1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Fan YJ, Pan FZ, Cui ZG, Zheng HC. The Antitumor and Sorafenib-resistant Reversal Effects of Ursolic Acid on Hepatocellular Carcinoma via Targeting ING5. Int J Biol Sci 2024; 20:4190-4208. [PMID: 39247819 PMCID: PMC11379078 DOI: 10.7150/ijbs.97720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Inhibitor of growth 5 (ING5) has been reported to be involved in the malignant progression of cancers. Ursolic acid (UA) has shown remarkable antitumor effects. However, its antitumor mechanisms regarding of ING5 in hepatocellular carcinoma (HCC) remain unclear. Herein, we found that UA significantly suppressed the proliferation, anti-apoptosis, migration and invasion of HCC cells. In addition, ING5 expression in HCC cells treated with UA was obviously downregulated in a concentration- and time-dependent manner. Additionally, the pro-oncogenic role of ING5 was confirmed in HCC cells. Further investigation revealed that UA exerted antitumor effects on HCC by inhibiting ING5-mediated activation of PI3K/Akt pathway. Notably, UA could also reverse sorafenib resistance of HCC cells by suppressing the ING5-ACC1/ACLY-lipid droplets (LDs) axis. UA abrogated ING5 transcription and downregulated its expression by reducing SRF and YY1 expression and the SRF-YY1 complex formation. Alb/JCPyV T antigen mice were used for in vivo experiments since T antigen upregulated ING5 expression by inhibiting the ubiquitin-mediated degradation and promoting the T antigen-SRF-YY1-ING5 complex-associated transcription. UA suppressed JCPyV T antigen-induced spontaneous HCC through inhibiting ING5-mediated PI3K/Akt signaling pathway. These findings suggest that UA has the dual antitumoral functions of inhibiting hepatocellular carcinogenesis and reversing sorafenib resistance of HCC cells through targeting ING5, which could serve as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yin-Jie Fan
- College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110001, Liaoning Province, China
| | - Fu-Zhi Pan
- Department of Ultrasound Medicine, Liaoning Cancer Hospital, Shenyang 110001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| |
Collapse
|
3
|
Zhao W, Xia Y, Li T, Liu H, Zhong G, Chen D, Yu W, Li Y, Huang F. Hepatitis E virus infection upregulates ING5 expression in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1365-1372. [PMID: 38877781 PMCID: PMC11532201 DOI: 10.3724/abbs.2024091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 06/16/2024] Open
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Yueping Xia
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Tengyuan Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Huichan Liu
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Guo Zhong
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Dongxue Chen
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Wenhai Yu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650038China
| | - Yunlong Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
- Yunnan Provincial Key Laboratory of Clinical VirologyKunming650032China
| | - Fen Huang
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
4
|
Zheng HC, Xue H, Jiang HM. The roles of ING5 in cancer: A tumor suppressor. Front Cell Dev Biol 2022; 10:1012179. [PMID: 36425530 PMCID: PMC9679416 DOI: 10.3389/fcell.2022.1012179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
As a Class II tumor suppressor, ING5 contains nuclear localization signal, plant homeodomain, novel conserved region, and leucine zipper-like domains. ING5 proteins form homodimer into a coil-coil structure, and heterodimers with ING4, histone H3K4me3, histone acetyltransferase (HAT) complex, Tip60, Cyclin A1/CDK2, INCA1 and EBNA3C for the transcription of target genes. The acetylated proteins up-regulated by ING5 are preferentially located in nucleus and act as transcription cofactors, chromatin and DNA binding functions, while those down-regulated by ING5 mostly in cytoplasm and contribute to metabolism. ING5 promotes the autoacetylation of HAT p300, p53, histone H3 and H4 for the transcription of downstream genes (Bax, GADD45, p21, p27 and so forth). Transcriptionally, YY1 and SRF up-regulate ING5 mRNA expression by the interaction of YY1-SRF-p53-ING5 complex with ING5 promoter. Translationally, ING5 is targeted by miR-196, miR-196a, miR-196b-5p, miR-193a-3p, miR-27-3p, miR-200b/200a/429, miR-1307, miR-193, miR-222, miR-331-3p, miR-181b, miR-543 and miR-196-b. ING5 suppresses proliferation, migration, invasion and tumor growth of various cancer cells via the suppression of EGFR/PI3K/Akt, IL-6/STAT3, Akt/NF-κB/NF-κB/MMP-9 or IL-6/CXCL12 pathway. ING5-mediated chemoresistance is closely linked to anti-apoptosis, overexpression of chemoresistant genes, the activation of PI3K/Akt/NF-κB and Wnt/β-catenin signal pathways. Histologically, ING5 abrogation in gastric stem-like and pdx1-positive cells causes gastric dysplasia and cancer, and conditional ING5 knockout in pdx1-positive and gastric chief cells increases MNU-induced gastric carcinogenesis. Intestinal ING5 deletion increases AOM/DSS- induced colorectal carcinogenesis and decreases high-fat-diet weight. The overexpression and nucleocytoplasmic translocation of ING5 are seen during carcinogenesis, and ING5 expression was inversely associated with aggressive behaviors and poor prognosis in a variety of cancers. These findings indicated that ING5 might be used for a molecular marker for carcinogenesis and following progression, and as a target for gene therapy if its chemoresistant function might be ameliorated.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Zhou Z, Cui X, Gao P, Zhang X, Zhu C, Sun B. Circular RNA circRASSF5 Functions as an Anti-Oncogenic Factor in Hepatocellular Carcinoma by Acting as a Competitive Endogenous RNA Through Sponging miR-331-3p. J Hepatocell Carcinoma 2022; 9:1041-1056. [PMID: 36217445 PMCID: PMC9547604 DOI: 10.2147/jhc.s376063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Recently, emerging studies have validated that circular RNAs participate in multiple biological progresses in various human malignant tumors, including hepatocellular carcinoma (HCC). However, until now, the elucidated mechanism of circular RNAs is only the tip of the iceberg. In this study, we firstly identify a novel circular RNA circRASSF5 (the only circular RNA derived from the RASSF5 gene), and attempt to investigate its biological function and underlying mechanism in HCC. Methods qRT-PCR, Western blotting and IHC were applied to detect the expression of related genes. CCK-8 assay, EdU staining, wound healing and transwell assays were used to investigate HCC proliferation, migration and invasion abilities. Animal model studies were included to investigate the function of circRASSF5 in HCC tumorigenesis and metastasis. RNA pull-down assay, luciferase reporter assay and FISH (fluorescence in situ hybridization) assay were performed to explore the potential biological mechanism underlying circRASSF5 function in HCC. Results CircRASSF5 is obviously downregulated in both HCC tissues and cell lines. Low level of circRASSF5 is negatively associated with larger tumor size, severe vascular invasion, more portal vein tumor embolus and unfavorable prognosis. Loss-of-function assay reveals that circRASSF5 remarkably impedes the growth and metastasis of HCC cells in vitro and in vivo. Mechanistically, circRASSF5 directly interacts with miR-331-3p as a sponge, and then enhances the expression of PH domain and leucine-rich repeat protein phosphatase (PHLPP), thus restraining the progression of HCC cells. Conclusion Altogether, we validate that circRASSF5 is a tumor suppressor in HCC, which competitively sponges with miR-331-3p and then enhances the tumor inhibitory effect of PHLPP, indicating the potential application value of circRASSF5 for HCC diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Zhao Zhou
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaohan Cui
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Peng Gao
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xudong Zhang
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chunfu Zhu
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China,Correspondence: Chunfu Zhu, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China, Email
| | - Beicheng Sun
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,Beicheng Sun, Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China, Email
| |
Collapse
|
6
|
Zheng HC, Xue H, Wu X, Xu HL, Zhao EH, Cui ZG. Transcriptional Regulation of ING5 and its Suppressive Effects on Gastric Cancer. Front Oncol 2022; 12:918954. [PMID: 35747809 PMCID: PMC9209732 DOI: 10.3389/fonc.2022.918954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
