1
|
Beyaert S, Loriot A, Machiels JP, Schmitz S. Spatial Transcriptomic Analysis of Surgical Resection Specimens of Primary Head and Neck Squamous Cell Carcinoma Treated with Afatinib in a Window-of-Opportunity Study (EORTC90111-24111). Int J Mol Sci 2025; 26:1830. [PMID: 40076457 PMCID: PMC11898532 DOI: 10.3390/ijms26051830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Afatinib-induced tumor and microenvironment modifications in head and neck squamous cell carcinoma were evaluated by spatial transcriptomics in surgical specimens and RNA-sequencing in tumor biopsies of patients included in the EORTC-90111-24111 window-of-opportunity study. The aim was to explore tumor evolution and composition under anti-HER therapy. Based on our previous investigations by RNA-seq on tumor biopsies, surgical slides of ID08 and ID15 from the epithelial-to-mesenchymal (EMT) cluster and ID30 from the non-EMT cluster were investigated with spatial transcriptomics. Dimension reduction in ID30 revealed 14 clusters, with clusters overlapping three tumor nodules and the stroma. Differential expression analysis between tumor nodules showed enrichment of the hallmark EMT genelist, with 123 genes in common between the analyses. These genes were involved in PDGF and MET signaling pathways. By comparing gene expression in paired tumor biopsies and the 123 genes from differential analyses obtained in ID30, a list of 13 genes involved in cancer pathways and EMT emerged, which were also highly expressed in ID08 and ID15. These results show a progressive apparition of genes implicated in EMT, MET, and PDGF pathways in tumors after afatinib. Notably, a list of 13 genes emerged which may contain targets to prevent tumor evolution after anti-HER therapy.
Collapse
Affiliation(s)
- Simon Beyaert
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle MIRO, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.B.); (J.-P.M.)
- Department of Head & Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Axelle Loriot
- Group of Computational Biology and Bioinformatics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle MIRO, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.B.); (J.-P.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Sandra Schmitz
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle MIRO, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (S.B.); (J.-P.M.)
- Department of Head & Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Van den Bossche V, Vignau J, Vigneron E, Rizzi I, Zaryouh H, Wouters A, Ambroise J, Van Laere S, Beyaert S, Helaers R, van Marcke C, Mignion L, Lepicard EY, Jordan BF, Guilbaud C, Lowyck O, Dahou H, Mendola A, Desgres M, Aubert L, Gerin I, Bommer GT, Boidot R, Vermonden P, Warnant A, Larondelle Y, Machiels JP, Feron O, Schmitz S, Corbet C. PPARα-mediated lipid metabolism reprogramming supports anti-EGFR therapy resistance in head and neck squamous cell carcinoma. Nat Commun 2025; 16:1237. [PMID: 39890801 PMCID: PMC11785796 DOI: 10.1038/s41467-025-56675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy (cetuximab) shows a limited clinical benefit for patients with locally advanced or recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), due to the frequent occurrence of secondary resistance mechanisms. Here we report that cetuximab-resistant HNSCC cells display a peroxisome proliferator-activated receptor alpha (PPARα)-mediated lipid metabolism reprogramming, with increased fatty acid uptake and oxidation capacities, while glycolysis is not modified. This metabolic shift makes cetuximab-resistant HNSCC cells particularly sensitive to a pharmacological inhibition of either carnitine palmitoyltransferase 1A (CPT1A) or PPARα in 3D spheroids and tumor xenografts in mice. Importantly, the PPARα-related gene signature, in human clinical datasets, correlates with lower response to anti-EGFR therapy and poor survival in HNSCC patients, thereby validating its clinical relevance. This study points out lipid metabolism rewiring as a non-genetic resistance-causing mechanism in HNSCC that may be therapeutically targeted to overcome acquired resistance to anti-EGFR therapy.
Collapse
Affiliation(s)
- Valentin Van den Bossche
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Julie Vignau
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Engy Vigneron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabella Rizzi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit (TCRU), GZA Ziekenhuizen, Antwerp, Belgium
| | - Simon Beyaert
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Cédric van Marcke
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Elise Y Lepicard
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Olivier Lowyck
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Hajar Dahou
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Antonella Mendola
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Léo Aubert
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges‑François Leclerc Cancer Center‑UNICANCER, 21079, Dijon, France
- ICMUB UMR CNRS 6302, 21079, Dijon, France
| | - Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Aurélien Warnant
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-Pascal Machiels
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium
| | - Sandra Schmitz
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium.
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium.
| |
Collapse
|
3
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription Factors and Markers Related to Epithelial-Mesenchymal Transition and Their Role in Resistance to Therapies in Head and Neck Cancers. Cancers (Basel) 2024; 16:1354. [PMID: 38611032 PMCID: PMC11010970 DOI: 10.3390/cancers16071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Head and neck cancers (HNCs) are heterogeneous and aggressive tumors of the upper aerodigestive tract. Although various histological types exist, the most common is squamous cell carcinoma (HNSCC). The incidence of HNSCC is increasing, making it an important public health concern. Tumor resistance to contemporary treatments, namely, chemo- and radiotherapy, and the recurrence of the primary tumor after its surgical removal cause huge problems for patients. Despite recent improvements in these treatments, the 5-year survival rate is still relatively low. HNSCCs may develop local lymph node metastases and, in the most advanced cases, also distant metastases. A key process associated with tumor progression and metastasis is epithelial-mesenchymal transition (EMT), when poorly motile epithelial tumor cells acquire motile mesenchymal characteristics. These transition cells can invade different adjacent tissues and finally form metastases. EMT is governed by various transcription factors, including the best-characterized TWIST1 and TWIST2, SNAIL, SLUG, ZEB1, and ZEB2. Here, we highlight the current knowledge of the process of EMT in HNSCC and present the main protein markers associated with it. This review focuses on the transcription factors related to EMT and emphasizes their role in the resistance of HNSCC to current chemo- and radiotherapies. Understanding the role of EMT and the precise molecular mechanisms involved in this process may help with the development of novel anti-cancer therapies for this type of tumor.
Collapse
Affiliation(s)
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (E.G.); (E.B.)
| |
Collapse
|
6
|
Zahavi DJ, Erbe R, Zhang YW, Guo T, Malchiodi ZX, Maynard R, Lekan A, Gallagher R, Wulfkuhle J, Petricoin E, Jablonski SA, Fertig EJ, Weiner LM. Antibody dependent cell-mediated cytotoxicity selection pressure induces diverse mechanisms of resistance. Cancer Biol Ther 2023; 24:2269637. [PMID: 37878417 PMCID: PMC10601508 DOI: 10.1080/15384047.2023.2269637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Targeted monoclonal antibody therapy has emerged as a powerful therapeutic strategy for cancer. However, only a minority of patients have durable responses and the development of resistance remains a major clinical obstacle. Antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial therapeutic mechanism of action; however, few studies have explored ADCC resistance. Using multiple in vitro models of ADCC selection pressure, we have uncovered both shared and distinct resistance mechanisms. Persistent ADCC selection pressure yielded ADCC-resistant cells that are characterized by a loss of NK cell conjugation and this shared resistance phenotype is associated with cell-line dependent modulation of cell surface proteins that contribute to immune synapse formation and NK cell function. We employed single-cell RNA sequencing and proteomic screens to interrogate molecular mechanisms of resistance. We demonstrate that ADCC resistance involves upregulation of interferon/STAT1 and DNA damage response signaling as well as activation of the immunoproteasome. Here, we identify pathways that modulate ADCC sensitivity and report strategies to enhance ADCC-mediated elimination of cancer cells. ADCC resistance could not be reversed with combinatorial treatment approaches. Hence, our findings indicate that tumor cells utilize multiple strategies to inhibit NK cell mediated-ADCC. Future research and development of NK cell-based immunotherapies must incorporate plans to address or potentially prevent the induction of resistance.
