1
|
Guo Z, Dong RW, Wu Y, Dong S, Alahari SK. Cyclin-dependent kinase 4 and 6 inhibitors in breast cancer treatment. Oncogene 2025; 44:1135-1152. [PMID: 40200094 DOI: 10.1038/s41388-025-03378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the second largest cancer in the world, and it has highest mortality rate in women worldwide. The aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway plays an important role in uncontrolled breast cancer cell proliferation. Therefore, targeting CDK4/6 to improve overall survival rates has been a strong interest in breast cancer therapeutics. Till date, four CDK4/6 inhibitors have been developed and approved for hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer therapies with great success. However, acquired resistance to CDK4/6 inhibitors has emerged and limits their effectiveness in breast cancer. In this review, we systematically discussed the mechanisms of resistance to CDK4/6 inhibitors including the cell cycle-specific and cell cycle-nonspecific mechanisms. Also, we analyzed combination strategies with other signaling inhibitors in clinical and preclinical settings that further expand the clinical application of CDK4/6 inhibitors in future breast cancer therapies.
Collapse
Affiliation(s)
- Zhengfei Guo
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Richard W Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yusheng Wu
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Shengli Dong
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Terry F, Orrego-Gonzalez E, Enríquez-Marulanda A, Pacheco-Barrios N, Merenzon M, Komotar RJ, Vega RA. Temporal Dynamics and Clinical Predictors of Brain Metastasis in Breast Cancer: A Two-Decade Cohort Analysis Toward Tailored CNS Screening. Cancers (Basel) 2025; 17:946. [PMID: 40149281 PMCID: PMC11940119 DOI: 10.3390/cancers17060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer is the most common malignancy in women and the second leading cause of cancer-related deaths globally. It is also the second most frequent source of brain metastases (BMs), contributing to 5-20% of cases. Despite this, routine brain imaging for screening is not recommended and is only conducted when clinical symptoms or physical findings suggest metastasis. This study aims to identify clinical predictors associated with overall survival (OS) and the timing of BM development in breast cancer patients. METHODS We performed a retrospective review of medical records for 113 patients diagnosed with BMs secondary to breast cancer at our institution between 2000 and 2020. Baseline demographic data and clinical characteristics related to BMs were collected. To identify factors associated with OS and time to BM development after breast cancer diagnosis, we conducted univariate analysis using Kaplan-Meier curves, bivariate analysis with the log-rank test, and multivariate analysis via the Cox Proportional Hazard model. RESULTS An early diagnosis of BMs was identified as a significant predictor of prolonged OS (aHR = 0.22; 95% CI: 0.049-0.98, p = 0.05). Post-menopausal status at breast cancer diagnosis (aHR = 1.69; 95% CI: 1.13-2.53, p = 0.01), Asian ethnicity (aHR = 2.30; 95% CI: 1.03-5.16, p = 0.04), and the ER+/HER2+ subtype (aHR = 2.06; 95% CI: 1.14-3.71, p = 0.02) were significantly associated with a shorter time to BM diagnosis. A subgroup analysis of patients with ER+ breast tumors revealed that Hispanic or Arabic ethnicity (aHR = 3.63; 95% CI: 1.34-9.81, p = 0.01) and stage IV diagnosis (aHR = 2.09; 95% CI: 1.16-3.76, p = 0.01) were significantly associated with shorter intervals to BM diagnosis. CONCLUSIONS Breast cancer remains a significant global health burden for women, yet clear guidelines for routine BMs screening are still lacking. Early detection of BMs has been shown to notably improve long-term survival outcomes. Additionally, post-menopausal status, Hispanic or Arabic ethnicity, and the HER2+ tumor subtype are associated with shorter time to BM development, highlighting these factors as potential indicators for central nervous system screening.
Collapse
Affiliation(s)
- Fernando Terry
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Orrego-Gonzalez
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - Niels Pacheco-Barrios
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Merenzon
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ricardo J. Komotar
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33146, USA
| | - Rafael A. Vega
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Li X, Niu C, Yi G, Zhang Y, Jin W, Zhang Z, Zhang W, Li B. Quercetin inhibits the epithelial-mesenchymal transition and reverses CDK4/6 inhibitor resistance in breast cancer by regulating circHIAT1/miR-19a-3p/CADM2 axis. PLoS One 2024; 19:e0305612. [PMID: 38990915 PMCID: PMC11239024 DOI: 10.1371/journal.pone.0305612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer (BC) cells have a high risk of metastasis due to epithelial-mesenchymal transition (EMT). Palbociclib (CDK4/6 inhibitor) is an approved drug for BC treatment. However, the drug resistance and metastasis can impair the treatment outcome of Palbociclib. Understanding the mechanisms of EMT and Palbociclib drug resistance in BC is conducive to the formulation of novel therapeutic strategy. Here, we investigated the role of circHIAT1/miR-19a-3p/CADM2 axis in modulating EMT and Palbociclib resistance in BC. circHIAT1 and CADM2 were down-regulated in BC tissues and cell lines, and miR-19a-3p showed an up-regulation. circHIAT1 could interact with miR-19a-3p and suppress its activity, while miR-19a-3p functioned to negatively regulate CADM2. Forced over-expression of circHIAT1 could impaired the EMT status and migratory ability of BC cells, and this effect was inhibited by miR-19a-3p mimic. In addition, we also generated Palbociclib resistant BC cells, and showed that circHIAT1 and CADM2 were down-regulated in the resistant BC cells while miR-19a-3p showed an up-regulation. Forced circHIAT1 over-expression re-sensitized BC cells to Palbociclib treatment. Quercetin, a bioactive flavonoid, could suppressed the migration and invasion of BC cells, and re-sensitized BC cells to Palbociclib. The anti-cancer effect of quercetin could be attributed to its regulatory effect on circHIAT1/miR-19a-3p/CADM2 axis. In vivo tumorigenesis experiment further revealed that quercetin administration enhanced the anti-cancer effect of Palbociclib, an effect was dependent on the up-regulation of circHIAT1 by quercetin. In summary, this study identified quercetin as a potential anti-cancer compound to reverse Palbociclib resistance and impair EMT in BC cells by targeting circHIAT1/miR-19a-3p/CADM2 axis.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Chao Niu
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Guoqiang Yi
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Yuan Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Wendi Jin
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhiping Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Wanfu Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Bo Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
5
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
6
|
Sun Y, Qin H, Zhang C, Xu J, Zhang T. Tetrastigma hemsleyanum (Sanyeqing) root extracts evoke S phase arrest while inhibiting the migration and invasion of human pancreatic cancer PANC-1 cells. BMC Complement Med Ther 2024; 24:133. [PMID: 38539165 PMCID: PMC10967071 DOI: 10.1186/s12906-024-04425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Ethyl acetate extracts from Tetrastigma hemsleyanum (Sanyeqing) (EFT), a member of the Vitaceae plant family, have been shown to exhibit efficacy against a variety of cancers. In this light, our current study seeks to examine the mechanism of efficacy between EFT extracts and human pancreatic cancer PANC-1 cells. METHODS The chemical components of EFT were analyzed by gas chromatography-mass spectrometry. The cytotoxicity of EFT on PANC-1 cells was measured using an MTT assay. In order to investigate EFT induction of cell cycle arrest, changes in cell-cycle distribution were monitored by flow cytometry. Wound healing and transwell assays were employed to investigate whether migration and invasion of PANC-1 cells were inhibited by EFT. Relative protein expression was detected using Western blot. RESULTS GC-MS analysis of the chemical composition of EFT revealed that the majority of constituents were organic acids and their corresponding esters. EFT exhibits measurable cytotoxicity and inhibition of PANC-1 invasion. Growth inhibition was primarily attributed to downregulation of CDK2 which induces cell cycle arrest in the S-phase. Inhibition of metastasis is achieved through downregulation of mesenchymal-associated genes/activators, including ZEB1, N-cadherin, Vimentin, and Fibronectin. Meanwhile, the expression of E-cadherin was significantly increased by EFT treatment. Furthermore, downregulation of MMP-2 and MMP-9 were observed. CONCLUSION Treatment of PANC-1 with EFT demonstrated measurable cytotoxic effects. Furthermore, EFT evoked S phase arrest while inhibiting the migration and invasion of PANC-1 cells. Additionally, EFT inhibited the epithelial to mesenchymal transition and MMPs expression in PANC-1 cells. This study serves to confirm the strong therapeutic potential of EFT while identifying the mechanisms of action.