ING5 targets histone acetyltransferase or histone deacetylase complexes for local chromatin remodeling. Its transcriptional regulation and suppressive effects on gastric cancer remain elusive. Luciferase assay, EMSA, and ChIP were used to identify the cis-acting elements and trans-acting factors of the ING5 gene. We analyzed the effects of SAHA on the aggressive phenotypes of ING5 transfectants, and the effects of different ING5 mutants on aggressive phenotypes in SGC-7901 cells. Finally, we observed the effects of ING5 abrogation on gastric carcinogenesis. EMSA and ChIP showed that both SRF (−717 to −678 bp) and YY1 (−48 to 25bp) interacted with the promoter of ING5 and up-regulated ING5 expression in gastric cancer via SRF-YY1-ING5-p53 complex formation. ING5, SRF, and YY1 were overexpressed in gastric cancer, (P<0.05), and associated with worse prognosis of gastric cancer patients (P<0.05). ING5 had positive relationships with SRF and YY1 expression in gastric cancer (P<0.05). SAHA treatment caused early arrest at S phase in ING5 transfectants of SGC-7901 (P<0.05), and either 0.5 or 1.0 μM SAHA enhanced their migration and invasion (P<0.05). The wild-type and mutant ING5 transfectants showed lower viability and invasion than the control (P<0.05) with low CDC25, VEGF, and MMP-9 expression. Gastric spontaneous adenocarcinoma was observed in Atp4b-cre; ING5f/f, Pdx1-cre; ING5f/f, and K19-cre; ING5f/f mice. ING5 deletion increased the sensitivity of MNU-induced gastric carcinogenesis. ING5 mRNA might be a good marker of gastric carcinogenesis, and poor prognosis. ING5 expression was positively regulated by the interaction of SRF-YY1-ING5-p53 complex within the ING5 promoter from −50 bp upstream to the transcription start site. ING5 deletion might contribute to the tumorigenesis and histogenesis of gastric cancer.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Wu
- Department of Pathology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Hai-lan Xu
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - En-hong Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
7
|
Fernández-Pato A, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Valle-Millares D, Brochado-Kith O, Blancas R, Martínez A, Ceballos FC, Bartolome-Sánchez S, Vidal-Alcántara EJ, Alonso D, Blanca-López N, Martinez-Acitores IR, Martin-Pedraza L, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg Microbes Infect 2022; 11:676-688. [PMID: 35130828 PMCID: PMC8890551 DOI: 10.1080/22221751.2022.2038021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a crucial role in regulating immune response against infectious diseases, showing changes early in disease onset and before the detection of the pathogen. Thus, we aimed to analyze the plasma miRNA profile at COVID-19 onset to identify miRNAs as early prognostic biomarkers of severity and survival. METHODS AND RESULTS Plasma miRNome of 96 COVID-19 patients that developed asymptomatic/mild, moderate and severe disease was sequenced together with a group of healthy controls. Plasma immune-related biomarkers were also assessed. COVID-19 patients showed 200 significant differentially expressed (SDE) miRNAs concerning healthy controls, with upregulated putative targets of SARS-CoV-2, and inflammatory miRNAs. Among COVID-19 patients, 75 SDE miRNAs were observed in asymptomatic/mild compared to symptomatic patients, which were involved in platelet aggregation and cytokine pathways, among others. Moreover, 137 SDE miRNAs were identified between severe and moderate patients, where miRNAs targeting the SARS CoV-2 genome were the most strongly disrupted. Finally, we constructed a mortality predictive risk score (miRNA-MRS) with ten miRNAs. Patients with higher values had a higher risk of 90-days mortality (hazard ratio=4.60; p-value<0.001). Besides, the discriminant power of miRNA-MRS was significantly higher than the observed for age and gender (AUROC=0.970 vs. 0.881; p=0.042). CONCLUSIONS SARS-CoV-2 infection deeply disturbs the plasma miRNome from an early stage of COVID-19, making miRNAs highly valuable as early predictors of severity and mortality.
Collapse
Affiliation(s)
- Asier Fernández-Pato
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain.,School of Medicine, Complutense University of Madrid, Madrid, Spain.,Gregorio Marañón Health Research Institute, Madrid, Spain
| | | | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
| | - Amalia Martínez
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Francisco C Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - David Alonso
- Internal Medicine Service, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | | | - Laura Martin-Pedraza
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology CNM, Health Institute Carlos III ISCIII, Majadahonda, Madrid, Spain
| |
Collapse
|
8
|
Liu X, Guo X, Zhou H. Octreotide acetate combined with somatostatin upregulates miR-1291 and downregulates miR-331-3p in patients with cirrhosis and upper gastrointestinal bleeding. Am J Transl Res 2021; 13:9883-9891. [PMID: 34540125 PMCID: PMC8430138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aimed to explore the efficacy of octreotide acetate combined with somatostatin (OA + SS) for the treatment of patients with cirrhosis and upper gastrointestinal bleeding (UGIB). METHODS A total of 118 patients with cirrhosis and UGIB in our hospital were enrolled from June 2018 to September 2019. Fifty-seven were treated with OA alone (Group A) whereas 61 were treated with OA + SS (Group B). RESULTS The therapeutic effects, inflammatory cytokines, liver function indices, and relative expression levels of miR-1291 and miR-331-3p were then observed. Compared with the patients in Group A, those in Group B had lower post-treatment inflammatory cytokine levels (P < 0.05), better post-treatment liver function indices (P < 0.05), lower incidences of adverse reactions (P < 0.05), and a higher total effective rate (P < 0.05). The OA + SS treatment group had upregulated miR-1291 and downregulated miR-331-3p (P < 0.05). CONCLUSION OA + SS therapy is safe and effective for the treatment of patients with cirrhosis and UGIB.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Gastroenterology, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| | - Xiaohui Guo
- Department of Gastroenterology, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei, China
| | - Hu Zhou
- Department of Function, HanDan Central HospitalHandan 056001, Hebei, China
| |
Collapse
|
9
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
10
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Unger L, Abril C, Gerber V, Jagannathan V, Koch C, Hamza E. Diagnostic potential of three serum microRNAs as biomarkers for equine sarcoid disease in horses and donkeys. J Vet Intern Med 2021; 35:610-619. [PMID: 33415768 PMCID: PMC7848377 DOI: 10.1111/jvim.16027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are potential biomarkers for equine sarcoids (ES). OBJECTIVES To assess eca-miR-331, eca-miR-100, and eca-miR-1 as serum biomarkers for ES disease. ANIMALS Sixty-eight ES cases (56 horses, 12 donkeys), 69 tumor-free controls (60 horses, 9 donkeys), and 20 horses with other skin tumors. METHODS For this case-control study, expression of serum eca-miR-331, eca-miR-100, and eca-miR-1 in ES-affected equids was compared to tumor-free age-, sex-, and breed-matched control horses and donkeys with other skin tumors using reverse transcription quantitative PCR (polymerase chain reaction) for relative miRNA quantification. Biological, preanalytical, and clinical variable influences on miRNA expression were examined. Receiver operator characteristic (ROC) curve analyses were used to determine differences in miRNA expression between groups. RESULTS The expression of eca-miR-100 was affected by age (P = .003) and expression of eca-miR-100 and eca-miR-1 were affected by hemolysis (both P < .001). Eca-miR-331 was unaffected by biological variation, hemolysis, ES type, and disease severity. Eca-miR-331 concentrations were higher in ES-affected compared to tumor-free controls (P = .002). The ROC curve analysis indicated an area under the curve of 0.65 (P = .002) with a sensitivity of 60%, specificity of 71%, and positive and negative likelihood ratios of 2.1 and 0.56, respectively, to diagnose ES. Eca-miR-331 expression did not discriminate between horses with ES and other skin tumors. Expression of eca-miR-100 and eca-miR-1 was not different between groups. CONCLUSIONS AND CLINICAL IMPORTANCE Serum eca-miR-331 expression is neither sensitive nor specific enough as a single ES biomarker. If combined with other miRNAs, it may be helpful for ES diagnosis.
