1
|
Kuroda Y, Oda T, Shimomura O, Louphrasitthiphol P, Mathis BJ, Tateno H, Hatano K. Novel positron emission tomography imaging targeting cell surface glycans for pancreatic cancer: 18 F-labeled rBC2LCN lectin. Cancer Sci 2023; 114:3364-3373. [PMID: 37203465 PMCID: PMC10394132 DOI: 10.1111/cas.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Advancement in early detection modalities will greatly improve the overall prognoses of pancreatic ductal adenocarcinoma (PDAC). For this purpose, we report a novel class of tumor-specific probes for positron emission tomography (PET) based on targeting cell surface glycans. The PDAC-targeting ability of rBC2LCN lectin, combined with fluorine-18 (18 F) ([18 F]FB-rBC2LCN), resulted in reproducible, high-contrast PET imaging of tumors in a PDAC xenograft mouse model. [18 F]N-succinimidyl-4-fluorobenzoate ([18 F]SFB) was conjugated to rBC2LCN, and [18 F]FB-rBC2LCN was successfully prepared with a radiochemical purity >95%. Cell binding and uptake revealed that [18 F]FB-rBC2LCN binds to H-type-3-positive Capan-1 pancreatic cancer cells. As early as 60 min after [18 F]FB-rBC2LCN (0.34 ± 0.15 MBq) injection into the tail vein of nude mice subcutaneously bearing Capan-1 tumors, tumor uptake was high (6.6 ± 1.8 %ID/g), and the uptake increased over time (8.8 ± 1.9 %ID/g and 11 ± 3.2 %ID/g at 150 and 240 min after injection, respectively). Tumor-to-muscle ratios increased over time, up to 19 ± 1.8 at 360 min. High-contrast PET imaging of tumors relative to background muscle was also achieved as early as 60 min after injection of [18 F]FB-rBC2LCN (0.66 ± 0.12 MBq) and continued to increase up to 240 min. Our 18 F-labeled rBC2LCN lectin warrants further clinical development to improve the accuracy and sensitivity of early-stage pancreatic cancer detection.
Collapse
Affiliation(s)
- Yukihito Kuroda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Bryan J. Mathis
- International Medical CenterUniversity of Tsukuba HospitalTsukubaJapan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Kentaro Hatano
- Department of Applied Molecular Imaging, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
2
|
Pu Y, Wang C, Zhao S, Xie R, Zhao L, Li K, Yang C, Zhang R, Tian Y, Tan L, Li J, Li S, Chen L, Sun H. The clinical application of 18F-FDG PET/CT in pancreatic cancer: a narrative review. Transl Cancer Res 2021; 10:3560-3575. [PMID: 35116659 PMCID: PMC8799156 DOI: 10.21037/tcr-21-169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the worst prognoses of all malignant tumors, with an annual incidence near its annual mortality rate. To improve the prognosis of patients with pancreatic cancer, it is essential to diagnose and evaluate pancreatic cancer early. Imaging examinations play an essential role in tumor detection, staging, and surgical resection assessment and can provide reliable evidence for the diagnosis and treatment of pancreatic cancer. Currently, imaging techniques commonly used for pancreatic cancer include endoscopic ultrasound (EUS), conventional ultrasound, magnetic resonance imaging (MRI), multidetector spiral computed tomography (MDCT), positron emission tomography/computed tomography (PET/CT), and others PET/CT is a new imaging device composed of PET and CT. 18F-Fluorodeoxyglucose (18F-FDG) is a commonly used tracer in the clinic. Cancer cells are more robust than other ordinary cells in that they can ingest glucose, and the structure of glucose is similar to the structure of 18F-FDG. Therefore, after the injection of 18F-FDG, 18F-FDG in tumor cells appears very thick during PET scanning. Therefore, PET/CT can determine the metabolic capacity and anatomical position of pancreatic tumor cells in the body accurately diagnose the patient's condition and tumor location. It plays a vital role in early diagnosis and accurate staging, predicts survival, and monitors therapeutic effectiveness and pancreatic cancer recurrence. Although 18F-FDG PET/CT has limitations in identifying inflammatory diseases and tumors, it still has good development potential. This article reviews the clinical application of 18F-FDG PET/CT in pancreatic cancer.
