1
|
Salzler R, DiLillo DJ, Saotome K, Bray K, Mohrs K, Hwang H, Cygan KJ, Shah D, Rye-Weller A, Kundu K, Badithe A, Zhang X, Garnova E, Torres M, Dhanik A, Babb R, Delfino FJ, Thwaites C, Dudgeon D, Moore MJ, Meagher TC, Decker CE, Owczarek T, Gleason JA, Yang X, Suh D, Lee WY, Welsh R, MacDonald D, Hansen J, Guo C, Kirshner JR, Thurston G, Huang T, Franklin MC, Yancopoulos GD, Lin JC, Macdonald LE, Murphy AJ, Chen G, Olsen O, Olson WC. CAR T cells based on fully human T cell receptor-mimetic antibodies exhibit potent antitumor activity in vivo. Sci Transl Med 2025; 17:eado9371. [PMID: 40138458 DOI: 10.1126/scitranslmed.ado9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/19/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Monoclonal antibody therapies have transformed the lives of patients across a diverse range of diseases. However, antibodies can usually only access extracellular proteins, including the extracellular portions of membrane proteins that are expressed on the cell surface. In contrast, T cell receptors (TCRs) survey the entire cellular proteome when processed and presented as peptides in association with human leukocyte antigen (pHLA complexes). Antibodies that mimic TCRs by recognizing pHLA complexes have the potential to extend the reach of antibodies to this larger pool of targets and provide increased binding affinity and specificity. A major challenge in developing TCR mimetic (TCRm) antibodies is the limited sequence differences between the target pHLA complex relative to the large global repertoire of pHLA complexes. Here, we provide a comprehensive strategy for generating fully human TCRm antibodies across multiple HLA alleles, beginning with pHLA target discovery and validation and culminating in the engineering of TCRm-based chimeric antigen receptor T cells with potent antitumor activity. By incorporating mass spectrometry, bioinformatic predictions, HLA-humanized mice, antibody screening, and cryo-electron microscopy, we have established a pipeline to identify additional pHLA complex-specific antibodies with therapeutic potential.
Collapse
Affiliation(s)
- Robert Salzler
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Haun Hwang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kamil J Cygan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Darshit Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Anna Rye-Weller
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kunal Kundu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoqin Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Frank J Delfino
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Courtney Thwaites
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John A Gleason
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoran Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Richard Welsh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Douglas MacDonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jessica R Kirshner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Olav Olsen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
2
|
Li S, Zhou Y, Wang H, Qu G, Zhao X, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. Advances in CAR optimization strategies based on CD28. Front Immunol 2025; 16:1548772. [PMID: 40181986 PMCID: PMC11966486 DOI: 10.3389/fimmu.2025.1548772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which utilizes genetic engineering techniques to modify T-cells to achieve specific targeting of cancer cells, has made significant breakthroughs in cancer treatment in recent years. All marketed CAR-T products are second-generation CAR-T cells containing co-stimulatory structural domains, and co-stimulatory molecules are critical for CAR-T cell activation and function. Although CD28-based co-stimulatory molecules have demonstrated potent cytotoxicity in the clinical application of CAR-T cells, they still suffer from high post-treatment relapse rates, poor efficacy durability, and accompanying severe adverse reactions. In recent years, researchers have achieved specific results in enhancing the anti-tumor function of CD28 by mutating its signaling motifs, combining the co-stimulatory structural domains, and modifying other CAR components besides co-stimulation. This paper reviewed the characteristics and roles of CD28 in CAR-T cell-mediated anti-tumor signaling and activation. We explored potential strategies to enhance CAR-T cell efficacy and reduce side effects by optimizing CD28 motifs and CAR structures, aiming to provide a theoretical basis for further clinical CAR-T cell therapy development.
Collapse
Affiliation(s)
- Sijin Li
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yusi Zhou
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Hairong Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Gexi Qu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Zhao
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhangchun Guan
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Country Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Hernandez-Gamarra M, Salgado-Roo A, Dominguez E, Goiricelaya Seco EM, Veiga-Rúa S, Pedrera-Garbayo LF, Carracedo Á, Allegue C. CARTAR: a comprehensive web tool for identifying potential targets in chimeric antigen receptor therapies using TCGA and GTEx data. Brief Bioinform 2024; 25:bbae326. [PMID: 38975894 PMCID: PMC11229032 DOI: 10.1093/bib/bbae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) therapy has emerged as a ground-breaking advancement in cancer treatment, harnessing the power of engineered human immune cells to target and eliminate cancer cells. The escalating interest and investment in CAR therapy in recent years emphasize its profound significance in clinical research, positioning it as a rapidly expanding frontier in the field of personalized cancer therapies. A crucial step in CAR therapy design is choosing the right target as it determines the therapy's effectiveness, safety and specificity against cancer cells, while sparing healthy tissues. Herein, we propose a suite of tools for the identification and analysis of potential CAR targets leveraging expression data from The Cancer Genome Atlas and Genotype-Tissue Expression Project, which are implemented in CARTAR website. These tools focus on pinpointing tumor-associated antigens, ensuring target selectivity and assessing specificity to avoid off-tumor toxicities and can be used to rationally designing dual CARs. In addition, candidate target expression can be explored in cancer cell lines using the expression data for the Cancer Cell Line Encyclopedia. To our best knowledge, CARTAR is the first website dedicated to the systematic search of suitable candidate targets for CAR therapy. CARTAR is publicly accessible at https://gmxenomica.github.io/CARTAR/.
Collapse
Affiliation(s)
- Miguel Hernandez-Gamarra
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
| | - Alba Salgado-Roo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
| | - Eduardo Dominguez
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
| | | | - Sara Veiga-Rúa
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
| | - Lucía F Pedrera-Garbayo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
| | - Ángel Carracedo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Travesía da Choupana, 15706 A Coruña, Spain
- CB06/07/0088, Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Av. Monforte de Lemos, 28029 Madrid, Spain
| | - Catarina Allegue
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Av. Barcelona, 15706 A Coruña, Spain
- C005, Instituto de Investigación Sanitaria de Santiago (IDIS), Travesía da Choupana, 15706 A Coruña, Spain
- CB06/07/0088, Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Av. Monforte de Lemos, 28029 Madrid, Spain
| |
Collapse
|
4
|
Han Z, Ma X, Ma G. Improving cell reinfusion to enhance the efficacy of chimeric antigen receptor T-cell therapy and alleviate complications. Heliyon 2024; 10:e28098. [PMID: 38560185 PMCID: PMC10981037 DOI: 10.1016/j.heliyon.2024.e28098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapy (ACT) is a rapidly expanding area within the realm of transfusion medicine, focusing on the delivery of lymphocytes to trigger responses against tumors, viruses, or inflammation. This area has quickly evolved from its initial promise in immuno-oncology during preclinical trials to commercial approval of chimeric antigen receptor (CAR) T-cell therapies for leukemia and lymphoma (Jun and et al., 2018) [1]. CAR T-cell therapy has demonstrated success in treating hematological malignancies, particularly relapsed/refractory B-cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma (Qi and et al., 2022) [2]. However, its success in treating solid tumors faces challenges due to the short-lived presence of CAR-T cells in the body and diminished T cell functionality (Majzner and Mackall, 2019) [3]. CAR T-cell therapy functions by activating immune effector cells, yet significant side effects and short response durations remain considerable obstacles to its advancement. A prior study demonstrated that the therapeutic regimen can induce systemic inflammatory reactions, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), tumor lysis syndrome (TLS), off-target effects, and other severe complications. This study aims to explore current research frontiers in this area.