Collapse
Affiliation(s)
- Lucia Unger
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine (ISME), Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| | - Carlos Abril
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine (ISME), Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christoph Koch
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine (ISME), Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine (ISME), Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| |
Collapse
|
12
|
Zhang YH, Jin M, Li J, Kong X. Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165847. [DOI: 10.1016/j.bbadis.2020.165847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 02/09/2023]
|
13
|
Kronstein-Wiedemann R, Nowakowska P, Milanov P, Gubbe K, Seifried E, Bugert P, Chavakis T, Tonn T. Regulation of ABO blood group antigen expression by miR-331-3p and miR-1908-5p during hematopoietic stem cell differentiation. Stem Cells 2020; 38:1348-1362. [PMID: 32621650 DOI: 10.1002/stem.3251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The ABO blood group system is the most important factor in clinical transfusion medicine and is implicated in a number of human diseases. ABO antigens are not confined to red blood cells (RBCs) and are widely expressed in a variety of human cells and tissues. To date, many alleles with variant ABO expression have been identified and in many cases traced to one of the >250 reported genetic variations in the respective glycosyltransferase. The role of microRNAs (miRNAs) in the regulation of blood group antigens during erythropoiesis has not been addressed, however. Here, we show that miR-331-3p and miR-1908-5p directly target the mRNA of glycosyltransferases A and B. Expression levels of miR-331-3p and miR-1908-5p inversely correlated with levels of blood group A antigen. In addition, we found that overexpression of these miRNAs in hematopoietic stem cells led to a significantly reduced number of blood group A antigens per RBC. Simultaneous targeting of the transcription factor (TF) SP1 by miR-331-3p further enhanced these effects. The targeting rendered SP1 incapable of binding to the ABO gene promoter, causing further downregulation of blood group A antigen expression by up to 70%. Taken together, expression changes in these miRNAs may account for rare cases of weak A/B phenotypes that genetic variations in the glycosyltransferase coding region cannot explain. These results also suggest an explanation for the disappearance of ABH antigens during carcinogenesis and point to new therapeutic targets in ABO mismatched organ transplantation.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paulina Nowakowska
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Peter Milanov
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunohematology, Clinics of the Johann Wolfgang Goethe University Frankfurt/M, Frankfurt/M, Germany
| | - Knut Gubbe
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Erhard Seifried
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunohematology, Clinics of the Johann Wolfgang Goethe University Frankfurt/M, Frankfurt/M, Germany
| | - Peter Bugert
- German Red Cross Blood Donation Service Baden-Württemberg/Hessen, Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Triantafyllos Chavakis
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| |
Collapse
|
14
|
Jiang F, Zhang L, Liu Y, Zhou Y, Wang H. Overexpression of miR-331 Indicates Poor Prognosis and Promotes Progression of Breast Cancer. Oncol Res Treat 2020; 43:441-448. [PMID: 32818938 DOI: 10.1159/000508792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND With the increasing number of cases of breast cancer every year, the exploration of novel biomarkers has drawn attention. miR-331 has been demonstrated to play a role in various cancers, but its role in breast cancer is still unknown. METHODS In this study, we included 121 patients with breast cancer treated at Affiliated Hospital of Weifang Medical University. Breast cancer tissues and adjacent normal tissues were collected during the surgery. The expression of miR-331 in breast cancer tissues and cell lines was detected by qRT-PCR assay. Then, with the help of Kaplan-Meier survival and Cox regression analyses, the role of miR-331 in the prognosis of breast cancer was analyzed. Finally, the effect of miR-331 on cell proliferation, migration, and invasion was investigated with CCK-8 assay and transwell assay. RESULTS miR-331 was significantly upregulated in breast cancer tissues compared with normal tissues. The overexpression of miR-331 was associated with lymph node metastasis, TNM stage, and poor prognosis. From the results of Cox regression analyses, it was found that miR-331 served as an independent indicator in the prognosis of breast cancer. In addition, miR-331 was also found to be upregulated in breast cancer cells, which promoted cell proliferation, migration, and invasion of breast cancer. CONCLUSION As shown from our data, miR-331 may be a potential prognostic biomarker in breast cancer. Moreover, the development and progression of breast cancer may involve miR-331. These findings suggest a novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fuguo Jiang
- Department of Laboratory, Weifang People's Hospital, Weifang, China
| | - Lei Zhang
- Department of Laboratory, Weifang People's Hospital, Weifang, China
| | - Yunxia Liu
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhua Zhou
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China,
| | - Honggang Wang
- Department of Laboratory, Weifang People's Hospital, Weifang, China
| |
Collapse
|
15
|
Ayala-Suárez R, Díez-Fuertes F, Calonge E, De La Torre Tarazona HE, Gracia-Ruíz de Alda M, Capa L, Alcamí J. Insight in miRNome of Long-Term Non-Progressors and Elite Controllers Exposes Potential RNAi Role in Restraining HIV-1 Infection. J Clin Med 2020; 9:jcm9082452. [PMID: 32751854 PMCID: PMC7464121 DOI: 10.3390/jcm9082452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term non-progressors (LTNP) and elite controllers (EC) represent spontaneous natural models of efficient HIV-1 response in the absence of treatment. The main purposes of this work are to describe the miRNome of HIV-1 infected patients with different extreme phenotypes and identify potentially altered pathways regulated by differentially expressed (DE) miRNAs. The miRNomes from peripheral blood mononuclear cells (PBMCs) of dual phenotype EC-LTNP or LTNP with detectable viremia and HIV-infected patients with typical progression before and after treatment, were obtained through miRNA-Seq and compared among them. The administration of treatment produces 18 DE miRNAs in typical progressors. LTNP condition shows 14 DE miRNA when compared to typical progressors, allowing LTNP phenotype differentiation. A set of four miRNAs: miR-144-3p, miR-18a-5p, miR-451a, and miR-324 is strongly downregulated in LTNP and related to protein regulation as AKT, mTOR, ERK or IKK, involved in immune response pathways. Deregulation of 28 miRNA is observed between EC-LTNP and viremic-LTNP, including previously described anti-HIV miRNAs: miR-29a, associated with LTNP phenotype, and miR-155, targeting different pre-integration complexes such as ADAM10 and TNPO3. A holistic perspective of the changes observed in the miRNome of patients with different phenotypes of HIV-control and non-progression is provided.
Collapse
Affiliation(s)
- Rubén Ayala-Suárez
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| | - Esther Calonge
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Humberto Erick De La Torre Tarazona
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - María Gracia-Ruíz de Alda
- Sección de Enfermedades Infecciosas, Medicina Interna, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Laura Capa
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - José Alcamí
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| |
Collapse
|
16
|
Tian QQ, Xia J, Zhang X, Gao BQ, Wang W. miR-331-3p Inhibits Tumor Cell Proliferation, Metastasis, Invasion by Targeting MLLT10 in Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:5749-5758. [PMID: 32765078 PMCID: PMC7368563 DOI: 10.2147/cmar.s249686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Mounting research has established the role of microRNAs (miRNAs) as oncogenes or anti-oncogenes (tumor suppressors) in the development and progression of several cancers. The purpose of our current study is to delineate the roles and functional mechanisms of miR-331-3p and MLLT10 in non-small cell lung cancer (NSCLC) tumorigenesis. Patients and Methods Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was employed to measure miR-331-3p expression levels in twenty-six matched tumor tissues and non-cancerous tissues collected from patients suffering from NSCLC, and from six NSCLC cell lines separately: A549, H1650, H292, H1299, H1944 and BEAS-2b. We employed the dual-luciferase activity assay to check whether the putative gene, MLLT10, was a downstream target of miR-331-3p in NSCLC pathogenesis and development. Western blot was conducted to analyze the protein expression levels of MLLT10 (AF10), E-cadherin, Vimentin, and GAPDH. CCK-8 assay, transwell migration assay, and transwell invasion assay were carried out to observe the functions of miR-331-3p and MLLT10 on NSCLC tumor cell proliferation, metastasis, and invasion, respectively. To identify whether the metastasis of NSCLC tumor cells was EMT-mediated, supplementary experiments involving E-cadherin and Vimentin were implemented. Results miR-331-3p was downregulated in NSCLC, which promoted tumor cell proliferation, whereas the overexpression of miR-331-3p inhibited tumor cell proliferation. Being a direct target of miR-331-3p, MLLT10 was negatively modulated by miR-331-3p, which suppressed tumor cell proliferation, migration, and invasion in NSCLC. However, MLLT10 overexpression alleviated the above inhibitory effects. Furthermore, EMT-mediated metastasis was proved to be present in NSCLC. Conclusion miR-331-3p played a suppressor role in NSCLC tumor cell proliferation, EMT-mediated metastasis, and invasion by targeting MLLT10. Our findings highlighted that miR-331-3p/MLLT10 axis could be useful as a clinical diagnostic marker and therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Qing-Qing Tian
