performance liquid chromatography. Anti-androgen treatment effects on DTX sensitivity were determined by a clonogenic test and an MTT cytotoxicity assay. MRP4 was overexpressed in C4-2/D cells, while its expression was barely detectable in C4-2/S cells. MRP4 expression levels were elevated in C4-2/D cells by dihydrotestosterone, whereas they were blocked by anti-androgen bicalutamide (BKL) treatment. Intracellular and extracellular DTX concentrations in C4-2/D cells were associated with MRP4 levels. The downregulation of MRP4 by BKL increased the intracellular concentration of DTX in C4-2/D cells and re-sensitized C4-2/D cells to DTX. These results indicated that overexpression of MRP4 mediates acquired DTX resistance, and suggest that targeting MRP4 expression by anti-androgen treatment may reverse DTX-resistant prostate cancer cells to DTX chemotherapy.
Collapse
|
48
|
Pu H, Begemann DE, Kyprianou N. Aberrant TGF-β Signaling Drives Castration-Resistant Prostate Cancer in a Male Mouse Model of Prostate Tumorigenesis. Endocrinology 2017; 158:1612-1622. [PMID: 28324007 PMCID: PMC5460943 DOI: 10.1210/en.2017-00086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
The androgen receptor (AR) plays a critical role as a driver of castration-resistant prostate cancer (CRPC). Our previous studies demonstrated that disruption of transforming growth factor-β (TGF-β) signaling via introduction of dominant-negative transforming growth factor-β type II receptor (DNTGFβRII) in the prostate epithelium of transgenic adenocarcinoma of the prostate mice accelerated tumor. This study investigated the consequences of disrupted TGF-β signaling on prostate tumor growth under conditions of castration-induced androgen deprivation in the preclinical model of DNTGFβRII. Our results indicate that in response to androgen deprivation therapy (ADT) the proliferative index in prostate tumors from DNTGFβRII mice was higher compared with prostate tumors from TGFβRII wild-type (WT) mice, whereas there was a reduced incidence of apoptosis in tumors from DNTGFβRII. Protein and gene expression profiling revealed that tumors from DNTGFβRII mice exhibit a strong nuclear AR localization among the prostate tumor epithelial cells and increased AR messenger RNA after ADT. In contrast, TGFβRII WT mice exhibited a marked loss in nuclear AR in prostate tumor acini (20 weeks), followed by a downregulation of AR and transmembrane protease serine 2 messenger RNA. There was a significant increase in nuclear AR and activity in prostate tumors from castrate DNTGFβRII compared with TGFβRII WT mice. Consequential to aberrant TGF-β signaling, ADT enhanced expression and nuclear localization of Smad4 and β-catenin. Our findings support that under castrate conditions, aberrant TGF-β signaling leads to AR activation and β-catenin nuclear localization, an adaptation mechanism contributing to emergence of CRPC. The work defines a potentially significant new targeting platform for overcoming therapeutic resistance in CRPC.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Hong Pu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Diane E. Begemann
- Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
- Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
- Department of Molecular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
49
|
Liu C, Armstrong CM, Lou W, Lombard AP, Cucchiara V, Gu X, Yang JC, Nadiminty N, Pan CX, Evans CP, Gao AC. Niclosamide and Bicalutamide Combination Treatment Overcomes Enzalutamide- and Bicalutamide-Resistant Prostate Cancer. Mol Cancer Ther 2017; 16:1521-1530. [PMID: 28500234 DOI: 10.1158/1535-7163.mct-16-0912] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Activation of the androgen receptor (AR) and its splice variants is linked to advanced prostate cancer and drives resistance to antiandrogens. The roles of AR and AR variants in the development of resistance to androgen deprivation therapy (ADT) and bicalutamide treatment, however, are still incompletely understood. To determine whether AR variants play a role in bicalutamide resistance, we developed bicalutamide-resistant LNCaP cells (LNCaP-BicR) and found that these resistant cells express significantly increased levels of AR variants, particularly AR-V7, both at the mRNA and protein levels. Exogenous expression of AR-V7 in bicalutamide-sensitive LNCaP cells confers resistance to bicalutamide treatment. Knockdown of AR-V7 in bicalutamide- and enzalutamide-resistant CWR22Rv1, enzalutamide-resistant C4-2B (C4-2B MDVR), and LNCaP-BicR cells reversed bicalutamide resistance. Niclosamide, a potent inhibitor of AR variants, significantly enhanced bicalutamide treatment. Niclosamide and bicalutamide combination treatment not only suppressed AR and AR variants expression and inhibited their recruitment to the PSA promoter, but also significantly induced apoptosis in bicalutamide- and enzalutamide-resistant CWR22Rv1 and C4-2B MDVR cells. In addition, combination of niclosamide with bicalutamide inhibited the growth of enzalutamide-resistant tumors. In summary, our results demonstrate that AR variants, particularly AR-V7, drive bicalutamide resistance and that targeting AR-V7 with niclosamide can resensitize bicalutamide-resistant cells to bicalutamide treatment. Furthermore, combination of niclosamide with bicalutamide inhibits enzalutamide resistant tumor growth, suggesting that the combination of niclosamide and bicalutamide could be a potential cost-effective strategy to treat advanced prostate cancer in patients, including those who fail to respond to enzalutamide therapy. Mol Cancer Ther; 16(8); 1521-30. ©2017 AACR.
Collapse
Affiliation(s)
- Chengfei Liu
- Department of Urology, University of California Davis, California
| | | | - Wei Lou
- Department of Urology, University of California Davis, California
| | - Alan P Lombard
- Department of Urology, University of California Davis, California
| | - Vito Cucchiara
- Department of Urology, University of California Davis, California
| | - Xinwei Gu
- Department of Urology, University of California Davis, California
| | - Joy C Yang
- Department of Urology, University of California Davis, California
| | | | - Chong-Xian Pan
- Department of Medicine, University of California Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, California.,VA Northern California Health Care System, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, California
| | - Allen C Gao
- Department of Urology, University of California Davis, California. .,UC Davis Comprehensive Cancer Center, University of California Davis, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
50
|
Liu L, Lou N, Li X, Xu G, Ruan H, Xiao W, Qiu B, Bao L, Yuan C, Huang X, Wang K, Cao Q, Chen K, Yang H, Zhang X. Calpain and AR-V7: Two potential therapeutic targets to overcome acquired docetaxel resistance in castration-resistant prostate cancer cells. Oncol Rep 2017; 37:3651-3659. [DOI: 10.3892/or.2017.5623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
|