1
|
Sohn J, Kwon S, Lee GY, Kim SS, Lee Y, Lee J, Jung Y, Ham S, Park HEH, Park S, Ha SG, Lee D, Lee SJV. HLH-30/TFEB mediates sexual dimorphism in immunity in Caenorhabditis elegans. Autophagy 2025; 21:283-297. [PMID: 38963038 PMCID: PMC11759534 DOI: 10.1080/15548627.2024.2375779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
Sexual dimorphism affects various biological functions, including immune responses. However, the mechanisms by which sex alters immunity remain largely unknown. Using Caenorhabditis elegans as a model species, we showed that males exhibit enhanced immunity against various pathogenic bacteria through the upregulation of HLH-30 (Helix Loop Helix 30/TFEB (transcription factor EB)), a transcription factor crucial for macroautophagy/autophagy. Compared with hermaphroditic C. elegans, males displayed increased activity of HLH-30/TFEB, which contributed to enhanced antibacterial immunity. atg-2 (AuTophaGy (yeast Atg homolog) 2) upregulated by HLH-30/TFEB mediated increased immunity in male C. elegans. Thus, the males appear to be equipped with enhanced HLH-30/TFEB-mediated autophagy, which increases pathogen resistance, and this may functionally prolong mate-searching ability with reduced risk of infection.Abbreviations: atg-2: AuTophaGy (yeast Atg homolog) 2; FUDR: 5-fluoro-2'-deoxyuridine; GSEA: gene set enrichment analysis; HLH-30: Helix Loop Helix 30; LC3: microtubule associated protein 1 light chain 3; NGM: nematode growth media; RNA-seq: RNA sequencing; SEM: standard error of the mean; TFEB: transcription factor EB; WT: wild-type.
Collapse
Affiliation(s)
- Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sieun S. Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongsun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hae-Eun H. Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Daehan Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
VanDerMolen KR, Newman MA, Breen PC, Gao Y, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. Cell Rep 2025; 44:115191. [PMID: 39786994 PMCID: PMC11834565 DOI: 10.1016/j.celrep.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor TRA-1/GLI, but rather via non-canonical signaling that engages mammalian target of rapamycin complex 2 (mTORC2). Hh mutants display impaired lipid homeostasis, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we find that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation to modulate lipid homeostasis. Our findings reveal a non-canonical role for Hh signaling in lipid metabolism via regulation of core homeostatic pathways.
Collapse
Affiliation(s)
- Kylie R VanDerMolen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjing Gao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Huff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert H Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Konwar C, Maini J, Saluja D. Understanding Longevity: SIN-3 and DAF-16 Revealed as Independent Players in Lifespan Regulation. J Gerontol A Biol Sci Med Sci 2024; 79:glae160. [PMID: 38894529 DOI: 10.1093/gerona/glae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 06/21/2024] Open
Abstract
Aging is the process of gradual physio-biochemical deterioration. Although aging is inevitable, healthy aging is the key to individual and communal well-being. Therefore, it is essential to understand the regulation of aging. SIN-3/Sin-3 is a unique regulatory protein that regulates aging without DNA-binding activity. It functions by establishing multiple protein interactions. To understand the functional mechanism of this transcriptional regulator, the Caenorhabditis elegans protein interactome was assessed for SIN-3 interactions. DAF-16/FOXO emerged as one of the leading contenders for SIN-3-mediated regulation of aging. This study looks at the concerted role of SIN-3 and DAF-16 proteins in lifespan regulation. Phenotypic profiling for the mutants of these genes shows the functional accord between these 2 proteins with similar functions in stress response and vital biological processes. However, there were no significant physical interactions when checked for protein-protein interaction between SIN-3 and DAF-16 proteins. C. elegans genomics and transcriptomics data also indicated the possibilities of concerted gene regulation. This genetic regulation is more likely related to SIN-3 dominance on DAF-16 function. Overall, SIN-3 and DAF-16 proteins have strong functional interactions that ensure healthy aging. The influence of SIN-3 on DAF-16-mediated stress response is one of their convergence points in longevity regulation.