Collapse
Affiliation(s)
- Yifan Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Haiyan Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
- Nanjing Healthnice Pharmaceutical Technology Co., Ltd CN, Nanjing, 210031, People's Republic of China
| | - Chunchun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, People's Republic of China.
| |
Collapse
|
7
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
9
|
Marocchi F, Palluzzi F, Nicoli P, Melixetian M, Lovati G, Bertalot G, Pece S, Ferrucci PF, Bossi D, Lanfrancone L. Actionable Genetic Screens Unveil Targeting of AURKA, MEK, and Fatty Acid Metabolism as an Alternative Therapeutic Approach for Advanced Melanoma. J Invest Dermatol 2023; 143:1993-2006.e10. [PMID: 37003468 DOI: 10.1016/j.jid.2023.03.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Despite the remarkable improvements achieved in the management of metastatic melanoma, there are still unmet clinical needs. A considerable fraction of patients does not respond to immune and/or targeted therapies owing to primary and acquired resistance, high-grade immune-related adverse events, and a lack of alternative treatment options. To design effective combination therapies, we set up a functional ex vivo preclinical assay on the basis of a drop-out genetic screen in metastatic melanoma patient-derived xenografts. We showed that this approach can be used to isolate actionable vulnerabilities predictive of drug efficacy. In particular, we highlighted that the dual targeting of AURKA and MAPK/extracellular signal-regulated kinase kinase employing the combination of alisertib and trametinib is highly effective in a cohort of metastatic melanoma patient-derived xenografts, both ex vivo and in vivo. Alisertib and trametinib combination therapy outperforms standard-of-care therapy in both BRAF-mutant patient-derived xenografts and targeted therapy-resistant models. Furthermore, alisertib and trametinib treatment modulates several critical cancer pathways, including an early metabolic reprogramming that leads to the transcriptional upregulation of the fatty acid oxidation pathway. This acquired trait unveiled an additional point of intervention for pharmacological targeting, and indeed, the triple combination of alisertib and trametinib with the fatty acid oxidation inhibitor etomoxir proved to be further beneficial, inducing tumor regression and remarkably prolonging the overall survival of the mice.
Collapse
Affiliation(s)
- Federica Marocchi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Fernando Palluzzi
- Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marine Melixetian
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Bertalot
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Unità Operativa Multizonale di Anatomia Patologica, Azienda Provinciale per i Servizi Sanitari, Trento, Italy; CISMED - Centre for Medical Sciences, University of Trento, Trento, Italy
| | - Salvatore Pece
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Pier Francesco Ferrucci
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| |
Collapse
|
10
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
11
|
Mughal MJ, Bhadresha K, Kwok HF. CDK inhibitors from past to present: A new wave of cancer therapy. Semin Cancer Biol 2023; 88:106-122. [PMID: 36565895 DOI: 10.1016/j.semcancer.2022.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Deregulation of the cell cycle machinery, which has been linked to dysregulation of cyclin-dependent kinases (CDKs), is a defining characteristic of cancer, eventually promoting abnormal proliferation that feeds tumorigenesis and disease development. In this regard, several CDK inhibitors (CDKIs) have been developed during the last few decades (1st, 2nd, and 3rd generation CDKIs) to inhibit cancer cell proliferation. 1st and 2nd generation CDKIs have not received much clinical attention for the treatment of cancer patients because of their limited specificity and high toxicity. However, the recent development of combination strategies allowed us to reduce the toxicity and side effects of these CDKIs, paving the way for their potential application in clinical settings. The 3rd generation CDKIs have yielded the most promising results at the preclinical and clinical levels, propelling them into the advanced stages of clinical trials against multiple malignancies, especially breast cancer, and revolutionizing traditional treatment strategies. In this review, we discuss the most-investigated candidates from the 1st, 2nd, and 3rd generations of CDKIs, their basic mechanisms of action, the reasons for their failure in the past, and their current clinical development for the treatment of different malignancies. Additionally, we briefly highlighted the most recent clinical trial results and advances in the development of 3rd generation FDA-approved selective CDK4/6 inhibitors that combat the most prevalent cancer. Overall, this review will provide a thorough knowledge of CDKIs from the past to the present, allowing researchers to rethink and develop innovative cancer therapeutic regimens.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Kinjal Bhadresha
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Hematology/Oncology Division, School of Medicine, Indiana University Indianapolis, IN, United States
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
12
|
Palbociclib Enhances Migration and Invasion of Cancer Cells via Senescence-Associated Secretory Phenotype-Related CCL5 in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2260625. [PMID: 37181790 PMCID: PMC10175017 DOI: 10.1155/2022/2260625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Palbociclib is the first CDK4/6 inhibitor approved by FDA and has been studied in many types of cancer. However, some studies showed that it could induce epithelial-mesenchymal transition (EMT) of cancer cells. To test the effect of palbociclib on non-small-cell lung cancer (NSCLC) cells, we treated NSCLC cells with different concentrations of palbociclib and detected its effects via MTT, migration and invasion assays, and apoptosis test. Further RNA sequencing was performed in the cells treated with 2 μM palbociclib or control. And Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and protein-protein interaction network (PPI) were analyzed to explore the mechanism of palbociclib. The results showed that palbociclib significantly inhibited the growth of NSCLC cells and promoted apoptosis of cells, however, enhanced the migration and invasion abilities of cancer cells. RNA sequencing showed that cell cycle, inflammation-/immunity-related signaling, cytokine-cytokine receptor interaction, and cell senescence pathways were involved in the process, and CCL5 was one of the significantly differential genes affected by palbociclib. Further experiments showed that blocking CCL5-related pathways could reverse the malignant phenotype induced by palbociclib. Our results revealed that palbociclib-induced invasion and migration might be due to senescence-associated secretory phenotype (SASP) rather than EMT and suggested that SASP could act as a potential target to potentiate the antitumor effects of palbociclib in cancer treatment.
Collapse
|
13
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
14
|
Investigation of Cyclooxygenase-2 Gene Polymorphism in Patients with Gastric Cancer and Healthy Individuals in Northern Iran. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Gastric cancer is one of the most common types of cancer in the world. Cyclooxygenase-2 (COX-2) is a pro-inflammatory enzyme and an important mediator of tumor cell proliferation and angiogenesis. Objectives: The aim of this study was to investigate the relationship between COX-2 gene polymorphism and the risk of developing gastric cancer. Methods: This case-control study was carried out on 150 patients with gastric cancer and 150 healthy individuals. Genomic DNA was extracted using a modified method of protein precipitation at high salt concentrations. Polymorphisms of the COX-2 gene were investigated by polymerase chain reaction-restriction fragment length polymorphism analysis. Results: In this study, the frequency of GG genotype and CC genotype was significantly higher in patients with gastric cancer and healthy individuals, respectively (P < 0.05). However, the frequency of CC genotype did not significantly differ between the 2 study groups. Conclusions: We demonstrated that the homozygous GG genotype of COX-2 is significantly more frequent in patients with gastric cancer compared to healthy individuals. This could indicate the possible role of COX-2 in the development or progression of gastric cancer.
Collapse
|
15
|
Interplay of Immunometabolism and Epithelial-Mesenchymal Transition in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22189878. [PMID: 34576042 PMCID: PMC8466075 DOI: 10.3390/ijms22189878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and metabolic reprogramming in cancer cells are the key hallmarks of tumor metastasis. Since the relationship between the two has been well studied, researchers have gained increasing interest in the interplay of cancer cell EMT and immune metabolic changes. Whether the mutual influences between them could provide novel explanations for immune surveillance during metastasis is worth understanding. Here, we review the role of immunometabolism in the regulatory loop between tumor-infiltrating immune cells and EMT. We also discuss the challenges and perspectives of targeting immunometabolism in cancer treatment.