Collapse
Affiliation(s)
- Zhihao Han
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Xiaoqin Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Guiyue Ma
- Department of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
5
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 PMCID: PMC12047531 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
6
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
8
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
9
|
CAR-T cells for cancer immunotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chimeric Antigen Receptor T-Cell (CAR T-Cell) Therapy for Primary and Secondary Central Nervous System Lymphoma: A Systematic Review of Literature. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:15-21. [PMID: 36328891 DOI: 10.1016/j.clml.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Relapsed/refractory central nervous system (CNS) lymphoma, whether primary or secondary, is associated with poor prognosis with currently available treatment modalities, including high-dose chemotherapy-autologous stem cell transplantation. The pivotal ZUMA-1 and JULIET trials that led to FDA approval of Axicabtagene ciloleucel and Tisagenlecleucel for relapsed refractory large cell lymphoma excluded patients with CNS involvement due to concerns of increased toxicity. However, TRANSCEND study for Lisocabtagene maraleucel in relapsed refractory large cell lymphoma allowed patients with CNS involvement and reported manageable CNS toxicities in these patients. In the real-world experience, chimeric antigen receptor T-cell (CAR T) therapy has been deemed safe and effective for these patients with poor prognosis. In this systematic review, we analyzed available literature to evaluate the role of CAR T-cell therapy in both primary and secondary CNS lymphoma using Embase, Cochrane, and PubMed databases. A total of 14 studies, including 8 retrospective analyses and 6 prospective studies/clinical trials, were included in the qualitative synthesis to study the safety and efficacy of CAR T. Based on our analysis, CAR T-cell therapy appears to be associated with reasonable efficacy and a manageable safety for primary and secondary CNS lymphoma.
Collapse
|
12
|
Chen LR, Li YJ, Zhang Z, Wang P, Zhou T, Qian K, Fan YX, Guo Y, He GH, Shen L. Cardiovascular effects associated with chimeric antigen receptor T cell therapy in cancer patients: A meta-analysis. Front Oncol 2022; 12:924208. [PMID: 36439485 PMCID: PMC9682079 DOI: 10.3389/fonc.2022.924208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/19/2022] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Although numerous studies confirmed the marked efficacy of chimeric antigen receptor T cells (CAR-T cells) in many hematologic malignancies, severe cardiovascular toxicities remain to be a major obstacle when incorporating this technology. Furthermore, previous individual investigations regarding the cardiovascular toxicities of CAR-T cell therapy also reported controversial conclusions. Therefore, a meta-analysis was performed to further evaluate the impacts of CAR-T cell therapy on cardiovascular toxicities. METHODS The PubMed, Embase, Web of Science, and ClinicalTrials.gov databases were searched for eligible studies up to April 2022. All analyses were carried out using the R 4.1.0 software. RESULTS Eventually, 25 related studies consisting of 2,059 patients were enrolled in the current meta-analysis. We discovered that the pooled incidence rate of the all-cause mortality rate was 14.1% and that the pooled incidence rates of overall cardiovascular (CV) events and CV events with cytokine release syndrome (CRS) grade ≥ 2 were 25.6% and 14.2%, respectively. The pooled incidence of hypotension was 28.6%. Further analysis showed that the incidence rates of arrhythmias, cardiovascular dysfunction, heart failure (HF), CV deaths, acute coronary syndrome (ACS), cardiomyopathy, cardiac arrest, and other CV events were 19.2%, 8.0%, 5.3%, 1.8%, 2.5%, 2.9%, 1.3%, and 1.9%, respectively. CONCLUSION Cancer patients treated with CAR-T cell therapy were at risk for cardiovascular toxicities, of which the most common cardiovascular events were arrhythmias, cardiovascular dysfunction, and heart failure. These findings would contribute to achieving more rational and individualized use of CAR-T cells in clinical treatment.
Collapse
Affiliation(s)
- Li-Rong Chen
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Ya-Jia Li
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of People’s Liberation Army (PLA), Beijing, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Tao Zhou
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Kai Qian
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yu-Xin Fan
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yu Guo
- College of Pharmacy, Dali University, Dali, China
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Lei Shen
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
13
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133230. [PMID: 35805001 PMCID: PMC9265066 DOI: 10.3390/cancers14133230] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
Single-targeted chimeric antigen receptor (CAR) T cells tremendously improve outcomes for patients with relapsed/refractory hematological malignancies and are considered a breakthrough therapy. However, over half of treated patients experience relapse or refractory disease, with antigen escape being one of the main contributing mechanisms. Dual-targeting CAR T-cell therapy is being developed to minimize the risk of relapse or refractory disease. Preclinical and clinical data on five categories of dual-targeting CAR T-cell therapies and approximately fifty studies were summarized to offer insights and support the development of dual-targeting CAR T-cell therapy for hematological malignancies. The clinical efficacy (durability and survival) is validated and the safety profiles of dual-targeting CAR T-cell therapy are acceptable, although there is still room for improvement in the bispecific CAR structure. It is one of the best approaches to optimize the bispecific CAR structure by boosting T-cell transduction efficiency and leveraging evidence from preclinical activity and clinical efficacy.
Collapse
|
15
|
Cao XY, Li JJ, Lu PH, Liu KY. Efficacy and safety of CD19 CAR-T cell therapy for acute lymphoblastic leukemia patients relapsed after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2022; 116:315-329. [PMID: 35737192 DOI: 10.1007/s12185-022-03398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapy for B-cell acute lymphoblastic leukemia (B-ALL). Although allo-HSCT can be curative for some B-ALL patients, relapse still occurs in some patients following allo-HSCT. Conventional chemotherapies show poor efficacy in B-ALL patients who have relapsed following allo-HSCT. In the past decade, chimeric antigen receptor T-cell (CAR-T) therapy has shown to be efficacious for B-ALL patients. In particular, autologous CD19 CAR-T therapy results in a high remission rate. However, there are challenges in the use of CD19 CAR-T therapy for B-ALL patients who have relapsed following allo-HSCT, including the selection of CAR-T cell source for manufacturing, post-CAR-T graft-versus-host disease (GVHD) risk, maintenance of long-term efficacy after remission through CAR-T therapy, and whether a consolidative second transplant is needed. In this review, we describe the current status of CAR-T therapy for B-ALL patients who have relapsed following allo-HSCT, the advantages and disadvantages of various CAR-T cell sources, the characteristics and management of GVHD following CAR-T therapy, and the risk factors that may affect long-term efficacy.
Collapse
Affiliation(s)
- Xing-Yu Cao
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Jing-Jing Li
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Pei-Hua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China. .,Beijing Lu Daopei Institute of Hematology, Beijing, China.
| | - Kai-Yan Liu
- Beijing Lu Daopei Institute of Hematology, Beijing, China. .,Peking University People's Hospital, Beijing, China.
| |
Collapse
|
16
|
Lian H, Jiang J, Wang Y, Yu X, Zheng R, Long J, Zhou M, Zhou S, Wei C, Zhao A, Gao J. A novel multimeric sCD19-streptavidin fusion protein for functional detection and selective expansion of CD19-targeted CAR-T cells. Cancer Med 2022; 11:2978-2989. [PMID: 35621033 PMCID: PMC9359867 DOI: 10.1002/cam4.4657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Background CARs are engineered receptors comprising an immunoglobulin single‐chain variable fragment (scFv) that identifies and binds to the target antigen, a transmembrane domain, and an intracellular T‐cell signaling domain. CD19 is a B lineage‐specific transmembrane glycoprotein and is expressed in more than 95% of B‐cell malignancies. Streptavidin (SA) is a homo‐tetrameric protein derived from Streptomyces avidinii, which can bind four biotin molecules with an extremely high affinity at a Kd value of 10‐15 M. Aims The aim of the study is to generate a novel soluble multimeric fusion protein, sCD19‐streptavidin (sCD19‐SA) for functional detection and selective expansion of CD19‐targeted CAR‐T cells. Methods The fusion proteins CD19‐SA was expressed in CHO cells and purified by use of Ni‐nitrilotriacetic acid agarose beads. Results A novel fusion protein (sCD19‐SA) was generated, consisting of the extracellular domain of human CD19 and the core region of SA, and could be used to functionally detect CD19‐targeted CAR‐T cells. Furthermore, this protein was demonstrated to form multimers to activate CAR‐T cells to induce their selective expansion. Importantly, sCD19‐SA‐stimulated CD19‐targeted CAR‐T cells could improve antitumor effects in vivo. Conclusions Our study has highlighted the potential of utilizing antigen‐SA fusion proteins such as sCD19‐SA for CAR‐T therapy for the functional detection of CAR expression and selective expansion of CAR‐T cells.