Collapse
Affiliation(s)
- Chandrika Konwar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Biology and Bioengineering Division, Tianqiao and Chrissy Chen Institute of Neuroscience, California Institute of Technology, Pasadena, California, USA
| | - Jayant Maini
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Ham S, Kim SS, Park S, Kwon HC, Ha SG, Bae Y, Lee G, Lee SV. Combinatorial transcriptomic and genetic dissection of insulin/IGF-1 signaling-regulated longevity in Caenorhabditis elegans. Aging Cell 2024; 23:e14151. [PMID: 38529797 PMCID: PMC11258480 DOI: 10.1111/acel.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sieun S. Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sangsoon Park
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Hyunwoo C. Kwon
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seokjun G. Ha
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Yunkyu Bae
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Gee‐Yoon Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seung‐Jae V. Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
5
|
Valdés A, Sánchez-Martínez JD, Gallego R, Ibáñez E, Herrero M, Cifuentes A. In vivo neuroprotective capacity of a Dunaliella salina extract - comprehensive transcriptomics and metabolomics study. NPJ Sci Food 2024; 8:4. [PMID: 38200022 PMCID: PMC10782027 DOI: 10.1038/s41538-023-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer's disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Rocío Gallego
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| |
Collapse
|
6
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Zhao Q, Rangan R, Weng S, Özdemir C, Sarinay Cenik E. Inhibition of ribosome biogenesis in the epidermis is sufficient to trigger organism-wide growth quiescence independently of nutritional status in C. elegans. PLoS Biol 2023; 21:e3002276. [PMID: 37651423 PMCID: PMC10499265 DOI: 10.1371/journal.pbio.3002276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/13/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Interorgan communication is crucial for multicellular organismal growth, development, and homeostasis. Cell nonautonomous inhibitory cues, which limit tissue-specific growth alterations, are not well characterized due to cell ablation approach limitations. In this study, we employed the auxin-inducible degradation system in C. elegans to temporally and spatially modulate ribosome biogenesis, through depletion of essential factors (RPOA-2, GRWD-1, or TSR-2). Our findings reveal that embryo-wide inhibition of ribosome biogenesis induces a reversible early larval growth quiescence, distinguished by a unique gene expression signature that is different from starvation or dauer stages. When ribosome biogenesis is inhibited in volumetrically similar tissues, including body wall muscle, epidermis, pharynx, intestine, or germ line, it results in proportionally stunted growth across the organism to different degrees. We show that specifically inhibiting ribosome biogenesis in the epidermis is sufficient to trigger an organism-wide growth quiescence. Epidermis-specific ribosome depletion leads to larval growth quiescence at the L3 stage, reduces organism-wide protein synthesis, and induced cell nonautonomous gene expression alterations. Further molecular analysis reveals overexpression of secreted proteins, suggesting an organism-wide regulatory mechanism. We find that UNC-31, a dense-core vesicle (DCV) pathway component, plays a significant role in epidermal ribosome biogenesis-mediated growth quiescence. Our tissue-specific knockdown experiments reveal that the organism-wide growth quiescence induced by epidermal-specific ribosome biogenesis inhibition is suppressed by reducing unc-31 expression in the epidermis, but not in neurons or body wall muscles. Similarly, IDA-1, a membrane-associated protein of the DCV, is overexpressed, and its knockdown in epidermis suppresses the organism-wide growth quiescence in response to epidermal ribosome biogenesis inhibition. Finally, we observe an overall increase in DCV puncta labeled by IDA-1 when epidermal ribosome biogenesis is inhibited, and these puncta are present in or near epidermal cells. In conclusion, these findings suggest a novel mechanism of nutrition-independent multicellular growth coordination initiated from the epidermis tissue upon ribosome biogenesis inhibition.
Collapse
Affiliation(s)
- Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Rekha Rangan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Shinuo Weng
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Cem Özdemir
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
8
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
9
|
Arneaud SLB, McClendon J, Tatge L, Watterson A, Zuurbier KR, Madhu B, Gumienny TL, Douglas PM. Reduced bone morphogenic protein signaling along the gut-neuron axis by heat shock factor promotes longevity. Aging Cell 2022; 21:e13693. [PMID: 35977034 PMCID: PMC9470895 DOI: 10.1111/acel.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.