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Xia
- General Department of Houhu, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Zhang
- Department of Radiology, The Fourth People's Hospital of Huai'an, Huai'an, Huai'an, People's Republic of China
| | - Bao-Qin Gao
- Operating Room, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, People's Republic of China
| | - Wei Wang
- Department of Oncology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, People's Republic of China
| |
Collapse
|
17
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
18
|
Chi Q, Geng X, Xu K, Wang C, Zhao H. Potential targets and molecular mechanism of miR-331-3p in hepatocellular carcinoma identified by weighted gene coexpression network analysis. Biosci Rep 2020; 40:BSR20200124. [PMID: 32537629 PMCID: PMC7317601 DOI: 10.1042/bsr20200124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumor. miR-331-3p has been reported relevant to the progression of HCC, but the molecular mechanism of its regulation is still unclear. In the study, we comprehensively studied the role of miR-331-3p in HCC through weighted gene coexpression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Oncomine. WGCNA was applied to build gene co-expression networks to examine the correlation between gene sets and clinical characteristics, and to identify potential biomarkers. Five hundred one target genes of miR-331-3p were obtained by overlapping differentially expressed genes (DEGs) from the TCGA database and target genes predicted by miRWalk. The critical turquoise module and its eight key genes were screened by WGCNA. Enrichment analysis was implemented based on the genes in the turquoise module. Moreover, 48 genes with a high degree of connectivity were obtained by protein-protein interaction (PPI) analysis of the genes in the turquoise module. From overlapping genes analyzed by WGCNA and PPI, two hub genes were obtained, namely coatomer protein complex subunit zeta 1 (COPZ1) and elongation factor Tu GTP binding domain containing 2 (EFTUD2). In addition, the expression of both hub genes was also significantly higher in tumor tissues compared with normal tissues, as confirmed by analysis based on TCGA and Oncomine. Both hub genes were correlated with poor prognosis based on TCGA data. Receiver operating characteristic (ROC) curve validated that both hub genes exhibited excellent diagnostic efficiency for normal and tumor tissues.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China
| | - Xinge Geng
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunli Wang
- ‘111’ Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Han Zhao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
19
|
Kong L, Wu P, Li J. miR-331 inhibits CLDN2 expression and may alleviate the vascular endothelial injury induced by sepsis. Exp Ther Med 2020; 20:1343-1352. [PMID: 32742369 PMCID: PMC7388277 DOI: 10.3892/etm.2020.8854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to determine the expression level of claudin-2 (CLDN2) in the peripheral blood of patients with sepsis, and to investigate its potential function and mechanism of action in vascular endothelial injury. A total of 25 patients with sepsis were included in the present study. Reverse transcription-quantitative PCR was used to determine CLDN2 levels in peripheral blood. HUVECs stably expressing CLDN2 were prepared and Cell Counting Kit-8, flow cytometry and Transwell assays were performed to study the proliferation, apoptosis and migration of HUVECs, respectively. Using bioinformatics, microRNA (miR) molecules that interact with CLDN2 were predicted. A dual luciferase reporter assay was used to test whether miR-331 regulated CLDN2. Western blotting was employed to determine CLDN2 protein expression. In addition, in vitro transfection of HUVECs with miR-331 mimics was performed to test the rescue effects of miR-331 on the cell function changes induced by CLDN2. The results indicated that elevated CLDN2 expression altered the proliferation and cell cycle of peripheral vascular endothelial cells. CLDN2 overexpression inhibited HUVEC proliferation via mechanisms not associated with the cell cycle. CLDN2 mRNA levels in the peripheral blood of patients with sepsis were significantly higher than those in healthy subjects. Upregulated CLDN2 expression promoted the apoptosis of HUVECs, but reduced their proliferation and migration. Notably, miR-331 was able to bind with CLDN2 mRNA and regulate its expression. Upregulation of miR-331 expression inhibited the expression of CLDN2 and restored nearly normal proliferation, apoptosis and migration to HUVECs. The present study demonstrated that CLDN2 expression is elevated in peripheral blood from patients with sepsis, and promotes the injury of vascular endothelial cells. In addition, miR-331 participates in the direct regulation of CLDN2, and upregulation of miR-331 expression inhibits the expression of CLDN2 and restores cellular functions to HUVECs.
Collapse
Affiliation(s)
- Lingchen Kong
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Peng Wu
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jianzhong Li
- Department of Critical Care Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
20
|
Barlak N, Capik O, Sanli F, Kilic A, Aytatli A, Yazici A, Ortucu S, Ittmann M, Karatas OF. ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biol Int 2020; 44:242-252. [PMID: 31475765 DOI: 10.1002/cbin.11227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer in men. In several recent studies, chromosomal deletions in the q arm of chromosome 2, where ING5 resides within, have been identified in various cancer types including PCa. In this study, we investigate the role of ING5 as a tumor suppressor in PCa. We examined the expression level of ING5 in tissue samples and cell lines using quantitative real-time polymerase chain reaction and western blot analysis. We tested the in vitro tumor suppressor potential of ING5 in PC3 and LNCaP cells stably overexpressing it using cell viability, colony formation, migration, invasion, and apoptosis assays. We then investigated the effects of ING5 on the Akt and p53 signaling using western blot analysis. We show that ING5 is significantly downregulated in PCa tumor tissue samples and cell lines compared with the corresponding controls. In vitro assays demonstrate that ING5 effectively suppresses proliferative, clonogenic, migratory, and invasive potential and induce apoptosis in PCa cells. ING5 may potentially exert its anti-tumor potential by inhibiting AKT and inducing p53 signaling pathways. Our findings demonstrate that ING5 possesses tumor suppressor roles in vitro, pointing its importance during the prostatic carcinogenesis processes.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Ahsen Kilic
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Aysenur Yazici
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Michael E. DeBakey VAMC, Houston, Texas, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| |
Collapse
|
21
|
The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019; 8:cells8121504. [PMID: 31771261 PMCID: PMC6953055 DOI: 10.3390/cells8121504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Collapse
|
22
|
Chen X, Luo H, Li X, Tian X, Peng B, Liu S, Zhan T, Wan Y, Chen W, Li Y, Lu Z, Huang X. miR-331-3p functions as an oncogene by targeting ST7L in pancreatic cancer. Carcinogenesis 2019; 39:1006-1015. [PMID: 29850766 DOI: 10.1093/carcin/bgy074] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor with early metastasis and poor prognosis, yet the mechanisms for tumor progression have not been fully elucidated. Emerging evidence indicates that microRNA-331-3p (miR-331-3p) plays an important role in the progression of diverse human cancers. Here, we found that miR-331-3p was significantly upregulated in tumor specimens of PC patients and PC cell lines. Functional studies showed that downregulation of miR-331-3p inhibited PC cell proliferation and epithelial-mesenchymal transition (EMT)-mediated metastasis in vitro. Furthermore, suppression of tumorigenicity 7 like (ST7L) was identified as a novel target gene of miR-331-3p. Tumor promotion effects of miR-331-3p were partially reversed by ST7L re-expression. In addition, miR-331-3p antagomir suppressed PC tumor growth and metastasis via upregulation of ST7L in xenograft mice. In summary, these results demonstrate that miR-331-3p is a tumor-promoting microRNA (miRNA) in PC cells and a promising biomarker for PC.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Li
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Bo Peng
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yiyuan Wan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Zhao T, Chen W, Zhang X, Yi H, Zhao F. HIV-induced cancer--all paths leading to Rome. Microb Pathog 2019; 139:103804. [PMID: 31639468 DOI: 10.1016/j.micpath.2019.103804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although several viruses have been proved to induce host specific microRNAs (miRNAs, miRs), the expression of functional miRNAs induced by Human Immunodeficiency Virus 1 (HIV-1) infection is still unknown. The variation of the expression of HIV-1 inducing miRNAs both in vitro and in vivo (in all types of infected patient groups) implies that these specific miRNAs have potential roles in the development of diseases. However, few researches have noticed the roles of these serum miRNAs. In this study, we attempted to establish a macrocontrol regulation system and simulate the influence of HIV-1 inducing miRNAs during the development of cancer. METHODS The miRbase, FunRich software, miRtarbase, STRING, TargetScanhuman, Cytoscape plugin ClueGO/Cluepedia/STRING, DAVID Bioinformatics Resources and GEO database were comprehensively employed in this bioinformatics study. RESULTS The miRNAs in the serum of AIDS patients and its target genes have different expression levels in serum, an array of which are associated with cancer and metabolism signaling pathways. Moreover, the emerging role of miRNAs in HIV-1 infection is also involved in human cancer, using TCGA data integrative analysis. CONCLUSIONS Therefore, we infer that serum miRNAs in HIV-1 infection may play important roles in HIV-induced cancer and could be used as a potential biomarker for HIV-cancers detection.