Collapse
Affiliation(s)
- Hui Lian
- The First People's Hospital of Linping District, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Yao Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Yu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Long
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjie Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shirong Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Qixin Biotech, Wenzhou, China
| |
Collapse
|
17
|
Atilla PA, Atilla E. Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies. Transl Oncol 2022; 22:101459. [PMID: 35617812 PMCID: PMC9136177 DOI: 10.1016/j.tranon.2022.101459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
Some patients may experience resistance to CD19 CAR T cell and BCMA CAR T cell therapies or relapse after treatment. Mechanisms of resistance to CAR T cell therapies may be related to CAR structure, T cell factors or tumor associated factors. The strategies to overcome the resistance would allow CD19 CAR T cells or BCMA CAR T cell to be applied with a broader perspective.
Chimeric antigen receptor T (CAR T) cell therapy is a new treatment paradigm that has revolutionized the treatment of CD19-positive B cell malignancies and BCMA-positive plasma cell malignancies. The response rates are highly impressive in comparison to historical cohorts, but the responses are not durable. The most recent results from pivotal trials show that current CAR T cell products fail to demonstrate optimal long-term disease control. Resistance to CAR T cells is related to CAR structure, T cell factors, tumor factors and the immunosuppressive microenvironment. Novel strategies are needed following failure with CAR T cell treatment. In this review, we discuss the resistance mechanisms to CAR T cell treatment according to disease and the emerging strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Erden Atilla
- Department of Hematology, Mersin City Hospital, Mersin, Turkey.
| |
Collapse
|
18
|
Xu Q, Xue L, An F, Xu H, Wang L, Geng L, Zhang X, Song K, Yao W, Wan X, Tong J, Liu H, Liu X, Zhu X, Zhai Z, Sun Z, Wang X. Impact of Consolidative Unrelated Cord Blood Transplantation on Clinical Outcomes of Patients With Relapsed/Refractory Acute B Lymphoblastic Leukemia Entering Remission Following CD19 Chimeric Antigen Receptor T Cells. Front Immunol 2022; 13:879030. [PMID: 35558072 PMCID: PMC9086894 DOI: 10.3389/fimmu.2022.879030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background While chimeric antigen receptor (CAR)-T cell therapy is becoming widely used in hematological malignancies with remarkable remission rate, their high recurrence remains an obstacle to overcome. The role of consolidative transplantation following CAR-T cell-mediated remission remains controversial. We conducted a retrospective study to explore whether bridging to unrelated cord blood transplantation (UCBT) could improve the prognosis of patients entering remission after CAR-T therapy with different characteristics through subgroup analyses. Methods We reviewed 53 patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) successfully infused with CD19 CAR-T cells and achieved complete remission (CR). In this study, 25 patients received consolidative UCBT (UCBT group) and 28 patients did not accept any intervention until relapse (non-UCBT group). Subgroup analysis on prognosis was then performed according to gender, age, number of previous relapses, tumor burden, presence of poor prognostic markers, and structure of CAR. Results Compared with the non-UCBT group, patients who underwent consolidative UCBT had better median event-free survival (EFS; 12.3 months vs. 6.2 months; P = 0.035) and relapse-free survival (RFS; 22.3 months vs. 7.2 months; P = 0.046), while no significant difference was found in overall survival (OS; 30.8 months vs. 15.3 months; P = 0.118). Subsequent multivariate analysis revealed that bridging to UCBT was a protective factor for RFS (P = 0.048) but had no significant effect on EFS (P = 0.205) or OS (P = 0.541). In the subgroup analysis, UCBT has an added benefit in patients with specific characteristics. Patients who experienced ≥2 relapses or with sustained non-remission (NR) showed better RFS (P = 0.025) after UCBT. Better EFS was seen in patients with poor prognostic markers (P = 0.027). In the subgroup with pre-infusion minimal residual disease (MRD) ≥5% or with extramedullary disease (EMD), UCBT significantly prolonged EFS (P = 0.009), RFS (P = 0.017), and OS (P = 0.026). Patients with occurrence of acute graft-versus-host disease (aGVHD) appeared to have a longer duration of remission (P = 0.007). Conclusion Consolidative UCBT can, to some extent, improve clinical outcomes of patients with R/R B-ALL entering remission following CD19 CAR-T therapy, especially in patients with more recurrences before treatment, patients with poor prognostic markers, and patients with a higher tumor burden. The occurrence of aGVHD after UCBT was associated with better RFS.
Collapse
Affiliation(s)
- Qianwen Xu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Xue
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Furun An
- Hematology Department, The Second Hospital of Anhui Medical University (SHAMU), Hefei, China
| | - Hui Xu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liangquan Geng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuhan Zhang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Yao
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Wan
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Tong
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huilan Liu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhimin Zhai
- Hematology Department, The Second Hospital of Anhui Medical University (SHAMU), Hefei, China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xingbing Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Fludarabine Exposure Predicts Outcome after CD19 CAR T-Cell Therapy in Children and Young Adults with Acute Leukemia. Blood Adv 2022; 6:1969-1976. [PMID: 35134115 PMCID: PMC9006280 DOI: 10.1182/bloodadvances.2021006700] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
A cumulative fludarabine AUCT0−∞ ≥14 mg*h/L correlates with improved LFS after CD19 CAR T-cell infusion. Clinical outcome in patients receiving CD19 CAR T cells might be improved by optimizing fludarabine exposure in the lymphodepleting regimen.
The addition of fludarabine to cyclophosphamide as a lymphodepleting regimen prior to CD19 chimeric antigen receptor (CAR) T-cell therapy significantly improved outcomes in patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL). Fludarabine exposure, previously shown to be highly variable when dosing is based on body surface area (BSA), is a predictor for survival in allogeneic hematopoietic cell transplantation (allo-HCT). Hence, we hypothesized that an optimal exposure of fludarabine might be of clinical importance in CD19 CAR T-cell treatment. We examined the effect of cumulative fludarabine exposure during lymphodepletion, defined as concentration-time curve (AUC), on clinical outcome and lymphocyte kinetics. A retrospective analysis was conducted with data from 26 patients receiving tisagenlecleucel for r/r B-ALL. Exposure of fludarabine was shown to be a predictor for leukemia-free survival (LFS), B-cell aplasia, and CD19-positive relapse following CAR T-cell infusion. Minimal event probability was observed at a cumulative fludarabine AUCT0−∞ ≥14 mg*h/L, and underexposure was defined as an AUCT0−∞ <14 mg*h/L. In the underexposed group, the median LFS was 1.8 months, and the occurrence of CD19-positive relapse within 1 year was 100%, which was higher compared with the group with an AUCT0−∞ ≥14 mg*h/L (12.9 months; P < .001; and 27.4%; P = .0001, respectively). Furthermore, the duration of B-cell aplasia within 6 months was shorter in the underexposed group (77.3% vs 37.3%; P = .009). These results suggest that optimizing fludarabine exposure may have a relevant impact on LFS following CAR T-cell therapy, which needs to be validated in a prospective clinical trial.
Collapse
|
20
|
Xie D, Jin X, Sun R, Zhang M, Wang J, Xiong X, Zhang X, Zhao M. Relapse Mechanism and Treatment Strategy After Chimeric Antigen Receptor T-Cell Therapy in Treating B-Cell Hematological Malignancies. Technol Cancer Res Treat 2022; 21:15330338221118413. [PMID: 35989682 PMCID: PMC9403467 DOI: 10.1177/15330338221118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, immunotherapy has revolutionized the modern medical oncology field. Chimeric antigen receptor (CAR)-T cell therapy has a promising curative effect in the treatment of hematological malignancies. Anti-CD19 CAR-T cells are the most mature CAR-T cells recently studied and in recent years it has achieved a complete remission rate of approximately 90% in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). Although CAR-T cell therapy has greatly alleviated the disease in patients with leukemia or lymphoma, some of them still relapse after treatment. Therefore, in this article, we discuss the factors that may contribute to disease relapse following CAR-T cell therapy and summarize potential strategies to overcome these obstacles, thus providing the possibility of improving standard treatment regimens.