Collapse
|
16
|
Liang S, Shi LY, Duan JY, Liu HH, Wang TT, Li CY. Celecoxib reduces inflammation and angiogenesis in mice with adenomyosis. Am J Transl Res 2021; 13:2858-2866. [PMID: 34017449 PMCID: PMC8129283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of COX-2 selective inhibitor (celecoxib) on adenomyosis and its mechanism. METHODS By establishing a mouse model of adenomyosis and using celecoxib to treat adenomyosis, newly born female mice were randomly divided into a control group, adenomyosis model group, and celecoxib group. Hematoxylin-eosin (H&E) staining was used to observe the depth of endometrial infiltration of mouse adenomyosis. RT-PCR (reverse transcription PCR) and western blot were used to detect the expression of Cyclooxygenase-2 (COX-2), Vascular growth factor (VEGF), Nerve growth factor (NGF), and Corticotropin-releasing hormone (CRH) mRNA and protein in mice before and after celecoxib treatment. RESULTS After treatment with celecoxib, the depth of endometrial infiltration of mouse adenomyosis was reduced. COX-2 and VEGF decreased significantly after celecoxib inhibited expression of COX-2 (P<0.001), but there was no significant difference in the expression of NGF or CRH (P>0.05). CONCLUSION This study indicated that COX-2 may be an important factor related to the pathogenesis of adenomyosis, and it may become an important molecular target for the treatment of adenomyosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou UniversityChina
| | - Lu-Ying Shi
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou UniversityChina
| | - Jing-Ya Duan
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou UniversityChina
| | - Huan-Huan Liu
- Department of Obstetrics and Gynecology, Xinxiang Central HospitalChina
| | - Ting-Ting Wang
- Department of Gynecology, Kaifeng Obstetrics and Gynecology HospitalChina
| | - Can-Yu Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou UniversityChina
| |
Collapse
|
17
|
Shimizu H, Yamada K, Suzumura A, Kataoka K, Takayama K, Sugimoto M, Terasaki H, Kaneko H. Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 32926104 PMCID: PMC7490224 DOI: 10.1167/iovs.61.11.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether caveolin-1 (i) prevents epithelial–mesenchymal transition in the RPE and laser-induced subretinal fibrosis and (ii) promotes or inhibits cellular senescence in the RPE. Methods We examined laser-induced subretinal fibrosis and RPE cell contraction in wild-type and Caveolin-1 knockout (Cav-1−/−) mice treated with or without cavtratin, a cell-permeable peptide of caveolin-1. The senescence marker p16INK4a was measured in RPE tissues from patients with geographic atrophy and aged mice, laser-induced subretinal fibrosis, and primary human RPE cells. Human RPE was examined by TUNEL staining, reactive oxygen species generation, cell viability, and senescence-associated β-galactosidase staining. Results The volume of subretinal fibrosis was significantly smaller in cavtratin-injected eyes from wild-type mice than in control eyes from wild-type, P = 0.0062, and Cav-1−/− mice, P = 0.0095. Cavtratin treatment produced significant improvements in primary RPE cell contraction in wild-type, P = 0.04, and Cav-1−/− mice, P = 0.01. p16INK4a expression in the RPE was higher in patients with than without geographic atrophy. p16INK4a was expressed in 18-month-old but not 2-month-old wild-type mouse eyes. p16INK4a and collagen type I antibodies showed co-localization in subretinal fibrosis. Cavtratin did not affect RPE cell apoptosis or reactive oxygen species generation, but decreased cell viability and increased senescence-associated β-galactosidase–positive cells. Conclusions Enhanced expression of caveolin-1 successfully blocked epithelial–mesenchymal transition of RPE and the reduction of subretinal fibrosis in mice. Nevertheless, in exchange for blocking subretinal fibrosis, caveolin-1 promotes RPE cellular senescence and might affect the progression of geographic atrophy in AMD.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Riess C, Koczan D, Schneider B, Linke C, Del Moral K, Classen CF, Maletzki C. Cyclin-dependent kinase inhibitors exert distinct effects on patient-derived 2D and 3D glioblastoma cell culture models. Cell Death Discov 2021; 7:54. [PMID: 33723248 PMCID: PMC7961149 DOI: 10.1038/s41420-021-00423-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic approaches have met limited clinical success for glioblastoma multiforme (GBM). Since GBM harbors genomic alterations in cyclin-dependent kinases (CDKs), targeting these structures with specific inhibitors (CDKis) is promising. Here, we describe the antitumoral potential of selective CDKi on low-passage GBM 2D- and 3D models, cultured as neurospheres (NSCs) or glioma stem-like cells (GSCs). By applying selective CDK4/6i abemaciclib and palbociclib, and the more global CDK1/2/5/9-i dinaciclib, different effects were seen. Abemaciclib and dinaciclib significantly affected viability in 2D- and 3D models with clearly visible changes in morphology. Palbociclib had weaker and cell line-specific effects. Motility and invasion were highly affected. Abemaciclib and dinaciclib additionally induced senescence. Also, mitochondrial dysfunction and generation of mitochondrial reactive oxygen species (ROS) were seen. While autophagy was predominantly visible after abemaciclib treatment, dinaciclib evoked γ-H2AX-positive double-strand breaks that were boosted by radiation. Notably, dual administration of dinaciclib and abemaciclib yielded synergistic effects in most cases, but the simultaneous combination with standard chemotherapeutic agent temozolomide (TMZ) was antagonistic. RNA-based microarray analysis showed that gene expression was significantly altered by dinaciclib: genes involved in cell-cycle regulation (different CDKs and their cyclins, SMC3), mitosis (PLK1, TTK), transcription regulation (IRX3, MEN1), cell migration/division (BCAR1), and E3 ubiquitination ligases (RBBP6, FBXO32) were downregulated, whereas upregulation was seen in genes mediating chemotaxis (CXCL8, IL6, CCL2), and DNA-damage or stress (EGR1, ARC, GADD45A/B). In a long-term experiment, resistance development was seen in 1/5 cases treated with dinaciclib, but this could be prevented by abemaciclib. Vice versa, adding TMZ abrogated therapeutic effects of dinaciclib and growth was comparable to controls. With this comprehensive analysis, we confirm the therapeutic activity of selective CDKi in GBM. In addition to the careful selection of individual drugs, the timing of each combination partner needs to be considered to prevent resistance.
Collapse
Affiliation(s)
- Christin Riess
- University Children's Hospital, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany.,Department of Medicine Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock University Medical Centre, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Dirk Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Strempelstraße 14, 18055 Rostock, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Charlotte Linke
- University Children's Hospital, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany
| | - Katharina Del Moral
- University Children's Hospital, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany
| | - Carl Friedrich Classen
- University Children's Hospital, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock University Medical Centre, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
19
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
20
|
Hendrychová D, Jorda R, Kryštof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev 2020; 41:1578-1598. [PMID: 33300617 DOI: 10.1002/med.21769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological inhibition of cyclin-dependent kinase 4/6 (CDK4/6) has emerged as an efficient approach for treating breast cancer, and its clinical potential is expanding to other cancers. CDK4/6 inhibitors were originally believed to act by arresting proliferation in the G1 phase, but it is gradually becoming clear that the cellular response to these compounds is far more complex than this. Multiple context-dependent mechanisms of action are emerging, involving modulation of quiescence, senescence, autophagy, cellular metabolism, and enhanced tumor cell immunogenicity. These mechanisms may be driven by interactions with unexpected targets. We review cellular responses to the Food and Drug Administration-approved CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib, and summarize available knowledge of other drugs undergoing clinical trials, including data on their off-target landscapes. We emphasize the importance of comprehensively characterizing drugs' selectivity profiles to maximize their clinical efficacy and safety and to facilitate their repurposing to treat additional diseases based on their target spectrum.