Collapse
Affiliation(s)
- Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Chun Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Sheng Zhao
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ran Xie
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Lei Zhao
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Kun Li
- Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rui Zhang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yadong Tian
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Lixian Tan
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Shujuan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Hua Sun
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
3
|
Rabia E, Garambois V, Hubert J, Bruciamacchie M, Pirot N, Delpech H, Broyon M, Theillet C, Colombo PE, Vie N, Tosi D, Gongora C, Khellaf L, Jarlier M, Radosevic-Robin N, Chardès T, Pèlegrin A, Larbouret C. Anti-tumoral activity of the Pan-HER (Sym013) antibody mixture in gemcitabine-resistant pancreatic cancer models. MAbs 2021; 13:1914883. [PMID: 33876707 PMCID: PMC8078530 DOI: 10.1080/19420862.2021.1914883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes. Here, we found by immunohistochemistry that these three receptors were co-expressed in 11% of patients with pancreatic adenocarcinoma. We then developed gemcitabine-resistant pancreatic cancer cell models (SW-1990-GR and BxPC3-GR) and one patient-derived xenograft (PDX2846-GR) by successive exposure to increasing doses of gemcitabine. We showed that expression of EGFR, HER2 and HER3 was increased in these gemcitabine-resistant pancreatic cancer models, and that an antibody mixture against all three receptors inhibited tumor growth in mice and downregulated HER receptors. Finally, we demonstrated that the Pan-HER and gemcitabine combination has an additive effect in vitro and in mice xenografted with the gemcitabine-sensitive or resistant pancreatic models. The mixture of anti-EGFR, HER2 and HER3 antibodies is a good candidate therapeutic approach for gemcitabine-sensitive and -resistant pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Female
- Humans
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Emilia Rabia
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Véronique Garambois
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Julie Hubert
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Marine Bruciamacchie
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Nelly Pirot
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Université Montpellier, CNRS UAR3426, INSERM US09, Université De Montpellier, Montpellier, France
| | - Hélène Delpech
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Morgane Broyon
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Université Montpellier, CNRS UAR3426, INSERM US09, Université De Montpellier, Montpellier, France
| | - Charles Theillet
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | | | - Nadia Vie
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Diego Tosi
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Celine Gongora
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Lakhdar Khellaf
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Marta Jarlier
- Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Nina Radosevic-Robin
- Centre Jean Perrin, Université Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Thierry Chardès
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - André Pèlegrin
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| | - Christel Larbouret
- Institut De Recherche En Cancérologie De Montpellier (IRCM), INSERM U1194, Université De Montpellier, Institut Régional Du Cancer De Montpellier (ICM), Montpellier, France
| |
Collapse
|
4
|
Kristensen LK, Fröhlich C, Christensen C, Melander MC, Poulsen TT, Galler GR, Lantto J, Horak ID, Kragh M, Nielsen CH, Kjaer A. CD4 + and CD8a + PET imaging predicts response to novel PD-1 checkpoint inhibitor: studies of Sym021 in syngeneic mouse cancer models. Theranostics 2019; 9:8221-8238. [PMID: 31754392 PMCID: PMC6857046 DOI: 10.7150/thno.37513] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Predicting the outcome of immunotherapy is essential for efficient treatment. The recent clinical success of immunotherapy is increasingly changing the paradigm of cancer treatment. Accordingly, the development of immune-based agents is accelerating and the number of agents in the global immuno-oncology pipeline has grown 60-70% over the past year. However, despite remarkable clinical efficacy in some patients, only few achieve a lasting clinical response. Treatment failure can be attributed to poorly immunogenic tumors that do not attract tumor infiltrating lymphocytes (TILs). Therefore, we developed positron emission tomography (PET) radiotracers for non-invasive detection of CD4+ and CD8a+ TILs in syngeneic mouse tumor models for preclinical studies. Methods: Seven syngeneic mouse tumor models (B16F10, P815, CT26, MC38, Renca, 4T1, Sa1N) were quantified for CD4+ and CD8a+ TILs using flow cytometry and immunohistochemistry (IHC), as well as for tumor growth response to Sym021, a humanized PD-1 antibody cross-reactive with mouse PD-1. Radiotracers were generated from F(ab)'2 fragments of rat-anti-mouse CD4 and CD8a antibodies conjugated to the p-SCN-Bn-Desferrioxamine (SCN-Bn-DFO) chelator and radiolabeled with Zirconium-89 (89Zr-DFO-CD4/89Zr-DFO-CD8a). Tracers were optimized for in vivo PET/CT imaging in CT26 tumor-bearing mice and specificity was evaluated by depletion studies and isotype control imaging. 