Collapse
Affiliation(s)
- David J. Zahavi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rossin Erbe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yong-Wei Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Theresa Guo
- Department of Oncology, UC San Diego School of Medicine, San Diego, USA
| | - Zoe X. Malchiodi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rachael Maynard
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Alexander Lekan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rosa Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Sandra A. Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Elana J. Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Louis M. Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| |
Collapse
|
7
|
Beyaert SP, Loriot AE, Huyghe ND, Goebbels RM, Mendola A, Govaerts AS, Fortpied C, Baldin P, Licitra LF, Lalami Y, Clement PM, Machiels JPH, Schmitz S. Tumor Microenvironment Modifications Induced by Afatinib in Squamous Cell Carcinoma of the Head and Neck: A Window-of-Opportunity Study (EORTC-90111-24111). Clin Cancer Res 2023; 29:4076-4087. [PMID: 37531234 DOI: 10.1158/1078-0432.ccr-23-0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The EORTC-90111-24111 phase II window study evaluated afatinib versus no preoperative treatment in patients with primary squamous cell carcinoma of the head and neck (HNSCC). We investigated afatinib-induced tumor and microenvironment modifications by comparing pre- and posttreatment tumor biopsies. PATIENTS AND METHODS Thirty treatment-naïve patients with primary HNSCC were randomized. Twenty-five patients received afatinib for 14 days before surgery (40 mg 1×/day) and 5 patients were attributed to the control arm. Biopsies were taken at work-up and during surgery. Good quality RNA samples were used for omics analyses. The control arm was enlarged by samples coming from our previous similar window study. RESULTS IHC analyses of afatinib-treated tumor biopsies showed a decrease in pEGFR (P ≤ 0.05) and pERK (P ≤ 0.05); and an increase in CD3+ (P ≤ 0.01) and CD8+ (P ≤ 0.01) T-cell infiltration, and in CD3+ (P ≤ 0.05) T-cell density. RNA sequencing analyses of afatinib-treated tumor samples showed upregulation of inflammatory genes and increased expression scores of signatures predictive of response to programmed cell death protein 1 blockade (P ≤ 0.05). In posttreatment biopsies of afatinib-treated patients, two clusters were observed. Cluster 1 showed a higher expression of markers and gene sets implicated in epithelial-to-mesenchymal transition (EMT) and activation of cancer-associated fibroblasts (CAF) compared with cluster 2 and controls. CONCLUSIONS Short-term treatment with afatinib in primary HNSCC induces CD3+ and CD8+ tumor infiltration and, in some patients, EMT and CAF activation. These results open perspectives to overcome resistance mechanisms to anti-HER therapy and to potentiate the activity of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Simon P Beyaert
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Axelle E Loriot
- Group of Computational Biology and Bioinformatics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas D Huyghe
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Rose-Marie Goebbels
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Antonella Mendola
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anne-Sophie Govaerts
- European Organization of Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Catherine Fortpied
- European Organization of Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Lisa F Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- University of Milan, Milan, Italy
| | - Yassine Lalami
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Paul M Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jean-Pascal H Machiels
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Medical Oncology, Institut Roi Albert II & Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandra Schmitz
- Institut de Recherche Expérimentale et Clinique (IREC), pôle MIRO, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Head & Neck Surgery, Institut Roi Albert II & Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
8
|
Fu W, Li G, Lei C, Qian K, Zhang S, Zhao J, Hu S. Bispecific antibodies targeting EGFR/Notch enhance the response to talazoparib by decreasing tumour-initiating cell frequency. Theranostics 2023; 13:3641-3654. [PMID: 37441599 PMCID: PMC10334837 DOI: 10.7150/thno.82144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Poly ADP ribose polymerase (PARP) inhibitors are mainly used in treating BRCA-mutant cancers, and their application in novel therapies to expand their benefit is of interest in personalized medicine. A recent report showed that pharmacological targeting of PARP increases the sensitivity of cancer cells to EGFR inhibition, but the therapeutic value of this combination has not been fully determined. We propose a strategy of combining PARP inhibitors with bispecific antibodies that target both EGFR and Notch signalling, highlighting the difficulties posed by deregulation of Notch signalling and the enrichment of cancer stem cells (CSCs) during therapy. In the present study, we showed that although PARP plus EGFR targeting led to more penetrant and durable responses in the non-small cell lung cancer (NSCLC) PDX model, it influenced the enrichment of stem-like cells and their relative proportion. Stem-like cells were significantly inhibited in vitro and in vivo by EGFR/Notch-targeting bispecific antibodies. These bispecific antibodies were effective in PDX models and showed promise in cell line models of NSCLC, where they delayed the development of acquired resistance to cetuximab and talazoparib. Moreover, combining EGFR/Notch-targeting bispecific antibodies and talazoparib had a more substantial antitumour effect than the combination of talazoparib and cetuximab in a broad spectrum of epithelial tumours. EGFR/Notch bispecific antibodies decrease the subpopulation of stem-like cells, reduce the frequency of tumour-initiating cells, and downregulate mesenchymal gene expression. These findings suggest that combining EGFR and Notch signalling blockade can potentially increase the response to PARP blockade.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guangyao Li
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Kewen Qian
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Zhang
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jian Zhao
- KOCHKOR Biotech, Inc., Shanghai, Shanghai 201406, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
9
|
Chaudhary R, Slebos RJ, Noel LC, Song F, Poole MI, Hoening DS, Hernandez-Prera JC, Conejo-Garcia JR, Guevara-Patino JA, Wang X, Xie M, Tan AC, Chung CH. EGFR Inhibition by Cetuximab Modulates Hypoxia and IFN Response Genes in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:896-907. [PMID: 37377902 PMCID: PMC10202124 DOI: 10.1158/2767-9764.crc-22-0443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has one of the most hypoxic and immunosuppressive tumor microenvironments (TME) among solid tumors. However, there is no proven therapeutic strategy to remodel the TME to be less hypoxic and proinflammatory. In this study, we classified tumors according to a Hypoxia-Immune signature, characterized the immune cells in each subgroup, and analyzed the signaling pathways to identify a potential therapeutic target that can remodel the TME. We confirmed that hypoxic tumors had significantly higher numbers of immunosuppressive cells, as evidenced by a lower ratio of CD8+ T cells to FOXP3+ regulatory T cells, compared with nonhypoxic tumors. Patients with hypoxic tumors had worse outcomes after treatment with pembrolizumab or nivolumab, anti-programmed cell death-1 inhibitors. Our expression analysis also indicated that hypoxic tumors predominantly increased the expression of the EGFR and TGFβ pathway genes. Cetuximab, an anti-EGFR inhibitor, decreased the expression of hypoxia signature genes, suggesting that it may alleviate the effects of hypoxia and remodel the TME to become more proinflammatory. Our study provides a rationale for treatment strategies combining EGFR-targeted agents and immunotherapy in the management of hypoxic HNSCC. Significance While the hypoxic and immunosuppressive TME of HNSCC has been well described, comprehensive evaluation of the immune cell components and signaling pathways contributing to immunotherapy resistance has been poorly characterized. We further identified additional molecular determinants and potential therapeutic targets of the hypoxic TME to fully leverage currently available targeted therapies that can be administered with immunotherapy.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Robbert J.C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Leenil C. Noel
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Maria I. Poole
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Dirk S. Hoening
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | | | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Mengyu Xie
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Aik Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
10
|
Bai Y, Gotz C, Chincarini G, Zhao Z, Slaney C, Boath J, Furic L, Angel C, Jane SM, Phillips WA, Stacker SA, Farah CS, Darido C. YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells. Nat Commun 2023; 14:1591. [PMID: 36949044 PMCID: PMC10033729 DOI: 10.1038/s41467-023-37161-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC.