Collapse
Affiliation(s)
- Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
21
|
Xue Z, Lui VWY, Li Y, Jia L, You C, Li X, Piao W, Yuan H, Khong PL, Lo KW, Cheung LWT, Lee VHF, Lee AWM, Tsao SW, Tsang CM. Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. J Exp Clin Cancer Res 2020; 39:262. [PMID: 33243298 PMCID: PMC7690146 DOI: 10.1186/s13046-020-01763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent genomic analyses revealed that druggable molecule targets were only detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6-cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. METHODS We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response-related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. RESULTS In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro. Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo, as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro. Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo. This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. CONCLUSIONS Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.
Collapse
Affiliation(s)
- Zhichao Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongshu Li
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chanping You
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenying Piao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui Yuan
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, Guangdong, PR China
| | - Pek Lan Khong
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lydia Wai Ting Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Victor Ho Fan Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
22
|
Digiacomo G, Fumarola C, La Monica S, Bonelli MA, Cretella D, Alfieri R, Cavazzoni A, Galetti M, Bertolini P, Missale G, Petronini PG. Simultaneous Combination of the CDK4/6 Inhibitor Palbociclib With Regorafenib Induces Enhanced Anti-tumor Effects in Hepatocarcinoma Cell Lines. Front Oncol 2020; 10:563249. [PMID: 33072590 PMCID: PMC7539564 DOI: 10.3389/fonc.2020.563249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
Advanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy. In Rb-proficient cells, the simultaneous drug combination, but not the sequential schedules, inhibited cell proliferation, either in short or in long-term experiments, and induced cell death more strongly than individual treatments. Moreover, the combination significantly reduced spheroid cell growth and inhibited cell migration/invasion. The superior efficacy of palbociclib plus regorafenib emerged also under hypoxia and was associated with a significant down-regulation of CDK4/6-Rb-myc and mTORC1/p70S6K signaling. Moreover, regorafenib suppressed palbociclib-induced expression of cyclin D1 contributing to the cytotoxic effects of the combination. Besides these inhibitory effects on cell viability/proliferation, palbociclib and regorafenib reduced glucose uptake, although this effect was dependent on the cell model and on the oxygen availability (normoxia or hypoxia). Palbociclib and regorafenib combination impaired glucose uptake and utilization, down-regulating basal and hypoxia-induced expression of HIF-1α, HIF-2α, GLUT-1, and MCT4 proteins as well as the activity/expression of glycolytic enzymes (HK2, PFKP, aldolase A, PKM2). In addition, regorafenib alone reduced mitochondrial respiration. The combined treatment impaired glucose metabolism and respiration without enhancing the effects of the single agents. Our findings provide pre-clinical evidence for the effectiveness of palbociclib and regorafenib combination in HCC cell models.
Collapse
Affiliation(s)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara A Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maricla Galetti
- Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro (INAIL) Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | | |
Collapse
|
23
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
24
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
26
|
Wen J, Zhao Z, Huang L, Wang L, Miao Y, Wu J. IL-8 promotes cell migration through regulating EMT by activating the Wnt/β-catenin pathway in ovarian cancer. J Cell Mol Med 2019; 24:1588-1598. [PMID: 31793192 PMCID: PMC6991660 DOI: 10.1111/jcmm.14848] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liwei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Loretan L, Moskovszky LE, Kurrer M, Exner GU, Trojan A. Efficacy of a CDK4/6 Inhibitor in a Patient with Breast Cancer and Liposarcoma: A Case Report and Review of the Literature. Breast Care (Basel) 2019; 14:325-328. [PMID: 31798393 PMCID: PMC6883449 DOI: 10.1159/000493370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cyclin D/cyclin-dependent kinase (CDK)4/6 inhibitor of the CDK4 (INK4)/retinoblastoma (Rb) pathway plays a crucial role in cell cycle progression. Selective CDK4/6 inhibitors specifically target a variety of tumors, with the main focus on hormone receptor(HR)-positive and human epidermal growth factor receptor 2(HER2)-negative breast cancer (BC). CASE REPORT We report on the efficacy of neoadjuvant palbociclib and letrozole application in a patient suffering from invasive estrogen receptor (ER)+/HER2- BC and concurrent well-differentiated and dedifferentiated liposarcoma (WD-DDLPS) of the thigh. Clinical and histological workup upon surgery revealed significant regressive changes in both the liposarcoma and the BC. The 24-month follow-up shows no signs of disease. CONCLUSION CDK4/6 inhibitors exhibit a high therapeutic potential, although reliable prognostic markers need to be identified.
Collapse
Affiliation(s)
| | | | - Michael Kurrer
- Gemeinschaftspraxis Pathologie Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
28
|
Schoos A, Knab VM, Gabriel C, Tripolt S, Wagner DA, Bauder B, Url A, Fux DA. In vitro study to assess the efficacy of CDK4/6 inhibitor Palbociclib (PD-0332991) for treating canine mammary tumours. Vet Comp Oncol 2019; 17:507-521. [PMID: 31207004 DOI: 10.1111/vco.12514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
Abstract
Therapy of canine mammary tumours (CMTs) with classical antitumour drugs is problematic, so better therapeutic options are needed. Palbociclib (PD-0332991) is an innovative and effective anticancer drug for the treatment of breast cancer in women. Palbociclib is an inhibitor of cyclin-dependent kinase 4 (CDK4) and CDK6, which are key regulators of the cell cycle machinery and thus cell proliferation. In the present in vitro study, we investigated whether Palbociclib also represents a candidate drug to combat CMT. For this purpose, the effect of Palbociclib was analysed in P114 and CF41 cells, two CMT cell lines with an endogenous CDK4/6 co-expression. Incubation of P114 and CF41 cells with Palbociclib resulted in a dose- and time-dependent loss of phosphorylated retinoblastoma protein (pRb), a classical CDK4/6 substrate within the cell cycle machinery. Moreover, treatment of CMT cells with Palbociclib-induced cell cycle arrest affected cell viability, prevented colony formation and impaired cell migration activity. Palbociclib also inhibited the growth of P114 and CF41 cell spheroids. Immunohistochemical analysis of canine patient samples revealed a consistent expression of CDK6 in different canine mammary carcinoma types, but an individual and tumour-specific expression pattern of phosphorylated pRb independent of the tumour grade. Together, our findings let us suggest that Palbociclib has antitumour effects on CMT cells and that canine patients may represent potential candidates for treatment with this CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Alexandra Schoos
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Vanessa M Knab
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Cordula Gabriel
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sabrina Tripolt
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Daniela A Wagner
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Angelika Url
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Daniela A Fux
- Institute of Pharmacology and Toxicology, Unit of Clinical Pharmacology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
29
|
A polysaccharide from Hedyotis diffusa interrupts metastatic potential of lung adenocarcinoma A549 cells by inhibiting EMT via EGFR/Akt/ERK signaling pathways. Int J Biol Macromol 2019; 129:706-714. [DOI: 10.1016/j.ijbiomac.2019.02.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
|
30
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
31
|
Matsumura T, Saito Y, Suzuki T, Teramoto A, Ozasa Y, Yamashita T, Fujimiya M, Saito-Chikenji T. Phosphorylated Platelet-Derived Growth Factor Receptor-Positive Cells With Anti-apoptotic Properties Accumulate in the Synovium of Patients With Rheumatoid Arthritis. Front Immunol 2019; 10:241. [PMID: 30828336 PMCID: PMC6384265 DOI: 10.3389/fimmu.2019.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease caused by inflammation of the synovium and characterized by chronic polyarthritis that destroys bone and cartilage. Fibroblast-like synoviocytes (FLSs) in the synovium of patients with RA can promote cartilage and bone destruction by producing proteins such as matrix metalloproteinases and receptor activator of NF-κB ligand, thereby representing an important therapeutic target for RA. FLSs have several phenotypes depending on which cell surface proteins and adhesion factors are expressed. Identifying the cellular functions associated with different phenotypes and methods of controlling them are considered essential for developing therapeutic strategies for RA. In this study, synovial tissue was collected from patients with RA and control subjects who required surgery due to ligament injury or fracture. Immunohistological analysis was used to investigate the rates of positivity for phosphorylated platelet-derived growth factor receptor-αβ (pPDGFRαβ) and cadherin-11 (CDH11) expression, and apoptosis-related markers were assessed for each cell phenotype. Next, FLSs were isolated in vitro and stimulated with tumor necrosis factor-α (TNF-α) in addition to a combination of PDGF and transforming growth factor (2GF) to investigate pPDGFRαβ and CDH11 expression and the effects of the inhibition of TNF and cyclin-dependent kinase (CDK) 4/6 on FLSs. Immunohistological analysis showed a large percentage of pPDGFRαβ+CDH11– cells in the sub-lining layer (SL) of patients with RA. These cells exhibited increased B-cell lymphoma-2 expression, reduced TNF receptor-1 expression, resistance to cell death, and abnormal proliferation, suggesting a tendency to accumulate in the synovium. Further, in vitro 2GF stimulation of FLSs lowered, whereas 2GF + TNF stimulation increased the pPDGFRαβ/CDH11 ratio. Hypothesizing that FLSs stimulated with 2GF + TNF would accumulate in vivo in RA, we determined the therapeutic effects of TNF and CDK4/6 inhibitors. The TNF inhibitor lowered the pPDGFRαβ/CDH11 ratio, whereas the CDK4/6 inhibitor suppressed cell proliferation. However, a synergistic effect was not observed by combining both the drugs. We observed an increase in pPDGFRαβ+CDH11– cells in the SL of the RA synovium and accumulation of these cells in the synovium. We found that the TNF inhibitor suppressed FLS activity and the CDK4/6 inhibitor reduced cell proliferation.