Collapse
Affiliation(s)
| | - Jacob McClendon
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Lexus Tatge
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Abigail Watterson
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kielen R. Zuurbier
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Bhoomi Madhu
- Department of BiologyTexas Woman's UniversityDentonTexasUSA
| | | | - Peter M. Douglas
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA,Hamon Center for Regenerative Science and MedicineUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
10
|
Temporal transitions in the post-mitotic nervous system of Caenorhabditis elegans. Nature 2021; 600:93-99. [PMID: 34759317 PMCID: PMC8785361 DOI: 10.1038/s41586-021-04071-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
In most animals, the majority of the nervous system is generated and assembled into neuronal circuits during embryonic development1. However, during juvenile stages, nervous systems still undergo extensive anatomical and functional changes to eventually form a fully mature nervous system by the adult stage2,3. The molecular changes in post-mitotic neurons across post-embryonic development and the genetic programs that control these temporal transitions are not well understood4,5. Here, using the model system Caenorhabditis elegans, we comprehensively characterized the distinct functional states (locomotor behaviour) and the corresponding distinct molecular states (transcriptome) of the post-mitotic nervous system across temporal transitions during post-embryonic development. We observed pervasive, neuron-type-specific changes in gene expression, many of which are controlled by the developmental upregulation of the conserved heterochronic microRNA LIN-4 and the subsequent promotion of a mature neuronal transcriptional program through the repression of its target, the transcription factor lin-14. The functional relevance of these molecular transitions are exemplified by a temporally regulated target gene of the LIN-14 transcription factor, nlp-45, a neuropeptide-encoding gene, which we find is required for several distinct temporal transitions in exploratory activity during post-embryonic development. Our study provides insights into regulatory strategies that control neuron-type-specific gene batteries to modulate distinct behavioural states across temporal, sexual and environmental dimensions of post-embryonic development.
Collapse
|
11
|
Soo SK, Traa A, Rudich PD, Mistry M, Van Raamsdonk JM. Activation of mitochondrial unfolded protein response protects against multiple exogenous stressors. Life Sci Alliance 2021; 4:e202101182. [PMID: 34583931 PMCID: PMC8500221 DOI: 10.26508/lsa.202101182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that responds to mitochondria insults through transcriptional changes, mediated by the transcription factor ATFS-1/ATF-5, which acts to restore mitochondrial homeostasis. In this work, we characterized the role of ATFS-1 in responding to organismal stress. We found that activation of ATFS-1 is sufficient to cause up-regulation of genes involved in multiple stress response pathways including the DAF-16-mediated stress response pathway, the cytosolic unfolded protein response, the endoplasmic reticulum unfolded protein response, the SKN-1-mediated oxidative stress response pathway, the HIF-1-mediated hypoxia response pathway, the p38-mediated innate immune response pathway, and antioxidant genes. Constitutive activation of ATFS-1 increases resistance to multiple acute exogenous stressors, whereas disruption of atfs-1 decreases stress resistance. Although ATFS-1-dependent genes are up-regulated in multiple long-lived mutants, constitutive activation of ATFS-1 decreases lifespan in wild-type animals. Overall, our work demonstrates that ATFS-1 serves a vital role in organismal survival of acute stressors through its ability to activate multiple stress response pathways but that chronic ATFS-1 activation is detrimental for longevity.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Varão AM, Silva JDS, Amaral LO, Aleixo LLP, Onduras A, Santos CS, Silva LPD, Ribeiro DE, Filho JLL, Bornhorst J, Stiboller M, Schwerdtle T, Alves LC, Soares FAA, Gubert P. Toxic effects of thallium acetate by acute exposure to the nematode C. elegans. J Trace Elem Med Biol 2021; 68:126848. [PMID: 34479099 DOI: 10.1016/j.jtemb.2021.126848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thallium (Tl) is a toxic metalloid and an emerging pollutant due to electronic devices and dispersal nearby base-metal mining. Therefore, Tl poses a threat to human health and especially the long-term impact on younger individuals exposed is still unknown. This study aimed to evaluate the toxic effects of thallium acetate in C. elegans in early larval stages, considering physiological and behavioral endpoints, as well as the Tl absorption and bioaccumulation. METHODS Caenorhabditis elegans (C. elegans) was exposed to Thallium acetate (50, 100, 150, 200, 250, 500, and 1000 μM) in the L1 larval stage, with the purpose to observe the toxic effects invoked until adulthood. Transgenic worms strains were transported GFP, reporters to DAF-16 and were used to verify the antioxidant response. ICP-MS quantified total Tl+ concentration to evidence Tl uptake and bioaccumulation. RESULTS Thallium acetate caused a significant reduction in the number of living worms (p < 0.0001 in 100-1000 μM), a delay in larval development (p < 0.01; p < 0.001 and p < 0.0001 in 100-1000 μM) through the larval stages, and egg production in the worm's uterus was reduced. Thallium acetate also induced behavioral changes. Additionally, thallium acetate activated antioxidant pathway responses in C. elegans by translocating the DAF-16 transcription factor and activation of SOD-3::GFP expression. The Tl+ quantification in worms showed its absorption in the L1 larval stage and bioaccumulation in the body after development. CONCLUSIONS Thallium acetate reduced survival, delayed development, caused behavioral changes, induced responses inherent to oxidative stress, and serious damage to the worm's reproduction. In addition, C. elegans absorbed and bioaccumulated Tl+. Together, our results highlight the impacts of Tl+ exposure in the early stages of life, even for a short period.