Collapse
Affiliation(s)
- Yuchen Bai
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Carolin Gotz
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Ismaningerstraße 22, 81675, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ginevra Chincarini
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Zixuan Zhao
- Sun Yat-sen University Cancer Center, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Clare Slaney
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jarryd Boath
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Luc Furic
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher Angel
- Department of Histopathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education; Fiona Stanley Hospital; Hollywood Private Hospital; Australian Clinical Labs, CQ University, Perth, WA, 6009, Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Qu S, Huang C, Zhu T, Wang K, Zhang H, Wang L, Xu R, Zheng H, Yuan X, Liu G, Zhu R, Qu J, Yi G, Qi S. OLFML3, as a potential predictor of prognosis and therapeutic target for glioma, is closely related to immune cell infiltration. VIEW 2023. [DOI: 10.1002/viw.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Chengying Huang
- Department of Obstetrics and Gynecology Baiyun Branch, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Taichen Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Kaicheng Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Huayang Zhang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Luyao Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongyang Xu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Haojie Zheng
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Xi Yuan
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Guangjie Liu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongzhang Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Jiayi Qu
- Department of Plant Sciences University of California Davis Davis California USA
| | - Guozhong Yi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
12
|
Zhang B, Liu T, Gu Y, Ren L, Wang J, Feng C, Song Z. Long Non-Coding RNA LPP-AS2 Plays an Anti-Tumor Role in Thyroid Carcinoma by Regulating the miR-132-3p/OLFM1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:73-86. [PMID: 37199315 DOI: 10.1615/critreveukaryotgeneexpr.v33.i5.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The cancer-promoting function of the long non-coding RNA (lncRNA) LPP-AS2 has been documented in different cancers. Nonetheless, its role in thyroid carcinoma (THCA) remains unestablished. Reverse transcription quantitative polymerase chain reaction and Western blotting were conducted to estimate the expressions of lncRNA LPP-AS2, miR-132-3p, and OLFM1. The THCA cells' functions were assessed through CCK8 assays, Transwell invasion assays, scratch wound-healing migration assays, and quantification of caspase-3 activity. The in vivo assays were also implemented to assess tumor growth. Luciferase reporter and RNA immuno-precipitation assay (RIPA) experiments were executed to elucidate the interactions of miR-132-3p with lncRNA LPP-AS2 and OLFM1. THCA tissues and cells exhibited poor lncRNA LPP-AS2 and OLFM1 expressions and a robust expression of miR-132-3p. Overexpressing lncRNA LPP-AS2 constrained THCA cell proliferation, migration, and invasion and improved caspase-3 activity. The anti-tumor function of lncRNA LPP-AS2 was also validated in vivo. miR-132-3p had an interplay with lncRNA LPP-AS2 and OLFM1. Functionally, overexpressing miR-132-3p promoted the malignant THCA cell phenotypes. However, that tumor promotion was abolished by the additional overexpression of lncRNA LPP-AS2. The in vitro experiments also demonstrated that the repressive effect of OLFM1 overexpression on THCA cell malignant action could be offset by the miR-132-3p mimic. lncRNA LPP-AS2 impedes THCA progression via the miR-132-3p/OLFM1 axis. Our findings contribute a potential strategy in interfering with THCA progression.
Collapse
Affiliation(s)
- Bowei Zhang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Tong Liu
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Yi Gu
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Li Ren
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Jinju Wang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Chao Feng
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Zhe Song
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|
13
|
Naruse T, Furukawa K, Miyoshi T, Morishita K, Otsuru M, Umeda M. Complete response of recurrent oral squamous cell carcinoma treated with cetuximab in combination with radiotherapy: A case series. Oncol Lett 2022; 24:431. [PMID: 36311685 PMCID: PMC9607862 DOI: 10.3892/ol.2022.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Salvage surgery for recurrent oral squamous cell carcinoma (OSCC) often leads to a poor quality of life (QOL). The present study described three cases that resulted in favorable locoregional control with cetuximab in combination with radiotherapy (Cmab + RT). Case 1 had regional recurrence of OSCC at the lower right mastoid area 4 months after primary surgery. Case 2 had regional recurrence of OSCC at the parotid area 7 months after primary surgery. Case 3 had local recurrence of OSCC at the masticatory muscle and Rouviere's lymph nodes 1 year and 3 months after primary surgery. In all cases, Cmab + RT was performed, and disease-free survival was confirmed 4 months, 2 years and 6 months, and 10 months after Cmab + RT, respectively. Immunohistochemically, all resected tumors had no expression of 110-kDa catalytic subunit of class IA phosphatidylinositol 3-kinase (PI3Kp110α). In conclusion, if salvage surgery for recurrent OSCC results in a significantly low QOL, then shifting to chemoradiotherapy may be appropriate as a treatment strategy. In addition, strong evidence indicated that PI3Kp110α expression is associated with Cmab therapy efficacy.
Collapse
Affiliation(s)
- Tomofumi Naruse
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kohei Furukawa
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Taro Miyoshi
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kota Morishita
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mitsunobu Otsuru
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
14
|
Lenoci D, Carenzo A, Cavalieri S, Pistore F, Serafini MS, Bossi P, Schmitz S, Machiels JP, Licitra LF, De Cecco L. Biological properties of hypoxia-related gene expression models/signatures on clinical benefit of anti-EGFR treatment in two head and neck cancer window-of-opportunity trials. Oral Oncol 2022; 126:105756. [PMID: 35121395 DOI: 10.1016/j.oraloncology.2022.105756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Deborah Lenoci
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Carenzo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Serena Serafini
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Bossi
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandra Schmitz
- Cancer Center, Department of Medical Oncology, Cliniques universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Brussels, Belgium; Department of Head and Neck Surgery, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Pascal Machiels
- Department of Head and Neck Surgery, Cliniques universitaires Saint-Luc, Brussels, Belgium; Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Clinique et Experimentale, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lisa Francesca Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
15
|
Mogre S, Makani V, Pradhan S, Devre P, More S, Vaidya M, Dmello C. Biomarker Potential of Vimentin in Oral Cancers. Life (Basel) 2022; 12:150. [PMID: 35207438 PMCID: PMC8879320 DOI: 10.3390/life12020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited. Thus, developing biological markers that will serve as an adjunct to histodiagnosis has become essential. Our previous studies comprehensively demonstrated that aberrant vimentin expression in oral premalignant lesions correlates to the degree of malignancy. Likewise, overwhelming research from various groups show a substantial contribution of vimentin in oral cancer progression. In this review, we have described studies on vimentin in oral cancers, to make a compelling case for vimentin as a prognostic biomarker.
Collapse
Affiliation(s)
- Saie Mogre
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Vidhi Makani
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Swapnita Pradhan
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Pallavi Devre
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Shyam More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Milind Vaidya
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India; (V.M.); (S.P.); (P.D.)
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
16
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
17
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
18
|
Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. FRONTIERS IN ORAL HEALTH 2021; 2:686337. [PMID: 35048030 PMCID: PMC8757746 DOI: 10.3389/froh.2021.686337] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an "activated" myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other "hallmarks of malignancy." CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.