Collapse
Affiliation(s)
- Takashi Matsumura
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Suzuki
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhiro Ozasa
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako Saito-Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Maust JD, Frankowski-McGregor CL, Bankhead A, Simeone DM, Sebolt-Leopold JS. Cyclooxygenase-2 Influences Response to Cotargeting of MEK and CDK4/6 in a Subpopulation of Pancreatic Cancers. Mol Cancer Ther 2018; 17:2495-2506. [PMID: 30254182 PMCID: PMC6279520 DOI: 10.1158/1535-7163.mct-18-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
The ineffectiveness of chemotherapy in patients with pancreatic cancer highlights a critical unmet need in pancreatic cancer therapy. Two commonly mutated genes in pancreatic cancer, KRAS and CDKN2A, have an incidence exceeding 90%, supporting investigation of dual targeting of MEK and CDK4/6 as a potential therapeutic strategy for this patient population. An in vitro proliferation synergy screen was conducted to evaluate response of a panel of high passage and patient-derived pancreatic cancer models to the combination of trametinib and palbociclib to inhibit MEK and CDK4/6, respectively. Two adenosquamous carcinoma models, L3.6pl and UM59, stood out for their high synergy response. In vivo studies confirmed that this combination treatment approach was highly effective in subcutaneously implanted L3.6pl and UM59 tumor-bearing animals. Both models were refractory to single-agent treatment. Reverse-phase protein array analysis of L3.6pl tumors excised from treated animals revealed strong downregulation of COX-2 expression in response to combination treatment. Expression of COX-2 under a CMV-driven promoter and shRNA knockdown of COX-2 both led to resistance to combination treatment. Our findings suggest that COX-2 may be involved in the improved therapeutic outcome seen in some pancreatic tumors that fail to respond to MEK or CDK4/6 inhibitors alone but respond favorably to their combination.
Collapse
Affiliation(s)
- Joel D Maust
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Diane M Simeone
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Judith S Sebolt-Leopold
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan.
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
33
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
34
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [PMID: 30094570 DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Therapeutic resistance has been and remains to be the major challenge in developing successful treatments for different cancers and therefore, understanding the underlying mechanisms in the development of therapeutic resistance is crucial in combating cancers. Multiple mechanisms underlie the development of therapeutic resistance, and the signaling pathways involved in cancer stem cell repopulation, enhanced epithelial-mesenchymal transition (EMT), inflammatory infiltration, and immunosuppression play pivotal roles in this process. Accumulating evidence indicates that the COX2/PGE2/EP axis plays crucial roles not only in tumor development including initiation and progression but also in the development of therapeutic resistance. In this review, we will first dissect the relationship between the COX2/PGE2/EP axis and therapeutic resistance by focusing on the roles of the COX2/PGE2/EP axis in cancer stem cell repopulation, EMT, and anti-cancer immunity. Then, we will summarize the currently available compounds/drugs targeting each component of this axis as well as some of the underlying mechanisms. We hope that better understanding the underlying mechanisms of the functional compounds will be helpful in seeking additive and/or synergistic effects against therapeutic resistance without or with minimal adverse consequence.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin-Ang Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiubo Xie
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jian Pang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yiqiang Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Luofu Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10#, Changjiang Zhilu, Yuzhong District, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
35
|
Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Hung MH, Kuo CW, Shih CT, Chao TI, Chen KF. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 2018; 102:10-22. [PMID: 30103095 DOI: 10.1016/j.ejca.2018.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
AIM Palbociclib is an oral cyclin-dependent kinase 4/6 inhibitor, which is efficacious in treating breast cancer. Currently, there are numerous active clinical trials testing palbociclib alone or in combination with other medications for treating various types of malignancies. Here, we evaluated the anti-cancer effect of palbociclib in combination with radiation therapy (RT) for treating human hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) and addressed the molecular mechanism behind the combination therapy. METHODS Immunofluorescence staining of γH2AX or 53BP1 was used to determine the effect of palbociclib on double-strand break (DSB) repair. Clonogenic assays, sphere formation and cell death ELISA were performed to study the sensitising effect of palbociclib on radiation-induced cytotoxicity. Signal alteration in DSB repair pathways was examined by Western blot analysis. Finally, we evaluated the in vivo anti-cancer activity and the associated molecular events of the combination therapy in a preclinical HCC xenograft model. RESULTS Palbociclib affected the kinetics of DNA repair and enhanced the radiation sensitivity of HCC and CCA cells. Importantly, we found that palbociclib inhibits ataxia telangiectasia-mutated (ATM) kinase, the key upstream kinase responding to RT-induced DSBs. Furthermore, we showed that the inhibitory effect of palbociclib on RT-induced ATM kinase activation is mediated by protein phosphatase 5 (PP5). Both in vitro and in vivo investigations revealed that the inhibition of the PP5-ATM axis by palbociclib after DNA damage is responsible for the synergism between palbociclib and RT. CONCLUSION Our findings provide a novel combination strategy against liver cancer cells. Clinical trials using palbociclib as an adjuvant in RT are warranted.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Shin Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Chi-Ting Shih
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Ni W, Chen W, Lu Y. Emerging findings into molecular mechanism of brain metastasis. Cancer Med 2018; 7:3820-3833. [PMID: 29992751 PMCID: PMC6089171 DOI: 10.1002/cam4.1667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022] Open
Abstract
Brain metastasis is an important cause of morbidity and mortality in cancer patients. Hence, the need to develop improved therapies to prevent and treat metastasis to the brain is becoming urgent. Recent studies in this area are bringing about some advanced progress on brain metastasis. It was concluded that the occurrence and poor prognosis of brain metastasis have been mostly attributed to the exclusion of anticancer drugs from the brain by the blood-brain barrier. And several highly potent new generation targeted drugs with enhanced CNS distribution have been developed constantly. However, the noted "seed and soil" hypothesis also suggests that the outcome of metastasis depends on the relationship between unique tumor cells and the specific organ microenvironment. Moreover, increasing studies in multiple tumor types demonstrated that brain metastasis has great molecular differences between primary tumors and extracranial metastasis to a large extent. Here, the authors summarized the most common malignancies that could lead to brain metastasis-lung cancer, breast cancer and melanoma and their related mutated factors. Only by comprehending a deeper understanding of the molecular mechanisms, more effective brain-specific therapies will be developed for brain metastasis.