Collapse
Affiliation(s)
- A M Varão
- MS(4)Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil; Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - J D S Silva
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L O Amaral
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L L P Aleixo
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Onduras
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - C S Santos
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - L P D Silva
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - D E Ribeiro
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J L L Filho
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - M Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - T Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - L C Alves
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil; Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Parasitology, Brazil
| | - F A A Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, 97105900, Santa Maria, RS, Brazil
| | - P Gubert
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
13
|
Transcriptome Analysis of Insulin Signaling-Associated Transcription Factors in C. elegans Reveal Their Genome-Wide Target Genes Specificity and Complexity. Int J Mol Sci 2021; 22:ijms222212462. [PMID: 34830338 PMCID: PMC8618238 DOI: 10.3390/ijms222212462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Insulin/IGF-1-like signaling (IIS) plays a crucial, conserved role in development, growth, reproduction, stress tolerance, and longevity. In Caenorhabditis elegans, the enhanced longevity under reduced insulin signaling (rIIS) is primarily regulated by the transcription factors (TFs) DAF-16/FOXO, SKN-1/Nrf-1, and HSF1/HSF-1. The specific and coordinated regulation of gene expression by these TFs under rIIS has not been comprehensively elucidated. Here, using RNA-sequencing analysis, we report a systematic study of the complexity of TF-dependent target gene interactions during rIIS under analogous genetic and experimental conditions. We found that DAF-16 regulates only a fraction of the C. elegans transcriptome but controls a large set of genes under rIIS; SKN-1 and HSF-1 show the opposite trend. Both of the latter TFs function as activators and repressors to a similar extent, while DAF-16 is predominantly an activator. For expression of the genes commonly regulated by TFs under rIIS conditions, DAF-16 is the principal determining factor, dominating over the other two TFs, irrespective of whether they activate or repress these genes. The functional annotations and regulatory networks presented in this study provide novel insights into the complexity of the gene regulatory networks downstream of the IIS pathway that controls diverse phenotypes, including longevity.
Collapse
|
14
|
Lin Z, Xie Y, Nong W, Ren X, Li R, Zhao Z, Hui JHL, Yuen KWY. Formation of artificial chromosomes in Caenorhabditis elegans and analyses of their segregation in mitosis, DNA sequence composition and holocentromere organization. Nucleic Acids Res 2021; 49:9174-9193. [PMID: 34417622 PMCID: PMC8450109 DOI: 10.1093/nar/gkab690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
To investigate how exogenous DNA concatemerizes to form episomal artificial chromosomes (ACs), acquire equal segregation ability and maintain stable holocentromeres, we injected DNA sequences with different features, including sequences that are repetitive or complex, and sequences with different AT-contents, into the gonad of Caenorhabditis elegans to form ACs in embryos, and monitored AC mitotic segregation. We demonstrated that AT-poor sequences (26% AT-content) delayed the acquisition of segregation competency of newly formed ACs. We also co-injected fragmented Saccharomyces cerevisiae genomic DNA, differentially expressed fluorescent markers and ubiquitously expressed selectable marker to construct a less repetitive, more complex AC. We sequenced the whole genome of a strain which propagates this AC through multiple generations, and de novo assembled the AC sequences. We discovered CENP-AHCP-3 domains/peaks are distributed along the AC, as in endogenous chromosomes, suggesting a holocentric architecture. We found that CENP-AHCP-3 binds to the unexpressed marker genes and many fragmented yeast sequences, but is excluded in the yeast extremely high-AT-content centromeric and mitochondrial DNA (> 83% AT-content) on the AC. We identified A-rich motifs in CENP-AHCP-3 domains/peaks on the AC and on endogenous chromosomes, which have some similarity with each other and similarity to some non-germline transcription factor binding sites.