89Zr-DFO-CD4 and 89Zr-DFO-CD8a PET/CT imaging was conducted in the panel of syngeneic mouse models prior to immunotherapy with Sym021. Results: Syngeneic tumor models were characterized as "hot" or "cold" according to number of TILs determined by flow cytometry and IHC. 89Zr-DFO-CD4 and 89Zr-DFO-CD8a were successfully generated with a radiochemical purity >99% and immunoreactivity >85%. The optimal imaging time-point was 24 hours post-injection of ~1 MBq tracer with 30 µg non-labeled co-dose. Reduced tumor and spleen uptake of 89Zr-DFO-CD8a was observed in CD8a+ depleted mice and the uptake was comparable with that of isotype control (89Zr-DFO-IgG2b) confirming specificity. PET imaging in syngeneic tumor models revealed a varying maximum tumor-to-heart ratio of 89Zr-DFO-CD4 and 89Zr-DFO-CD8a across tumor types and in-between subjects that correlated with individual response to Sym021 at day 10 relative to start of therapy (p=0.0002 and p=0.0354, respectively). The maximum 89Zr-DFO-CD4 tumor-to-heart ratio could be used to stratify mice according to Sym021 therapy response and overall survival was improved in mice with a 89Zr-DFO-CD4 ratio >9 (p=0.0018). Conclusion: We developed 89Zr-DFO-CD4 and 89Zr-DFO-CD8a PET radiotracers for specific detection and whole-body assessment of CD4+ and CD8a+ status. These radiotracers can be used to phenotype preclinical syngeneic mouse tumor models and to predict response to an immune checkpoint inhibitor. We foresee development of such non-invasive in vivo biomarkers for prediction and evaluation of clinical efficacy of immunotherapeutic agents, such as Sym021.
Collapse
Affiliation(s)
- Lotte K. Kristensen
- Minerva Imaging, Copenhagen, Denmark
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Denmark
| | | | - Camilla Christensen
- Minerva Imaging, Copenhagen, Denmark
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Denmark
| | | | | | | | | | | | | | - Carsten H. Nielsen
- Minerva Imaging, Copenhagen, Denmark
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Denmark
| | - Andreas Kjaer
- Dept. of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Dept. of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Denmark
| |
Collapse
|
5
|
Iommelli F, De Rosa V, Terlizzi C, Fonti R, Del Vecchio S. Preclinical Imaging in Targeted Cancer Therapies. Semin Nucl Med 2019; 49:369-381. [PMID: 31470932 DOI: 10.1053/j.semnuclmed.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preclinical imaging with radiolabeled probes can provide noninvasive tools to test the efficacy of targeted agents in tumors harboring specific genetic alterations and to identify imaging parameters that can be used as pharmacodynamics markers in cancer patients. The present review will primarily focus on preclinical imaging studies that can accelerate the clinical approval of targeted agents and promote the development of imaging biomarkers for clinical applications. Since only subgroups of patients may benefit from treatment with targeted anticancer agents, the identification of a patient population expressing the target is of primary importance for the success of clinical trials. Preclinical imaging studies tested the ability of new radiolabeled compounds to recognize mutant, amplified, or overexpressed targets and some of these tracers were transferred to the clinical setting. More common tracers such as 18F-Fluorothymidine and 18F-Fluorodeoxyglucose were employed in animal models to test the inhibition of the target and downstream pathways through the evaluation of early changes of proliferation and glucose metabolism allowing the identification of sensitive and resistant tumors. Furthermore, since the majority of patients treated with targeted anticancer agents will invariably develop resistance, preclinical imaging studies were performed to test the efficacy of reversal agents to overcome resistance. These studies provided consistent evidence that imaging with radiolabeled probes can monitor the reversal of drug resistance by newly designed alternative compounds. Finally, despite many difficulties and challenges, preclinical imaging studies targeting the expression of immune checkpoints proved the principle that it is feasible to select patients for immunotherapy based on imaging findings. In conclusion, preclinical imaging can be considered as an integral part of the complex translational process that moves a newly developed targeted agent from laboratory to clinical application intervening in all clinically relevant steps including patient selection, early monitoring of drug effects and reversal of drug resistance.
Collapse
Affiliation(s)
- Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Martin TD, Cook DR, Choi MY, Li MZ, Haigis KM, Elledge SJ. A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant Cells. Cell Rep 2018; 20:427-438. [PMID: 28700943 PMCID: PMC5553568 DOI: 10.1016/j.celrep.2017.06.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
Activating mutations in the KRAS oncogene are highly prevalent in tumors, especially those of the colon, lung, and pancreas. To better understand the genetic dependencies that K-Ras mutant cells rely upon for their growth, we employed whole-genome CRISPR loss-of-function screens in two isogenic pairs of cell lines. Since loss of essential genes is uniformly toxic in CRISPR-based screens, we also developed a small hairpin RNA (shRNA) library targeting essential genes. These approaches uncovered a large set of proteins whose loss results in the selective reduction of K-Ras mutant cell growth. Pathway analysis revealed that many of these genes function in the mitochondria. For validation, we generated isogenic pairs of cell lines using CRISPR-based genome engineering, which confirmed the dependency of K-Ras mutant cells on these mitochondrial pathways. Finally, we found that mitochondrial inhibitors reduce the growth of K-Ras mutant tumors in vivo, aiding in the advancement of strategies to target K-Ras-driven malignancy.