Collapse
Affiliation(s)
- Tie Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Collaborative Innovation Center for New Molecular Drug Research, University of South China, Hengyang, 421001, PR China
| | - Wen Chen
- Department of Diagnostics, Medical College, University of South China, Hengyang, 421001, China
| | - Xiaohong Zhang
- Department of Histology and Embryology, Medical College, University of South China, Hengyang, 421001, PR China
| | - Huanhuan Yi
- School of Languages and Literature, University of South China,Hengyang, 421001, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Collaborative Innovation Center for New Molecular Drug Research, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
24
|
Buranjiang G, Kuerban R, Abuduwanke A, Li X, Kuerban G. MicroRNA-331-3p inhibits proliferation and metastasis of ovarian cancer by targeting RCC2. Arch Med Sci 2019; 15:1520-1529. [PMID: 31749881 PMCID: PMC6855167 DOI: 10.5114/aoms.2018.77858] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Epithelial ovarian carcinoma (EOC) is one of the most lethal gynecologic malignancies, with a poor 5-year survival rate. Numerous studies have shown that microRNAs participate in the malignant behavior of ovarian cancer cells by directly targeting multiple oncogenes or tumor suppressor genes. MATERIAL AND METHODS Reverse transcription-PCR was used to determine the level of miR-331-3p in EOC. Cells proliferation was measured with the Cell Counting Kit-8. Cell mobility were measured by wound-healing assay. Cell migration and invasion were measured by transwell assay. Luciferase assays were used to demonstrate that RCC2 was a directed target of miR-331-3p in EOC. Western blots were used to measure the protein expression. RESULTS We found that the expression of microRNA-331-3p (miR-331-3p) in ovarian cancer cell lines is reduced (p < 0.01), and an increase of expression of miR-331-3p in ovarian cancer cells significantly inhibits cell proliferation (p < 0.001). Transwell and wound-healing assays showed that miR-331-3p inhibits the cell motility of ovarian cancer cells (p < 0.001). Regulator of chromosome condensation 2 (RCC2) was predicted to be a novel target for miR-331-3p. Our luciferase activity assay confirmed that RCC2 is directly targeted by miR-331-3p. RCC2 was negatively regulated by miR-331-3p (p < 0.001), and overexpression of RCC2 could restore the malignant behaviors of ovarian cancer cells, which was suppressed by miR-331-3p. CONCLUSIONS These data indicate that miR-331-3p can inhibit proliferation, migration, and invasion of ovarian cancer cells via directly targeting RCC2. Our study provides potential therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Gulimire Buranjiang
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Reziya Kuerban
- Department of Gynecological Special Disease Clinic, Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Ailikemu Abuduwanke
- Department of Pediatric Ward, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, Xinjiang, China
| | - Xiaowen Li
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Gulina Kuerban
- Department of Gynecologic Oncology Radiation Therapy (Ward II), Xinjiang Medical University Third Clinical Medical College (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| |
Collapse
|
25
|
Yang LY, Song GL, Zhai XQ, Wang L, Liu QL, Zhou MS. MicroRNA-331 inhibits development of gastric cancer through targeting musashi1. World J Gastrointest Oncol 2019; 11:705-716. [PMID: 31558975 PMCID: PMC6755110 DOI: 10.4251/wjgo.v11.i9.705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The molecular mechanisms involved in microRNAs (miRNAs) have been extensively investigated in gastric cancer (GC). However, how miR-331 regulates GC pathogenesis remains unknown.
AIM To illuminate the effect of miR-331 on cell metastasis and tumor growth in GC.
METHODS The qRT-PCR, CCK8, Transwell, cell adhesion, Western blot, luciferase reporter and xenograft tumor formation assays were applied to explore the regulatory mechanism of miR-331 in GC.
RESULTS Downregulation of miR-331 associated with poor prognosis was detected in GC. Functionally, miR-331 suppressed cell proliferation, metastasis and tumor growth in GC. Further, miR-331 was verified to directly target musashi1 (MSI1). In addition, miR-331 inversely regulated MSI1 expression in GC tissues. Furthermore, upregulation of MSI1 weakened the inhibitory effect of miR-331 in GC.
CONCLUSION miR-331 inhibited development of GC through targeting MSI1, which may be used as an indicator for the prediction and prognosis of GC.
Collapse
Affiliation(s)
- Lei-Ying Yang
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Guang-Le Song
- Morphological Laboratory, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Xiao-Qian Zhai
- Department of Pathology, Second Affiliated Hospital of Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Li Wang
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Qin-Lai Liu
- Department of Pathology, Shandong First Medical University, Taian 271016, Shandong Province, China
| | - Ming-Shun Zhou
- Department of Emergency, Second Affiliated Hospital of Shandong First Medical University, Taian 271016, Shandong Province, China
| |
Collapse
|
26
|
Xie X, Xu X, Sun C, Yu Z. Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5. Biol Chem 2019; 399:611-619. [PMID: 29604207 DOI: 10.1515/hsz-2018-0178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus X protein (HBx) played a key role in the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Emerging evidence has demonstrated that miR-181b and the inhibitor of growth protein 5 (ING5) participated in the pathophysiological process. However, the regulatory mechanism of HBx remained unknown. The expression of miR-181b and ING5 in HCC tissues and cell lines were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability was determined using the MTT method following HCC cell lines transfection. The interaction between miR-181b and ING5 was assessed by luciferase reporter assay. The nude mice tumor model was well established to evaluate the role and biological functions of HBx on the progression of HBV-related HCC in vivo. MiR-181b was upregulated and ING5 was downregulated in HCC tissues and cell lines. As suggested by the results from in vitro and in vivo experiments, HBx downregulates the expression of the miR-181b target gene ING5, resulting in the promotion of HCC cell proliferation. HBx accelerates proliferation activity of HCC cells by increasing miR-181b expression via targeting ING5, thereby influencing the progression of HBV-related HCC.
Collapse
Affiliation(s)
- Xuhua Xie
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xiaopei Xu
- Department of Physical Examination, The Third People's Hospital of Henan Province, Zhengzhou 450006, Henan, China
| | - Changyu Sun
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zujiang Yu
- Infectious Disease Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
27
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
28
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
29
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
30
|
Nakamura M, Chiba T, Kanayama K, Kanzaki H, Saito T, Kusakabe Y, Kato N. Epigenetic dysregulation in hepatocellular carcinoma: an up-to-date review. Hepatol Res 2019; 49:3-13. [PMID: 30238570 DOI: 10.1111/hepr.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Due to the advances made in research based on next generation sequencers, it is now possible to detect and analyze epigenetic abnormalities associated with cancer. DNA methylation, various histone modifications, chromatin remodeling, and non-coding RNA-associated gene silencing are considered to be transcriptional regulatory mechanisms associated with gene expression changes. The breakdown of this precise regulatory system is involved in the transition to cancer. The important role of epigenetic regulation can be observed from the high rate of genetic mutations and abnormal gene expression leading to a breakdown in epigenetic gene expression regulation seen in hepatocellular carcinoma (HCC). Based on an understanding of epigenomic abnormalities associated with pathological conditions, these findings will lead the way to diagnosis and treatment. In particular, in addition to the fact that there are few choices in terms of extant drug therapies aimed at HCC, there are limits to their antitumor effects. The clinical application of epigenetic therapeutic agents for HCC has only just begun, and future developments are expected.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
31
|
Ng K, Shee SE, Koh R, Voon KL, Chye S, Othman I. The roles of microRNA-331 Family in Cancers. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Luan X, Wang Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p. J Gynecol Oncol 2018; 29:e95. [PMID: 30207103 PMCID: PMC6189437 DOI: 10.3802/jgo.2018.29.e95] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. METHODS LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. RESULTS Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. CONCLUSION Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Xiaotian Luan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yankui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Gu J, Zhang J, Zheng L, Ajani JA, Wu X, Ye Y. Serum miR-331-3p predicts tumor recurrence in esophageal adenocarcinoma. Sci Rep 2018; 8:14006. [PMID: 30228315 PMCID: PMC6143616 DOI: 10.1038/s41598-018-32282-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) may contribute to the initiation and progression of cancer. The role of circulating miRNAs as predictors of recurrence in esophageal adenocarcinoma (EAC) has not been extensively explored. Here we measured the expressions of 167 miRNAs in serum samples from a discovery cohort of 72 EAC patients (32 patients with recurrence and 40 patients without). A rank sum test was performed to identify differentially expressed miRNAs. Cox regression model was applied to estimate the effect of miRNA expression on recurrence-free survival. The eligible miRNAs were then validated in an independent cohort of 329 EAC patients (132 patients with recurrence and 197 patients without). miR-331-3p was identified and confirmed to be differentially expressed between EAC patients with and without recurrence and associated with recurrence-free survival. In both cohorts, the expression of miR-331-3p was consistently decreased in patients with recurrence compared to those without (P < 0.05). Using patients with low expression of miR-331-3p as reference, those with high expression had HRs for recurrence of 0.45 (95% CI, 0.21-0.96, P = 0.040) and 0.55 (95% CI, 0.38-0.78, P = 0.001) in the discovery and validation cohorts, respectively. Therefore, serum miR-331-3p may be a useful biomarker for identifying EAC patients at high risk of recurrence.