Collapse
Affiliation(s)
- Kamila J. Bienkowska
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Gareth J. Thomas
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Research UK and National Institute for Health Research (NIHR) Southampton Experimental Cancer Medicine Centre, Southampton, United Kingdom
| |
Collapse
|
19
|
Bhat AA, Yousuf P, Wani NA, Rizwan A, Chauhan SS, Siddiqi MA, Bedognetti D, El-Rifai W, Frenneaux MP, Batra SK, Haris M, Macha MA. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduct Target Ther 2021; 6:12. [PMID: 33436555 PMCID: PMC7804459 DOI: 10.1038/s41392-020-00419-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease with a poor prognosis for advanced-stage tumors. Recent clinical, genomic, and cellular studies have revealed the highly heterogeneous and immunosuppressive nature of HNSCC. Despite significant advances in multimodal therapeutic interventions, failure to cure and recurrence are common and account for most deaths. It is becoming increasingly apparent that tumor microenvironment (TME) plays a critical role in HNSCC tumorigenesis, promotes the evolution of aggressive tumors and resistance to therapy, and thereby adversely affects the prognosis. A complete understanding of the TME factors, together with the highly complex tumor-stromal interactions, can lead to new therapeutic interventions in HNSCC. Interestingly, different molecular and immune landscapes between HPV+ve and HPV-ve (human papillomavirus) HNSCC tumors offer new opportunities for developing individualized, targeted chemoimmunotherapy (CIT) regimen. This review highlights the current understanding of the complexity between HPV+ve and HPV-ve HNSCC TME and various tumor-stromal cross-talk modulating processes, including epithelial-mesenchymal transition (EMT), anoikis resistance, angiogenesis, immune surveillance, metastatic niche, therapeutic resistance, and development of an aggressive tumor phenotype. Furthermore, we summarize the recent developments and the rationale behind CIT strategies and their clinical applications in HPV+ve and HPV-ve HNSCC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Nissar A Wani
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| |
Collapse
|
20
|
Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis. Cells 2021; 10:cells10010094. [PMID: 33430387 PMCID: PMC7827494 DOI: 10.3390/cells10010094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a critical player in embryogenesis but also plays various roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions, amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream Notch-activated genes have by now been described for most human cancer types. Yet, it often remains unclear what may be the functional impact of these changes for tumor biology, initiation, and progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity, angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers, which are in the center of this review. Notch further supports the “stemness” of cancer cells and helps define the stem cell niche for their long-term survival, by integrating the interaction between cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk with other signaling pathways and its roles in cell fate and trans-differentiation processes such as epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may tip the balance between tumor suppression and promotion, differentiation and invasion. Here we not only review the literature, but also explore genomic databases with a specific focus on Notch signatures, and how they relate to different stages in tumor development. Altered Notch signaling hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues, contributing to failed therapies, poor patient outcome, and loss of lives.
Collapse
|
21
|
Magan M, Wiechec E, Roberg K. CAFs affect the proliferation and treatment response of head and neck cancer spheroids during co-culturing in a unique in vitro model. Cancer Cell Int 2020; 20:599. [PMID: 33353547 PMCID: PMC7756959 DOI: 10.1186/s12935-020-01718-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors for which the overall survival rate worldwide is around 60%. The tumor microenvironment, including cancer-associated fibroblasts (CAFs), is believed to affect the treatment response and migration of HNSCC. The aim of this study was to create a biologically relevant HNSCC in vitro model consisting of both tumor cells and CAFs cultured in 3D to establish predictive biomarkers for treatment response, as well as to investigate the impact of CAFs on phenotype, proliferation and treatment response in HNSCC cells. Methods Three different HNSCC patient-derived tumor cell lines were cultured with and without CAFs in a 3D model. Immunohistochemistry of the proliferation marker Ki67, epidermal growth factor receptor (EGFR) and fibronectin and a TUNEL-assay were performed to analyze the effect of CAFs on both tumor cell proliferation and response to cisplatin and cetuximab treatment in tumor spheroids (3D). mRNA expression of epithelial-mesenchymal transition (EMT) and cancer stem cells markers were analyzed using qRT-PCR. Results The results demonstrated increased cell proliferation within the tumor spheroids in the presence of CAFs, correlating with increased expression of EGFR. In spheroids with increased expression of EGFR, a potentiated response to cetuximab treatment was observed. Surprisingly, an increase in Ki67 expressing tumor cells were observed in spheroids treated with cisplatin for 3 days, correlating with increased expression of EGFR. Furthermore, tumor cells co-cultured with CAFs presented an increased EMT phenotype compared to tumor cells cultured alone in 3D. Conclusion Taken together, our results reveal increased cell proliferation and elevated expression of EGFR in HNSCC tumor spheroids in the presence of CAFs. These results, together with the altered EMT phenotype, may influence the response to cetuximab or cisplatin treatment.
Collapse
Affiliation(s)
- Mustafa Magan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Roberg
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. .,Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden.
| |
Collapse
|
22
|
Seliger B, Massa C, Yang B, Bethmann D, Kappler M, Eckert AW, Wickenhauser C. Immune Escape Mechanisms and Their Clinical Relevance in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21197032. [PMID: 32987799 PMCID: PMC7582858 DOI: 10.3390/ijms21197032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has been recently approved for the treatment of relapsed and metastatic human papilloma virus (HPV) positive and negative head and neck squamous cell carcinoma (HNSCC). However, the response of patients is limited and the overall survival remains short with a low rate of long-term survivors. There exists growing evidence that complex and partially redundant immune escape mechanisms play an important role for the low efficacy of immunotherapies in this disease. These are caused by diverse complex processes characterized by (i) changes in the expression of immune modulatory molecules in tumor cells, (ii) alterations in the frequency, composition and clonal expansion of immune cell subpopulations in the tumor microenvironment and peripheral blood leading to reduced innate and adaptive immune responses, (iii) impaired homing of immune cells to the tumor site as well as (iv) the presence of immune suppressive soluble and physical factors in the tumor microenvironment. We here summarize the major immune escape strategies of HNSCC lesions, highlight pathways, and molecular targets that help to attenuate HNSCC-induced immune tolerance, affect the selection and success of immunotherapeutic approaches to overcome resistance to immunotherapy by targeting immune escape mechanisms and thus improve the HNSCC patients’ outcome.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
- Fraunhofer Institute of Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence:
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (D.B.); (C.W.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.K.); (A.W.E.)
| | - Alexander Walter Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.K.); (A.W.E.)
- Klinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Universitätsklinik der Paracelsus Medizinischen Privatuniversität; 90471 Nürnberg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (D.B.); (C.W.)
| |
Collapse
|
23
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
24
|
Tsuchihashi H, Naruse T, Yanamoto S, Okuyama K, Furukawa K, Omori K, Umeda M. Selective inhibition of PI3K110α as a novel therapeutic strategy for cetuximab‑resistant oral squamous cell carcinoma. Oncol Rep 2020; 44:863-872. [PMID: 32705230 PMCID: PMC7388413 DOI: 10.3892/or.2020.7674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
High expression of the 110 kDa catalytic subunit of the class IA PI3K (PI3Kp110α) may play an important role in cetuximab resistance exhibited by both colorectal cancer and head and neck squamous cell carcinoma. Therefore, the present study aimed to examine the association between the expression of proteins in the PI3Kp110α pathway and cetuximab resistance, and the antitumor effects of alpelisib (PI3K inhibitor) and cetuximab in oral squamous cell carcinoma (OSCC) cells. The association between PI3Kp110α protein expression levels and the tumor response to cetuximab was determined using immunohistochemistry. OSCC cells were treated with alpelisib, cetuximab, or in combination, and the effects were examined in vitro and in vivo. PI3Kp110α protein expression was significantly associated with the tumor response to cetuximab (P<0.05) and 1-year progression-free survival and overall survival (P<0.05). Combined treatment of alpelisib and cetuximab resulted in enhanced antitumor effects in vitro compared with either agent administered alone. In particular, the expression level of N-cadherin, an epithelial-mesenchymal transition-related protein, was decreased, suggesting that the invasion potential of cetuximab-resistant cells decreased. Furthermore, the expression of proteins in the PI3K pathway were decreased in tumors from mice with OSCC xenografts treated with alpelisib and cetuximab in combination. These results indicate that novel regimens of systemic therapy (such as chemotherapy), with combinations of cetuximab and alpelisib, may be beneficial for patients with cetuximab-resistant OSCC.