Collapse
Affiliation(s)
- Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China
| | - Rui Sun
- 481107Nankai University School of Medicine, Tianjin, China
| | - Meng Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jiaxi Wang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- 481107Nankai University School of Medicine, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China.,481107Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
21
|
Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci 2021; 22:ijms222111694. [PMID: 34769123 PMCID: PMC8583892 DOI: 10.3390/ijms222111694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Biological therapies have changed the face of oncology by targeting cancerous cells while reducing the effect on normal tissue. This publication focuses mainly on new therapies that have contributed to the advances in treatment of certain malignancies. Immunotherapy, which has repeatedly proven to be a breakthrough therapy in melanoma, as well as B-ALL therapy with CAR T cells, are of great merit in this progress. These therapies are currently being developed by modifying bispecific antibodies and CAR T cells to improve their efficiency and bioavailability. Work on improving the therapy with oncolytic viruses is also progressing, and efforts are being made to improve the immunogenicity and stability of cancer vaccines. Combining various biological therapies, immunotherapy with oncolytic viruses or cancer vaccines is gaining importance in cancer therapy. New therapeutic targets are intensively sought among neoantigens, which are not immunocompromised, or antigens associated with tumor stroma cells. An example is fibroblast activation protein α (FAPα), the overexpression of which is observed in the case of tumor progression. Universal therapeutic targets are also sought, such as the neurotrophic receptor tyrosine kinase (NTRK) gene fusion, a key genetic driver present in many types of cancer. This review also raises the problem of the tumor microenvironment. Stromal cells can protect tumor cells from chemotherapy and contribute to relapse and progression. This publication also addresses the problem of cancer stem cells resistance to treatment and presents attempts to avoid this phenomenon. This review focuses on the most important strategies used to improve the selectivity of biological therapies.
Collapse
|
22
|
Li X, Feng Y, Shang F, Yu Z, Wang T, Zhang J, Song Z, Wang P, Shi B, Wang J. Characterization of the Therapeutic Effects of Novel Chimeric Antigen Receptor T Cells Targeting CD38 on Multiple Myeloma. Front Oncol 2021; 11:703087. [PMID: 34513682 PMCID: PMC8427526 DOI: 10.3389/fonc.2021.703087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a tumor type characterized by the unregulated proliferation of clonal plasma cells in the bone marrow. Immunotherapy based on chimeric antigen receptor T cell (CAR-T) therapy has achieved exciting success in the treatment of hematological malignant tumors. CD38 is highly and evenly expressed in MM and is an attractive target for MM treatment. Here, we successfully constructed two novel second-generation CAR-T cells targeting CD38 by retroviral vector transduction. CD38 CAR-T cells could be activated effectively after stimulation with CD38-positive tumor cells and secrete cytokines such as IFN-γ and TNF-α to promote tumor cell apoptosis in in vitro experiments. Real-time fluorescence monitoring experiments, luciferase detection experiments and flow cytometry experiments revealed the efficient and specific killing abilities of CD38 CAR-T cells against CD38-positive tumor cells. The proliferation ability of CD38 CAR-T cells in vitro was higher than that of untransduced T cells. Further antitumor experiments in vivo showed that CD38 CAR-T cells could be quickly activated to secrete IFN-γ and eliminate tumors. Thus, novel CD38-targeted second-generation CAR-T cells have efficient and specific antitumor activity and may become a novel therapy for the clinical treatment of MM.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yaru Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fengqin Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiru Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
23
|
Xu Z, Huang X. Cellular immunotherapy for hematological malignancy: recent progress and future perspectives. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0801. [PMID: 34351724 PMCID: PMC8610149 DOI: 10.20892/j.issn.2095-3941.2020.0801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Advancements in the field of cellular immunotherapy have accelerated in recent years and have changed the treatment landscape for a variety of hematologic malignancies. Cellular immunotherapy strategies exploit the patient's immune system to kill cancer cells. The successful use of CD19 chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies is the paradigm of this revolution, and numerous ongoing studies are investigating and extending this approach to other malignancies. However, resistance to CAR-T-cell therapy and non-durable efficacy have prevented CAR-T-cells from becoming the ultimate therapy. Because natural killer (NK) cells play an essential role in antitumor immunity, adoptively transferred allogeneic NK and CAR-modified NK cell therapy has been attempted in certain disease subgroups. Allogenic hematopoietic stem cell transplantation (allo-HSCT) is the oldest form of cellular immunotherapy and the only curative option for hematologic malignancies. Historically, the breadth of application of allo-HSCT has been limited by a lack of identical sibling donors (ISDs). However, great strides have recently been made in the success of haploidentical allografts worldwide, which enable everyone to have a donor. Haploidentical donors can achieve comparable outcomes to those of ISDs and even better outcomes in certain circumstances because of a stronger graft vs. tumor effect. Currently, novel strategies such as CAR-T or NK-based immunotherapy can be applied as a complement to allo-HSCT for curative effects, particularly in refractory cases. Here, we introduce the developments in cellular immunotherapy in hematology.
Collapse
Affiliation(s)
- Zhengli Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
24
|
Veliça P, Cunha PP, Vojnovic N, Foskolou IP, Bargiela D, Gojkovic M, Rundqvist H, Johnson RS. Modified Hypoxia-Inducible Factor Expression in CD8 + T Cells Increases Antitumor Efficacy. Cancer Immunol Res 2021; 9:401-414. [PMID: 33602720 DOI: 10.1158/2326-6066.cir-20-0561] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
Adoptive transfer of antitumor cytotoxic T cells is an emerging form of cancer immunotherapy. A key challenge to expanding the utility of adoptive cell therapies is how to enhance the survival and function of the transferred T cells. Immune-cell survival requires adaptation to different microenvironments and particularly to the hypoxic milieu of solid tumors. The hypoxia-inducible factor (HIF) transcription factors are an essential aspect of this adaptation. In this study, we undertook experiments to define structural determinants of HIF that potentiate antitumor efficacy in cytotoxic T cells. We first created retroviral vectors to deliver ectopic expression of HIF1α and HIF2α in mouse CD8+ T cells, together or individually and with or without sensitivity to the oxygen-dependent HIFα inhibitors Von Hippel-Lindau and factor-inhibiting HIF (FIH). HIF2α, but not HIF1α, drove broad transcriptional changes in CD8+ T cells, resulting in increased cytotoxic differentiation and cytolytic function against tumor targets. A specific mutation replacing the hydroxyl group-acceptor site for FIH in HIF2α gave rise to the most effective antitumor T cells after adoptive transfer in vivo In addition, codelivering an FIH-insensitive form of HIF2α with an anti-CD19 chimeric antigen receptor greatly enhanced cytolytic function of human CD8+ T cells against lymphoma cells both in vitro and in a xenograft adoptive transfer model. These experiments point to a means to increase the antitumor efficacy of therapeutic CD8+ T cells via ectopic expression of the HIF transcription factor.See related Spotlight on p. 364.
Collapse
Affiliation(s)
- Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro P Cunha
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nikola Vojnovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Iosifina Petrina Foskolou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Bargiela
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helene Rundqvist
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Randall S Johnson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Schepisi G, Casadei C, Toma I, Poti G, Iaia ML, Farolfi A, Conteduca V, Lolli C, Ravaglia G, Brighi N, Altavilla A, Martinelli G, De Giorgi U. Immunotherapy and Its Development for Gynecological (Ovarian, Endometrial and Cervical) Tumors: From Immune Checkpoint Inhibitors to Chimeric Antigen Receptor (CAR)-T Cell Therapy. Cancers (Basel) 2021; 13:840. [PMID: 33671294 PMCID: PMC7922040 DOI: 10.3390/cancers13040840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Gynecological tumors are malignancies with both high morbidity and mortality. To date, only a few chemotherapeutic agents have shown efficacy against these cancer types (only ovarian cancer responds to several agents, especially platinum-based combinations). Within this context, the discovery of immune checkpoint inhibitors has led to numerous clinical studies being carried out that have also demonstrated their activity in these cancer types. More recently, following the development of chimeric antigen receptor (CAR)-T cell therapy in hematological malignancies, this strategy was also tested in solid tumors, including gynecological cancers. In this article, we focus on the molecular basis of gynecological tumors that makes them potential candidates for immunotherapy. We also provide an overview of the main immunotherapy studies divided by tumor type and report on CAR technology and the studies currently underway in the area of gynecological malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Ilaria Toma
- Clinical Oncology, Arcispedale Sant’Anna University Hospital, 44124 Ferrara, Italy;
| | - Giulia Poti
- Istituto Dermopatico dell’Immacolata, IDI IRCCS, 00167 Rome, Italy;
| | - Maria Laura Iaia
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
- Medical Oncology Unit 1, University of Genoa, Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy;
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Amelia Altavilla
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Giovanni Martinelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via P. Maroncelli 40, 47014 Meldola, Italy; (C.C.); (M.L.I.); (A.F.); (V.C.); (C.L.); (N.B.); (A.A.); (G.M.); (U.D.G.)