Collapse
Affiliation(s)
- Jianchun Gu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinhua Zhang
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jaffer A Ajani
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xifeng Wu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Yuanqing Ye
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 2018; 9:3557-3569. [PMID: 30310513 PMCID: PMC6171016 DOI: 10.7150/jca.26350] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, leading to the second cancer-related death in the global. Although the treatment of HCC has greatly improved over the past few decades, the survival rate of patients is still quite low. Thus, it is urgent to explore new therapies, especially seek for more accurate biomarkers for early diagnosis, treatment and prognosis in HCC. MicroRNAs (miRNAs), small noncoding RNAs, are pivotal participants and regulators in the development and progression of HCC. Great progress has been made in the studies of miRNAs in HCC. The key regulatory mechanisms of miRNAs include proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in HCC. And exosomal miRNAs also play important roles in proliferation, invasion, metastasis, and drug resistance in HCC by regulating gene expression in the target cells. In addition, some miRNAs, including exosomal miRNAs, can be as potential diagnostic and prediction markers in HCC. This review summarizes the latest researches development of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| |
Collapse
|
36
|
Zhao X, Ren Y, Cui N, Wang X, Cui Y. Identification of key microRNAs and their targets in exosomes of pancreatic cancer using bioinformatics analysis. Medicine (Baltimore) 2018; 97:e12632. [PMID: 30278585 PMCID: PMC6181532 DOI: 10.1097/md.0000000000012632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal tumors, due to late diagnosis and limited surgical strategies. It has been reported that serum exosomal microRNAs (S-Exo-miRNAs) play a pivotal role as signaling molecules and serve as noninvasive diagnosis methods for PC. The combination of S-Exo-miRNAs with the corresponding target also plays an important role in the tumor microenvironment.Here we investigated S-Exo-miRNAs involved in PC. The gene expression profile was downloaded from the Gene Expression Omnibus (GEO) database. The analysis was carried out using GEO2R. The targets of differentially expressed serum exosomal miRNAs (DE-S-Exo-miRNAs) were predicted by 4 bioinformatic algorithms (miRanda, miRDB, miRWalk, and Targetscan). Further analysis with gene ontology (GO) and Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment analyses were performed with Cytoscape software version 3.4.0. Subsequently, the interaction regulatory network of target genes was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) database (http://www.string-db.org/) and visualized using Cytoscape software.We downloaded the gene expression profile GSE50632, which was based on an Agilent microarray GPL17660 platform containing 4 eligible samples. In total 467 DE-S-Exo-miRNAs were obtained, including 7 overexpressed miRNAs (1.50%), and 460 remaining underexpressed miRNAs (98.50%). The databases miRWalk, miRDB, miRanda, and TargetScan were used to predict their potential targets, which were subsequently submitted to Cytoscape software version 3.4.0 (www.cytoscape.org). Next the functional and pathway enrichment analysis were used for the KEGG pathway and GO categories analysis. The enrichment analysis identified the genes involved in such processes as developmental and negative regulation of multicellular organismal processes, regulation of anatomical structure morphogenesis, regulation of cell death, apoptotic processes and mitogen-activated protein kinase (MAPK) signaling pathway, transforming growth factor - beta (TGF -β) signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, and the phosphatidylinositol-3 kinases/Akt (PI3K-Akt) signaling pathway. Subsequently according to the protein-protein interaction (PPI) network, the top 10 genes were obtained. The enrichment analyses of the genes involved in a significant module revealed that these genes were related to the TGF-β signaling pathway. After reviewing the literature, we identified the apoptosis genes, and their corresponding miRNAs that have a relationship with apoptosis of the tumor.This analysis provides a comprehensive understanding of the roles of S-Exo-miRNAs and the related targets in the development of PC. Additionally, the present study provides promising candidate targets for early diagnosis and therapeutic intervention. However, these predictions require further experimental validation in future studies.
Collapse
Affiliation(s)
- Xin Zhao
- Tianjin Medical University, Tianjin
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Yiming Ren
- Department of Bone and Joint, Tianjin Union Medicine Center, PR China
| | - Naiqiang Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| |
Collapse
|
37
|
Wu J, Jiang H, Yang X, Zheng H. ING5-mediated antineuroblastoma effects of suberoylanilide hydroxamic acid. Cancer Med 2018; 7:4554-4569. [PMID: 30091530 PMCID: PMC6144157 DOI: 10.1002/cam4.1634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid neuroendocrine cancer and is one of the leading causes of death in children. To improve clinical outcomes and prognosis, discovering new promising drugs and targeted medicine is essential. We found that applying Suberoylanilide hydroxamic acid (SAHA; Vorinostat, a histone deacetylase inhibitor) and MG132 (a proteasome inhibitor) to SH-SY5Y cells synergistically suppressed proliferation, glucose metabolism, migration, and invasion and induced apoptosis and cell cycle arrest. These effects occurred both concentration and time dependently and were associated with the effects observed with inhibitor of growth 5 (ING5) overexpression. SAHA and MG132 treatment increased the expression levels of ING5, PTEN, p53, Caspase-3, Bax, p21, and p27 but decreased the expression levels of 14-3-3, MMP-2, MMP-9, ADFP, Nanog, c-myc, CyclinD1, CyclinB1, and Cdc25c concentration dependently, similar to ING5. SAHA may downregulate miR-543 and miR-196-b expression to enhance the translation of ING5 protein, which promotes acetylation of histones H3 and H4. All three proteins (ING5 and acetylated histones H3 and H4) were recruited to the promoters of c-myc, Nanog, CyclinD1, p21, and p27 for complex formation, thereby regulating the mRNA expression of downstream genes. ING5 overexpression and SAHA and/or MG132 administration inhibited tumor growth in SH-SY5Y cells by suppressing proliferation and inducing apoptosis. The expression of acetylated histones H3 and ING5 may be closely linked to the tumor size of neuroblastomas. In summary, SAHA and/or MG132 can synergistically suppress the malignant phenotypes of neuroblastoma cells through the miRNA-ING5-histone acetylation axis and via proteasomal degradation, respectively. Therefore, the two drugs may serve as potential treatments for neuroblastoma.
Collapse
Affiliation(s)
- Ji‐cheng Wu
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Hua‐mao Jiang
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiang‐hong Yang
- Department of PathologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Hua‐chuan Zheng
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
38
|
Chen HQ, Zhao J, Li Y, He LX, Huang YJ, Shu WQ, Cao J, Liu WB, Liu JY. Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells. Toxicol Lett 2018. [PMID: 29518473 DOI: 10.1016/j.toxlet.2018.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China; The Calmette International Hospital, Kunming 650224, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China.
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
39
|
Chen L, Ma G, Cao X, An X, Liu X. MicroRNA-331 Inhibits Proliferation and Invasion of Melanoma Cells by Targeting Astrocyte-Elevated Gene-1. Oncol Res 2018; 26:1429-1437. [PMID: 29510779 PMCID: PMC7844642 DOI: 10.3727/096504018x15186047251584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melanoma is characterized by aggressive invasion, early metastasis, and resistance to existing chemotherapeutic agents. Accumulated studies have reported that microRNA (miRNA) is a potentially robust molecular tool for developing future therapeutic technologies. Therefore, examining the expression patterns, biological roles, and associated mechanisms of cancer-related miRNAs in melanoma is essential for developing novel therapeutic targets for patients with this disease. In this study, miRNA-331 (miR-331) was underexpressed in melanoma tissues and cell lines. Functional assays revealed that the enforced expression of miR-331 inhibited cell proliferation and invasion. In addition, astrocyte-elevated gene-1 (AEG-1) was identified as a novel target of miR-331 through bioinformatics analysis, reverse transcription quantitative polymerase chain reaction analysis, Western blot analysis, dual-luciferase reporter assay, and Spearman’s correlation analysis. Furthermore, reintroduction of AEG-1 partially abrogated the inhibitory effects of miR-331 overexpression on the proliferation and invasion of melanoma cells. Moreover, miR-331 suppressed the activation of the PTEN/AKT signaling pathway in melanoma by inhibiting AEG-1. In short, miR-331 may play tumor-suppressive roles in melanoma by directly targeting AEG-1 and regulating the PTEN/AKT signaling pathway, suggesting that miR-331 could be investigated as a therapeutic strategy for patients with this malignancy.