Collapse
Affiliation(s)
- Wenting Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese MedicineNanjingChina
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese MedicineNanjingChina
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjingChina
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese MedicineNanjingChina
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjingChina
| |
Collapse
|
37
|
Lin G, Yu B, Liang Z, Li L, Qu S, Chen K, Zhou L, Lu Q, Sun Y, Zhu X. Silencing of c-jun decreases cell migration, invasion, and EMT in radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Onco Targets Ther 2018; 11:3805-3815. [PMID: 30013361 PMCID: PMC6038861 DOI: 10.2147/ott.s162700] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previously, we found that c-jun was highly expressed in radiation-resistant human nasopharyngeal carcinoma cells (CNE-2R) compared with human nasopharyngeal carcinoma cells (CNE-2). MATERIALS AND METHODS In this study, we first used the scratch assays and transwell assays to detect the migration and invasion of CNE-2R and CNE-2 cells and tested the epithelial mesenchymal transformation (EMT)-related proteins E-cadherin and N-cadherin by Western blot analysis. Subsequently, c-jun was knocked down to establish the effect of c-jun on EMT, migration, and invasion of CNE-2R cells both in vitro and in vivo. RESULTS A high EMT level, CNE-2R cells were more capable of migration and invasion than CNE-2 cells. Moreover, silencing of c-jun has upregulated the expression of E-cadherin and downregulated N-cadherin in CNE-2R cells, and subsequently the migration and invasion capacity of the cells was decreased. Consistent with in vitro results, in vivo studies indicated that the c-jun silencing reduced pulmonary migration of CNE-2R cells. Immunohistochemistry of lung metastatic tumor tissue showed that E-cadherin was upregulated, and N-cadherin was downregulated. CONCLUSION These findings suggest that silencing of c-jun in CNE-2R cells reduces cells migration, invasion, and EMT both in vitro and in vivo.
Collapse
Affiliation(s)
- Guoxiang Lin
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Binbin Yu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Zhongguo Liang
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Ling Li
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, People's Republic of China,
| | - Song Qu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, People's Republic of China,
| | - Kaihua Chen
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Lei Zhou
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Qiteng Lu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yongchu Sun
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Xiaodong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China,
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, People's Republic of China,
- Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| |
Collapse
|
38
|
Li X, Li L, Liang F, Liu G, Zhao G. Anesthetic drug propofol inhibits the expression of interleukin-6, interleukin-8 and cyclooxygenase-2, a potential mechanism for propofol in suppressing tumor development and metastasis. Oncol Lett 2018; 15:9523-9528. [PMID: 29805673 DOI: 10.3892/ol.2018.8515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that anesthesia-associated drugs may directly inhibit cellular immunity and humoral immunity, which may be associated with tumor recurrence. The present study demonstrated that propofol may suppress the proliferation of MCF-7 cells and inhibit the expression of interleukin (IL)-6 and IL-8. Subsequent to treatment with propofol, MCF-7 cells demonstrated downregulated cyclooxygenase-2 (COX-2) protein expression and decreased levels of vascular endothelial growth factor and prostaglandin E2 in the supernatant. Therefore, the mechanism of propofol in suppressing tumor development and metastasis may be associated with the inhibition of IL-6, IL-8 and COX-2.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
39
|
de Dueñas EM, Gavila-Gregori J, Olmos-Antón S, Santaballa-Bertrán A, Lluch-Hernández A, Espinal-Domínguez EJ, Rivero-Silva M, Llombart-Cussac A. Preclinical and clinical development of palbociclib and future perspectives. Clin Transl Oncol 2018; 20:1136-1144. [DOI: 10.1007/s12094-018-1850-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
|
40
|
Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in Cancer Therapy: Current Evidence and Future Directions. Target Oncol 2017; 13:21-38. [DOI: 10.1007/s11523-017-0541-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Zingales V, Distefano A, Raffaele M, Zanghi A, Barbagallo I, Vanella L. Metformin: A Bridge between Diabetes and Prostate Cancer. Front Oncol 2017; 7:243. [PMID: 29075616 PMCID: PMC5641539 DOI: 10.3389/fonc.2017.00243] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) has become the most frequent type of cancer in men. Recent data suggest that diabetic patients taking metformin have a lower incidence of certain cancer, including PCa. Metformin is the most common drug used in type II diabetes mellitus; its use has been shown to lower the incidence of several cancers, although there are ambiguous data about the anticancer activity of metformin. A large number of studies examined the potential antineoplastic mechanism of metformin although it is not still completely understood. This review summarizes the literature concerning the effects of metformin on PCa cells, highlighting its numerous mechanisms of action through which it can act. We analyze the possible causes of the discordances regarding the impact of metformin on risk of PCa; we discuss the latest findings in this field, suggesting that metformin may have a future role in the management of PCa both as monotherapy and in combination with other drugs.
Collapse
Affiliation(s)
- Veronica Zingales
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Antonio Zanghi
- Department of Surgery, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Shi Q, Jiang Z, Yang J, Cheng Y, Pang Y, Zheng N, Chen J, Chen W, Jia L. A Flavonoid Glycoside Compound from Murraya paniculata (L.) Interrupts Metastatic Characteristics of A549 Cells by Regulating STAT3/NF-κB/COX-2 and EGFR Signaling Pathways. AAPS JOURNAL 2017; 19:1779-1790. [PMID: 28842850 DOI: 10.1208/s12248-017-0134-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
Metastasis remains the leading cause of death from lung carcinoma. It is urgent to find safe and efficient pre-metastasis preventive agents for cancer survivors. We isolated a flavonoid glycoside, hexamethoxy flavanone-o-[rhamnopyranosyl-(1 → 4)-rhamnopyranoside (HMFRR), from the traditional Chinese medicine (TCM) Murraya paniculata (L.) that can effectively inhibit the adhesion, migration, and invasion of lung adenocarcinoma A549 cells in vitro. Molecular and cellular studies demonstrated that HMFRR significantly downregulated the expressions of cell adhesion-related and invasion-related molecules such as integrin β1, EGFR, COX-2, MMP-2, and MMP-9 proteins. Additionally, HMFRR effectively downregulated the expressions of epithelial-mesenchymal transition (EMT) markers (N-cadherin and vimentin) and upregulated that of E-cadherin. Moreover, these inhibitions were mediated by interrupting STAT3/NF-κB/COX-2 and EGFR/PI3K/AKT signaling pathways. Furthermore, HMFRR counteracted the expressions of cell adhesion molecules (ICAM-1, VCAM-1, and E-selectin) stimulated by interleukin-1β in human pulmonary microvascular endothelial cells (HPMECs). As a result, HMFRR interrupted the adhesion of A549 cells to HPMECs. Collectively, these results indicate that HMFRR may become a good candidate for cancer metastatic chemopreventive agents by interrupting the STAT3/NF-κB/COX-2 and EGFR signaling pathways.