Collapse
Affiliation(s)
- Hiroki Tsuchihashi
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Souichi Yanamoto
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Kohei Okuyama
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Kohei Furukawa
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Keisuke Omori
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852‑8588, Japan
| |
Collapse
|
25
|
Kagohara LT, Zamuner F, Davis-Marcisak EF, Sharma G, Considine M, Allen J, Yegnasubramanian S, Gaykalova DA, Fertig EJ. Integrated single-cell and bulk gene expression and ATAC-seq reveals heterogeneity and early changes in pathways associated with resistance to cetuximab in HNSCC-sensitive cell lines. Br J Cancer 2020; 123:101-113. [PMID: 32362655 PMCID: PMC7341752 DOI: 10.1038/s41416-020-0851-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Identifying potential resistance mechanisms while tumour cells still respond to therapy is critical to delay acquired resistance. METHODS We generated the first comprehensive multi-omics, bulk and single-cell data in sensitive head and neck squamous cell carcinoma (HNSCC) cells to identify immediate responses to cetuximab. Two pathways potentially associated with resistance were focus of the study: regulation of receptor tyrosine kinases by TFAP2A transcription factor, and epithelial-to-mesenchymal transition (EMT). RESULTS Single-cell RNA-seq demonstrates heterogeneity, with cell-specific TFAP2A and VIM expression profiles in response to treatment and also with global changes to various signalling pathways. RNA-seq and ATAC-seq reveal global changes within 5 days of therapy, suggesting early onset of mechanisms of resistance; and corroborates cell line heterogeneity, with different TFAP2A targets or EMT markers affected by therapy. Lack of TFAP2A expression is associated with HNSCC decreased growth, with cetuximab and JQ1 increasing the inhibitory effect. Regarding the EMT process, short-term cetuximab therapy has the strongest effect on inhibiting migration. TFAP2A silencing does not affect cell migration, supporting an independent role for both mechanisms in resistance. CONCLUSION Overall, we show that immediate adaptive transcriptional and epigenetic changes induced by cetuximab are heterogeneous and cell type dependent; and independent mechanisms of resistance arise while tumour cells are still sensitive to therapy.
Collapse
Affiliation(s)
- Luciane T Kagohara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA.
| | - Fernando Zamuner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Emily F Davis-Marcisak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Gaurav Sharma
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Michael Considine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Jawara Allen
- Department of Medicine, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:112. [PMID: 32546182 PMCID: PMC7296768 DOI: 10.1186/s13046-020-01611-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
27
|
Yegodayev KM, Novoplansky O, Golden A, Prasad M, Levin L, Jagadeeshan S, Zorea J, Dimitstein O, Joshua BZ, Cohen L, Khrameeva E, Elkabets M. TGF-Beta-Activated Cancer-Associated Fibroblasts Limit Cetuximab Efficacy in Preclinical Models of Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12020339. [PMID: 32028632 PMCID: PMC7073231 DOI: 10.3390/cancers12020339] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Most head and neck cancer (HNC) patients are resistant to cetuximab, an antibody against the epidermal growth factor receptor. Such therapy resistance is known to be mediated, in part, by stromal cells surrounding the tumor cells; however, the mechanisms underlying such a resistance phenotype remain unclear. To identify the mechanisms of cetuximab resistance in an unbiased manner, RNA-sequencing (RNA-seq) of HNC patient-derived xenografts (PDXs) was performed. Comparing the gene expression of HNC-PDXs before and after treatment with cetuximab indicated that the transforming growth factor-beta (TGF-beta) signaling pathway was upregulated in the stromal cells of PDXs that progressed on cetuximab treatment (CetuximabProg-PDX). However, in PDXs that were extremely sensitive to cetuximab (CetuximabSen-PDX), the TGF-beta pathway was downregulated in the stromal compartment. Histopathological analysis of PDXs showed that TGF-beta-activation was detected in cancer-associated fibroblasts (CAFs) of CetuximabProg-PDX. These TGF-beta-activated CAFs were sufficient to limit cetuximab efficacy in vitro and in vivo. Moreover, blocking the TGF-beta pathway using the SMAD3 inhibitor, SIS3, enhanced cetuximab efficacy and prevented the progression of CetuximabProg-PDX. Altogether, our findings indicate that TGF-beta-activated CAFs play a role in limiting cetuximab efficacy in HNC.
Collapse
Affiliation(s)
- Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Artemiy Golden
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel;
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, 84105 Beer-Sheva, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, 84105 Beer-Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
- Correspondence: (E.K.); (M.E.); Tel.: +7-495-280-14-81 (E.K.); +972-8642-8846 (M.E.)
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, 84105 Beer-Sheva, Israel (O.N.); (M.P.); (S.J.); (J.Z.); (L.C.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; (O.D.); (B.-Z.J.)
- Correspondence: (E.K.); (M.E.); Tel.: +7-495-280-14-81 (E.K.); +972-8642-8846 (M.E.)
| |
Collapse
|
28
|
Recent Advances in Head and Neck Tumor Microenvironment-Based Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:11-31. [PMID: 34185284 DOI: 10.1007/978-3-030-59038-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a group of heterogeneous aggressive tumors affecting more than half a million patients worldwide annually. While the tobacco- and alcohol-associated HNSCC tumors are declining, human papillomavirus (HPV)-induced tumors are on rise. Despite recent advances in multimodality therapeutic interventions including surgery in combination with chemoradiation therapy (CRT), the overall 5-year survival has not improved more than 50%. The underlying reasons for this dismal prognosis is the intrinsic or acquired resistance to CRT. While previous studies were focused to target tumor cells, recent findings have implicated the involvement of tumor microenvironment (TME) on tumor progression and response to therapy. HNSCC TME includes cancer-associated fibroblasts (CAFs), endothelial cells, immune cells, endocrine cells, and the extracellular matrix (ECM) proteins including collagen and fibronectin. Understanding the crosstalk between TME and cancer cells is important to formulate more effective novel therapies and to overcome resistance mechanisms. Here, we summarized the current literature on recent advances on HNSCC TME with special emphasis on novel cell-cell interactions and therapies currently under development.
Collapse
|
29
|
Abstract
Objective: Modern medical research has proven that human diseases are directly or indirectly related to genes. At the same time, genetic research has also brought updates to diagnostic techniques. Olfactomedin-like 3 (OLFML3) gene is a novel and clinically valuable gene. In order to better understand the role of OLFML3 in human diseases, we discuss and analyze the characteristics, function, and regulation mechanism of the OLFML3 gene in this review. Data sources: A comprehensive search in PubMed and ScienceDirect database for English up to March 2019, with the keywords of “Olfactomedin-like 3,” “Olfactomedin,” “extracellular matrix,” “Transforming Growth Factor β1,” “anoikis-resistance,” and “microRNA-155.” Study selection: Careful review of all relevant literature, the references of the retrieved articles were also screened to search for potentially relevant papers. Results: OLFML3 is a secreted glycoprotein with 406 amino acid residues, belonging to the Olfactomedin (OLF) family. Due to the particularity of its structure and differential expression, OLFML3 has unique biological functions that could be distinct from other members in the OLF family. The currently known functions include embryonic development function and tumorigenesis. The regulation mechanism is still under investigation. It is directly related to many human diseases. Conclusions: OLFML3 is a multifunctional glycoprotein that is closely involved in embryonic development, tumor invasion, and metastasis. Unfortunately, current research on this important molecule is still very limited. Further investigations on the possible mechanism of OLFML3 biological functions and modulation will help us develop better diagnostics and treatments.