Collapse
Affiliation(s)
- Li Chen
- Department of Dermatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, P.R. China
| | - Guozhang Ma
- Department of Dermatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, P.R. China
| | - Xiaohui Cao
- Department of Dermatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, P.R. China
| | - Xiaoxia An
- Department of Dermatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, P.R. China
| | - Xiguang Liu
- Department of Dermatology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
40
|
Tak Manesh A, Azizi G, Heydari A, Kiaee F, Shaghaghi M, Hossein-Khannazer N, Yazdani R, Abolhassani H, Aghamohammadi A. Epidemiology and pathophysiology of malignancy in common variable immunodeficiency? Allergol Immunopathol (Madr) 2017; 45:602-615. [PMID: 28411962 DOI: 10.1016/j.aller.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/07/2017] [Indexed: 02/06/2023]
Abstract
Common variable immunodeficiency (CVID) is a diagnostic category of primary immunodeficiency (PID) which may present with heterogeneous disorders including recurrent infections, autoimmunity, granulomatous diseases, lymphoid and other types of malignancies. Generally, the incidence of malignancy in CVID patients is around 1.5-20.7% and usually occurs during the 4th-6th decade of life. Non-Hodgkin lymphoma is the most frequent malignancy, followed by epithelial tumours of stomach, breast, bladder and cervix. The exact pathological mechanisms for cancer development in CVID are not fully determined; however, several mechanisms including impaired genetic stability, genetic predisposition, immune dysregulation, impaired clearance of oncogenic viruses and bacterial infections, and iatrogenic causes have been proposed to contribute to the high susceptibility of these patients to malignancies.
Collapse
Affiliation(s)
| | - G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - A Heydari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - F Kiaee
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Shaghaghi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - N Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Zheng HC, Zhao S, Song Y, Ding XQ. The roles of ING5 expression in ovarian carcinogenesis and subsequent progression: a target of gene therapy. Oncotarget 2017; 8:103449-103464. [PMID: 29262575 PMCID: PMC5732741 DOI: 10.18632/oncotarget.21968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
Here, we found that ING5 overexpression suppressed cell viability, glucose metabolism, migration, invasion and epithelial-mesenchymal transition, and induced cell arrest, apoptosis, senescence, autophagy and fat accumulation in ovarian cancer cells. ING5-mediated chemoresistance was positively linked to apoptotic resistance and chemoresistance-related gene expression. ING5 overexpression suppressed tumor growth of ovarian cancer by decreasing proliferation, and inducing apoptosis and autophagy. ING5 mRNA level was lower in ovarian cancer than normal ovary, and borderline than benign tumors (p < 0.05), and negatively correlated with vascular invasion, lymphatic invasion and FIGO staging of ovarian cancer (p < 0.05). ING5 protein was less expressed in primary cancer than normal ovary (p < 0.05). There was a negative correlation between ING5 mRNA expression and the overall or progression-free survival time of the cancer patients with Grade 2, Grade 3, and stage I cancer (p < 0.05). Immunohistochemically, ING5 was less expressed in serous and mucinous adenocarcinoma than miscellaneous subtypes, and positively correlated with dedifferentiation and ki-67 expression of ovarian cancer (p < 0.05). These data suggested that down-regulated ING5 expression might be involved in ovarian carcinogenesis possibly by suppressing aggressive phenotypes, including proliferation, tumor growth, migration, invasion, and anti-apoptosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Song
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiao-Qing Ding
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
42
|
Zhang L, Huang L, Liang H, Zhang R, Chen G, Pang Y, Feng Z. Clinical value and potential targets of miR-224-5p in hepatocellular carcinoma validated by a TCGA- and GEO- based study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9970-9989. [PMID: 31966887 PMCID: PMC6965914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/17/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE to explore clinical value and potential targets of MicroRNA-224-5p in the tumorigenesis and progression of hepatocellular carcinoma (HCC). METHODS We evaluated the clinical value of MicroRNA-224-5p from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Meanwhile, target genes of MicroRNA-224-5p were predicted by bioinformatics method. The target genes of MicroRNA-224-5p were finally analyzed in Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and Protein-Protein Interaction (PPI) network annotation. RESULTS MicroRNA-224-5p expression level in HCC was higher than in non-tumor tissues (SMD=1.24; 95% CI, 0.68 to 1.81; P<0.0001) and MicroRNA-224-5p might represent a diagnostic marker (overall AUC=0.92; 95% CI, 0.90 to 0.94). 262 target genes were acquired by overlapping 4927 genes predicted by more than four computational prediction tools with 1,123 down-regulated DEGs in HCC. Furthermore, gene sets enrichment analysis of the 262 overlapping genes was implemented. The mostly significant GO terms within the overlapping target genes of MicroRNA-224-5p were cellular response to chemical stimulus, plasma membrane part and coenzyme binding. KEGG pathway annotation showed the overlapping genes mostly took part in metabolic pathways. In PPI analysis, one hub gene, GNA14, stood out cause for the significant negative correlation with MicroRNA-224. CONCLUSION MicroRNA-224-5p is upregulated in HCC and may be a prospective biomarker for diagnosis. Moreover, MicroRNA-224-5p might play an oncogenic role in HCC by targeting GNA14.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haiwei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuyan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
43
|
Expression Profiling of Cellular MicroRNA in Asymptomatic HBsAg Carriers and Chronic Hepatitis B Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6484835. [PMID: 28913356 PMCID: PMC5587942 DOI: 10.1155/2017/6484835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/31/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Background MicroRNAs (miRNAs) may serve as potential molecular markers to predict liver injury resulting from chronic hepatitis B (CHB). In the present study, we want to study the expression profile and clinical significance of miRNAs at different stages of CHB virus infection. Methods Using miRNA microarray, we investigated the global expression profiles of cellular miRNA in asymptomatic hepatitis B antigen carriers (ASCs) and CHB patients, compared with healthy controls (HCs). Results We identified 79 and 203 differentially expressed miRNAs in the peripheral blood mononuclear cells of ASCs and CHB patients compared to HCs, respectively. Some of these miRNAs were common to ASCs and CHB patients, but another set of miRNAs that showed differential expression between ASCs and CHB patients was also identified. Gene ontology and pathway enrichment analysis showed that the target genes of the identified miRNAs played a role in important biological functions, such as learning or memory, cell-cell adherens junction, ion channel inhibitor activity, TGF-beta signaling pathway, and p53 signaling pathway. Conclusion We identified some significant differentially expressed miRNA in different phases of HBV infection, which might serve as biomarkers or therapeutic targets in the future.
Collapse
|
44
|
Li G, Zhang W, Gong L, Huang X. MicroRNA 125a-5p Inhibits Cell Proliferation and Induces Apoptosis in Hepatitis B Virus-Related Hepatocellular Carcinoma by Downregulation of ErbB3. Oncol Res 2017; 27:449-458. [PMID: 28800792 PMCID: PMC7848293 DOI: 10.3727/096504017x15016337254623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs, a class of endogenous noncoding RNAs, regulate gene expression at the posttranscriptional level and thus take part in multiple biological processes. An increasing number of miRNAs have been found to be dysregulated in hepatocellular carcinoma (HCC) and are involved in liver tumorigenesis. In this study, miR-125a-5p was found to be obviously downregulated much more in hepatitis B virus (HBV)-related HCC. To investigate the effects of miR-125a-5p, miR-125a-5p was overexpressed in HepG2.2.15 and HepG3X cells. The findings have indicated that overexpression of miR-125a-5p dramatically inhibited cell proliferation and induced cell apoptosis. Furthermore, overexpression of miR-125a-5p could significantly decrease the secretion of HBsAg and HBeAg. In concordance to this, the expression of ErbB3 was upregulated in human HBV-related HCC tissue, HepG2.2.15 cells, and HepG3X cells. miR-125a-5p directly targeted ErbB3 and reduced both mRNA and protein levels of ErbB3, which promoted cell proliferation and suppressed cell apoptosis in HCC cells. Our results provide new insights into the function of miR-125a-5p in HBV-related HCC. It is beneficial to gain insight into the mechanism of HBV infection and pathophysiology of HBV-related HCC.