Collapse
Affiliation(s)
- Qing Shi
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Zhou Jiang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jingyi Yang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yunlong Cheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Yaqiong Pang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Jiahang Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Wenge Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China. .,Cancer Metastasis Alert and Prevention Center, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
43
|
Che D, Zhang S, Jing Z, Shang L, Jin S, Liu F, Shen J, Li Y, Hu J, Meng Q, Yu Y. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE 2/β-catenin signalling pathway. Mol Immunol 2017; 90:197-210. [PMID: 28837884 DOI: 10.1016/j.molimm.2017.06.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/27/2017] [Accepted: 06/03/2017] [Indexed: 01/21/2023]
Abstract
Infiltration of macrophages plays a critical role in the connection between inflammation and cancer invasion; however, the molecular mechanism that enables this crosstalk remains unclear. This paper investigates a molecular link between infiltration of macrophages and metastasis of lung cancer cells. In this study, the macrophage density and cyclooxygenase-2 (COX-2) protein were examined in surgical specimens by immunohistochemistry (IHC), and the prostaglandin E2 (PGE2) levels were determined in the blood of 30 non-small cell lung cancer (NSCLC) patients using enzyme-linked immunosorbent assay (ELISA). We demonstrated that macrophage infiltration was significantly associated with elevated tumour COX-2 expression and serum PGE2 levels in NSCLC patients. Interestingly, the COX-2 and PGE2 levels as well as macrophages were poor predictors of NSCLC patient survival. THP-1-derived macrophages were co-cultured in vitro with A549 and H1299 lung cancer cells. In the co-culture process, interleukin-6 (IL-6) induced the COX-2/PGE2 pathway in lung cancer cells, which subsequently promoted β-catenin translocation from the cytoplasm to the nucleus, resulting in epithelial-mesenchymal transition (EMT) and lung cancer cell invasion. Our findings show that the IL-6-dependent COX-2/PGE2 pathway induces EMT to promote invasion of tumour cells through β-catenin activation during the interaction between macrophages and lung cancer cells, which suggests that inhibition of COX-2/PGE2 or macrophages has the potential to suppress metastasis of lung cancer cells.
Collapse
Affiliation(s)
- Dehai Che
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Zihan Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Lihua Shang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Shi Jin
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Jing Shen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Yue Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Jing Hu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China.
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province 150081, PR China.
| |
Collapse
|
44
|
Anbalagan M, Sheng M, Fleischer B, Zhang Y, Gao Y, Hoang V, Matossian M, Burks HE, Burow ME, Collins-Burow BM, Hangauer D, Rowan BG. Dual Src Kinase/Pretubulin Inhibitor KX-01, Sensitizes ERα-negative Breast Cancers to Tamoxifen through ERα Reexpression. Mol Cancer Res 2017; 15:1491-1502. [PMID: 28751463 DOI: 10.1158/1541-7786.mcr-16-0297-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/22/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Unlike breast cancer that is positive for estrogen receptor-α (ERα), there are no targeted therapies for triple-negative breast cancer (TNBC). ERα is silenced in TNBC through epigenetic changes including DNA methylation and histone acetylation. Restoring ERα expression in TNBC may sensitize patients to endocrine therapy. Expression of c-Src and ERα are inversely correlated in breast cancer suggesting that c-Src inhibition may lead to reexpression of ERα in TNBC. KX-01 is a peptide substrate-targeted Src/pretubulin inhibitor in clinical trials for solid tumors. KX-01 (1 mg/kg body weight-twice daily) inhibited growth of tamoxifen-resistant MDA-MB-231 and MDA-MB-157 TNBC xenografts in nude mice that was correlated with Src kinase inhibition. KX-01 also increased ERα mRNA and protein, as well as increased the ERα targets progesterone receptor (PR), pS2 (TFF1), cyclin D1 (CCND1), and c-myc (MYC) in MDA-MB-231 and MDA-MB-468, but not MDA-MB-157 xenografts. MDA-MB-231 and MDA-MB-468 tumors exhibited reduction in mesenchymal markers (vimentin, β-catenin) and increase in epithelial marker (E-cadherin) suggesting mesenchymal-to-epithelial transition (MET). KX-01 sensitized MDA-MB-231 and MDA-MB-468 tumors to tamoxifen growth inhibition and tamoxifen repression of the ERα targets pS2, cyclin D1, and c-myc. Chromatin immunoprecipitation (ChIP) of the ERα promoter in KX-01-treated tumors demonstrated enrichment of active transcription marks (acetyl-H3, acetyl-H3Lys9), dissociation of HDAC1, and recruitment of RNA polymerase II. Methylation-specific PCR and bisulfite sequencing demonstrated no alteration in ERα promoter methylation by KX-01. These data demonstrate that in addition to Src kinase inhibition, peptidomimetic KX-01 restores ERα expression in TNBC through changes in histone acetylation that sensitize tumors to tamoxifen.Implications: Src kinase/pretubulin inhibitor KX-01 restores functional ERα expression in ERα- breast tumors, a novel treatment strategy to treat triple-negative breast cancer. Mol Cancer Res; 15(11); 1491-502. ©2017 AACR.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mei Sheng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Brian Fleischer
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yifang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Obstetrics and Gynecology, Affiliated Hospital of Taishan Medical University, Taishan, Shandong, China
| | - Yuanjun Gao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Van Hoang
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Margarite Matossian
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David Hangauer
- Athenex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Brian G Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
45
|
CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget 2017; 8:55319-55331. [PMID: 28903422 PMCID: PMC5589661 DOI: 10.18632/oncotarget.19429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor. Gene expression profiling has classified GBM into distinct subtypes, including proneural, mesenchymal, and classical, and identifying therapeutic vulnerabilities of these subtypes is an extremely high priority. We leveraged The Cancer Genome Atlas (TCGA) data, in particular for microRNA expression, to seek druggable core pathways in GBM. The E2F1-regulated miR-17˜92 cluster and its analogs are shown to be highly expressed in proneural GBM and in GSC lines, suggesting the E2F cell cycle pathway might be a key driver in proneural GBM. Consistently, CDK4/6 inhibition with palbociclib preferentially inhibited cell proliferation in vitro in a majority of proneural GSCs versus those of other subtypes. Palbociclib treatment significantly prolonged survival of mice with established intracranial xenografts of a proneural GSC line. We show that most of these sensitive PN GSCs expressed higher levels of CDK6 and had intact Rb1, while two GSC lines with CDK4 overexpression and null Rb1 were highly resistant to palbociclib. Importantly, palbociclib treatment of proneural GSCs upregulated mesenchymal-associated markers and downregulated proneural-associated markers, suggesting that CDK4/6 inhibition induced proneural-mesenchymal transition and underscoring the enhanced role of the E2F cell cycle pathway in the proneural subtype. Lastly, the combination of palbociclib and N,N-diethylaminobenzaldehyde, an inhibitor of the mesenchymal driver ALDH1A3, showed strong synergistic inhibitory effects against proneural GSC proliferation. Taken together, our results reveal that proneural GBM has increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dynamic reprogramming upon palbociclib treatment-suggesting the need for a combination therapeutic strategy.
Collapse
|
46
|
Stelitano D, Peche LY, Dalla E, Monte M, Piazza S, Schneider C. GTSE1: a novel TEAD4-E2F1 target gene involved in cell protrusions formation in triple-negative breast cancer cell models. Oncotarget 2017; 8:67422-67438. [PMID: 28978043 PMCID: PMC5620183 DOI: 10.18632/oncotarget.18691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
GTSE1 over-expression has been reported as a potential marker for metastasis in various types of malignancies, including breast cancer. Despite this, the transcriptional regulation of this protein and the causes of its misregulation in tumors remain largely unknown. The aims of this work were to elucidate how GTSE1 is regulated at the transcriptional level and to clarify the mechanism underlying GTSE1-dependent cell functions in triple-negative breast cancer (TNBC). Here, we identified GTSE1 as a novel target gene of the TEAD4 transcription factor, highlighting a role for the YAP and TAZ coactivators in the transcriptional regulation of GTSE1. Moreover, we found that TEAD4 controls the formation of cell protrusions required for cell migration through GTSE1, unveiling a relevant effector role for this protein in the TEAD-dependent cellular functions and confirming TEAD4 role in promoting invasion and metastasis in breast cancer. Finally, we highlighted a role for the pRb-E2F1 pathway in the control of GTSE1 transcription and observed that treatment with drugs targeting the pRb-E2F1 or YAP/TAZ-TEAD pathways dramatically downregulated the expression levels of GTSE1 and of other genes involved in the formation of metastasis, suggesting their potential use in the treatment of TNBC.