| |
Collapse
|
26
|
Köhl U, Abken H. [CAR T cells as drugs for novel therapies (advanced therapy medicinal products)]. Internist (Berl) 2021; 62:449-457. [PMID: 33590292 DOI: 10.1007/s00108-021-00953-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Two commercial chimeric antigen receptor (CAR) T cell products, axicabtagene-ciloleucel (Yescarta®) and tisagenlecleucel (Kymriah®), are registered for the treatment of B cell neoplasia, for which an increased supply of CAR T cell products is required. PROBLEM The production of patient-specific CAR T cells as advanced therapy medicinal products (ATMPs) poses considerable challenges with respect to logistics, regulation, and manufacturing. METHOD Review of the CAR T cell manufacturing process and the regulatory network, the current challenges, and future development capabilities of CAR T cells for adoptive immunotherapy. RESULTS CAR T cells are manufactured under individualized, laborious, good manufacturing practice-conforming processes in decentralized or in specialized centers. Starting from the patient's leukapheresis product, T cells are genetically engineered ex vivo with a CAR, amplified, and after extensive quality control re-applied to the patient. Most CAR T cell products are manufactured in a manual or semi-automated process; fully automated, supervised, and closed systems are increasingly applied to meet the need for a growing number of CAR T cell products. In this setting, research aims at providing allogeneic CAR T cell products or non-T cells such as natural killer cells for broad applications. CONCLUSION The significance of CAR T cells in adoptive immunotherapy is continuously growing. As individualized cell products, manufacturing requires highly efficient processes under the control of harmonized protocols and regulations so as to ensure the quality of the ATMP in view of increasing demand and to develop new fields in therapy.
Collapse
Affiliation(s)
- Ulrike Köhl
- Fraunhofer-Institut für Zelltherapie und Immunologie (IZI), Leipzig, Deutschland.,Institut für Klinische Immunologie, Universität Leipzig, Leipzig, Deutschland.,Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Hinrich Abken
- Regensburger Centrum für Interventionelle Immunologie (RCI), Abteilung für Gen-Immuntherapie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| |
Collapse
|
27
|
Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Metastatic Prostate Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22020640. [PMID: 33440664 PMCID: PMC7826945 DOI: 10.3390/ijms22020640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) has a vast clinical spectrum from the hormone-sensitive setting to castration-resistant metastatic disease. Thus, chemotherapy regimens and the administration of androgen receptor axis-targeted (ARAT) agents for advanced PCa have shown limited therapeutic efficacy. Scientific advances in the field of molecular medicine and technological developments over the last decade have paved the path for immunotherapy to become an essential clinical modality for the treatment of patients with metastatic PCa. However, several immunotherapeutic agents have shown poor outcomes in patients with advanced disease, possibly due to the low PCa mutational burden. Adoptive cellular approaches utilizing chimeric antigen receptor T cells (CAR-T) targeting cancer-specific antigens would be a solution for circumventing the immune tolerance mechanisms. The immunotherapeutic regimen of CAR-T cell therapy has shown potential in the eradication of hematologic malignancies, and current clinical objectives maintain the equivalent efficacy in the treatment of solid tumors, including PCa. This review will explore the current modalities of CAR-T therapy in the disease spectrum of PCa while describing key limitations of this immunotherapeutic approach and discuss future directions in the application of immunotherapy for the treatment of metastatic PCa and patients with advanced disease.
Collapse
|
28
|
Davey AS, Call ME, Call MJ. The Influence of Chimeric Antigen Receptor Structural Domains on Clinical Outcomes and Associated Toxicities. Cancers (Basel) 2020; 13:E38. [PMID: 33375550 PMCID: PMC7794933 DOI: 10.3390/cancers13010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment of B cell malignancies, improving patient survival and long-term remission. Nonetheless, over 50% of patients experience severe treatment-related toxicities including cytokine release syndrome (CRS) and neurotoxicity. Differences in severity of toxic side-effects among anti-CD19 CARs suggest that the choice of costimulatory domain makes a significant contribution to toxicity, but comparisons are complicated by additional differences in the hinge and transmembrane (TM) domains of the most commonly used CARs in the clinic, segments that have long been considered to perform purely structural roles. In this perspective, we examine clinical and preclinical data for anti-CD19 CARs with identical antigen-binding (FMC63) and signalling (CD3ζ) domains to unravel the contributions of different hinge-TM and costimulatory domains. Analysis of clinical trials highlights an association of the CD28 hinge-TM with higher incidence of CRS and neurotoxicity than the corresponding sequences from CD8, regardless of whether the CD28 or the 4-1BB costimulatory domain is used. The few preclinical studies that have systematically varied these domains similarly support a strong and independent role for the CD28 hinge-TM sequence in high cytokine production. These observations highlight the value that a comprehensive and systematic interrogation of each of these structural domains could provide toward developing fundamental principles for rational design of safer CAR-T cell therapies.
Collapse
Affiliation(s)
- Ashleigh S. Davey
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 5052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| | - Matthew E. Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 5052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| | - Melissa J. Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 5052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
29
|
Abstract
Multiple myeloma remains an incurable disease despite great advances in its therapeutic landscape. Increasing evidence supports the belief that immune dysfunction plays an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts have focused on harnessing the immune system to exert anti-myeloma effects with encouraging outcomes. First-in-class anti-CD38 monoclonal antibody, daratumumab, now forms part of standard treatment regimens in relapsed and refractory settings and is shifting to front-line treatments. However, a non-negligible number of patients will progress and be triple refractory from the first line of treatment. Antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptors (CAR) are being developed in a heavily pretreated setting with outstanding results. Belantamab mafodotin-blmf has already received approval and other anti-B-cell maturation antigen (BCMA) therapies (CARs and bispecific antibodies are expected to be integrated in therapeutic options against myeloma soon. Nonetheless, immunotherapy faces different challenges in terms of efficacy and safety, and manufacturing and economic drawbacks associated with such a line of therapy pose additional obstacles to broadening its use. In this review, we described the most important clinical data on immunotherapeutic agents, delineated the limitations that lie in immunotherapy, and provided potential insights to overcome such issues.
Collapse
|
30
|
Lv K, Li X, Yu H, Chen X, Zhang M, Wu X. Selection of new immunotherapy targets for NK/T cell lymphoma. Am J Transl Res 2020; 12:7034-7047. [PMID: 33312349 PMCID: PMC7724344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Extranodal NK/T cell lymphoma, nasal type, is a rare type of non-Hodgkin's lymphoma (NHL), and the aetiology is not fully understood. Although the clinical outcome of anthracycline-based chemotherapy was dismal because of multidrug resistance (MDR). Novel therapeutic strategies including L-asparaginase-containing regimens, radiotherapy, sequential chemotherapy and radiotherapy, and concurrent chemoradiotherapy (CCRT) have remarkably improved outcomes. However, the overall survival (OS) rate of advanced stage patients is not satisfactory compared with patients with non-advanced-stage disease. Immunotherapy is a promising treatment for ENKTCL. Indeed, it has been proven that targeted therapies such as anti-CD30 antibodies and naked anti-CD38 antibodies are effective. In addition to these therapies that target cell surface antigens, therapies targeting intracellular signalling pathways and the microenvironment are considerably beneficial. EBV-driven overexpression of latent membrane proteins [LMP1 and LMP2] activates the pro-proliferation NF-κB/MAPK signalling pathway and leads to high PD-L1 expression. Binding of PD-L1 to PD-1 expressing cytotoxic T cells causes apoptosis and inactivation of T lymphocytes, achieving immune escape. On the basis of this mechanism, a variety of small molecular inhibitors, such as anti-PD-1 antibodies, NF-κB inhibitors, EBV antigens, and LMP1 and LMP2 antigens, can be applied. Via another signalling pathway the JAK/STAT pathway, upregulation and activation and mutation of genes promotes proliferation and ENKTCL lymphomagenesis, and JAK inhibitors have thus been applied. This article reviews recent advances in ENKTCL immunotherapy as a promising treatment for this fatal disease.