Collapse
Affiliation(s)
- Zhongyang Lin
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Yichun Xie
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoliang Ren
- Department of Biology, Baptist University of Hong Kong, Sir Run Run Shaw Building, Ho Sin Hang Campus, Kowloon Tong, Hong Kong
| | - Runsheng Li
- Department of Biology, Baptist University of Hong Kong, Sir Run Run Shaw Building, Ho Sin Hang Campus, Kowloon Tong, Hong Kong
| | - Zhongying Zhao
- Department of Biology, Baptist University of Hong Kong, Sir Run Run Shaw Building, Ho Sin Hang Campus, Kowloon Tong, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, the University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| |
Collapse
|
15
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
16
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
17
|
DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells 2020; 9:cells9010109. [PMID: 31906434 PMCID: PMC7017163 DOI: 10.3390/cells9010109] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.
Collapse
|
18
|
Tarkhov AE, Alla R, Ayyadevara S, Pyatnitskiy M, Menshikov LI, Shmookler Reis RJ, Fedichev PO. A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories. Sci Rep 2019; 9:7368. [PMID: 31089188 PMCID: PMC6517414 DOI: 10.1038/s41598-019-43075-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
We collected 60 age-dependent transcriptomes for C. elegans strains including four exceptionally long-lived mutants (mean adult lifespan extended 2.2- to 9.4-fold) and three examples of lifespan-increasing RNAi treatments. Principal Component Analysis (PCA) reveals aging as a transcriptomic drift along a single direction, consistent across the vastly diverse biological conditions and coinciding with the first principal component, a hallmark of the criticality of the underlying gene regulatory network. We therefore expected that the organism's aging state could be characterized by a single number closely related to vitality deficit or biological age. The "aging trajectory", i.e. the dependence of the biological age on chronological age, is then a universal stochastic function modulated by the network stiffness; a macroscopic parameter reflecting the network topology and associated with the rate of aging. To corroborate this view, we used publicly available datasets to define a transcriptomic biomarker of age and observed that the rescaling of age by lifespan simultaneously brings together aging trajectories of transcription and survival curves. In accordance with the theoretical prediction, the limiting mortality value at the plateau agrees closely with the mortality rate doubling exponent estimated at the cross-over age near the average lifespan. Finally, we used the transcriptomic signature of age to identify possible life-extending drug compounds and successfully tested a handful of the top-ranking molecules in C. elegans survival assays and achieved up to a +30% extension of mean lifespan.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mikhail Pyatnitskiy
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Leonid I Menshikov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- National Research Center "Kurchatov Institute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Bioinformatics Program, University of Arkansas for Medical Sciences, and University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Peter O Fedichev
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
19
|
Kumar N, Mukhopadhyay A. Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters. Methods Mol Biol 2019; 1890:115-130. [PMID: 30414149 DOI: 10.1007/978-1-4939-8900-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chromatin immunoprecipitation (ChIP) coupled to quantitative real-time PCR (ChIP-qPCR) or Next-Generation Sequencing (ChIP-seq) enables us to study the dynamics of chromatin recruitment of transcription factors (TFs). The popular model system Caenorhabditis elegans has provided us with fundamental understanding of the role of Insulin/IGF-1-like signaling (IIS) in metabolism and aging. The FOXO TF DAF-16 is the major output of the pathway that regulates most of the phenotypes associated with the IIS pathway. Here, we describe a ChIP protocol to study FOXO recruitment dynamics in whole C. elegans extracts. We discuss detailed practical procedures, including optimization, growth, harvesting, formaldehyde fixation, sonication of worms, TF immunoprecipitation for further downstream processing using qPCR as well as NGS for the analysis of FOXO-bound DNA.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
20
|
Stylianou M, Björnsdotter MK, Olsson PE, Ericson Jogsten I, Jass J. Distinct transcriptional response of Caenorhabditis elegans to different exposure routes of perfluorooctane sulfonic acid. ENVIRONMENTAL RESEARCH 2019; 168:406-413. [PMID: 30388497 DOI: 10.1016/j.envres.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Although people are exposed daily to per- and polyfluorinated alkyl substances (PFASs), the biological consequences are poorly explored. The health risks associated with PFAS exposure are currently based on chemical analysis with a weak correlation to potential harmful effects in man and animals. In this study, we show that perfluorooctane sulfonic acid (PFOS), often the most enriched PFAS in the environment, can be transferred via bacteria to higher organisms such as Caenorhabditis elegans. C. elegans nematodes were exposed to PFOS directly in buffer or by feeding on bacteria pretreated with PFOS, and this led to distinct gene expression profiles. Specifically, heavy metal and heat shock associated genes were significantly, although inversely, expressed following the different PFOS exposures. The innate immunity receptor for microbial pathogens, clec-60, was shown for the first time to be down-regulated by PFOS. This is in line with a previous study indicating that PFOS is associated with children's susceptibility to certain infectious diseases. Furthermore, bar-1, a gene associated with various cancers was highly up-regulated only when C. elegans were exposed to PFOS pretreated live bacteria. Furthermore, dead bacterial biomass had higher binding capacity for linear and isomeric PFOS than live bacteria, which correlated to the higher levels of PFOS detected in C. elegans when fed the treated E. coli, respectively. These results reveal new aspects concerning trophic chain transport of PFOS.