Collapse
Affiliation(s)
- Timothy D Martin
- Howard Hughes Medical Institute, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Danielle R Cook
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard University Medical School, Boston, MA 02215, USA
| | - Mei Yuk Choi
- Howard Hughes Medical Institute, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mamie Z Li
- Howard Hughes Medical Institute, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin M Haigis
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard University Medical School, Boston, MA 02215, USA
| | - Stephen J Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; Program in Virology, Harvard University Medical School, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Xu HL, Li M, Zhang RJ, Jiang HJ, Zhang MY, Li X, Wang YQ, Pan WB. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using 18F-FDG and 18F-FLT. Hepatobiliary Pancreat Dis Int 2018; 17:140-148. [PMID: 29571649 DOI: 10.1016/j.hbpd.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Positron emission tomography (PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of 18F-fludeoxyglucose (18F-FDG) and 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis. METHODS The uptake rate of 18F-FDG and 18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio (tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression. RESULTS Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of 18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and 2.82% ± 0.15%, respectively (t = 4.69, P = 0.04); that of 18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively (t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and 18F-FLT uptake in primary tumors (r = 0.73, P = 0.0019). 18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases (r = 0.81, P = 0.0049). CONCLUSIONS The uptake of 18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells. 18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.
Collapse
Affiliation(s)
- Hai-Long Xu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Man Li
- Endoscopy Center, the Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Rong-Jun Zhang
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi 214063, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ming-Yu Zhang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Li
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi-Qiao Wang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wen-Bin Pan
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
8
|
Mogensen MB, Loft A, Aznar M, Axelsen T, Vainer B, Osterlind K, Kjaer A. FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study. EJNMMI Res 2017; 7:56. [PMID: 28695424 PMCID: PMC5503853 DOI: 10.1186/s13550-017-0302-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fluoro-L-thymidine (FLT) is a positron emission tomography/computed tomography (PET/CT) tracer which reflects proliferative activity in a cancer lesion. The main objective of this prospective explorative study was to evaluate whether FLT-PET can be used for the early evaluation of treatment response in colorectal cancer patients (CRC) with liver metastases. Patients with metastatic CRC having at least one measurable (>1 cm) liver metastasis receiving first-line chemotherapy were included. A FLT-PET/CT scan was performed at baseline and after the first treatment. The maximum and mean standardised uptake values (SUVmax, SUVmean) were measured. After three cycles of chemotherapy, treatment response was assessed by CT scan based on RECIST 1.1. RESULTS Thirty-nine consecutive patients were included of which 27 were evaluable. Dropout was mainly due to disease complications. Nineteen patients (70%) had a partial response, seven (26%) had stable disease and one (4%) had progressive disease. A total of 23 patients (85%) had a decrease in FLT uptake following the first treatment. The patient with progressive disease had the highest increase in FLT uptake in SUVmax. There was no correlation between the response according to RECIST and the early changes in FLT uptake measured as SUVmax (p = 0.24). CONCLUSIONS No correlation was found between early changes in FLT uptake after the first cycle of treatment and the response evaluated from subsequent CT scans. It seems unlikely that FLT-PET can be used on its own for the early response evaluation of metastatic CRC.