Collapse
Affiliation(s)
- Kebing Lv
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Hui Yu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Xinfeng Chen
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Xiaolong Wu
- Department of Oncology, Zhengzhou University First Affiliated Hospital, Lymphoma Diagnosis and Treatment Center of Henan Province No. 1 Jianshe East Road, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
32
|
Tao DL, Kartika T, Tran A, Prasad V. Phase I trials and therapeutic intent in the age of precision oncology: What is a patient's chance of response? Eur J Cancer 2020; 139:20-26. [PMID: 32957010 DOI: 10.1016/j.ejca.2020.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
The advancement of therapeutic strategies in oncology such as precision oncology has generated significant interest in better estimating the response of modern phase I cancer clinical trials. These estimates have varied widely. In this commentary, we provide an umbrella review of phase I response rates and discuss methodological reasons for variation in prior estimates which include limited use of unpublished data, the inclusion of expansion cohorts that artificially raise response rates of cumulative response rates, varying enrolment of haematologic malignancies, and increased next in class drugs.
Collapse
Affiliation(s)
- Derrick L Tao
- Division of Internal Medicine, Oregon Health & Science University, USA
| | - Thomas Kartika
- Division of Internal Medicine, Oregon Health & Science University, USA
| | - Audrey Tran
- School of Medicine, Oregon Health & Science University, USA
| | - Vinay Prasad
- Department of Epidemiology & Biostatistics, University of California, San Francisco, USA.
| |
Collapse
|
33
|
Chen X, Li X, Liu Y, Zhang Z, Zhang X, Huang J, Li H, Li F, Zhang L, Li L, Wu X, Ma W, Sun Z, Yu H, Zhou Z, Feng X, Cui K, Li Z, Zhang H, Zeng Y, Wan X, Chen YH, Zhang M, Zhang Y. A Phase I clinical trial of chimeric antigen receptor-modified T cells in patients with relapsed and refractory lymphoma. Immunotherapy 2020; 12:681-696. [PMID: 32580597 DOI: 10.2217/imt-2020-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: CD19 chimeric antigen receptor (CAR) T cells have been approved by the US FDA for treatment of relapsed and refractory (R/R) B-cell malignancies. Patients & methods: This study investigated the safety and efficacy of autologous 4-1BB costimulatory domain-engineered CD19 CAR-T cells in R/R B-cell lymphoma. Results: After CD19 CAR-T-cell infusion, severe cytokine release syndrome occurred in 28.6% (4/14) of the patients. The overall response rate was 77% with complete remission observed in 6/14 patients at 3 months. A higher tumor burden and grade 3-4 of myelosuppression after chemotherapy were associated with severe cytokine-release syndrome. Notably, combining CD19 CAR-T cells and PD-1 blockade, but not CD19 CAR-T cells alone, reduced intracranial tumor burden in a patient with central invasion of lymphoma. Conclusion: CD19 CAR-T cells could effectively induce tumor remission and PD-1 blockade might improve the efficacy in Chinese patients with R/R B-cell lymphoma.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xin Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanfen Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xudong Zhang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianmin Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lei Zhang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ling Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaolong Wu
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wang Ma
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenchang Sun
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Yu
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhiyuan Zhou
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaoyan Feng
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kang Cui
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhaoming Li
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | | | - Ying Zeng
- Binde Biotech Inc., Shenzhen 518055, Guangdong, China
| | - Xiaochun Wan
- Center for Antibody Drug Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Youhai H Chen
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingzhi Zhang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou 450052, Henan, China
| |
Collapse
|
34
|
Abstract
As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient's T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
35
|
Habib R, Nagrial A, Micklethwaite K, Gowrishankar K. Chimeric Antigen Receptors for the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:117-143. [PMID: 32588326 DOI: 10.1007/978-3-030-44518-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has dramatically revolutionised cancer treatment. The FDA approval of two CAR-T cell products for otherwise incurable refractory B-cell acute lymphoblastic leukaemia (B-ALL) and aggressive B-cell non-Hodgkin lymphoma has established this treatment as an effective immunotherapy option. The race for extending CAR-T therapy for various tumours is well and truly underway. However, response rates in solid organ cancers have been inadequate thus far, partly due to challenges posed by the tumour microenvironment (TME). The TME is a complex structure whose role is to subserve the persistence and proliferation of tumours as well as support their escape from immune surveillance. It presents several obstacles like inhibitory immune checkpoint proteins, immunosuppressive cells, cytokines, chemokines, stromal factors and adverse metabolic pathways. CAR structure and CAR-T therapies have evolved to overcome these obstacles, and we now have several novel CARs with improved anti-tumour activity demonstrated in xenograft models and in some clinical trials. This chapter provides a discussion of the evolution of CAR-T therapies to enable targeting specific aspects of the TME.
Collapse
Affiliation(s)
- Rosemary Habib
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Adnan Nagrial
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Blood and Bone Marrow Transplant Unit, Department of Haematology, Sydney Medical School, Westmead Hospital, Sydney, NSW, Australia
| | - Kavitha Gowrishankar
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Liu J, Zhang X, Zhong JF, Zhang C. Use of chimeric antigen receptor T cells in allogeneic hematopoietic stem cell transplantation. Immunotherapy 2019; 11:37-44. [PMID: 30702011 DOI: 10.2217/imt-2018-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chimeric antigen receptor T (CAR-T) cells play an antileukemia role, and can be used to treat or prevent relapse by targeting minimal residual disease for patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the infusion of allogeneic CAR-T cells may also cause graft-versus-host disease, which limited their applications during and after allo-HSCT. In this review, we discuss the clinical trials that applying CAR-T cells before allo-HSCT and the use of donor-derived CAR-T cells as conditioning regimen during allo-HSCT. At last, we analyzed the effect of donor-derived CAR-T cells on preventive infusion after allo-HSCT.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, & Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
37
|
Xu X, Sun Q, Liang X, Chen Z, Zhang X, Zhou X, Li M, Tu H, Liu Y, Tu S, Li Y. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front Immunol 2019; 10:2664. [PMID: 31798590 PMCID: PMC6863137 DOI: 10.3389/fimmu.2019.02664] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective in the treatment of B-cell acute lymphoblastic leukemia (ALL) or B-cell lymphoma, providing alternative therapeutic options for patients who failed to respond to conventional treatment or relapse. Moreover, it can bridge other therapeutic strategies and greatly improve patient prognosis, with broad applicable prospects. Even so, 30–60% patients relapse after treatment, probably due to persistence of CAR T-cells and escape or downregulation of CD19 antigen, which is a great challenge for disease control. Therefore, understanding the mechanisms that underlie post-CAR relapse and establishing corresponding prevention and treatment strategies is important. Herein, we discuss post-CAR relapse from the aspects of CD19-positive and CD19-negative and provide some reasonable prevention and treatment strategies.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qihang Sun
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoqian Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zitong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoli Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huilin Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Hao L, Li T, Chang LJ, Chen X. Adoptive Immunotherapy for B-cell Malignancies Using CD19- Targeted Chimeric Antigen Receptor T-Cells: A Systematic Review of Efficacy and Safety. Curr Med Chem 2019; 26:3068-3079. [PMID: 28762313 DOI: 10.2174/0929867324666170801101842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/15/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adoptive infusion of chimeric antigen receptor transduced T- cells (CAR-T) is a powerful tool of immunotherapy for hematological malignancies, as evidenced by recently published and unpublished clinical results. OBJECTIVE In this report, we performed a meta-analysis to evaluate the efficacy and side effects of CAR-T on refractory and/or relapsed B-cell malignancies, including leukemia and lymphoma. METHODS Clinical studies investigating efficacy and safety of CAR-T in acute and chronic lymphocytic leukemia and lymphoma were identified by searching PubMed and EMBASE. Outcomes of efficacy subjected to analysis were the rates of complete remission (CR) and partial remission (PR). The safety parameters were the prevalence of adverse effects including fever, hypotension, and acute renal failure. Meta analyses were performed using R software. Weighted hazard ratio (HR) with 95% confidence intervals was calculated for each outcome. Fixed or random-effects models were employed depending on the heterogeneity across the included studies. RESULTS Nineteen published clinical studies with a total of 391 patients were included for the meta-analysis. The pooled rate of complete remission was 55% (95% CI 41%-69%); the pooled rate of partial remission was 25% (95% CI: 19%-33%). The prevalence of fever was 62% (95% CI: 41%-79%), the hypotension was 22% (95% CI: 15%-31%), and the acute renal failure was 24% (95% CI: 16%-34%). All adverse effects were manageable and no death was reported due to toxicity. CONCLUSION CD19-targeted CAR-T is an effective modality in treating refractory B-cell malignancies including leukemia and lymphoma. However, there is still a need to develop strategies to improve the safety in its clinical use.