Collapse
|
30
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
31
|
Pugh CA, Farrell LL, Carlisle AJ, Bush SJ, Ewing A, Trejo-Reveles V, Matika O, de Kloet A, Walsh C, Bishop SC, Prendergast JGD, Rainger J, Schoenebeck JJ, Summers KM. Arginine to Glutamine Variant in Olfactomedin Like 3 ( OLFML3) Is a Candidate for Severe Goniodysgenesis and Glaucoma in the Border Collie Dog Breed. G3 (BETHESDA, MD.) 2019; 9:943-954. [PMID: 30696701 PMCID: PMC6404605 DOI: 10.1534/g3.118.200944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 12/23/2022]
Abstract
Goniodysgenesis is a developmental abnormality of the anterior chamber of the eye. It is generally considered to be congenital in dogs (Canis lupus familiaris), and has been associated with glaucoma and blindness. Goniodysgenesis and early-onset glaucoma initially emerged in Border Collies in Australia in the late 1990s and have subsequently been found in this breed in Europe and the USA. The objective of the present study was to determine the genetic basis of goniodysgenesis in Border Collies. Clinical diagnosis was based on results of examinations by veterinary ophthalmologists of affected and unaffected dogs from eleven different countries. Genotyping using the Illumina high density canine single nucleotide variant genotyping chip was used to identify a candidate genetic region. There was a highly significant peak of association over chromosome 17, with a p-value of 2 × 10-13 Expression profiles and evolutionary conservation of candidate genes were assessed using public databases. Whole genome sequences of three dogs with glaucoma, three severely affected by goniodysgenesis and three unaffected dogs identified a missense variant in the olfactomedin like 3 (OLFML3) gene in all six affected animals. This was homozygous for the risk allele in all nine cases with glaucoma and 12 of 14 other severely affected animals. Of 67 reportedly unaffected animals, only one was homozygous for this variant (offspring of parents both with goniodysgenesis who were also homozygous for the variant). Analysis of pedigree information was consistent with an autosomal recessive mode of inheritance for severe goniodysgenesis (potentially leading to glaucoma) in this breed. The identification of a candidate genetic region and putative causative variant will aid breeders to reduce the frequency of goniodysgenesis and the risk of glaucoma in the Border Collie population.
Collapse
Affiliation(s)
- Carys A Pugh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Lindsay L Farrell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Ailsa J Carlisle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Adam Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Arne de Kloet
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Caitlin Walsh
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
32
|
Fu W, Lei C, Yu Y, Liu S, Li T, Lin F, Fan X, Shen Y, Ding M, Tang Y, Ye X, Yang Y, Hu S. EGFR/Notch Antagonists Enhance the Response to Inhibitors of the PI3K-Akt Pathway by Decreasing Tumor-Initiating Cell Frequency. Clin Cancer Res 2019; 25:2835-2847. [PMID: 30670492 DOI: 10.1158/1078-0432.ccr-18-2732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/11/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Both EGFR and PI3K-Akt signaling pathways have been used as therapeutically actionable targets, but resistance is frequently reported. In this report, we show that enrichment of the cancer stem cell (CSC) subsets and dysregulation of Notch signaling underlie the challenges to therapy and describe the development of bispecific antibodies targeting both HER and Notch signaling. EXPERIMENTAL DESIGN We utilized cell-based models to study Notch signaling in drug-induced CSC expansion. Both cancer cell line models and patient-derived xenograft tumors were used to evaluate the antitumor effects of bispecific antibodies. Cell assays, flow cytometry, qPCR, and in vivo serial transplantation assays were employed to investigate the mechanisms of action and pharmacodynamic readouts. RESULTS We found that EGFR/Notch targeting bispecific antibodies exhibited a notable antistem cell effect in both in vitro and in vivo assays. Bispecific antibodies delayed the occurrence of acquired resistance to EGFR inhibitors in triple-negative breast cancer cell line-based models and showed efficacy in patient-derived xenografts. Moreover, the EGFR/Notch bispecific antibody PTG12 in combination with GDC-0941 exerted a stronger antitumor effect than the combined therapy of PI3K inhibitor with EGFR inhibitors or tarextumab in a broad spectrum of epithelial tumors. Mechanistically, bispecific antibody treatment inhibits the stem cell-like subpopulation, reduces tumor-initiating cell frequency, and downregulates the mesenchymal gene expression. CONCLUSIONS These findings suggest that the coblockade of EGFR and Notch signaling has the potential to increase the response to PI3K inhibition, and PTG12 may gain clinical efficacy when combined with PI3K blockage in cancer treatment.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Shuowu Liu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Fangxing Lin
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Xiaoyan Fan
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Yafeng Shen
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Min Ding
- Pharchoice Therapeutics Inc., Shanghai, China
| | - Ying Tang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Xuting Ye
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Yongji Yang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China. .,Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Department of Biophysics, Second Military Medical University, Shanghai, China
| |
Collapse
|
33
|
Wen M, Xia J, Sun Y, Wang X, Fu X, Zhang Y, Zhang Z, Zhou Y, Li X. Combination of EGFR-TKIs with chemotherapy versus chemotherapy or EGFR-TKIs alone in advanced NSCLC patients with EGFR mutation. Biologics 2018; 12:183-190. [PMID: 30555222 PMCID: PMC6280904 DOI: 10.2147/btt.s169305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose Both epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy are widely applied for the treatment of advanced non-small-cell lung cancer (NSCLC) with EGFR mutations, and the combination of EGFR-TKIs and chemotherapy has been used for advanced NSCLC patients; however, little is known about the efficacy of the direct comparison among them. Patients and methods The demographic and clinical characteristics of 92 patients harboring advanced NSCLC with EGFR mutation were retrospectively reviewed. We evaluated the effects of EGFR-TKIs, chemotherapy, and EGFR-TKIs plus chemotherapy on advanced NSCLC patients with EGFR mutations, and the efficacy of combination of chemotherapy and EGFR-TKIs vs chemotherapy or EGFR-TKIs alone in advanced NSCLC patients was evaluated. Results The statistical results showed that the intercalated combination of EGFR-TKIs plus chemotherapy significantly improved progression-free survival (PFS; HR, 1.76; 95% CI 1.03–3.01; P=0.036; median, 20.5 vs 16 months) compared with EGFR-TKI monotherapy, but no difference in overall survival (OS) was observed between these two groups (HR, 1.52; 95% CI 0.81–2.83; P=0.19; median, 36 vs 29 months). However, patients who received the combination of chemotherapy and EGFR-TKIs had longer PFS (HR, 2.78; 95% CI 1.57–4.93; P<0.0001; median, 20.5 vs 12 months) as well as OS (HR, 2.86; 95% CI 1.56–5.27; P=0.001; median, 36 vs 18 months) than those who received chemotherapy alone. Toxicities were mild among the three treatment groups. Rash and diarrhea were common adverse events (AEs) in the EGFR-TKI group, anemia and nausea in the chemotherapy group, and anemia and diarrhea in the combination group. Conclusion This study demonstrated that the combination of chemotherapy with EGFR-TKIs as first-line treatment has a significant effect on PFS in patients with advanced NSCLC whose tumors harbor activating EGFR mutations. The combination treatment had more toxicity, but was clinically manageable.