Collapse
Affiliation(s)
- Marios Stylianou
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden
| | - Maria K Björnsdotter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, Sweden.
| |
Collapse
|
21
|
Wu YX, Zhang SH, Cui J, Liu FT. Long Noncoding RNA XR007793 Regulates Proliferation and Migration of Vascular Smooth Muscle Cell via Suppressing miR-23b. Med Sci Monit 2018; 24:5895-5903. [PMID: 30141428 PMCID: PMC6119354 DOI: 10.12659/msm.908902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) were identified as potential regulatory factor in vascular disease. However, the role of XR007793 in the regulation of neointima formation after vascular injury remains largely unknown. Material/Methods LncRNA expression levels were detected using real-time polymerase chain reaction (RT-PCR). In vivo and in vitro assay were performed in Sprague-Dawley rats and VSMCs. Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and scratch wound healing assay were performed to detect cell proliferation and migration. Western blotting was used to detect protein expression. Results The results of qRT-PCR indicated that XR007793 expression was significantly increased in the injured carotid artery of Sprague-Dawley rats and platelet-derived growth factor-BB induced rat aortic smooth muscle cells. Knockdown of XR007793 repressed the proliferation and migration of VSMC in vitro. The expression level of miR-23b was reduced in mouse carotid injured tissues and cell line. Bioinformatics analysis and luciferase reporter assay revealed that XR007793 directly bonds to miR-23b. Pearson correlation analysis showed that XR007793a and miR-23b were negatively correlated in carotid samples. Furthermore, bioinformatics analysis and luciferase assay indicated that miR-23b targeted the Forkhead box O 4 (FOXO4) 3′-UTR to inhibit FOXO4 expression. After transfecting miR-23b inhibitor, the expression both of XR007793 and FOXO4 was increased. The effects on expression were reversed after transfected with miR-23b mimics. Rescue experiments results indicated that miR-23b inhibitor reduced the expression of VSMC marker and promoted proliferation and migration of VSMC. Conclusions This study shows that XR007793 aggravates the loss of function of VSMCs by negatively regulating miR-23b. It does so by targeting FOXO4, which could serve as a novel therapeutic target in post-angioplasty restenosis.
Collapse
Affiliation(s)
- Ye-Xin Wu
- Department of Intensive Care Unit, Linzi District People's Hospital of Zibo City, Zibo, Shandong, China (mainland)
| | - Su-Hua Zhang
- Department of Health Care, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Jie Cui
- Department of Intensive Care Unit, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Feng-Ting Liu
- Department of Emergency, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| |
Collapse
|
22
|
Shinkai Y, Kuramochi M, Doi M. Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Sci Rep 2018; 8:7942. [PMID: 29786685 PMCID: PMC5962631 DOI: 10.1038/s41598-018-26149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Newborn neurons mature by distinct and sequential steps through the timely induction of specific gene expression programs in concert with epigenetic changes. However, it has been difficult to investigate the relationship between gene expression and epigenetic changes at a single-cell resolution during neuronal maturation. In this study, we investigated the maturation of hermaphrodite-specific neurons (HSNs) in C. elegans, which provided the link between chromatin dynamics, gene expression, and the degree of neuronal maturation at a single-cell resolution. Our results demonstrated that chromatin composition in the promoter region of several genes acting for neuronal terminal maturation was modulated at an early developmental stage, and is dependent on the function of the transcription factor EOR-1/PLZF and the cohesin loader MAU-2/MAU2. Components of the SWI/SNF chromatin remodeling complex were also required for the proper expression of terminal maturation genes. Epistasis analyses suggested that eor-1 functions with mau-2 and swsn-1 in the same genetic pathway to regulate the maturation of HSNs. Collectively, our study provides a novel approach to analyze neuronal maturation and proposes that predefined epigenetic modifications, mediated by EOR-1, MAU-2, and the SWI/SNF complex, are important for the preparation of future gene expression programs in neuronal terminal maturation.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masahiro Kuramochi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8565, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
23