Collapse
Affiliation(s)
- Lu Hao
- Shenzhen Geno-Immune Medical Institute, Shenzhen 518057, China.,Institute of Cancer Stem Cells, Dalian Medical University, Dalian 116044, China
| | - Tongtong Li
- Clinical Medicine Program, Nanchang University Medical College, Nanchang 330006, China.,Department of Obstetrics and Gynecology, Anfu People's Hospital, Jiangxi Province 343200, China
| | - Lung-Ji Chang
- Shenzhen Geno-Immune Medical Institute, Shenzhen 518057, China.,Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Xiaochuan Chen
- Shenzhen Geno-Immune Medical Institute, Shenzhen 518057, China.,Department of Oriental Medicine, New York College of Health Professions, New York, NY 10016, United States
| |
Collapse
|
39
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Schepisi G, Cursano MC, Casadei C, Menna C, Altavilla A, Lolli C, Cerchione C, Paganelli G, Santini D, Tonini G, Martinelli G, De Giorgi U. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer 2019; 7:258. [PMID: 31619289 PMCID: PMC6794851 DOI: 10.1186/s40425-019-0741-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is one of the main causes of cancer-related death in men. In the present immunotherapy era, several immunotherapeutic agents have been evaluated in PCa with poor results, possibly due to its low mutational burden. The recent development of chimeric antigen receptor (CAR)-T cell therapy redirected against cancer-specific antigens would seem to provide the means for bypassing immune tolerance mechanisms. CAR-T cell therapy has proven effective in eradicating hematologic malignancies and the challenge now is to obtain the same degree of in solid tumors, including PCa. In this study we review the principles that have guided the engineering of CAR-T cells and the specific prostatic antigens identified as possible targets for immunological and non-immunological therapies. We also provide a state-of-the-art overview of CAR-T cell therapy in PCa, defining the key obstacles to its development and underlining the mechanisms used to overcome these barriers. At present, although there are still many unanswered questions regarding CAR-T cell therapy, there is no doubt that it has the potential to become an important treatment option for urological malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy.
| | | | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Claudio Cerchione
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giovanni Paganelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | | | | | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
41
|
Cao G, Lei L, Zhu X. Efficiency and safety of autologous chimeric antigen receptor T-cells therapy used for patients with lymphoma: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17506. [PMID: 31626107 PMCID: PMC6824817 DOI: 10.1097/md.0000000000017506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has produced promising response rates in patients with B cell malignancies. However, previous meta-analyses have demonstrated that CAR T-cell efficacy is unsatisfactory in patients with lymphoma unlike in patient with other hematological malignancies, but these studies included insufficient numbers of studies and patients with lymphoma. Furthermore, clinicians are interested in the effects of infusion dose, CAR structure, interleukin-2 (IL-2), and conditioning therapy regimen. METHODS All clinical trials administering autologous CAR T-cell therapy in lymphoma patients were searched in medical databases. A traditional meta-analysis was performed to assess the safety and efficacy of CAR T-cells in lymphoma treatment. Subgroup analysis was performed to determine the relationships between potential factors and efficacy. The best overall response rate (ORR), 6 month ORR (6m ORR), and severe cytokine release syndrome (sCRS) rate were calculated by Stata 14.0. RESULTS A total of 411 patients across all the studies were included. Our analysis showed a best ORR of 0.71, a 6m ORR of 0.63, and an overall CRS (grade ≥ 3) rate of 0.18. The subgroup analysis showed that increased response rates and reduced CRS (grade ≥ 3) rates were associated with a low dose of CAR T-cells. No IL-2 administration and the use of a fludarabine-containing lymphodepletion regimen led to improved efficacy, while anti-CD19 CAR T cells led to a more successful outcome than anti-CD20 CAR T cells. In addition, 2nd- and 3rd-generation CAR T cells exhibited increased effectiveness in clinical studies, and no significant effect diversity was found between the 2nd- and 3rd-generation CAR T cells. sCRS was associated with a high dose of infused CAR T cells when IL-2 and fludarabine were excluded from the positive factors for sCRS. CONCLUSION CAR T cells are promising in the treatment of relapsed or refractory lymphoma. Doses lower than 10/m, no IL-2 administration, fludarabine administration, and anti-CD19 CAR T cells were related to improved efficacy and safety.
Collapse
Affiliation(s)
| | - Lijian Lei
- Department of Epidemiology, Shanxi Medical University
| | - Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Cao JX, Gao WJ, You J, Wu LH, Liu JL, Wang ZX. The efficacy of anti-CD19 chimeric antigen receptor T cells for B-cell malignancies. Cytotherapy 2019; 21:769-781. [DOI: 10.1016/j.jcyt.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
|
43
|
Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol 2019; 12:62. [PMID: 31221182 PMCID: PMC6587237 DOI: 10.1186/s13045-019-0758-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor-modified T (CAR-T) cells have achieved significant success in the treatment of several hematological malignancies. However, the translation of the existing achievements into the treatment of other tumors, especially solid tumors, is not smooth. In addition to the optimization of CAR structures, preparation, and clinical protocols, rational selecting and utilizing the targets was more pivotal. In this review, the criteria for target selection and some new strategies for targets utilization were summarized and discussed. This systematic review will help researchers better understand how the efficacy and safety of CAR-T treatment would be affected by targets and thus more rationally select targets and conduct clinical trials.
Collapse
Affiliation(s)
- Jianshu Wei
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Xiao Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jian Bo
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
44
|
Xiao X, Jiang YY, Cao YQ, Li Q, Jin X, Meng JX, Sui T, Li YM, Zhao MF. [Efficacy and safety of CD19 chimeric antigen receptor T cells for the treatment of 22 patients with B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:276-280. [PMID: 31104437 PMCID: PMC7343005 DOI: 10.3760/cma.j.issn.0253-2727.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
目的 探讨CD19 CAR-T治疗B细胞淋巴瘤的疗效及安全性。 方法 评估2017年2月1日至2018年7月1日CD19 CAR-T治疗22例B细胞淋巴瘤患者的疗效及不良反应情况。 结果 22例患者输注CD19 CAR-T后,总体完全缓解(CR)率为45.5%,部分缓解(PR)率为31.8%,总有效率为77.3%。其中12例复发难治患者9例有效,2例达CR,7例PR;10例微小残留病(MRD)阳性患者,8例MRD转阴。全部患者外周血中均检测到CD19 CAR-T细胞在体内增殖,复发难治患者与MRD阳性患者T细胞增殖的达峰时间分别为治疗后第4.5(1~12)天和治疗后第12(5~19)天,外周血CAR-T细胞分别占总的T淋巴细胞的4.02%(2.23%~28.60%)和10.10%(3.55%~24.74%)。MRD转阴患者持续缓解,中位随访8(3~18)个月均未复发,且此组患者有3例联合PD-1抗体治疗,均达CR。复发难治患者中,7例CAR-T治疗后达PR患者疗效保持时间为1.5~6.0个月,PD-1表达率为25.7%~55.3%,5例CAR-T治疗无效患者PD-1均高表达;共有3例患者联合应用PD-1抗体,其中2例有效;2例CAR-T治疗后达CR患者中1例行异基因造血干细胞移植,另1例随访12个月仍持续缓解。22例患者输注CAR-T细胞后14例发生不同程度的细胞因子释放综合征(CRS),其中9例为1级CRS,4例为2级CRS,其中1例复发难治患者发生3级CRS,经糖皮质激素、IL-6抗体治疗后CRS得到控制。治疗有效的17例患者中14例发生CRS,治疗无效的5例患者均未发生CRS。难治复发患者发生CRS的严重程度高于MRD阳性患者。 结论 CD19 CAR-T在CD19+ B细胞淋巴瘤中取得了疗效。CAR-T联合免疫检查点抑制剂的应用能够更好地提高疗效,CAR-T细胞治疗可作为复发难治患者的挽救治疗,清除B细胞淋巴瘤的MRD效果更好且不良反应小。
Collapse
Affiliation(s)
- X Xiao
- Tianjin First Central Hospital, Tianjin 300192, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Drokow EK, Ahmed HAW, Amponsem-Boateng C, Akpabla GS, Song J, Shi M, Sun K. Survival outcomes and efficacy of autologous CD19 chimeric antigen receptor-T cell therapy in the patient with diagnosed hematological malignancies: a systematic review and meta-analysis. Ther Clin Risk Manag 2019; 15:637-646. [PMID: 31190844 PMCID: PMC6511615 DOI: 10.2147/tcrm.s203822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Chimeric Antigen Receptor T(CAR-T) cell therapy is an immunotherapy approach used in treating cancer which has seen rapid development over the decades. It becomes the preferred treatment choice after patients have failed conventional chemotherapy. Methods: We conducted a meta-analysis in 320 patients from 14 studies to estimate the survival outcome, response rate and toxicity of autologous CD19 CAR-T cell therapy and predict other factors associated with a better prognosis. Results: The overall response rate was 71.88% (95% CI: 61.34–80.46%, p<0.01) and CRS toxicity was 60.15% (95% CI: 42.87–75.22%, p<0.01). Patients who received lymphodepletion was associated with a better response rate (77%, 95%CI: 67–83%; p-value =0.001) in comparison to the other patients who did not (66%, 95%CI: 41–83%). Conclusion: Lymphodepletion regimen may play a crucial role in predicting the prognosis of patients with hematological malignancies. Lymphodepletion patients had better progression-free survival than those who did not.