Collapse
Affiliation(s)
- Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Xianghui Fu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yanning Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China, ;
| |
Collapse
|
34
|
Grasset EM, Bertero T, Bozec A, Friard J, Bourget I, Pisano S, Lecacheur M, Maiel M, Bailleux C, Emelyanov A, Ilie M, Hofman P, Meneguzzi G, Duranton C, Bulavin DV, Gaggioli C. Matrix Stiffening and EGFR Cooperate to Promote the Collective Invasion of Cancer Cells. Cancer Res 2018; 78:5229-5242. [PMID: 30026329 DOI: 10.1158/0008-5472.can-18-0601] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
|
35
|
Stein-O’Brien G, Kagohara LT, Li S, Thakar M, Ranaweera R, Ozawa H, Cheng H, Considine M, Schmitz S, Favorov AV, Danilova LV, Califano JA, Izumchenko E, Gaykalova DA, Chung CH, Fertig EJ. Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance. Genome Med 2018; 10:37. [PMID: 29792227 PMCID: PMC5966898 DOI: 10.1186/s13073-018-0545-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients' treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. METHODS To determine the dynamics of these molecular changes, we obtained high throughput omics data (RNA-sequencing and DNA methylation) weekly during the development of cetuximab resistance in a head and neck cancer in vitro model. The CoGAPS unsupervised algorithm was used to determine the dynamics of the molecular changes associated with resistance during the time course of resistance development. RESULTS CoGAPS was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically. CONCLUSIONS Genes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize the resistant phenotype. These genes include FGFR1, which was associated with EGFR inhibitors resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. This understanding of the time course progression of molecular changes in acquired resistance is important for the development of alternative treatment strategies that would introduce appropriate selection of new drugs to treat cancer before the resistant phenotype develops.
Collapse
Affiliation(s)
- Genevieve Stein-O’Brien
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sijia Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Manjusha Thakar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Ruchira Ranaweera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Haixia Cheng
- Department of Surgery - Otolaryngology–Head and Neck Surgery, University of Utah, |Salt Lake City, UT USA
| | - Michael Considine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sandra Schmitz
- Head and Neck Surgery Unit, St Luc University Hospital, Brussels, Belgium
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Joseph A. Califano
- Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, CA USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Daria A. Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Christine H. Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
36
|
Vaquero J, Lobe C, Tahraoui S, Clapéron A, Mergey M, Merabtene F, Wendum D, Coulouarn C, Housset C, Desbois-Mouthon C, Praz F, Fouassier L. The IGF2/IR/IGF1R Pathway in Tumor Cells and Myofibroblasts Mediates Resistance to EGFR Inhibition in Cholangiocarcinoma. Clin Cancer Res 2018; 24:4282-4296. [PMID: 29716918 DOI: 10.1158/1078-0432.ccr-17-3725] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022]
|
37
|
Naruse T, Tokuhisa M, Yanamoto S, Sakamoto Y, Okuyama K, Tsuchihashi H, Umeda M. Lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment: A case report. Oncol Lett 2018; 15:7158-7162. [PMID: 29725438 PMCID: PMC5920247 DOI: 10.3892/ol.2018.8261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/16/2018] [Indexed: 01/11/2023] Open
Abstract
Long-term cetuximab treatment can lead to acquired resistance, and tumor progression and/or new lesions often occur. The present report describes a case of lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment in a 60-year-old man, including findings of an immunohistochemical study. The resected primary tumors, biopsy of the lung metastasis before administration of cetuximab, and brain metastasis specimens mediated by cetuximab were immunohistochemically examined. Histologically, the metastatic brain lesion showed hyperkeratinizing tumor cells with deeply stained irregular nuclei with necrotizing tumor cells, and a decrease in cell density was exhibited in part of the tumor nest. Moreover, the brain lesion was less malignant compared with the primary tumor and metastatic lung lesions. Immunohistochemically, the metastatic brain lesions showed low expression of epidermal growth factor receptor (EGFR) and high expression of N-cadherin compared with the primary tumor and metastatic lung lesions. These results suggest that acquired resistance to cetuximab may be associated with low EGFR expression and increased epithelial-to-mesenchymal transition potential.
Collapse
Affiliation(s)
- Tomofumi Naruse
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mitsuko Tokuhisa
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Souichi Yanamoto
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yuki Sakamoto
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kohei Okuyama
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroki Tsuchihashi
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
38
|
Fertig EJ, Ozawa H, Thakar M, Howard JD, Kagohara LT, Krigsfeld G, Ranaweera RS, Hughes RM, Perez J, Jones S, Favorov AV, Carey J, Stein-O'Brien G, Gaykalova DA, Ochs MF, Chung CH. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network. Oncotarget 2018; 7:73845-73864. [PMID: 27650546 PMCID: PMC5342018 DOI: 10.18632/oncotarget.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance.
Collapse
Affiliation(s)
- Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroyuki Ozawa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Manjusha Thakar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jason D Howard
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel Krigsfeld
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ruchira S Ranaweera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert M Hughes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jimena Perez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Siân Jones
- Personal Genome Diagnostics, Baltimore, MD, USA
| | - Alexander V Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Vavilov Institute of General Genetics, Moscow, Russia.,Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - Jacob Carey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Genevieve Stein-O'Brien
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael F Ochs
- Department of Mathematics and Statistics, The College of New Jersey, Ewing Township, NJ, USA
| | - Christine H Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
39
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 2018; 8:3980-4000. [PMID: 28002810 PMCID: PMC5354808 DOI: 10.18632/oncotarget.14012] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy is effective for patients with RAS wild type metastatic colorectal cancer (mCRC). However, only a small percentage of mCRC patients are sensitive to anti-EGFR therapy and even the best cases finally become refractory to this therapy. It has become apparent that the RAS mutations correlate with resistance to anti-EGFR therapy. However, these resistance mechanisms only account for nearly 35% to 50% of nonresponsive patients, suggesting that there might be additional mechanisms. In fact, several novel pathways leading to escape from anti-EGFR therapy have been reported in recent years. In this review, we provide an overview of known and novel mechanisms that contribute to both primary and acquired anti-EGFR therapy resistance, and enlist possible treatment strategies to overcome or reverse this resistance.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingsheng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
41
|
Abstract
OPINION STATEMENT The survival rate for patients with advanced stages of squamous cell carcinoma of the head and neck (SCCHN) remains poor despite multimodal treatment options. Cetuximab, an anti-EGFR inhibitor, is the only FDA-approved targeted agent for this disease. Recent findings have implicated modifications of the microenvironment and, consequently, phenotypical modifications of the cancer cell, in treatment resistance mechanisms. For many years, cancer research has focused mainly on targetable sites on or inside the cancer cell. Nowadays, in preclinical and clinical studies, a greater emphasis is being placed on drugs that target the tumor microenvironment. Potential targets relate to tumor vascularization, immunology, extracellular matrix components, or cancer-associated fibroblasts. The combination of these new agents with standard treatment options is of particular interest to overcome resistance mechanisms and/or to increase treatment efficacy. Whereas antiangiogenic agents show poor clinical activity, immunotherapy seems to be a more promising tool with an objective response rate (ORR) of 20 % in patients with recurrent and/or metastatic squamous cell carcinoma (R/M SCC). Other targets, located inside the extracellular matrix or on cancer associated fibroblasts, are under preclinical investigation. These new agents all need to be tested in clinical trials alone, or in combination with standard treatment modalities, based on preclinical data. To increase our knowledge of the complex network between the cancer cell and its environment, preclinical studies should consider co-culture models, and clinical studies should incorporate a translational research objective.