Collapse
Affiliation(s)
- Guoyun Li
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Xiaoping Huang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| |
Collapse
|
45
|
Wang Z, Wu Z, Huang P. The function of miRNAs in hepatocarcinogenesis induced by hepatitis B virus X protein. Oncol Rep 2017. [DOI: 10.3892/or.2017.5716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Ding XQ, Zhao S, Yang L, Zhao X, Zhao GF, Zhao SP, Li ZJ, Zheng HC. The nucleocytoplasmic translocation and up-regulation of ING5 protein in breast cancer: a potential target for gene therapy. Oncotarget 2017; 8:81953-81966. [PMID: 29137236 PMCID: PMC5669862 DOI: 10.18632/oncotarget.17918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Here, we found that ING5 overexpression resulted in a lower proliferation, reduced glucose metabolism, S arrest, decreased migration and invasion, apoptotic induction, fat accumulation, autophagy, senescence and mesenchymal-epithelial–transition of breast cancer cells. It also suppressed the tumor growth of breast cancer cells by inhibiting proliferation, inducing apoptosis and autophagy. ING5-mediated chemoresistance was positively linked to Akt and NF-κB activation, MRP1 and GST-π overexpression, and FBXW7 hypoexpression. ING5 expression was higher in breast cancer than normal tissue at both mRNA and protein levels. ING5 mRNA expression was positively correlated with relapse- and distant metastasis-free survival rates. Nuclear ING5 expression showed gradual decrease from breast normal tissue, fibroadenoma, adenomatosis, primary to metastatic cancers, while versa for cytoplasmic ING5. Nuclear ING5 expression was negatively correlated with distant metastasis and p53 hypoexpression, while cytoplasmic ING5 expression was positively correlated with tumor size and ER expression. These data suggested that up-regulated expression and nucleocytoplasmic translocation of ING5 protein were observed in breast cancer. The higher expression of nuclear ING5 was inversely linked to worse clinicopathological behaviors of breast cancer by in vivo and vitro reversing aggressive phenotypes. Therefore, it should be employed as a biomarker to indicate the tumorigenesis and aggressiveness of breast cancer, and as a potential target for gene therapy.
Collapse
Affiliation(s)
- Xiao-Qing Ding
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lei Yang
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Gui-Feng Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shu-Peng Zhao
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhi-Jie Li
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
47
|
Zhao S, Zhao ZJ, He HY, Wu JC, Ding XQ, Yang L, Jia N, Li ZJ, Zheng HC. The roles of ING5 in gliomas: a good marker for tumorigenesis and a potential target for gene therapy. Oncotarget 2017; 8:56558-56568. [PMID: 28915612 PMCID: PMC5593583 DOI: 10.18632/oncotarget.17802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
To elucidate the anti-tumor effects and molecular mechanisms of ING5 on glioma cells, we overexpressed it in U87 cells, and examined the phenotypes and their relevant molecules. It was found that ING5 overexpression suppressed proliferation, energy metabolism, migration, invasion, and induced G2/M arrest, apoptosis, dedifferentiation, senescence, mesenchymal- epithelial transition and chemoresistance to cisplatin, MG132, paclitaxel and SAHA in U87 cells. There appeared a lower expression of N-cadherin, Twist, Slug, Zeb1, Zeb2, Snail, Ac-H3, Ac-H4, Cdc2, Cdk4 and XIAP, but a higher expression of Claudin 1, Histones 3 and 4, p21, p53, Bax, β-catenin, PI3K, Akt, and p-Akt in ING5 transfectants. ING5 overexpression suppressed tumor growth of U87 cells in nude mice by inhibiting proliferation and inducing apoptosis. Down-regulated ING5 expression was closely linked to the tumorigenesis and histogenesis of glioma. These data indicated that ING5 expression might be considered as a good marker for the tumorigenesis and histogenesis of gliomas. It might be employed as a potential target for gene therapy of glioma. PI3K/Akt or β-catenin/TCF-4 activation might be positively linked to chemotherapeutic resistance, mediated by ING5.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhi-Juan Zhao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hao-Yu He
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ji-Cheng Wu
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-Qing Ding
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lei Yang
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ning Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhi-Jie Li
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
48
|
Liu XL, Zhang XT, Meng J, Zhang HF, Zhao Y, Li C, Sun Y, Mei QB, Zhang F, Zhang T. ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways. Oncotarget 2017; 8:54265-54276. [PMID: 28903339 PMCID: PMC5589578 DOI: 10.18632/oncotarget.17346] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
ING5 belongs to the Inhibitor of Growth (ING) candidate tumor suppressor family, whose functions have been involved in the regulation of chromatin remodeling, cell cycle progression, proliferation and apoptosis. Our previous study has shown that ING5 overexpression inhibits lung cancer aggressiveness via suppressing epithelial to mesenchymal transition (EMT). However, the mechanisms remain largely unknown. In the current study, by Phospho-Kinase array and western blot, we have defined significantly upregulated EGFR/PI3K/Akt and IL-6/STAT3 oncogenic signaling pathways in ING5 knockdown A549 cells, which could be downregulated by ING5 overexpression. PI3K inhibitor ZSTK474 or STAT3 inhibitor Niclosamide not only abolished ING5 knockdown-promoted proliferation, colony formation, migration and invasion of lung cancer A549 cells, but also impaired ING5 knockdown-stimulated metastasis of cancer cells in mouse xenograft models with tail vein injection of A549 cells. Furthermore, treatment with ZSTK474 or Niclosamide decreased protein level of EGFR, p-Akt, IL-6 and p-STAT3, and reversed ING5 knockdown-promoted EMT, as indicated by downregulated expression of EMT marker E-cadherin, an epithelial marker, increased expression of N-cadherin, a mesenchymal marker, and EMT-related transcription factors including Snail, Slug, Smad3 and Twist. Taken together, these results demonstrate that loss of ING5 enhances aggressiveness of lung cancer cells by promoting EMT via activation of EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Xin-Li Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Tao Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jin Meng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmcy, Hospital of PLA, Beijing, China
| | - Hong-Fei Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yong Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Song L, Li D, Li X, Ma L, Bai X, Wen Z, Zhang X, Chen D, Peng L. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:192-199. [PMID: 28192748 DOI: 10.1016/j.etap.2017.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) with an aerodynamic diameter≤2.5μm (PM2.5) induces reactive oxygen species (ROS) and pro-inflammatory cytokine production, leading to airway epithelial injury. However, the mechanisms underlying the toxicity of PM2.5 have not been clarified. Here, we show that exposure to PM2.5 induces sustained activation of the nuclear factor kappa B (NF-κB) signaling in human airway epithelial Beas-2B (B2B) cells. In addition, PM2.5 exposure significantly decreased miR-331 expression in B2B cells, which was abrogated by inhibition of ROS or phosphoinositide 3-kinase (PI3K)/Akt pathway. Induction of miR-331 overexpression attenuated the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Furthermore, miR-331 targeted the inhibitor of NF-κB kinase beta (IKK-β) by down-regulating the IKK-β-regulated luciferase activity in HEK293 cells. Moreover, induction of miR-331 over-expression inhibited IKK-β expression while induction of IKK-β over-expression prevented the inhibition of miR-331 on the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Therefore, PM2.5 exposure decreased miR-331 expression via the ROS/PI3K/Akt pathway, resulting in an increase in the IKK-β expression and sustained NF-κB activation in human airway epithelial cells. Our findings may provide new insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure and aid in design of new therapeutic strategies to prevent PM2.5-induced toxicity.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Xiaoping Li
- Department of Pediatrics, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Lianjun Ma
- Endoscopy Center, the China-Japan Hospital of Jilin University, 146 Xiantai Street, Changchun, China
| | - Xiaoxue Bai
- Cadre's Ward, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Xiufang Zhang
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Dong Chen
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China,.
| |
Collapse
|
50
|
Zhang B, Han S, Feng B, Chu X, Chen L, Wang R. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma. Exp Mol Med 2017; 49:e293. [PMID: 28186085 PMCID: PMC5336563 DOI: 10.1038/emm.2016.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial–mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|