Collapse
Affiliation(s)
- Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, Zhengzhou, People's Republic of China
| | - Hafiz Abdul Waqas Ahmed
- Department of Hematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, Zhengzhou, People's Republic of China
| | - Cecilia Amponsem-Boateng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Gloria Selorm Akpabla
- Department of Internal Medicine, Tianjin Medical University, Tianjin, People's Republic of China
| | - Juanjuan Song
- Department of Hematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, Zhengzhou, People's Republic of China
| | - Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, Zhengzhou, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, Zhengzhou, People's Republic of China
| |
Collapse
|
46
|
Chicaybam L, Abdo L, Carneiro M, Peixoto B, Viegas M, de Sousa P, Fornazin MC, Spago MC, Albertoni Laranjeira AB, de Campos-Lima PO, Nowill A, Barros LRC, Bonamino MH. CAR T Cells Generated UsingSleeping BeautyTransposon Vectors and Expanded with an EBV-Transformed Lymphoblastoid Cell Line Display Antitumor ActivityIn VitroandIn Vivo. Hum Gene Ther 2019; 30:511-522. [DOI: 10.1089/hum.2018.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonardo Chicaybam
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiza Abdo
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mayra Carneiro
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Bárbara Peixoto
- Cell Biology Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Viegas
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Priscila de Sousa
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Márcia C. Fornazin
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria C. Spago
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Pedro O. de Campos-Lima
- Institute of Molecular and Cellular Engineering, Boldrini Children's Center, Campinas, Sao Paulo, Brazil
- Functional and Molecular Biology Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alexandre Nowill
- Integrated Center for Oncohematology Research in Infancy, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Martín H. Bonamino
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Nunoya JI, Masuda M, Ye C, Su L. Chimeric Antigen Receptor T Cell Bearing Herpes Virus Entry Mediator Co-stimulatory Signal Domain Exhibits High Functional Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:27-37. [PMID: 31011630 PMCID: PMC6463745 DOI: 10.1016/j.omto.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor (CAR) is a hybrid molecule consisting of an antigen-binding domain and a signal transduction domain. The artificial T cells expressing CAR (CAR-T cells) are expected to be a useful tool for treatment of various diseases, such as cancer. The addition of a co-stimulatory signal domain (CSSD) to CAR is shown to be critical for modulating CAR-T cell activities. However, the interplay among types of CSSDs, effector functions, and characteristics of CAR-T cells is largely unknown. To elucidate the interplay, we analyzed effector functions, differentiation to memory T cell subsets, exhaustion, and energy metabolism of the CAR-T cells with different CSSDs. Comparing to the CAR-T cells bearing a CD28- or 4-1BB-derived CSSD, which are currently used for CAR-T cell development, we found that the CAR-T cells with a herpes virus entry mediator (HVEM)-derived CSSD exhibited enhanced effector functions and efficient and balanced differentiation to both central and effector memory subsets, associated with an elevated energy metabolism and a reduced level of exhaustion. Thus, we developed the CAR-T cells bearing the CSSD derived from HVEM with high functional potency. The HVEM-derived CSSD may be useful for developing effective CAR-T cells.
Collapse
Affiliation(s)
- Jun-ichi Nunoya
- Department of Microbiology, Dokkyo Medical University, Tochigi, Japan
- Corresponding author: Jun-ichi Nunoya, Department of Microbiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University, Tochigi, Japan
| | - Chaobaihui Ye
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lishan Su
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Corresponding author: Lishan Su, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. DISEASE MARKERS 2019; 2019:3425291. [PMID: 30886654 PMCID: PMC6388318 DOI: 10.1155/2019/3425291] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 12/02/2018] [Indexed: 12/31/2022]
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success among hematologic tumors, but its role in treating solid tumors is still unclear. Methods A comprehensive search of electronic databases up to June 1, 2018, was carried out by two independent reviewers. We included studies which focused on the association between CAR-T cell therapy and patient response rate and survival time in solid tumors. Results 22 studies with 262 patients were included in our meta-analysis. The overall pooled response rate of CAR-T cell therapy was 9% (95% confidence interval (CI): 4-16%). Subgroup analysis (analyses) demonstrated that CAR-T therapy could perform its best therapeutic effect on neuroblastoma, while barely works among gastrointestinal malignancies. Moreover, the treatment efficacy was not significantly impacted by different treatment strategies (lymphodepletion before T cell infusion, transfection method, cell culture duration, persistence of CAR-T cells, transfection efficacy, total cell dose, and administration of IL-2). Only T cell culture duration was associated with better clinical prognosis. Conclusions Although CAR-T cell therapy did not have satisfactory responses in solid tumors, researchers were still holding an optimistic attitude towards its future efficacy with more modifications of its structure.
Collapse
|
49
|
Yu WL, Hua ZC. Chimeric Antigen Receptor T-cell (CAR T) Therapy for Hematologic and Solid Malignancies: Efficacy and Safety-A Systematic Review with Meta-Analysis. Cancers (Basel) 2019; 11:cancers11010047. [PMID: 30621018 PMCID: PMC6356949 DOI: 10.3390/cancers11010047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptors T cells (CAR T) had been used for treating various tumor patients in clinic, and owned an incredible efficacy in part of malignancies. However, CAR T therapy remains controversial due to doubts about its efficacy and safety in the clinical treatment of various malignancies. A total of 997 tumor patients from 52 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science, Wanfang and Clinicaltrials.gov. Then meta-analysis and subgroup analysis were used to investigate the overall response rate (ORR), complete response rate (CRR), common side effect rate (CSER) and relapse rate (RR) of CAR T therapy for patients in clinical researches, respectively. The results further confirmed that CAR T therapy had a higher response rate for hematologic malignancies. More importantly, CAR T therapy had a higher CSER in patients with hematologic malignancies, and it had a similar RR in patients with different malignancies. Cell cultured without the addition of IL-2 and total administration less than 108 cells were recommended. This study offers a reference for future research regarding the application in solid and hematologic malignancies, side effects and relapse, and even the production processes of CAR T cells.
Collapse
Affiliation(s)
- Wen-Liang Yu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
- Jiangsu Target Pharma Laboratories Inc., Changzhou High-Tech Research Institute of Nanjing University, Changzhou 213164, China.
| | - Zi-Chun Hua
- Jiangsu Target Pharma Laboratories Inc., Changzhou High-Tech Research Institute of Nanjing University, Changzhou 213164, China.
- School of Life Sciences, Nanjing University, Nanjing 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China.
| |
Collapse
|
50
|
Yu J, Wang W, Huang H. Efficacy and safety of bispecific T-cell engager (BiTE) antibody blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: a systemic review and meta-analysis. Hematology 2018; 24:199-207. [PMID: 30479190 DOI: 10.1080/16078454.2018.1549802] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wen Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|