Collapse
|
42
|
Hypoxia Mediates Differential Response to Anti-EGFR Therapy in HNSCC Cells. Int J Mol Sci 2017; 18:ijms18050943. [PMID: 28468237 PMCID: PMC5454856 DOI: 10.3390/ijms18050943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023] Open
Abstract
Despite advances in the head and neck squamous cell carcinoma (HNSCC) treatment modalities, drug resistance and cancer recurrence are often reported. Hypoxia signaling through hypoxia-inducible factor 1 (HIF-1) promotes angiogenesis and metastasis by inducing epithelial-mesenchymal-transition (EMT). The aim of this study was to evaluate the impact of hypoxia on response to therapy as well as EMT and expression of stem cell markers in HNSCC cells. Five HNSCC cell lines (UT-SCC-2, UT-SCC-14, LK0412, LK0827, and LK0923) were selected for this study. The treatment sensitivity for radiation, cisplatin, cetuximab, and dasatinib was assessed by crystal violet assay. Gene expression of EMT and cancer stem cell (CSC) markers as well as protein level of EGFR signaling molecules were analyzed by qPCR and western blotting, respectively. Unlike UT-SCC-14 and LK0827, the LK0412 cell line became significantly more sensitive to cetuximab in hypoxic conditions. This cetuximab sensitivity was efficiently reversed after suppression of HIF-1α with siRNA. Additionally, hypoxia-induced EMT and expression of stem cell markers in HNSCC cells was partially revoked by treatment with cetuximab or knockdown of HIF-1α. In summary, our study shows that hypoxia might have a positive influence on the anti-EGFR therapy effectiveness in HNSCC. However, due to heterogeneity of HNSCC lesions, targeting HIF-1α may not be sufficient to mediate such a response. Further studies identifying a trait of hypoxia-specific response to cetuximab in HNSCC are advisable.
Collapse
|
43
|
Hu S, Fu W, Li T, Yuan Q, Wang F, Lv G, Lv Y, Fan X, Shen Y, Lin F, Tang Y, Ye X, Yang Y, Lei C. Antagonism of EGFR and Notch limits resistance to EGFR inhibitors and radiation by decreasing tumor-initiating cell frequency. Sci Transl Med 2017; 9:9/380/eaag0339. [PMID: 28275151 DOI: 10.1126/scitranslmed.aag0339] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/16/2016] [Accepted: 02/11/2017] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR) blockade and radiation are efficacious in the treatment of cancer, but resistance is commonly reported. Studies have suggested that dysregulation of Notch signaling and enrichment of the cancer stem cell population underlie these treatment challenges. Our data show that dual targeting of EGFR and Notch2/3 receptors with antibody CT16 not only inhibited signaling mediated by these receptors but also showed a strong anti-stem cell effect both in vitro and in vivo. Treatment with CT16 prevented acquired resistance to EGFR inhibitors and radiation in non-small cell lung cancer (NSCLC) cell line models and patient-derived xenograft tumors. CT16 also had a superior radiosensitizing impact compared with EGFR inhibitors. CT16 in combination with radiation had a larger antitumor effect than the combination of radiation with EGFR inhibitors or tarextumab. Mechanistically, CT16 treatment inhibits the stem cell-like subpopulation, which has a high mesenchymal gene expression and DNA repair activity, and reduces tumor-initiating cell frequency. This finding highlights the capacity of a combined blockade of EGFR and Notch signaling to augment the response to radiation and suggests that CT16 may achieve clinical efficacy when combined with radiation in NSCLC treatment.
Collapse
Affiliation(s)
- Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China.
| | - Wenyan Fu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200030, China
| | - Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Qingning Yuan
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Feifei Wang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Gaojian Lv
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Yuanyuan Lv
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Fan
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Yafeng Shen
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Fangxing Lin
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Ying Tang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Xuting Ye
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Yongji Yang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
44
|
Abdelmoez A, Coraça-Huber DC, Thurner GC, Debbage P, Lukas P, Skvortsov S, Skvortsova II. Screening and identification of molecular targets for cancer therapy. Cancer Lett 2017; 387:3-9. [DOI: 10.1016/j.canlet.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
|
45
|
Shi W, Ye Z, Zhuang L, Li Y, Shuai W, Zuo Z, Mao X, Liu R, Wu J, Chen S, Huang W. Olfactomedin 1 negatively regulates NF-κB signalling and suppresses the growth and metastasis of colorectal cancer cells. J Pathol 2016; 240:352-365. [PMID: 27555280 DOI: 10.1002/path.4784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Uncontrolled growth and distant metastasis are hallmarks of colorectal cancer (CRC), but the mechanisms are poorly understood. Olfactomedin 1 (OLFM1), a member of the olfactomedin domain-containing protein family, plays an important role in the development of neurogenic tissues. Recently, OLFM1 deregulation was frequently observed in several cancers, and it was induced in colon cell lines after treatment with the demethylating agent 5-aza-2'-deoxycytidine. However, the function of OLFM1 in CRC remains unknown. In this study, we reanalysed published microarray data and found that OLFM1 was significantly down-regulated in primary CRC samples compared to adjacent non-cancerous tissues. The results of immunohistochemistry indicated that decreased OLFM1 expression was significantly associated with lymph node status (p = 0.023), distant metastasis (p < 0.001), and AJCC/TNM stage (p = 0.013), and CRC patients with low OLFM1 expression had consistently poor overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Further analysis demonstrated that OLFM1 was epigenetically silenced in CRC tissues and cell lines via promoter hypermethylation. Overexpression and knockdown of OLFM1 attenuated and increased, respectively, CRC cells' proliferation, migration, and invasion in vitro and metastasis to the lung and liver in vivo. Mechanistically, the promotion of growth and metastasis of CRC cells by silencing of OLFM1 was associated with the activation of the non-canonical NF-κB signalling pathway. OLFM1 interacted with NF-κB-inducing kinase (NIK; MAP3K14) and repressed the phosphorylation of its downstream substrate Ikappa B kinase alpha (IKKα). OLFM1 expression was negatively correlated with the phosphorylation level of IKKα in CRC tissue samples. Knockdown of NIK impaired the ability of OLFM1 to repress NF-κB signalling, cell growth or migration. Thus, OLFM1 may be a valuable biomarker and therapeutic target for CRC patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Shi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
- The Second Department of Internal Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumour Hospital, Kunming, Yunnan, PR China
| | - Zhihua Ye
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Li Zhuang
- The Second Department of Internal Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumour Hospital, Kunming, Yunnan, PR China
| | - Yingchang Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wendi Shuai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Zhixiang Zuo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xueli Mao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Ranyi Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Jiangxue Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shuai Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.
- Guangdong Provincial Key Laboratory of Tumour Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Double Bioproducts Co Ltd, Guangzhou, PR China.
| |
Collapse
|
46
|
Bosse K, Haneder S, Arlt C, Ihling CH, Seufferlein T, Sinz A. Mass spectrometry-based secretome analysis of non-small cell lung cancer cell lines. Proteomics 2016; 16:2801-2814. [DOI: 10.1002/pmic.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Konstanze Bosse
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | | | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| | | | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics; Institute of Pharmacy; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
47
|
Window of opportunity studies: Do they fulfil our expectations? Cancer Treat Rev 2016; 43:50-7. [DOI: 10.1016/j.ctrv.2015.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
|