Collapse
Affiliation(s)
- Debora Stelitano
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (L.N.CIB), Trieste, Italy
| | - Leticia Yamila Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (L.N.CIB), Trieste, Italy
| | - Emiliano Dalla
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (L.N.CIB), Trieste, Italy
| | - Martin Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvano Piazza
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (L.N.CIB), Trieste, Italy.,Bioinformatics Core facility, Centre for Integrative Biology, University of Trento (CIBIO), Trento, Italy
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (L.N.CIB), Trieste, Italy.,Dipartimento di Scienze Biomediche e Biologiche (DSMB), Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
47
|
Chen L, Pan J. Dual cyclin-dependent kinase 4/6 inhibition by PD-0332991 induces apoptosis and senescence in oesophageal squamous cell carcinoma cells. Br J Pharmacol 2017; 174:2427-2443. [PMID: 28444744 DOI: 10.1111/bph.13836] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Aberrant activation of the cyclin D1-cyclin-dependent kinase 4/6 (CDK4/6)-Rb signalling pathway is common in oesophageal squamous cell carcinoma (ESCC). PD-0332991, a highly specific inhibitor of CDK4/6, has potent antitumour activity against many types of cancer. The purpose of this study was to examine the in vitro and in vivo antineoplastic effect of PD-0332991 against the growth and metastasis of ESCC cells. EXPERIMENTAL APPROACH Cell viability and any synergy between PD-0332991 and 5-fluorouracil or cisplatin were measured by MTS assay and CalcuSyn software respectively. Cell migration and invasion were detected by wound healing and transwell assays. Apoptosis was evaluated by flow cytometry after staining annexin V-FITC/PI. Cellular senescence was assessed by measuring SA-β-gal activity. Nude mouse xenograft models of ESCC were employed to determine the in vivo activity of PD-0332991 against tumour growth and lung metastasis. KEY RESULTS PD-0332991 inhibited cellular growth and induced mitochondrial-dependent apoptosis in ESCC cells. PD-0332991 also suppressed migration, invasion and the expression of MMP-2 in ESCC cells. Furthermore, PD-0332991 treatment caused cell senescence in a FOXM1-dependent manner. In addition, there was synergy between PD-0332991 and cisplatin or 5-fluorouracil. Importantly, the xenografted tumour experiments demonstrated that PD-0332991 potently inhibits ESCC cell growth and lung metastasis. CONCLUSIONS AND IMPLICATIONS PD-0332991 can elicit a strong antitumour activity against ESCC growth and metastasis and may be a promising candidate drug for the treatment of patients with ESCC. Our results warrant a clinical trial to further evaluate the efficacy of PD-0332991 in ESCC patients, even those with metastasis.
Collapse
Affiliation(s)
- Liang Chen
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Szynglarewicz B, Kasprzak P, Donizy P, Biecek P, Halon A, Matkowski R. Epithelial-mesenchymal transition inducer Snail1 and invasive potential of intraductal breast cancer. J Surg Oncol 2017; 116:696-705. [PMID: 28570750 DOI: 10.1002/jso.24708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Transcription factor Snail1 is a key inducer of epithelial-mesenchymal transition (EMT), a biological process implicated in the cancer progression and metastasis. The aim of the study was to investigate Snail1 expression in DCIS found on breast biopsy and assess its predictive value for the final invasion. METHODS A total of 209 patients with histologically diagnosed pure DCIS entered the study. Snail1 reactivity was evaluated with immunohistochemistry in tumor tissue from stereotactic vacuum-assisted biopsy of suspicious microcalcifications. RESULTS Snail1 staining was observed in 62% of tumors: weak, intermediate, and strong in 27%, 21%, and 14% of lesions, respectively. Positive Snail1 expression was significantly rarer in DCIS presenting as powdery microcalcifications, when compared with crushed stone-like and casting-type and was more common in DCIS with comedonecrosis. Correlation with other features was not significant. None of standard parameters significantly influenced the upgrading rate. In contrast, in uni- and multivariate analysis the risk of postoperative invasion was significantly associated with positive Snail1 immunoreactivity. Moreover, there was a significant stepwise increase of upgrading rate according to Snail1 expression in DCIS cells: weak 9%, intermediate 26%, and strong 55%, respectively. CONCLUSIONS Snail1 can reflect the invasive potential of DCIS and help identify its more aggressive subtypes.
Collapse
Affiliation(s)
- Bartlomiej Szynglarewicz
- Breast Unit, Department of Surgical Oncology, Lower Silesia Oncology Center, Wroclaw, Poland.,Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Kasprzak
- Department of Breast Imaging, Lower Silesia Oncology Center, Wroclaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafal Matkowski
- Breast Unit, Department of Surgical Oncology, Lower Silesia Oncology Center, Wroclaw, Poland.,Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
49
|
Hsieh FS, Chen YL, Hung MH, Chu PY, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Chang MJ, Chao TI, Shiau CW, Chen KF. Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner. Mol Oncol 2017; 11:1035-1049. [PMID: 28453226 PMCID: PMC5537702 DOI: 10.1002/1878-0261.12072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Palbociclib, a CDK4/6 inhibitor, has recently been approved for hormone receptor‐positive breast cancer patients. The effects of palbociclib as a treatment for other malignancies, including hepatocellular carcinoma (HCC), are of great clinical interest and are under active investigation. Here, we report the effects and a novel mechanism of action of palbociclib in HCC. We found that palbociclib induced both autophagy and apoptosis in HCC cells through a mechanism involving 5′ AMP‐activated protein kinase (AMPK) activation and protein phosphatase 5 (PP5) inhibition. Blockade of AMPK signals or ectopic expression of PP5 counteracted the effect of palbociclib, confirming the involvement of the PP5/AMPK axis in palbociclib‐mediated HCC cell death. However, CDK4/6 inhibition by lentivirus‐mediated shRNA expression did not reproduce the effect of palbociclib‐treated cells, suggesting that the anti‐HCC effect of palbociclib is independent of CDK4/6. Moreover, two other CDK4/6 inhibitors (ribociclib and abemaciclib) had minimal effects on HCC cell viability and the PP5/AMPK axis. Palbociclib also demonstrated significant tumor‐suppressive activity in a HCC xenograft model, which was associated with upregulation of pAMPK and PP5 inhibition. Finally, we analyzed 153 HCC clinical samples and found that PP5 expression was highly tumor specific and was associated with poor clinical features. Taken together, we conclude that palbociclib exerted antitumor activity against HCC through the PP5/AMPK axis independent of CDK4/6. Our findings provide a novel mechanistic basis for palbociclib and reveal the therapeutic potential of targeting PP5/AMPK signaling with a PP5 inhibitor for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Taiwan.,School of Medicine, Kaohsiung Medical University, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Jen Hsiao
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Ting Shih
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Mao-Ju Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-I Chao
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Zhang J, Zhou L, Zhao S, Dicker DT, El-Deiry WS. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle 2017; 16:1193-1200. [PMID: 28486050 DOI: 10.1080/15384101.2017.1320005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an inherent impediment to cancer therapy. Palbociclib, a highly selective inhibitor for CDK4/6, has been tested in numerous clinical trials and has been approved by the FDA. We previously reported that CDK inhibitors can destabilize HIF1α regardless of the presence of hypoxia and can sensitize tumor cells to TRAIL through dual blockade of CDK1 and GSK-3β. To translate this knowledge into a cancer therapeutic strategy, we investigated the therapeutic effects and molecular mechanisms of CDK inhibition against colon cancer cells under normoxia and hypoxia. We found that palbociclib sensitizes colon cancer cells to hypoxia-induced apoptotic resistance via deregulation of HIF-1α accumulation. In addition to inhibition of cell proliferation, we observed that palbociclib promotes colon cancer cell death regardless of the presence of hypoxia at a comparatively high concentration via regulating ERK/GSK-3β signaling and GSK-3β expression. Furthermore, palbociclib synergized with irinotecan in a variety of colon cancer cell lines with various molecular subtypes via deregulating irinotecan-induced Rb phosphorylation and reducing HIF-1α accumulation under normoxia or hypoxia. Collectively, our findings provide a novel combination therapy strategy against hypoxic colon cancer cells that may be further translated in the clinic.
Collapse
Affiliation(s)
- Jun Zhang
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Lanlan Zhou
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Shuai Zhao
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - David T Dicker
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Wafik S El-Deiry
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|