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
24
|
Li H, Ouyang R, Wang Z, Zhou W, Chen H, Jiang Y, Zhang Y, Li H, Liao M, Wang W, Ye M, Ding Z, Feng X, Liu J, Zhang B. MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci Rep 2016; 6:39001. [PMID: 27976702 PMCID: PMC5157020 DOI: 10.1038/srep39001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that dysregulation of microRNA-150 (miR-150) is associated with aberrant proliferation of human non-small cell lung cancer (NSCLC) cells. However, whether miR-150 has a critical role in NSCLC cell metastasis is unknown. Here, we reveal that the critical pro-metastatic role of miR-150 in the regulation of epithelial-mesenchymal-transition (EMT) through down-regulation of FOXO4 in NSCLC. In vitro, miR-150 targets 3'UTR region of FOXO4 mRNA, thereby negatively regulating its expression. Clinically, the expression of miR-150 was frequently up-regulated in metastatic NSCLC cell lines and clinical specimens. Contrarily, FOXO4 was frequently down-regulated in NSCLC cell lines and clinical specimens. Functional studies show that ectopic expression of miR-150 enhanced tumor cell metastasis in vitro and in a mouse xenograft model, and triggered EMT-like changes in NSCLC cells (including E-cadherin repression, N-cadherin and Vimentin induction, and mesenchymal morphology). Correspondingly, FOXO4 knockdown exhibited pro-metastatic and molecular effects resembling the effect of miR-150 over-expression. Moreover, NF-κB/snail/YY1/RKIP circuitry regulated by FOXO4 were likely involved in miR-150-induced EMT event. Simultaneous knockdown of miR-150 and FOXO4 abolished the phenotypic and molecular effects caused by individual knockdown of miR-150. Therefore, our study provides previously unidentified pro-metastatic roles and mechanisms of miR-150 in NSCLC.
Collapse
Affiliation(s)
- Hui Li
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, Respiratory Disease Research Institute, Second XiangYa Hospital of Central South University, Changsha, 410011, China
| | - Zi Wang
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Weihua Zhou
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huiyong Chen
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yawen Jiang
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yibin Zhang
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hui Li
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Mengting Liao
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Weiwei Wang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Zhigang Ding
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 400083, China
| | - Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics &School of Life Sciences, Central South University, Changsha, 410078, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
25
|
Singh A, Kumar N, Matai L, Jain V, Garg A, Mukhopadhyay A. A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity. Aging Cell 2016; 15:694-705. [PMID: 27039057 PMCID: PMC4933660 DOI: 10.1111/acel.12477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Insulin/IGF‐1‐like signalling (IIS) and dietary restriction (DR) are the two major modulatory pathways controlling longevity across species. Here, we show that both pathways license a common chromatin modifier, ZFP‐1/AF10. The downstream transcription factors of the IIS and select DR pathways, DAF‐16/FOXO or PHA‐4/FOXA, respectively, both transcriptionally regulate the expression of zfp‐1. ZFP‐1, in turn, negatively regulates the expression of DAF‐16/FOXO and PHA‐4/FOXA target genes, apparently forming feed‐forward loops that control the amplitude as well as the duration of gene expression. We show that ZFP‐1 mediates this regulation by negatively influencing the recruitment of DAF‐16/FOXO and PHA‐4/FOXA to their target promoters. Consequently, zfp‐1 is required for the enhanced longevity observed during DR and on knockdown of IIS. Our data reveal how two distinct sensor pathways control an overlapping set of genes, using different downstream transcription factors, integrating potentially diverse and temporally distinct nutritional situations.
Collapse
Affiliation(s)
- Anupama Singh
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Neeraj Kumar
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Latika Matai
- CSIR‐Institute of Genomics & Integrative Biology South Campus Mathura Road New Delhi 110020 India
- Academy of Scientific and Innovative Research CSIR‐IGIB, Mathura Road Campus New Delhi India
| | - Vaibhav Jain
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Amit Garg
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
26
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|