Collapse
Affiliation(s)
- Marie Benzon Mogensen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Marianne Aznar
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Axelsen
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ben Vainer
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kell Osterlind
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Schwarz LJ, Hutchinson KE, Rexer BN, Estrada MV, Gonzalez Ericsson PI, Sanders ME, Dugger TC, Formisano L, Guerrero-Zotano A, Red-Brewer M, Young CD, Lantto J, Pedersen MW, Kragh M, Horak ID, Arteaga CL. An ERBB1-3 Neutralizing Antibody Mixture With High Activity Against Drug-Resistant HER2+ Breast Cancers With ERBB Ligand Overexpression. J Natl Cancer Inst 2017; 109:3861234. [PMID: 29059433 DOI: 10.1093/jnci/djx065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Background Plasticity of the ERBB receptor network has been suggested to cause acquired resistance to anti-human epidermal growth factor receptor 2 (HER2) therapies. Thus, we studied whether a novel approach using an ERBB1-3-neutralizing antibody mixture can block these compensatory mechanisms of resistance. Methods HER2+ cell lines and xenografts (n ≥ 6 mice per group) were treated with the ERBB1-3 antibody mixture Pan-HER, trastuzumab/lapatinib (TL), trastuzumab/pertuzumab (TP), or T-DM1. Downregulation of ERBB receptors was assessed by immunoblot analysis and immunohistochemistry. Paired pre- and post-T-DM1 tumor biopsies from patients (n = 11) with HER2-amplified breast cancer were evaluated for HER2 and P-HER3 expression by immunohistochemistry and/or fluorescence in situ hybridization. ERBB ligands were measured by quantitative reverse transcription polymerase chain reaction. Drug-resistant cells were generated by chronic treatment with T-DM1. All statistical tests were two-sided. Results Treatment with Pan-HER inhibited growth and promoted degradation of ERBB1-3 receptors in a panel of HER2+ breast cancer cells. Compared with TL, TP, and T-DM1, Pan-HER induced a similar antitumor effect against established BT474 and HCC1954 tumors, but was superior to TL against MDA-361 xenografts (TL mean = 2026 mm 3 , SD = 924 mm 3 , vs Pan-HER mean = 565 mm 3 , SD = 499 mm 3 , P = .04). Pan-HER-treated BT474 xenografts did not recur after treatment discontinuation, whereas tumors treated with TL, TP, and T-DM1 did. Post-TP and post-T-DM1 recurrent tumors expressed higher levels of neuregulin-1 (NRG1), HER3 and P-HER3 (all P < .05). Higher levels of P-HER3 protein and NRG1 mRNA were also observed in HER2+ breast cancers progressing after T-DM1 and trastuzumab (NRG1 transcript fold change ± SD; pretreatment = 2, SD = 1.9, vs post-treatment = 11.4, SD = 10.3, P = .04). The HER3-neutralizing antibody LJM716 resensitized the drug-resistant cells to T-DM1, suggesting a causal association between the NRG1-HER3 axis and drug resistance. Finally, Pan-HER treatment inhibited growth of HR6 trastuzumab- and T-DM1-resistant xenografts. Conclusions These data suggest that upregulation of a NRG1-HER3 axis can mediate escape from anti-HER2 therapies. Further, multitargeted antibody mixtures, such as Pan-HER, can simultaneously remove and/or block targeted ERBB receptor and ligands, thus representing an effective approach against drug-sensitive and -resistant HER2+ cancers.
Collapse
Affiliation(s)
- Luis J Schwarz
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Katherine E Hutchinson
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Brent N Rexer
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Mónica Valeria Estrada
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Paula I Gonzalez Ericsson
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Melinda E Sanders
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Teresa C Dugger
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Luigi Formisano
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Angel Guerrero-Zotano
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Monica Red-Brewer
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Christian D Young
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Johan Lantto
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Mikkel W Pedersen
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Michael Kragh
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Ivan D Horak
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| | - Carlos L Arteaga
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN; Department of Cancer Biology, Vanderbilt University, Nashville, TN; Symphogen, Ballerup, Denmark
| |
Collapse
|
10
|
Iida M, Bahrar H, Brand TM, Pearson HE, Coan JP, Orbuch RA, Flanigan BG, Swick AD, Prabakaran PJ, Lantto J, Horak ID, Kragh M, Salgia R, Kimple RJ, Wheeler DL. Targeting the HER Family with Pan-HER Effectively Overcomes Resistance to Cetuximab. Mol Cancer Ther 2016; 15:2175-86. [PMID: 27422810 PMCID: PMC5010956 DOI: 10.1158/1535-7163.mct-16-0012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
Cetuximab, an antibody against the EGFR, has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer, and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2, and HER3. Here, we examined pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, pan-HER treatment decreased all three receptors' protein levels and downstream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared with mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with pan-HER exhibited significant growth delay compared with vehicle/cetuximab controls. These results suggest that targeting multiple HER family receptors simultaneously with pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. Mol Cancer Ther; 15(9); 2175-86. ©2016 AACR.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Harsh Bahrar
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. Radboud Department of Radiation Oncology, University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John P Coan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Prashanth J Prabakaran
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | - Randy J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
11
|
Rodems TS, Iida M, Brand TM, Pearson HE, Orbuch RA, Flanigan BG, Wheeler DL. Adaptive responses to antibody based therapy. Semin Cell Dev Biol 2016; 50:153-63. [PMID: 26808665 DOI: 10.1016/j.semcdb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy.
Collapse
Affiliation(s)
- Tamara S Rodems
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, WIMR 3136, Madison, WI 53705, USA.
| |
Collapse
|